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ABSTRACT 

Development of in vitro Chylomicron Assay Using Caco-2 Cells 

by 

Yuxi Sun 

Dietary fats are mainly transported by the intestine in lipoproteins: chylomicrons (CMs) and very 

low density lipoproteins (VLDLs). Unfortunately, studies of the intestinal absorption of dietary 

fat have been hampered by the lack of an adequate in vitro model system. As an in vitro model 

Caco-2 cells are able to secrete lipoproteins. We investigated the possible factors that may affect 

the secretion of CMs through the ultracentrifugation technique. The dose-dependent effects of 

oleic acid, mono-olein, egg lecithin, collagen matrix, and the effect of cell differentiation on CM 

secretion were then tested. We found that oleic acid, lecithin, and cell differentiation are critical 

for CM secretion by Caco-2 cells. To further confirm that our optimal condition is, in fact, 

favorable for efficient CM production, we compared it with control groups. We observed that our 

condition led to more efficient CM secretion as determined by the TGs, ApoB, and TEM 

analysis. 
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CHAPTER 1 

INTRODUCTION 

 Obesity has been in a dramatic increase in the United States. About one-third of U.S. 

adults are obese and approximately 17% of children and adolescents are obese in 2010 according 

to Centers for Disease Control and Prevention (36). Unregulated food intake is known to be one 

of the main causes of obesity. Dietary lipids, the main composition in a western diet pattern, are 

absorbed by the small intestine and packed into 2 types of lipoproteins for transportation: CM 

and VLDL. However, the difference between CM and VLDL is not clearly understood including 

their different roles in developing obesity. In our study the production of CM is optimized in 

vitro to provide a tool for lipid-related studies. 

Lipid Digestion 

Before being absorbed by the small intestine, dietary lipids are processed in sequential 

steps: emulsification, hydrolysis, and micellization. Multiple processes are used to increase the 

surface area of the lipid droplets. First, physical force tears the lipid droplet down when stomach 

chime is propelled into duodenum through a small opening of pyloric orifice. Then 

emulsification further breaks the lipids droplet through amphipathic bile in the small intestine. 

The hydrophobic portion of amphipathic bile interferes with the lipids on the surface of lipid 

droplets and weakens the stability of lipid droplets which are broken down into smaller lipid 

droplets. Two enzymes, pancreatic lipase and phospholipase A2, hydrolyze dietary lipids and 

liberate hydrolysis products from lipid droplets. Further being mixed with bile, hydrolysis 

products are packed into micelle to pass through the unstirred water layer above the brush border 

membrane and taken up by enterocytes after micelles are disintegrated (3). 
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The importance of bile to emulsification and micellization is indicated by the decreased 

rate of lipid absorption in humans with bile fistulas (20). Such study indicates that bile in the 

duodenum is important for lipid absorption if not absolutely necessary. However, elevated 

concentrations of bile are shown to inhibit pancreatic lipase activity (14). 

Digestion of Triglyceride 

 About 95% of dietary lipids are TGs while 5% consist of cholesterol, phospholipids, and 

other lipids. TG is digested by pancreatic lipase producing sn-2 monoglyceride (MG) and free 

fatty acids. sn-2 MG is the predominant form of TG hydrolysis products when other forms of 

MG could not be absorbed by enterocytes (32). 

Digestion of Phospholipids 

Dietary phospholipids are hydrolyzed by pancreatic phospholipase A2 into fatty acids 

and lysophospolipids in the intestinal lumen before absorbed by the enterocytes. Like TG, 

phospholipids hydrolysis products are esterified back into phospholipids and packed into 

lipoprotein as structural outer layer. Phospholipase A2 knockout mice are indistinguishable from 

wild-type controls when fed regular chow except for their resistance to diet-induced obesity (3).  

Uptake of Monoglyceride and Free Fatty Acid 

 While MG is taken up through protein-independent diffusion, uptake of fatty acids is 

likely through both protein-independent diffusion and protein-dependent transportation. The 

evidence for passive diffusion is that the uptake of fatty acid is not affected by protease treatment 

in vitro (23). Similar result were reported in adipocytes when flip-flop mechanism was found to 

transport fatty acids across the apical membrane of epithelial cells (22). The evidence for active 
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transport is that fatty acid uptake can be saturated and there are competitions for uptake between 

different fatty acids. A number of candidate proteins are proposed to function in protein-

dependent transportation. First, FAT/CD36, highly expressed in enterocytes, was reported to 

have effects in the uptake of fatty acids (7). The expression of FAT/CD36 is upregulated by 

dietary fat. However, the controversy also exists because only the secretion of lipoproteins is 

impaired in CD36-null animals but the uptake of fatty acid is not (9). The second candidate is 

FATP. FATP has 6 different proteins in which FATP4 is predominantly expressed in the 

intestine. FATP is believed to help facilitate the uptake of fatty acid by the intestine, supported 

by the fact that 40-50% of fatty acid uptake is reduced in knockdown animals (27). The third 

candidate is FABPpm that has been localized on the brush border membranes of enterocytes. The 

antibodies to FABPpm also reduce the fatty acid uptake (15). 

Assembly of Triglyceride in Enterocytes 

Through either diffusion or protein-dependent transport, TG hydrolysis products are 

absorbed by enterocytes and traverse into endoplasmic reticulum (ER) for reesterifying back into 

TG. Two binding proteins to traverse TG hydrolysis products in enterocytes are liver FABP and 

intestinal FABP(4). Inside the ER, TG is assembled in 2 pathways: MG pathway and glycerol-3-

phosphate pathway. The MG pathway covalently joins MG and fatty acyl-CoA to form 

diglyceride (DG) by MGAT (5) and further acylation of DG by DGAT leads to the production of 

TG. The MG pathway is the major pathway for TG biosynthesis, especially predominant when 

sufficient lumen MG and fatty acids are supplied in the postprandial state.  Two DGATs are 

identified and characterized: DGAT1 and DGAT2. Lipid absorption is impaired in DGAT2-

knockout animal but not DGAT1-knockout animal (35). Another pathway, glycerol-3-phosphate 

pathway, is used to assemble TG when lumen MG and fatty acid are not available in the fasting 
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state. The addition of 2 fatty acyl CoAs to glycerolphosphate leads the production of 

phosphatidic acid catalyzed by glycerol-phosphate acyltransferase (GPAT) and acyl-glycerol-

phosphate acyltransferase (AGPAT). Phosphatidate is then dephosphorylated by phosphatidic 

acid phohydrolase (PAP) to yield DG, and another fatty acyl CoA addition leads to TG (37) (See 

Figure 1). 
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Figure 1. Two Pathways for TG Synthesis: MG pathway and glycerol-3-phosphate pathway. In 

MG pathway, MG is acylated by MGAT and DGAT to assemble TG. In glycerol-3-phosphate 

pathway, glycerol-3-phosphate is joined by 2 FA CoA catalyzed by GPAT and AGPA and 

dephosphorylated by PAP to yield DG. Addition of FA CoA to DG yields TG (adapted from Yen 

2008) 
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Lipoprotein Production 

After being absorbed by enterocytes, lipids hydrolysis products are reesterified and 

packaged into lipoproteins to be transported in hydrophilic environment. There are some key 

proteins that are known to affect intestinal lipoprotein secretions: Apolipoprotein B-48, 

microsomal TG transfer protein (MTP), and ApoA-IV. 

Apolipoprotein B-48 

ApoB is essential for lipoprotein assembly in the small intestine and there is only one 

ApoB per lipoprotein (1). Two forms of ApoB, intestine-only ApoB-48 and ApoB-100, are 

encoded by the same gene. In order to produce ApoB-48 in the intestines, nucleotide of ApoB 

mRNA is converted from a cytidine to urideine. As a consequence, a stop codon replaces 

original glutamine, leading to only the NH2-terminal mRNA translated. Therefore, ApoB-48 lost 

the ability to bind LDL-receptor with only 48% of apoB100 left. Besides this, lipoprotein with 

ApoB-48 is also proved to be a better transporter under high concentrations of lipids (23). Fatty 

acid could dramatically increase the secretion of ApoB-48 contained lipoproteins without mRNA 

of ApoB increased (17). It is believed that ApoB-48 synthesis is consecutive and constant. In 

preprandial state, ApoB-48 without being lipidated would be degraded by the ubiquitin-

proteasome system after assembled due to lack of fatty acids and in the postprandial state 

increased fatty acids with similar ApoB amounts lead to an increase in size of lipoproteins. 

Microsomal Triglycerides Protein 

MTP is used for transportation of newly-synthesized TG to newly translated ApoB in the 

ER lumen of small intestine and liver. The initial lipidation of ApoB by MTP protects ApoB 

from proteasome degradation. The large subunit of MTP is responsible for lipid transfer subunit 
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and the small subunit of MTP is identical to protein disulfide isomerase (PDI) (18). 

Abetalipoproteinemia is caused by mutation in the large subunit of MTP that is characterized by 

an inability to secrete intestinal chylomicrons or hepatic VLDL. 

Apolipoprotein A-IV 

Apolipoprotein A-IV (Apo A-IV), expressed predominantly in the small intestine, is a 

lipid binding protein. Despite numerous functions that have been described, ApoA-IV has a 

primary role in the intestinal lipid absorption. As the most responsive to intestinal lipid flux, Apo 

A-IV is incorporated into nascent chylomicrons in the ER and is secreted on the surface of 

chylomicrons (30). 

Chylomicron vs. Very Low Density Lipoprotein 

CM and VLDL are lipoproteins secreted by enterocytes when CM has a diameter of 80 

nm or larger and VLDL is smaller than 80 nm in diameter. VLDL is predominant in the fasting 

state and more CM is secreted in the postprandial state. CM is considered as a more efficient 

lipid transporter than VLDL. In the preprandial state, only 0.7% of lymph lipoproteins were 

CMs. In the postprandial state, around 39% of lymph lipoproteins were CMs for dietary fat 

transportation (26). Pluronic 81 is capable of blocking the production of CM from Caco-2 cell 

but not the production of VLDL. This suggests that the production of CM and VLDL use 

different pathways (10).  

Chylomicron Production 

Formation of chylomicron has multiple steps. The first step, ApoB-48, synthesized in 

rough endoplasmic reticulum (RER), is chaperoned by MTP. Newly synthesized ApoB-48 is 
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either assembled with cholesterol, phospholipids, and small amounts of TG to form stable 

complex dense particles (DP) or is degraded when lipids are not available. Then in smooth 

endoplasmic reticulum (SER), MTP carries TG and cholesterol ester to enlarge the particle that 

merges with Apo A-IV (18). Then prechylomicron is formed that contains a core of neutral lipids 

surrounded by a monolayer of phospholipid with ApoB-48 and ApoA-IV. L-FABP may facilitate 

budding of the preCM transport vesicle (PCTV). The PCTV fuses to the cis-Golgi via coating 

protein II and soluble N-ethymaleimide-sensitive factor attachment protein receptor (SNARE) 

protein. After final processing in the Golgi, the mature CM is secreted via the basolateral 

membrane (2). 

Physiology of the Intestinal Mucosa 

 Epithelium cells of the small intestine secreted lipoproteins from basolateral membrane 

into lamina propria where there are both lymphatic capillaries (lacteal) and blood capillaries 

(fenestrated capillaries). The large gaps between lacteal are considered much larger than the size 

of lipoproteins so that all lipoprotein are assumed to enter the lymphatic system. That is the 

reason lipoproteins studied in vivo are collected from the lymph. However, the pore size of the 

fenestrated capillaries is about 60-80 nm in diameter. In addition to fast flow in blood capillaries, 

some VLDLs enter the blood capillaries and are taken up by the liver. 

Caco-2 Cells 

Caco-2 cells derived from a human colorectal carcinoma could differentiate into 

enterocyte-like function and morphology such as apical microvilli, associated brush border 

hydrolase, sucrose-isomaltase that is an enterocyte-specific differentiation marker and functional 

tight junction barrier that is indicated by high transepithelial electrical resistance (17). Sucrase 
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ctivity can be detected after confluence and gradually increase until 14-20 days postconfluent. 

Some chemicals like collagen matrix are known to affect the growth of Caco-2 cells (2). 

Apolipoprotein B 48 vs. Apolipoprotein B-100 from Caco-2 Cells 

Despite that Caco-2 cells are intestine-derived, it can assemble both intestinal and hepatic 

forms of ApoB. Some studies showed that more hepatic-only ApoB-100 is secreted than ApoB-

48 (24). However, the ratio of ApoB-48/ApoB-100 can be affected by growth and differentiation. 

Caco-2 cells predominantly produced ApoB-100 when cultured directly on plastic plates (24). 

But when cultured on filter or semipermeable membranes, Caco-2 cells synthesize more ApoB-

48 than ApoB-100 (13). The difference is probably due to the degree of polarization or 

maturation based on different growth supports. Besides Caco-2 cell line model, small intestinal 

explants model also produces ApoB-100, implying that mRNA editing to ApoB-48 is incomplete 

(21). 

Criticism on Caco-2 Cells 

There are also criticisms for using Caco-2 cells as an in vitro model. The primary 

criticism is their poor lipid secretion efficiency, particularly their CM secretion efficiency. Most 

studies associated with CMs had to use sensitive test methods, e.g. radiolabeled lipids. In our 

studies, we optimized the conditions for Caco-2 cells to secrete CMs so that the lipids secreted 

can be detected by colorimetric assay and the particles can be visualized by TEM.  
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CHAPTER 2 

MATERIALS AND METHODS 

Caco-2 Cells 

The human adenocarcinoma, Caco-2, cells were obtained from American Type culture 

Collection (Rockville, MD), and grown and maintained with growth media (DMEM with 15% 

FBS) in 5% CO2 at 37°C.  Cells were split at 1:6 ratio when they reached 50-70% confluent, and 

media was changed every other day. To determine optimal condition for CM secretion, cells 

were maintained in 10 cm culture dishes until they reached at least 13 days postconfluence. To 

further comfirm the optimal conditional, cells were cultured on Tranwellsand its condition was 

compared with the commonly reported condition (25). The prefiltered lipid mixture (unless 

specified, Oleic Acid: Lecithin: NaTC = 2 mM: 1.36 mM: 1.0 mM) in 10 ml growth media was 

added to the cells to induce the secretion of CMs. Cells that were grown on culture dishes were 

incubated with lipid mixture for 4 hours; washed with PBS twice, and replaced with fresh growth 

media to collect the secreted lipoproteins. Cells grown in Transwells were incubated with lipid 

mixture in apical chamber for 4 hours: the basolateral chamber was added with fresh growth 

media (no lipid mixture) to collect the secreted lipoproteins.  

Sequential NaCl Density Gradient Ultracentrifugation 

Sequential NaCl density gradient ultracentrifugation was used to isolate CMs and VLDLs 

from the basolateral media of the Caco-2 cells. Media collected from cells were mixed with NaCl 

and water to obtain the density of 1.20 g/ml. The 1.20 g/ml density mixture was then carefully 

overlaid with 500 µl of water and subjected to sequential ultracentrifugation. The top 500 µl 

(CM fraction) was isolated after 30 minute spin at 10,000 rpm (Thermo T865 rotor). The 
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remaining mixture was similarly overlaid with 500 µl of water and spun at 65,000 rpm for 24 

hours. The top 500 µl of VLDL fraction was isolated by gentle pipetting. 

Fat Red 7B 

For the purpose of visualizing the lipid layers on the ultracentrifugation samples, 

colorless media (without the pH indicator phenol red) was used to collect the secreted 

lipoproteins. The colorless lipoprotein-containing media was added with 200 µl of Fat Red 7B 

solution (2 mg/ml Fat Red 7B in 0.1M NaOH with 1 drop of Triton) and were subjected to 

sequential NaCl gradient ultracentrifugation as described above. Digital pictures were taken after 

each spin. With the exception of this experiment, no other experiments used colorless media for 

Fat Red 7B staining. 

Enzyme-Linked Immunosorbent Assay (ELISA) 

ApoB was quantified by a sandwich ELISA method. High binding 96-well plates 

(Thermo Scientific Cat# 62409-002) were coated with monoclonal anti-ApoB antibody (Thermo 

Scientific Cat#HYB069-02-02; 100 µl in each well; 1:5,000 dilution in Voller’s buffer (2.76g 

Na2CO3, 1.916g NaHCO3, 0.2g NaN3 in 1L, pH=9.2)) followed by blocking with 5% BSA in 

PBS-0.5% Tween (PBS-T). After coating, each well was washed 3 times with PBS-T. 100 µl of 

ApoB standard (Alpha Diagnose Cat# APOB25-N-100) or samples were added into each well 

and incubated. Each well was then washed 3 times and incubated with the goat anti-ApoB 

antibody (diluted in 1:2000; Rockland Cat# 600101111). After being washed 5 times, each well 

was incubated with anti-goat horseradish peroxidase-conjugated secondary antibody (diluted 

1:2,000; Thermo Scientific Cat# 31402). Peroxidase substrate (Bio-Rad Cat# 172-1064) was 

added and the absorbance was read according to manufacturer’s suggested protocol. 
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Triglycerides Measurement 

The concentration of TGs was measured by using colorimetric assay, as described 

previously (33). 

Transmission Electron Microscopy 

Samples were negatively stained by using freshly prepared 2% phosphotungstic acid, pH 

6.0, as previously described (33). They were then examined by using Philips Technai 10 and 

representative pictures were taken. 

Optimizing Chylomicron Secretion 

Variables including differentiation stage, lipid mixture composition, lipid mixture 

incubation time, lipoprotein collection time, and collagen matrix were tested. 

Differentiation Stage 

Caco-2 cells that have reached 4, 13, 17, and 23 days postconfluent were used to study 

the effect of differentiation stage on lipoprotein secretion. They were incubated with prefiltered 

lipid mixture (oleic acid: egg-lecithin: NaTC= 4 mM: 1 mM: 0.68 mM: 1.0 mM) in growth 

medium for 4 hours. The lipid mixture was then removed; the cells were washed twice with PBS, 

and incubated with fresh growth media for 2 hours. The collected media were subjected to 

sequential NaCl gradient ultracentrifugation for the isolation of the lipoprotein fractions followed 

by TG analysis, as described above. 
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Lipid Mixture Composition 

The dose-dependent effects of the hydrolysis products of dietary lipids on lipoprotein 

secretion were studied. The hydrolysis products that we tested included oleic acids, mono-olein, 

and egg-lecithin. Caco-2 cells were used when they were between 13 days and 15 days 

postconfluent. Cells were incubated with lipid mixture (oleic acid: mono-olein: egg-lecithin: 

NaTC= 2 mM: 1.32 mM: 1.0 mM) in 10 ml of growth media for 4 hours, washed twice, followed 

by incubation with fresh growth media for 2 hours. Similarly, the collected media were subjected 

to sequential NaCl gradient ultracentrifugation for the isolation of the lipoprotein fractions 

followed by TG analysis. 

For the oleic acid experiment, 0, 2, 4, and 6 mM of oleic acids in 1mM mono-olein, 

0.68mM lecithin, and 1mM NaTC in growth media were used. For mono-olein experiment, 0, 1, 

2, or 4 mM of mono-olein in 2 mM oleic acids, 0.68 mM lecithin, and 1.0 mM NaTC in growth 

media were used. For the lecithin experiment, 0, 0.68, 1.36, or 2.72 mM of lecithin in 2 mM 

oleic acids and 1.0 mM NaTC in growth media were used. 

Thin Layer Chromatography Analysis 

The egg-lecithin was analyzed by TLC (33) to confirm the presence of 

lysophosphatidylcholine (lysoPC). Half milligram of lysoPC and 2 mg of egg-lecithin in 

chloroform were separated on silica gel 60 plates using chloroform : methanol : acetic acid : 

water (50/37.5/3.5/2) (v/v) as the solvent system.  The plate was stained with choline staining (2 

g potassium iodide, 4 ml acetic acid, 0.34 g bismuth subnitrate in 100 ml total volume) followed 

by 20% sulfuric acid staining with 225°F heating until the color developed. 
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Incubation Time and Collection Time 

After Caco-2 cells have reached 13 days postconfluent, lipid mixture (2 mM oleic acids, 

1.36 mM lecithin and 1.0 mM NaTC) in 10 ml growth media were added to the cells for either 2 

or 4 hours. Cells were washed twice with PBS, and incubated with growth media for either 2 or 4 

hours. The collected media were subjected to sequential NaCl gradient ultracentrifugation for the 

isolation of the lipoprotein fractions followed by TG analysis. 

Collagen Matrix 

Tissue culture dishes (10 cm) were precoated with 0, 50, 100, or 500µg collagen per plate 

according to manufacturer’s suggested protocol (MP Biomedical Cat# 160084). After the cells 

have reached 13 days postconfluent, lipid mixture (2 mM Oleic Acid, 1.36 mM lecithin, and 1.0 

mM NaTC) in 10 ml growth media were added to the cells and incubated for 4 hours. The cell 

were washed twice and incubated with fresh growth media for 2 hours. The collected media were 

subjected to sequential NaCl gradient ultracentrifugation for the isolation of the lipoprotein 

fractions followed by TG analysis.  

Comparing the Optimal Condition with the Control Groups 

Cells were cultured Transwell, as described previously (34). For the optimal condition 

(O), the preferred lipid mixture (2 mM oleic acids, 1.36 mM lecithin and 1.0 mM NaTC) in 10 

ml growth media were added to the apical chamber and growth media without lipid were added 

to the basolateral chamber, followed by 4 hours incubation. For the condition with low lipid 

(LL), lipid mixture containing 1.6 mM oleic acid and 0.5 mM NaTC in 10 ml growth media were 

added to the apical chamber and growth media without lipid were added to the basolateral 

chamber, followed by 14 hours incubation. For the condition with no lipid (NL), growth media 
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without lipid were added to both the apical and basolateral chambers and incubated for 4 hours. 

The collected basolateral media were mixed with protease inhibitor and subjected to sequential 

NaCl gradient ultracentrifugation for the isolation of the lipoprotein fractions followed by TG, 

ELISA, TEM, and Western blot analysis. One-step NaCl density gradient ultracentrifugation was 

used instead. In one-step NaCl gradient ultracentrifugation, CMs and VLDLs were isolated as 

one single fraction by skipping the 30 minutes spin at 10,000 rpm. 

Lipoprotein Particle Size Analysis 

Lipoprotein samples from O, LL, and NL that were isolated by one-step NaCl density 

gradient ultracentrifugation were negatively stained with 2% phosphotungstic acid (pH= 6.0), as 

previously described (33). The size of the lipoprotein particles was measured through 

representative TEM pictures. For each group, at least 800 particles were counted per sample.   

SDS Polyacrylamide Gel Electrophoresis and Immunoblotting 

The lipoprotein fraction (10 µl) isolated by one-step NaCl density gradient 

ultracentrifugation method was run on the 4-20% polyacrylamide gel (Bio-Rad Cat# 456-1096) 

using the suggested manufacturer’s protocol. The proteins were then transferred to nitrocellulose 

membrane and blocked with 5% skim milk in TBS-T for 30 minutes. The membrane was 

incubated with monoclonal antiApoB antibodies (Thermo Scientific Cat# HYB069-02-02; 

1:5,000 dilution in blocking buffer). After 2 washes with TBS-T, the membrane was incubated 

with goat antimouse antibodies (Thermo Scientific Cat#LK152970; 1:2000 dilution in blocking 

buffer). After 5 washes, the signals were detected by using the HRP substrate kit (Thermo 

Scientific Cat# NG173486). 
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High-Performance Liquid Chromatography (HPLC) 

 100 µl of the lipoprotein fraction isolated by 1-step NaCl density gradient 

ultracentrifugation injected into the 100 µl sample loop of Bio-Rad Duoflow system and 

separated by gel filtration column (Shodex Cat# SB-804HQ). About 180 of 1 ml fractions were 

collected for analysis (buffer: 0.05 M NaCl).   

Statistical Analysis 

The data shown are mean values ± standard errors (SE). To determine the statistical 

significance of 3 groups or more, 1-way ANOVA was used. t-test was used for comparison 

between 2 groups. Statistical analyses were performed in Excel (Microsoft, Seattle, WA), and 

were considered significant if P < 0.05.  n>2 for all experiments. 
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CHAPTER 3 

RESULTS 

Fat Red 7B Staining 

As shown in Figure 2, the staining spread evenly in the unfractionated lipoprotein layer 

before the ultracentrifugation. After the first spin (Figure 2A) the stain was concentrated in the 

top ~ 1 ml layer, though the bottom layer was lightly stained as well. After the second spin 

(Figure 2B) the stain appeared strongly in the top ~ 1 ml layer and the bottom layer with the 

middle layer minimally stained.  

A)                                B) 

 

Figure 2. Fat Red 7B Staining 

The heavily stained CMs (A) floated to the top ~ 1ml layer. Subsequently, the top 1 ml of 

the chylomicron fraction was replaced with 1 ml of water and spun for 24 hours at 300,000 g. 

The heavily stained VLDLs (B) were visible in the top ~ 1 ml layer. 
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Analysis on Sequential NaCl Density Gradient Ultracentrifugation 

Data in Table 1 showed the difference between CM and VLDL on TG and ApoB. The 

concentrations of ApoB from the top layer of the first and second spins were, 425.3 ng/ml and 

1612.18 ng/ml, respectively (p= 0.005). The concentration of TGs from the top layer of the first 

and second spins were 11.27 mg/dl and 12.27 mg/dl, respectively (p= 0.69). 

Lipoprotein Fractions Isolated by Sequential NaCl Gradient Ultracentrifugation 

 ApoB (ng/ml) TG (mg/dl) 

CM 425.3 ± 139.2 11.27 ± 0.945 

VLDL 1612.18 ± 160.56 12.27 ± 2.15 
Table 1. Lipoprotein Fractions Isolated by Sequential NaCl Gradient Ultracentrifugation  

As shown in Figure 3, both CM and VLDL fractions were analyzed for their 

Apolipoprotein B (A) (p= 0.005), TG (B) (p=0.69) and particle size using the transmission 

electron microcopy with negative staining method. Notice that the particles in the CM fraction 

(C) were larger than those in the VLDL fraction (D). 
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A)                                                                      B)   

  

C) 

 

Figure 3 (continued on the next page) 
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D) 

 

Figure 3. Lipoprotein Fractions Isolated by Sequential Gradient Ultracentrifugation 

Optimizing Chylomicron Secretion: Differentiation Stage 

 Data in Table 2 show the effect of cell differentiation on CM and VLDL secretion. 

The Effect of Cell Differentiation on Lipoprotein Secretion 

Days postconfluent (days) CM (mg/dl) VLDL (mg/dl) 

4 5.99 ± 0.305 9.29 ± 1.39 

13 8.19 ± 1.05 13.87 ± 2.46 

17 11.81 ± 1.86 11.95 ± 1.80 

23 7.09 ± 1.16 11.32 ± 1.87 

Table 2. The Effect of Cell Differentiation on Lipoprotein Secretion 
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To determine the efficiency of lipoprotein secretion, TG concentrations from both the 

CM and VLDL layers were measured. As shown in Figure 4A, Caco-2 cells that have reached 13 

and 17 days postconfluent were more efficient in CM secretion than those of 4 and 23 days 

postconfluent (p= 0.0094) but there was no significant difference between the 13 and 17 days 

postconfluent. Figure 4B shows that the efficiency of VLDL secretion was not significantly 

affected by cellular differentiation stage (p=0.449). 

A)                                                                       B)     

   

Figure 4. The Effect of Cell Differentiation on Lipoprotein Secretion 

Caco-2 cells were grown on 10 cm plate until they reached 4, 13, 17, or 23 days 

postconfluent. The cells were then incubated with 4mM oleic acid, 1mM mono-olein, 0.68mM 

egg lecithin and 1mM NaTC in 10 ml growth media.  After 4 hours of incubation, the cells were 

washed twice with PBS and replaced with fresh growth media. After 2 hours, the media was 
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collected. The collected media was subjected to sequential gradient ultracentrifugation. The 

triglyceride concentrations in the CM (A) ( p= 0.0094) and VLDL (B) fractions were measured 

using a colorimetric assay. n =>3. 

Optimizing Chylomicron Secretion: Oleic Acids 

As shown in Table 3, oleic acids significantly affected the efficiency of chylomicron 

secretion (p= 0.0017) but not VLDL secretion (p= 0.679). 2 mM oleic acids resulted in the most 

efficient CM secretion. Our preliminary data showed that 0.5 and 1 mM oleic acids resulted in 

lower efficiency of chylomicron secretion than 2 mM oleic acids (data not shown). 

Dose-dependent Effects of Oleic Acids on Lipoprotein Secretion 

OA Concentration (mM) CM (mg/dl) VLDL (mg/dl) 

0 6.24 ± 0.37 8.992 ± 1.01 

2 12.74 ± 0.82 12.04 ±1.23 

4 10.08 ± 0.89 12.81 ± 1.44 

6 8.08 ± 0.61 12.63 ± 2.79 

Table 3: Dose-dependent Effects of Oleic Acids on Lipoprotein Secretion 

 These data showed the cell differentiation affected the CM secretion but not VLDL 

fraction. (See Figure 5) 
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A)                                                                        B) 

Figure 5. The Effect of Cell Differentiation on Lipoprotein Secretion 

Caco-2 cells were grown on 10 cm plastic plate until they reached 13 day postconfluent. 

The cells were then incubated with varying amount of lipid. Cells were incubated with 0, 2, 4, or 

6 mM of OA in 0.68 mM lecithin, 1 mM MG, and 1 mM NaTC. After 4 hours of incubation, the 

cells were washed twice with PBS and replaced with fresh growth media. After 2 hours, the 

media was collected. The collected media was subjected to sequential NaCl gradient 

ultracentrifugation. The triglyceride concentrations in the CM (A) (p= 0.0017) and VLDL (B) 

(p=0.679) fractions were measured using a colorimetric assay. n=>3 

Optimizing Chylomicron Secretion: Mono-olein 

As shown in Table 4, different concentrations of MG did not significantly affect the 

production of CM (p=0.35) or VLDL (p=0.74).   

 

* 
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Dose-dependent Effects of Mono-olein on Lipoprotein Secretion 

MG concentration (mM)  CM (mg/dl) VLDL (mg/dl) 

0 8.906 ± 0.73 9.7 ± 0.87 

1 10.09 ± 1.76 9.76 ± 0.90 

2 7.79 ± 0.68 8.96 ± 1.07 

4 5.75 ± 0.72 7.72 ± 1.30 

Table 4: Dose-dependent Effects of Mono-olein on Lipoprotein Secretion 

As shown in Figure 6, mono-olein did not significantly affect the efficiency of either 

chylomicron secretion (p= 0.358) or VLDL secretion (p=0.749), as shown in Figure 5A and 5B, 

respectively. 

A)                                                                      B)                        

 

Figure 6. Dose-dependent Effects of Mono-olein on Lipoprotein Secretion 
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Caco-2 cells were grown on 10 cm plate until they reached 13 day postconfluent. The 

cells were then incubated with varying amount of lipid. Cells were treated with 0, 1, 2, or 4 mM 

MG in 2 mM oleic acid, 0.68 mM egg lecithin and 1mM NaTC. After 4 hours of incubation, the 

cells were washed twice with PBS and replaced with fresh growth media. After 2 hours, the 

media was collected. The collected media was subjected to sequential NaCl gradient 

ultracentrifugation and the TG concentrations in their CM (A) (p= 0.358) and VLDL (B) (p= 

0.749) fractions were measured. 

Optimizing Chylomicron Secretion: Egg Lecithin 

As shown in Table 5, egg lecithin did significantly affect the CM production (p=0.022) 

but not the VLDL production (p=0.053) from Caco-2 cells. Concentrated egg lecithin induced 

Caco-2 cells to secrete significantly more CM.  

Dose-dependent Effects of Egg Lecithin on Lipoprotein Secretion 

Lecithin Concentration (mM) CM (mg/dl) VLDL (mg/dl) 

0 5.42 ± 0.49 7.2 ± 1.17 

0.68 5.77 ± 0.53 9.59 ± 1.61 

1.36 11.41 ± 1.69 13.52 ± 2.42 

2.72 12.48 ± 1.99 15.68 ± 1.91 

Table 5: Dose-dependent Effects of Egg Lecithin on Lipoprotein Secretion 

Figure 7A shows that 1.36 mM and 2.72 mM lecithin led to more efficient CM secretion 

(p=0.022). However, there was no significant difference between the 1.36 mM and the 2.72 mM 

lecithin groups. As shown in Figure 7B, lecithin did not significantly increase the efficiency of 

VLDL secretion, though the trend was clearly present (p= 0.053). 

34 



A)                                                                         B) 

 

Figure 7. Dose-dependent Effects of Egg Lecithin on Lipoprotein Secretion 

Caco-2 cells were grown on 10 cm plates until they reached 13 day postconfluent. The 

cells were then incubated with varying amounts of lipid. Cells were incubated with 0, 0.68, 1.36, 

or 2.72 mM egg lecithin in 2 mM OA and 1mM NaTC, After 4 hours of incubation, the cells 

were washed twice with PBS and replaced with fresh growth media. After 2 hours, the media 

was collected. The collected media was subjected to sequential NaCl gradient ultracentrifugation 

and the TG concentrations in their CM (A) (p= 0.022) and VLDL (B) (p= 0.053) fractions were 

measured. 

TLC Analysis of Egg Lecithin 

To detect the presence of lysoPC in lecithin, we performed thin layer chromatography 

followed by choline staining as shown in Figure 8. 

* 
* 
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Figure 8. TLC Analysis of Egg Lecithin 

Determining the presence of lysoPC in egg-lecithin by TLC. 0.5 mg of lysoPC (left) and 

2 mg egg-lecithin (right) in chloroform were separated on silica gel 60 plates using chloroform: 

methanol: acetic acid: water (50/37.5/3.5/2) (v/v) as the solvent system.  The plate was stained 

by Choline staining (2g potassium iodide, 4 ml acetic acid, 0.34 g bismuth subnitrate in 100 ml 

total volume) followed by 20% sulfuric acid staining with 225°F heating until the color 

developed.   
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Optimizing Chylomicron Secretion: Incubation and Collection Time 

As shown in Table 6, timing did significantly affect the VLDL (p= 0.031) production but 

not the CM (p= 0.068) production  from Caco-2 cells.  

Timing Effects on Lipoprotein Secretion 

Incubation + Collection Time 

(hours) 

CM (mg/dl) VLDL (mg/dl) 

2+2 5.37 ± 0.67 6.31 ± 1.71 

2+4 9.5 ± 1.91 11.48 ± 0.50 

4+2 12.8 ± 1.22 14.53 ± 0.33 

4+4 8.68 ± 1.59 12.89 ± 2.33 

Table 6: Timing Effects on Lipoprotein Secretion 

As shown in Figure 9A and 9B, incubation and collection time did not seem to 

significantly affect the efficiency of CM (p= 0.068), but affected VLDL (p= 0.031) secretion 

significantly. Note that this time frame was chosen because lipoprotein secretion by the 

enterocytes was more pronounced during this time in both mice (33)and rats (35). 
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A)                                                                        B)  

 

Figure 9. Timing Effects on Lipoprotein Secretion 

Caco-2 cells were grown on 10 cm plate until they reached 13 days postconfluent. The 

cells were then incubated with 4 different incubation and collection combinations were tested. 

Cells that were at least 13 days postconfluent were incubated with lipid mixture (2mM oleic acid, 

1.36 egg lecithin and 1mM NaTC) for relative incubation time. Relative collection time was used 

to collect lipoproteins. Sequential NaCl gradient ultracentrifugation was conducted to collect 

chylomicron and VLDL layer. Triglyceride concentrations were measured. Figure 8A was the 

triglycerides concentration in chylomicron layer (p=0.068) and Figure 8B was determined the 

triglycerides in VLDL layer (p=0.031).  n =>3 

 

 

* 
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Optimizing Chylomicron Secretion: Collagen Matrix 

As shown Table 7, collagen did not significantly affect the production of CM (p= 0.643)  

or VLDL (p= 0.740) production from Caco-2 cells.   

Dose-dependent Effects of Collagen Matrix on Lipoprotein Secretion 

Collagen per plate (µg) CM (mg/dl) VLDL (mg/dl) 

0 8.933 ± 1.08 17.31 ± 1.08 

50 9.47 ± 0.46 18.17 ± 2.65 

100 10.56 ± 1.47 16.27 ± 1.48 

500 8.58 ± 0.83 15.70 ± 1.16 

Table 7: Dose-dependent Effects of Collagen Matrix on Lipoprotein Secretion 

As shown in Figure 10, precoating the culture dishes with collagen did not seem to affect 

the efficiency of CM (p= 0.643) (Figure 10A) or VLDL (p= 0.740) (Figure 10B) secretions. 

However, the rate of proliferation of Caco-2 cells grown on collagen matrix was noticeably 

higher relative to the control. 
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A)                                                                            B) 

 

Figure 10. Dose-dependent Effects of Collagen Matrix on Lipoprotein Secretion 

Different amounts of collagen (0, 50, 100, 500 µl) were precoated the 10 cm culture dish 

before cells were growing on. When cells reached 13 days postconfluent, lipid mixture (2mM 

oleic acid, 1.36mM egg lecithin and 1.0mM NaTC) in 10 ml growth media was added to cells 

and incubated for 4 hours. After 2 washes with PBS, new growth media was added to collect 

lipoproteins for 2 hours. Collected media was through sequential NaCl gradient 

ultracentrifugation to isolate chylomicron and VLDL fractions followed by TG analysis. 
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Comparison of the Optimal Condition and the Control Groups 

As shown in Table 8, both ApoB and TG analysis were used on NL, LL, and O groups. 

TG concentrations from LL and O groups increased significantly compared with NL group (p= 

0.0019). ApoB concentrations from LL and O groups also increased significantly compared with 

NL group (p= 0.004).  

ApoB and TG Concentrations from CM Fractions of NL, LL, and O Groups 

 ApoB concentration (ng/ml) TG concentration (mg/dl) 

NL 0.62 ± 0.51 0 ± 0 

LL 6.77 ± 0.32 6510 ± 784.17 

O 8.35 ± 0.09 2833 ± 493.11 

Table 8. ApoB and TG Concentrations from CM Fractions of NL, LL, and O Groups  

As shown in Figure 11A, CM fractions were collected for NL, LL, and O groups as 

described in the methods. ApoB measurements (11A) and TG measurements (11B) were tested 

on each CM fractions from all groups. 
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A)                                                                   B)  

 

Figure 11. ApoB and TG concentrations from CM fractions of NL, LL, and O Groups 

As shown in Table 9, both ApoB and TG analysis were used on VLDL fractions from NL, 

LL, and O groups. TG concentrations from LL and O groups increased significantly compared 

with NL group (p= 0.0014). ApoB concentrations from LL group also increased significantly 

compared with NL and O groups (p= 0.0007).  

 ApoB and TG Concentrations from VLDL Fractions of NL, LL, and O Groups 

 ApoB concentration (ng/ml) TG concentration (mg/dl) 

NL 1.70 ± 0.17 3666 ± 578.29 

LL 10.16 ± 2.16 9590 ± 1161.92 

O 9.85 ± 0.77 4282 ± 596.38 

Table 9. ApoB and TG Concentrations from VLDL Fractions of NL, LL, and O Groups 

* * 

* 

* 
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 As shown in Figure 12, VLDL fractions were collected for NL, LL, and O groups as 

described in the methods. ApoB measurements (12A) and TG measurements (12B) were tested 

on each CM fractions from 3 groups. N>= 3 

A)                                                                        B) 

 

Figure 12. ApoB and TG Concentrations from VLDL Fractions of NL, LL, and O Groups 

TEM and Western Blot Analysis on NL, LL, and O Groups 

To further confirm the difference between NL, LL, and O groups, TEM and western blot 

analysis were performed. The lipoprotein of NL (Figure 13A) only consists of VLDLs, while 

TEM from NL groups (Figure 13B) showed more CM and TEM from O group (Figure 13C) 

showed more percentage of CM. TEM and histogram based on TEM was used to compare the 

size distribution and CM percentage. These were also confirmed by histogram (Figure 13D) and 

CM percent analysis (Figure 13F). 

 

* 
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A) 

 

B) 

 

 

Figure 13 (continued on the next page) 
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C)  

 

D) 

 

 

Figure 13 (continued on the next page) 
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E) 

 

 

F) 

 

Figure 13. TEM and Western Blot Analysis on NL, LL, and O groups 

Caco-2 cells were grown in Transwell until they reached 13 days postconfluence. For NL 

group, 13 days postconfluent cells were incubated with growth media without lipid in both the 

apical and basolateral chambers for 4 hours. For LL group,  lipid mixture (1.6 mM oleic acids 
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and 0.5 mM NaTC) in 10 ml growth media was incubated in the apical chamber and growth 

media without lipid was incubated in the basolateral chamber for 14 hours. For O group, lipid 

mixture (2 mM oleic acids, 1.36 mM lecithin and 1.0 mM NaTC) in 10 ml growth media was 

incubated in the apical chamber and growth media without lipid was incubated in the basolateral 

chamber for 4 hours. Basolateral media collected from NL (Figure 13A), LL (Figure 13B) and O 

groups (Figure 13C) was subjected to 1-step NaCl gradient ultracentrifugation and analyzed by  

TEM. In addition, the Apo B in the collected media was also analyzed by Western Blot (Figure 

13F). The lipoprotein size distribution study (Figure 13D) and CM percentage (Figure 13E) was 

based on TEM of 3 groups.  

High Performance Lipid Chromatography 

One ml fraction of HPLC samples were collected after sample running through the 

column. Detectable ApoB samples were collected and dialyzed for biochemical analysis like TG 

assay and ELISA. Although TG and ELISA could detect the lipoproteins from our sample after 

dialysis, not intact particles were observed in TEM analysis. The particle may not be intact after 

exposure in room temperature for about a week.  
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CHAPTER 4 

DISCUSSION 

Because of the low CM secretion efficiency by Caco-2 cells, sequential gradient 

ultracentrifugation has been used for CM collection (19, 25, 28). In our study modified 

sequential NaCl density gradient ultracentrifugation was used in conjunction with Fat Red 7B 

staining, ApoB and TG measurements and TEM analysis to isolate and analyze CM. Fat Red 7B, 

known to stain TG, is used to label CM and VLDL to determine their movements during the 2 

step NaCl density gradient ultracentrifugation. After the first step of low speed 

ultracentrifugation, CM was concentrated on the top ~ 1 ml while VLDLs spread evenly below 

the top fraction. CMs, less dense than VLDL, float to the top faster than VLDL under the same 

condition. Low speed ultracentrifugation could float CMs to the top layer without floating 

VLDLs up. The second ultracentrifugation step is to float VLDLs to the top through high speed 

ultracentrifugation (Figure 1). After the second ultracentrifugation, both top VLDL layer and 

bottom layer (presumed LDL) were concentrated with heavily stained particles. Through TG and 

ApoB measurements, we found that CM and VLDL fractions contained similar concentrations of 

TG while CM fraction contained significantly less lipoproteins. TG and ApoB measurements 

imply the overall lipoprotein-carrying lipids and the amount of lipoproteins, respectively. The 

average size of particle, suggested by the average lipids of each particle, can be predicted by the 

relative amount of TG to ApoB concentrations. Then the fact that less particles in CM fraction 

carries similar amount of TG suggests the averagely larger lipoproteins in CM fraction than 

particles in VLDL fraction. This result was further confirmed by TEM analysis (Figure 2). From 

TEM, we also learned that no CM is found in VLDL fraction which means our sequential NaCl 

density gradient ultracentrifugation collects all CMs in CM fraction.  
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Caco-2 cells were examined extensively in lipid studies because differentiated Caco-2 

cells displayed enterocyte-like characteristics, including secreting enterocyte-like lipoproteins. 

Differentiation was critical for Caco-2 cells to display like enterocytes. In early differentiation 

stage, Caco-2 cells gradually secreted more VLDLs before secreting CMs (Figure 3). Even 

nondifferentiated Caco-2 cells could secrete VLDLs when transfecting with human ApoB cDNA 

(27), only well-differentiated cells could secrete CM efficiently. There were 3 stages of 

differentiation in Caco-2 cells: homogeneously undifferentiated, heterogeneously differentiated, 

and homogeneously polarized differentiated cells. Studies showed that enterocyte-specific 

proteins are fully expressed in the heterogeneously differentiated stage in which we also found 

the optimal ability to secrete CM (Figure 3A). Caco-2 cells proliferated and differentiated upon 

confluence under standard culture conditions. However, other factors, like collagen and plates 

material, could affect the growth and differentiation of Caco-2 cells too. Collagen, the main 

protein fiber of connective tissue, has been shown to accelerate the proliferation of Caco-2 cells 

(2). However, collagen was not found to have significant effect on either CM or VLDL secretion 

because the cells for experiment were already well-differentiated (Figure 9). Caco-2 cells were 

also found to secrete predominantly ApoB-100 if cultured directly on plastic plates. If cultured 

on semipermeable membrane or filter, Caco-2 cells expressed more ApoB-48 than ApoB-100 

(Figure 11F).  

Mimicking the conditions of enterocytes, lipid mixture was incubated with cells to induce 

the production of CM. The lipid hydrolysis product (fatty acid, MG, and lysophospholipid) were 

reported to induce lipoprotein secretion both from enterocytes and Caco-2 cells. In our study 

oleic acid was used as the most efficient fatty acid for inducing Caco-2 cells to secrete 

lipoproteins (8, 11). We found that 2 mM oleic acid has optimal effects on inducing CM 
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production (Figure 4A). More oleic acid would be toxic to the cells because the hydrophobicity 

could disrupt the cells membranes, while less oleic acid may not supply sufficient lipids for CMs 

secretion.  

Another lipid hydrolysis product, MG, was reported to promote lipoprotein secretion 

from enterocytes and could be taken up by Caco-2 cells (16). The dose-dependent effect of 

mono-olein on CM secretion was tested while no significant effect of mono-olein on lipoprotein 

secretion was found (Figure 5). The reason could be because Caco-2 cells did not actively use 

MG pathway for TG assembles but glycerol-3-phosphate pathway (19). 

The effects of lysophospholipid effects on CM secretion are also tested by testing egg 

lecithin for the cost concerns. Through TLC analysis we found the trace of 

lysophosphatidylcholine (Figure 7), which was reported to promote lipoprotein secretion in 

Caco-2 cells (12, 31).  Significant effects on promoting CM secretion were found. However, the 

possibility of other components in egg lecithin promoting CM secretion can not be ruled out. 

Especially phosphatidylcholine, predominant in egg lecithin, is believed to promote lipoprotein 

secretion from Caco-2 cells also (31).  

Two and 4 hours of incubation or collection time were tested because physiological 

lipoprotein secretion was more pronounced during this time in both mice (33) and rats (35). 

However, the time variables only made a difference in VLDL secretion (Figure 8). Longer 

collection time allows cells to secrete more VLDL but not CM. In addition, the longer the 

incubation and collection time, the more the serum will be consumed. 

To determine if our optimal conditions were in fact capable of producing CMs efficiently, 

we compared it with 2 other groups: less lipid group and no lipid group. Less lipid group used 
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modified previously studied conditions that were reported to have CM secretion (29)and no lipid 

group used the same optimal condition except without lipid mixture incubation. Previously 

studied condition used low lipid in the apical chamber than our optimal condition as well as 

extreme low serum basolateral media to collect lipoproteins overnight. In less lipid group we 

changed original extreme low serum basolateral media to normal serum basolateral media. 

Because when extreme low serum was used in the basolateral media, the TG and ApoB 

concentrations were too low to be detected in both the CM and VLDL fractions. TEM analysis 

also confirmed very few of small lipoproteins secreted (data not shown). If Caco-2 cells were 

incubated with low serum basolateral media for 12 hours like previously reported, cells die and 

detach from the plates. This suggests that Caco-2 cells need serum in the basolateral chamber to 

stay healthy and secrete enormous and large lipoproteins. Therefore, we used 15% FBS in 

DMEM basolateral media for less lipid group instead of 0.1% FBS in DMEM that was used in 

previous study (28.) 

TG, ApoB, and TEM analysis were used to analyze CM and VLDL fractions from 3 

groups: Optimal group (our optimal condition), less lipid group (modified previously reported 

condition), and no lipid group (no lipid mixture added into cells). ApoB concentrations 

represents the lipoprotein amounts while TG concentration represents overall lipids carried by 

lipoproteins. Relative amount of TG to ApoB concentration is used to predict the average size of 

lipoproteins between groups that would be confirmed by TEM analysis.  

From CM fraction analysis of 3 groups we found that: no lipid group secretes few CMs 

suggested by nondetectable ApoB or TG concentrations; Less lipid group secretes the most 

numerous CM suggested by the highest ApoB concentrations and high TG concentrations; Our 

optimal group secretes the average largest CM suggested by high ApoB concentrations and high 
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TG concentrations. All these results are confirmed and supported by our TEM analysis.  Similar 

results were observed in VLDL fraction analysis: no lipid group secretes few VLDLs; less lipid 

group secretes most numerous VLDLs; optimal group secretes largest VLDLs.  

In previous studies ApoB concentrations did not have sufficient amounts for western blot 

without sensitive methods e.g. radiolabeled lipids (6, 17, 19, 25). Inefficient ultracentrifugation 

method and poor lipid exportation efficiency probably are the 2 main reasons. With sensitive 

detective methods, more ApoB-100 was reported to be secreted by Caco-2 cells (24). However, 

through our gradient ultracentrifugation, ApoB from our optimal condition group, less lipid 

condition group and no lipid condition group were all detected by direct western blot. And more 

ApoB-48 was detected than ApoB-100 in all 3 groups. This result supports that more ApoB-48 is 

secreted when culturing the cells on semipermeable membranes. However, from our condition, 

higher ratio of ApoB-48 to ApoB-100 was obtained.  

In our study we have improved the CM secretion efficiency so that lipoproteins could be 

detected by biochemical assay and western blot. The presence of CM secretion was analyzed by 

western blot and confirmed by TEM. And also we improved the percentage of in vitro CM 

secretion efficiency. Overall, 21% of CM secretion efficiency was obtained in vitro from our 

optimal condition, which is close to 39% in vivo efficiency (26). One possible reason for low 

efficiency in vitro was that not all VLDLs were collected in vivo. In the previous in vivo studies, 

all lipoproteins were assumed to enter lacteal because of the larger gaps between their endothelia 

cells. However, fenestrated capillaries, thought to have smaller gaps between their endothelia 

cells, had pores that are about 60-80 nm in diameter. VLDL, which was smaller than the pores, 

was able to enter the blood capillary. In the animal model lipoproteins were collected from the 
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lymph. Therefore, some of these VLDLs were not collected, skewing the data toward larger 

lipoproteins.   
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