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ABSTRACT 

A Computational Chemistry Study of Spin Traps 

by 

Jacob Fosso Tande 

Many defects in physiological processes are due to free radical damage: reactive oxygen 

species, nitric oxide, and hydroxyl radicals have been implicated in the parthenogenesis 

of cancer, diabetes mellitus, and rheumatoid arthritis. We herein characterize the phenyl-

N-ter-butyl nitrone (PBN) type spin traps in conjunction with the most studied dimethyl-

1-pyrroline-N-oxide (DMPO) type spin traps using the hydroxyl radical. In this study, 

theoretical calculations are carried out on the two main types of spin traps (DMPO and 

PBN) at the density functional theory level (DFT). The energies of the optimized 

structures, hyperfine calculations in gaseous and aqueous phases of the spin traps and the 

hydroxyl radical adduct are calculated at the B3LYP correlation and at the 6-31G (d) and 

6-311G (2df, p) basis sets respectively. The dielectric effect on the performance of the 

spin trap is determined using the polarized continuum model. Calculations show a 

localization of spin densities in both cases. However, DMPO spin traps are shown to be 

more stable and more interactive in aqueous environment. 
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CHAPTER 1 

INTRODUCTION 

Free radicals are involved in many areas of chemistry, from oxidation processes, 

combustion reactions, organic synthesis, and biochemistry. The results of these reactions 

are both the intended products as well as numerous side reactions. In particular, many 

defects in physiological processes have been attributed to free radical damage. Free 

radicals have a very short lifetime and will react essentially immediately when formed. 

As such, biologists and chemists have devised indirect ways to study free radicals. One 

method consists of using molecules that are capable of reacting with radicals such that the 

resulting product can be detected by some means, usually Electron Paramagnetic 

Resonance (EPR) spectroscopy. The molecule that reacts with the free radical is known 

as a probe. The resulting product is commonly referred to as an adduct because it is a 

combination of the free radical and the probe. If the adduct is also a radical, it may be 

characterized using EPR spectroscopy. As such, the probe is referred to as a “spin trap” 

because it has trapped and preserved the unpaired spin for a longer lifetime. This work 

seeks to theoretically characterize the phenyl–N–ter–butyl nitrone (PBN) type spin traps 

and set a basis for comparison with the dimethyl-1–pyrroline–N–oxide (DMPO) type 

spin trap counterparts.  

The importance of the numerous applications in chemical as well as biological 

systems of spin traps cannot be over emphasized. Not only are spin traps known to 

capture radicals, but PBN is also known to inhibit free radical release in brain concussion. 

In vivo or in vitro administration of nitrone spin trapping compounds, such as PBN, 

reduces age related deficits. Also, PBN act as an antioxidant for low density lipoproteins 

[1]. 

Spin traps were developed as a result of numerous innovations in the detection 

and characterization of free radicals. Until 1945 not much was known about radicals until 

the first electron spin resonance (EPR) experiment by Zavoiskii in Russia. Later on in 
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1954, Fraenkel, Hirshon, and Walling first reported an EPR spectrum recorded during a 

polymerization process using a number of cross-linked vinyl polymers [2]. Venkataran 

and Franekel observed in 1955 that isotropic hyperfine structure arose from methyl 

proton in substituted semiquinone.  

Thereafter, detection and determination of radicals has witnessed a continuous 

improvement due to the advent of more sophisticated electronic equipment and, above 

all, the use of spin traps. 

Numerous publications show that spin traps may be divided into two classes: 

PBN-type and DMPO-type [14]. These two classes are both nitrones. Unlike the DMPO-

type spin traps, which are highly characterized, both theoretically and experimentally, 

almost nothing is known about the hyperfine properties of the PBN-type spin traps. 

Figure 1.1 shows the structures of the two main classes of spin traps.   

  

N
Z

ON
Z

DMPO-type nitrone PBN-type nitrone

O

 

Figure 1.1: Structures of the Two Main Classes of Spin Traps. (Z represents different     

constituents and the arrow indicates the dative covalent bond.) 

Several PBN–type nitrones have been synthesized among which are α-substituted 

methoxy, amino, cyano, and mercapto nitrones [3, 4] as well as the carboxyl derivatives 

and the alkoxy phosphoryl [5] derivative. The known DMPO-type spin traps include the 

alkoxyphosphoryllated nitrones, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N –oxide 

(DEPMPO) [7-9], alkoxycarbonyl nitrones 5-ethoxycarbonyl-5-methyl-1-pyrroline N-

oxide (EMPO) [11-16] and 5-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (Boc-MPO) 
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[14]. Based on both theoretical and experimental studies, PBN-type and DMPO-type 

nitrones have been shown to have spin trapping capabilities. Nevertheless, they have 

certain limitations: PBN-type nitrones are limited by their capacity to distinguish among 

radicals where as the DMPO-type nitrones are limited by the stability of the adducts 

formed and the overall spin trapping efficiency [14].  

The spin trapping technique involves the addition of reactive free radicals across 

the double bond of a diamagnetic spin trap to form a much more stable free radical, the 

radical adduct, which can then be examined using electron paramagnetic resonance 

spectroscopy. 

N

O

+ OH
N
O

O
H

HMPO
HMPO-OH

°

°

 

Figure 1.2: Formation of the HMPH-OH Radical Adduct from HMPO and a Hydroxyl 

Radical. 

N

O

+ OH
N

O

O
H

DMPO
DMPO-OH

°

°

 

Figure 1.3: Formation of DMPO-OH. 
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Figure 1.4: Formation of PBN-OH. 

 

N
O

N
OOH+

O
H

PPN PPN-OH

°
°

 

Figure 1.5: Formation of PPN-OH. 

 

Numerous spin traps are now available for the detection and quantification of 

different free radical species in both chemical and biological systems. Some of the 

radicals most often found in biological systems are the hydroxyl, oxygen, peroxyl, 

carbonyl, and sulfurnyl radicals. Some spin traps have been reported as being particularly 

sensitive to the detection of some radicals [21]. DMPO has been shown to be capable of 

detecting hydrogen radical [17] in simple chemical radical generating systems under 

favorable conditions. DEPMPO has equally been shown to be particularly versatile. It 

13  
 



traps hydroxyl, peroxyl and hydrogen radicals and is very successful at detecting 

hydrogen radicals even in complicated biological free radical generating systems. This 

was, in fact, the first experiment to show the production of hydrogen radical in plants 

[21]. It was possible to prove the existence of hydrogen radicals because of the possibility 

of a comparative study of the EPR spectra of the adducts of the same spin trap in simple 

electrochemical and complex biological systems. Furthermore, AMPO has been shown, 

theoretically and experimentally, to posses spin trapping capacity [19] and possible 

mechanisms for the formation of the radical adduct has been established. HOAMPO 2−

The adduct resulting from the addition of a reactive free radical to the spin trap is 

by itself a more stable radical. Radicals are of six types: 

1. Free radicals: molecules containing one unpaired electron. 

2. Biradical: they are molecules containing two unpaired electrons sufficiently 

remote from each other so that interaction between them is weak. 

3. Triplet-state entities: they are species that contain two unpaired electrons with 

strong interaction. The triplet-state may be the ground state or some 

optically or thermally excited state. 

4. Entities with three or more unpaired electrons 

5. Point defects in solids or localized crystal imperfections (one or more 

electrons may trap at or near these defects and thus give rise to an 

entity with unpaired electrons) 

6. Most transition-metal ions and rare-earth ions. 

Among the above systems, the radical adduct falls in the first type. The unpaired 

electron, giving rise to paramagnetism, is concentrated in a molecular orbital that spreads 

over more than one atom. The spread out of the single electron depend on the structure of 

the molecule. The distribution of the unpaired electron can be determined with the use of 

EPR spectroscopy. 
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CHAPTER 2 

QUANTUM MECHANICS 

2.1. EPR Theory 

EPR has been used for over fifty years to study variety of paramagnetic species. It 

is a technique that permits the investigator to detect and, in favorable cases, characterize 

molecules with unpaired electrons without altering or destroying the molecules. As the 

name implies, “electron spin” is very important for a better understanding of the EPR 

concept. Spin refers to the intrinsic angular momentum from relativistic effects of 

electrons. Hund’s rule of maximum multiplicity requires that no two electrons in a 

molecule can have identical states. Most molecules (organic and inorganic) contain an 

even number of electrons and will tend to behave as diamagnetic substances. A naïve but 

useful mental picture of the electron can be thought of as spinning negative charge. 

Because moving charges generate magnetic field, the electron are thus tiny magnets 

moving about randomly. In the presence of an external magnetic field, the tiny magnets 

will line up. Figure 2.1 shows the effect of a magnetic field on electrons. 

 

Figure 2. 1: Effect of Magnetic Field on Spinning Electrons [18] 
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EPR spectroscopy is well beyond the electron spin: there are other concepts worth 

understanding. EPR spectroscopy monitors the net absorption of energy from a radiation 

field when molecules change their energy states. Associated with radiation fields are 

oscillating electric and magnetic fields perpendicular to one another. Like most forms of 

spectroscopy, it is the magnetic field component that interacts with molecules to cause 

the change in energy state. The energy absorbed to effect this change is in the form of 

radiation (usually X-band, microwave energy of 9.36Hz.) quanta (quanta of radiation has 

energy hν  where ν is the frequency of radiation in hertz and h is Planck’s constant). 

Absorption can only occur if two conditions are satisfied: 

1. The quanta of radiation (hν ) must correspond to the separation (ΔE) of 

energy levels. When this occurs, resonance condition is said to be met. 

2. The oscillating electric (or magnetic) field component of radiation must be 

able to stimulate an oscillating electric (or magnetic) dipole in the 

molecule. Once this condition is fulfilled, transition is said to be “allowed” 

The magnetic dipoles are provided by electrons and nuclei in the molecule. The 

electron is of interest as EPR spectroscopy deals primarily with electron magnetic 

dipoles. Two types of magnetic dipoles are possible: one from the motion of the electron 

about the nucleus of the atom (orbital magnetic dipole), the other from spinning of the 

electron about an axis through its centre (spin magnetic dipole). The latter contributes for 

99% or more of the total electron magnetic dipole. All electrons have an intrinsic spin 

that is characterized by a spin angular momentum, P. P and magnetic dipole moment, μ, 

are always proportional: that is  

                                                        Pγμ =                                                           (2-1)     

where γ  is the magnetogyric ratio. It is a unique result of quantum mechanics that the 

component of P (hence μ) along a given direction can have only two values. If is this 

component then, 

ZP
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                                                             SZ MhL
π2

=                                                      (2-2)                               

where
2
1

±=sM , is called spin quantum number. For classical motion, and, L is the 

orbital quantum number. 

sM

                                                              
mc
e

2
−

=γ                                                            (2-3)                               

where e is the charge on the electron, m is the mass of the electron and c is the speed of 

light. A combination of equations (2-1) and (2-3) yields 

                                                          Sz M
mc

eh
π

μ
4

−=                                                   (2-4)                               

However, spin angular momentum is purely quantum mechanical and cannot be 

described accurately from classical point of view. Thus,   

                                       sSz MgM
mc

ehg β
π

μ =−=
4

                                         (2-5) 

                                                
mc

eh
π

β
4

=                                                           (2-6) 

(2-6) is called the Bohr magneton and g =2.00232 for a free electron. Also,  

                                                         E = - μB                     (2-7) 

B is the magnitude of the magnetic field. This implies that 

                                       BgBMgE S ββ ±==                                                   (2-8) 

This energy is sometimes called the electron Zeeman energy. 

 Now, if a sample is irradiated with in a certain magnetic field, B, absorption will 

occur. Therefore, if the energy matches the separation of electron energy levels, 

17  
 



absorption occurs (first condition satisfied). Figure 2.2 shows the splitting of electronic 

energy levels in the presence of a magnetic field. 

α

β

B = 0

Ms = -1/2

Ms  = +1/2
B = 0

Bhγ

 

Figure 2. 2: Electronic Energy Levels as a Function of the Magnetic Field Strength. 

The second condition is satisfied when the magnetic component of the microwave field is 

polarized perpendicular to the direction of the static magnetic field. This condition is 

easily met at the microwave frequency. The energy levels of EPR can be tuned, by 

varying B to fixed photon energy. For a given microwave frequency, a range of fields 

will be found at which resonance will occur and, thus, a broad line is generated. The 

observed line width is defined in terms of the relaxation time,  such that, 2T

                                                          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ

2

1
Tg

B
β
h                                                      (2-9) 

                                                 
1

'
22 2

111
TTT

+=                                                     (2-10) 

'
2T  is called the spin-spin relaxation time and  is a function of the observed line width 

and  is the spin lattice relaxation time. 

2T

1T
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Net absorption is a function of the spin population. When resonance is reached, energy is 

exchanged back and forth between the electromagnetic field and the spin system such 

that transitions are induced upward and downward in equal proportion. According to the 

Boltzmann distribution, if there are  electrons in the upper level and in the lower 

level, with energies

+N −N

E +  and −E  respectively, then    

⎥
⎦

⎤
⎢
⎣

⎡ −−
=

−+

−

+

KT
EEEXP

N
N )(

                                             (2-11a)   

Where K is the Boltzmann’s constant and T is the absolute temperature. Substitution 

from equation (2-8) gives 

                                           ⎥⎦
⎤

⎢⎣
⎡−=−

+

KT
BgEXP

N
N β                                                (2-11b) 

                                
KT
h

KT
Bg

N
N νβ

−=−≈−

+

11                                              (2-11c) 

Where,                                                                                 

                                                gβB<<KT                                                       (2-11d) 

 

 

 

 

 

 

 

19  
 



2. 2. The g-factor

 The g-factor is related to the ease with which the applied field can ‘stir up’ current 

through the molecular framework and the strength of the magnetic field the currents 

generate. The g-factor therefore gives some information about the molecular structure. 

The circulation of electrons gives rise to a local magnetic field that may add or subtract 

from the applied field. The local field strength is proportional to the molecular spin-orbit 

coupling constant. The g-factor is anisotropic and its magnitude depends on the 

orientation of the molecule with respect to the applied magnetic field. In solution, when 

the molecule is tumbling very rapidly, only the average value of the g-factor is observed. 

Hence, anisotropy of the g-factor is observed only for radicals trapped in solids. The 

anisotropy of a g-factor is often summarized in the form of a second rank tensor. In a 

general Cartesian axis system, the g tensor is written as 

                                  .                                              (2-12) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzzyzx

yzyyyx

xzxyxx

ggg
ggg
ggg

g

The tensor is always symmetric and is defined on a principal axis system x, y, and z in 

which the g-tensor contain only diagonal elements. That is 

                                                                                            (2-13) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

zz

yy

xx

g

g
g

g
d

00
00
00

If the molecule contains a threefold or higher axis of symmetry (z), then x and y are 

equivalent. The g-factor along z is defined as  and the other two as . In a broad 

structureless line, all the information about g-factor is lost, but all possible values of the 

magnetic field strength would be represented. However, when the g factors differ 

significantly, the individual values may be obtained even though the system is randomly 

disordered. This is illustrated for a system with . Figure 2.3 below shows the 

relative positions of the  parallel and perpendicular g-factors on EPR absorption spectra. 

11g ⊥g

⊥> gg11

20  
 



 

                                                                                           

 

Figure 2. 3: (a) EPR Absorption Spectrum of Symmetric Molecule with No Information 

about g-factor (b) First Derivative Spectrum. (X’s mark the points at which 

 and  occurs [18]) 11g ⊥g

                                                 
β
ν

11g
hBMIN =                                                   (2-14) 

                                                     
β
ν

⊥

=
g
hBMAX                                                   (2-15) 

Where  and  is the minimum and maximum magnetic field strength 

respectively. The more complicated case of 

MINB MAXB

zzyyzz ggg ≠≠ occurs when molecules are 

randomly oriented. The principal g components can be obtained from spectrum of such 

molecules as shown on figure 2.4 
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Figure 2. 4: (a) EPR Absorption Spectrum of Irregular Molecules (b) First Derivative 

Spectrum of Irregular Molecules.  (X’s mark the point at which  

and occur. By convention,  is always the most remote (downfield) g 

factor and  the intermediate [18].) 

,,
yyxx

gg

ZZ
g zzg

yyg

2. 3. Type of Interaction and Hyperfine Splitting

         Besides the local fields induced by the external field that lead to different g factors, 

there are permanent local fields generated by the presence of other magnetic moments, 

possibly those of other electrons but more commonly those of magnetic nuclei in the 

molecule. The interaction of an unpaired electron with a nuclear magnetic moment is 

termed nuclear hyperfine interaction and is at the origin of the multiple splitting observed 

in ESR spectra. These lines provide an insight into the detail electronic structure of free 

radicals. The simplest structure exhibiting hyperfine interaction is the hydrogen atom. 

Instead of a single line characterized by 
β
ν

g
hH r =  with g = 2.00232, a pair of lines is 

observed. This results from the fact that the proton has a spin I = ½. And the 

corresponding  has two allowed values, ±1/2. There will be two possible values 

(shown on figure 2.5 below) of external magnetic field at which resonance will occur. 

IM

 

22  
 



 

Figure 2. 5: EPR Spectrum of H-atom in X rayed Human Tooth [18] 

             A second type of interaction called hyperfine or Fermi contact interaction arises 

when the electron has finite probability of being found at the nucleus. This property is 

only common to electrons in the s-orbital because there is no node in the s-orbital. The 

value of the hyperfine interaction can be evaluated by using the equation below. 

                              ISggH NNe
2)0(

3
8 φββπ

=                                           (2-16)      

from (2-16) the hyperfine splitting constant  can be obtained: 0A

                                           2
0 )0(

3
8 φββπ

NNe ggA =                                               (2-17) 

Where )0(φ  is the value of the wave function of the unpaired electron;  and Ng Nβ  are 

the nuclear g factor and magneton: S and I  are the electron and nuclear spin operators. 

               For free radicals in solution of low viscosity, all orientations are made possible 

by virtue of the rapid molecular tumbling. As such, the isotropic interaction is observed 

because anisotropy is averaged out by molecular tumbling. If the solution is frozen, the 

spectrum observed may be a superposition of the spectra from all possible orientations. 

Figure 2.6 shows the effect of temperature on EPR spectra. 
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Figure 2.6: First Derivative EPR Spectra of the di-t-butyl Nitroxide Radical (a) in Liquid      

Ethanol Solution at 292K; (b) in Solid Glass at 77K [18] 

              The unpaired electron in free radical is often delocalized over many atoms. The 

electron may be coupled to a number of magnetic nuclei. Two cases are often identified: 

1. the electron is coupled to a set of equivalent nuclei 

2. the electron is coupled more tightly  to one nucleus (or several 

equivalent nuclei) and less tightly coupled to another. 

 In the case where an electron is coupled to a set of equivalent nuclei with I = ½, n+1 

lines with intensities proportional to the coefficients of the binomial expansion of order n 

will be observed on the spectrum. On the other hand, for nonequivalent nuclei, the 

spectrum has to be constructed. The intensities of the peaks are proportional to the 

number of spin combinations. Obviously, the more nuclei that interact with the unpaired 

electron, the more complex the EPR spectrum will become. 

                Aromatic protons, before 1960, were thought to be insensitive to EPR 

spectroscopy because, in the π -radicals the unpaired electrons are located primarily in 

the p-orbitals. Also, isotropic hyperfine interaction can be observed only if the unpaired 

electron has some s-character. In fact, there is an interaction between the π  and σ  

electrons by means of spin polarization mechanism. Hence, proton hyperfine splitting is a 

sensitive probe of the distribution of unpaired electrons as the relation 
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Π= I
H
i Qa ρ                                                      (2-18)  

has been found to hold reasonably well. Here, is the proton hyperfine splitting for a 

proton adjacent to a carbon atom in a Л system, is the fraction of time the unpaired 

electron spends in the vicinity of the carbon atom i and, Q is a constant (Q~25G)  

H
ia

Π
iρ

 

2. 4. The Schrödinger’s Equation 

For a long time, the perception of matter at the microscopic level was not evident 

as the only mathematical model for the study of particles was provided by classical 

mechanics. Classical mechanics could only provide information on the macroscopic 

nature of particles. Nowadays, a more refined mathematical model has been designed to 

solve what used to be poorly understood. This model is called quantum mechanics. 

Quantum mechanics attribute dual properties to particles: particle-like as well as 

wave-like properties. Therefore, from the quantum mechanical prospective, species like 

protons, electrons, neutrons, etc. have both wave and particle properties. To describe the 

state of a particle or a system in quantum mechanics a function known as the wave 

function or state function (ψ) is usually postulated. The way the wave function changes 

with time is described by the time dependent Schrödinger equation: 

                                ),(),(
2

),( 2
2

trtrV
mt

tr
i

ψψ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∇

−
=

∂
∂− hh                                   (2-19) 

In this equation, ψ(r, t) is the wave function in polar coordinates and takes it origin from 

classical mechanics. The wave function contains all information about a particle, is a 

form of Planck’s constant, m is the mass of the particle and, is a second order 

differential operator known as the Laplacian. 

h
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V(r, t) is the potential field in which the particle is moving and is a function of time. Most 

applications of quantum mechanics to chemistry do not necessitate a time dependent 

potential field. The wave function can then be written as a product of spatial and time 

functions. 

                                                  Ψ(r, t) = ψ(r) f(t)                                                 (2-21) 

Taking partial derivative with respect to time and position, and substituting in (2-19) 

gives 
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ψ

ψ
hh                            (2-22) 

Equation (2-22) can be split in to two equations: the left hand side (LHS) is time 

dependent and the right hand side (RHS) is position dependent. It, therefore, implies that 

the resulting function must be time and position dependent. So, the LHS and the RHS 

could be set as equal to energy (E). Equating the RHS to E gives the time-independent 

Schrödinger equation for a single particle moving in three dimensions 

                               

)()()(
2

2
2

rErrV
m

ψψ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∇−

h                                     (2-23) 

The expression in bracket is the quantum mechanical Hamiltonian operator, H, which, as 

classically defined, is the sum of the potential energy (V) and the kinetic energy (T) of 

the particle of interest; V arises from the coulumbic attraction and/or repulsion between 

charged particles from an isolated system 

H = T + V                                                      (2-24) 
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Substituting (2-24) in to (2-23) gives the simple form of the time-independent 

Schrödinger equation i.e. the eigenvalue equation 

ψψ EH =
∧

                                                      (2-25) 

An eigenvalue equation produces numerical multiples of the equation known as the 

eigenvalue. In equation (2-25), ψ is the eigenfunction of the Hamiltonian operator, and E 

is the eigenvalue. 

 In a system of particles the kinetic energy is the sum of kinetic energy of all the 

particles in the system. 

∑∇=
kkm

T 2
2

2
h                                                  (2-26) 

and the potential energy is the sum of all the coulombic attractions and repulsions 

between the particles in the system. 

∑∑
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04
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                                          (2-27) 

Where 0ε  is the permittivity of free space, and are the charges on two particles at a 

distance   from each other. 

jq kq

ijr

 The wave function (ψ) on its own has no physical meaning. For ψ to be 

meaningful, restrictions are imposed on the particle position so as to determine the 

wave’s intensity that actually is the particles intensity. The intensity of the particle is 

Schrödinger’s interpretation of the wave function: he proposed that a particle’s intensity 

could be given by the expression below: 

)()( * xxI ψψ=                                                  (2-28) 
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Where I is the intensity and  and ψ(x) are conjugate and wave functions of a 

particle respectively. Max Born later found this interpretation difficult as such, he 

proposed a probabilistic interpretation of the wave function: regarding the intensity or the 

wave function product as the probability of finding a particle in a volume of space. 

*)(xψ

 Microscopic particles such as electrons, protons, neutrons, photons, and pions 

have intrinsic (built-in) spin angular momentum that must be taken into account when 

using wave function to specify their state 

)()( smgrψ                                                      (2-29) 

Where  is one of the functions, α or β, depending on the value of  (-1/2 or 1/2, 1 

or -1, 0). The Hamiltonian operator has no effect on the spin function. 

)( smg sm

[ ] [ ])()()()(
ss

mgrEmgrH ψψ =
∧                      (2-30) 

Thus, taking spin into account, the energy of the particle is not changed, but there are two 

possible states ψα and ψβ. Particles with half integral spin, fermions, require symmetric 

wave functions while particles with integral spins, bosons, require asymmetric wave 

functions. Thus, we have an additional quantum mechanical postulate, the Pauli principle, 

which states that the wave function of a system of electrons must be antisymmetric with 

respect to interchange of any two electrons: 

               ),,,,,,,(),,,,,( 2121 nn qqqqqq ψψ −=                                  (2-31) 

 The difficulties associated with the separation of variables in solving the many 

particle Schrödinger’s equation suggest the need for approximation. Assuming that the 

nuclei and electrons are point masses and neglecting spin-orbit and other relativistic 

interactions, the molecular Hamiltonian is given by the following expression: 

)()(),()()( RVrVrRVRTrTH nuclelecelecnuclnulelec ++++= −
Λ

            (2-32) 
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R and r represent the position of the nuclei and the electron respectively. The Born-

Oppenheimer approximation states that the nuclei are much heavier than electrons, 

because the electrons move faster. This approximation help separate electronic and nuclei 

motions. Where the purely electronic Hamiltonian is given: 

∑∑∑∑∑
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+−∇−=
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r
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h                           (2-33) 

The electronic Hamiltonian including nuclear repulsion is . The nuclear 

repulsion term  is given by: 

NNel VH +
Λ
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                                            (2-34) 

The first term in equation (2-13) is the kinetic energy operator for the electron. The 

second term is the coulombic attraction of the electrons to the nuclei and the third term 

represent repulsion between electrons. The subscripts i and j represent ith and jth 

electrons and α represents the αth nuclei.  is the distance between the ith electron and 

the αth nucleus is the charge on the αth nuclei while is the distance between the ith 

and the jth electron. Further approximation in solving the Schrödinger’s equation for 

many electrons can be made if model chemistries are employed. 

αir

αZ ijr

 

2. 5. Model Chemistries

 Model chemistries are approaches in solving the Schrödinger’s equation by 

mathematical approximation: They are the Born-Oppenheimer, the Hartree-Fock Self 

Consistent (HFSC) theory and, the Density Functional Theory (DFT) 
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2. 5. 1. Hartree-Fock Self Consistent Field (HF-SCF) 

 The exact wave function for hydrogen can be calculated while a very accurate 

wave function can be obtained for helium and lithium. On the other hand, the wave 

functions of higher atoms can only be obtained if approximations are made. The Hartree-

Fock method is the basis for the use of atomic and molecular orbitals in many-electrons 

system. The Hamiltonian operator for an n-electron atom is given as: 

∑ ∑∑∑
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= +===
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+−∇−=
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2'

1 1
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1

2
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e r
e

r
Ze

m
H h                                (2-35) 

The first term is the sum of kinetic energy for n-electrons. The second term is the 

potential energy for the attractions between the electrons and the nucleus of charge Z  'e

For a neutral atom, Z = n, the last term is the potential energy of the interelectronic 

repulsion; the restriction j>i avoids counting the same interelectronic repulsion twice and 

avoids terms like
iir

e 2'

. A zeroth-order wave function can be obtained by neglecting the 

interelectronic repulsion term. The Schrödinger equation would be separated into n one-

hydrogen-like equations. The zeroth-order wave function becomes a product of n 

hydrogen-like (one-electron) orbital. 

),,(,,,,,,,,,,,,,,),,,(),,( 2222211
)0(

nnnni rfrfrf φθφθφθψ =                        (2-36)                               

Where the hydrogen-like orbitals are: 

),()(, φθm
lln YrRf =                                               (2-37) 

The approximate wave function (2-36) is qualitatively useful but quantitatively inaccurate 

as well as all electrons experience the same nuclear charge. The use of effective atomic 

numbers gives considerable improvement. There is, therefore, the need to set up a 

variation function that is not restricted to any other particular form of orbitals such as 
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),,(,,,,,,,,,,,,),,,(),,( 2222211 nnnni rgrgrg φθφθφθφ =              (2-38a)                               

The functions that minimizes the variational integral shown below is determined ig

∫
∫

∧

νφφ

νφφ

d

dH
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*

                                                 (2-38b) 

To simplify things, atomic orbitals are product of radial factor and spherical harmonic 

obtained from approximation: 

),()( ii
m

iliii Yrhg φθ=                                        (2-39) 

This approximation is generally made in atomic calculations. The procedure for 

calculating ’s introduced by Hartree in 1928 and is called the Hartree Self-Consistent-

field (HSCF) method [24]. 

ig

 

2. 5. 1. 1. Hartree’s Procedure 

 Hartree’s procedure begins with the guessing of a product wave function. 

),,(,,,,,,,,,,,,),,,(),,( 222221110 nnnn rsrsrs φθφθφθφ =           (2-40)                               

Where is the normalized function of r multiplied by a spherical harmonic. Each 

electron is then considered as interacting with a continuous charge distribution i.e. each 

electron “sees” the other electrons as being smeared out to form a static distribution of 

electric charges through which it moves. 

1s

 Now considering that the charge distribution has a charge density (charge per unit 

volume) ρ , then the infinitesimal charge in the infinitesimal volume is dvρ . The potential 
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energy of interaction of any electron carrying a charge Q with the static continuum is 

given as 

dv
r

QV ∫=
ρ

πε 04
                                                 (2-41) 

r is the distance between Q and ρ . The electrons are ordered such that the first electron 

has charge Q = e and the second electron is a hypothetical charge cloud given by the 

equation 

2
2se−=ρ                                                (2-42a) 

With 2s , the probability density function of the second electron then is 

2
12

2
22'

12 dv
r
s

eV ∫=                                           (2-42b) 

Where, 

0

2
2'

4πε
ee =                                                  (2-42c) 

Adding the interaction with other electrons we have 

j
j
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2'
11312 ,,,,,,,,,,,                            (2-43) 

We can adequately approximate that the effective potential acting on an electron is a 

function of r only. We can, therefore, average ),,( 1111 φθrV  over the angles to arrive at 
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a one electron Schrödinger equation can be written as 
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h                          (2-45) 

1ε  is the energy of the orbital of electron one at this stage and  is the improved 

orbital of electron one. This procedure is repeated for other electrons until improved 

orbitals are obtained for each electron. The improved orbital calculation is repeated until 

there is no further change from one iteration to the next. The final sets of orbitals give the 

Hartree Self-Consistent-Field wave function. The differential equation for finding the 

Hartree-Fock orbitals has the general form 

)1(1t

)()( ititF iii ε=
Λ

                                                  (2-46) 

Λ

F is the Hartree-Fock operator and represents the expression in square bracket in 

equation (2-45) 

 In the SCF approximation, the orbital energy is calculated by iteratively solving 

the one electron Schrödinger equation: the energy of the atom is the sum of the orbital 

energies minus a correction term. The correction term is the sum of all the potential 

energies that have been counted twice. 
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The first summation is the sum of orbital’s energies; the second summation is the sum of 

potential energy terms counted twice. 
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 Although some attention to Pauli principle and spin has been taken, any 

approximation to the true wave function should include spin explicitly and should be 

antisymmetric to interchange of electrons. Hence, instead of special orbitals, we must use 

spin orbitals: 

iiiF μεμ =
Λ

             i = 1, 2, 3…, n                    (2-48) 

iμ  is the spin orbital, 
Λ

F  is the Fock operator and iε is the orbital energy of the ith spin-

orbital. 

 The Hartree-Fock method for molecules is basically the same as for atoms. The 

molecular Hartree-Fock wave function is written as an anti symmetrized product (Slater 

determinant) of spin orbitals, each spin-orbital being a product of a spatial orbital and 

a spin function (either α or β). 
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 The expression for the Hartree-Fock molecular electronic energy  is given by 

the variation theorem as shown. 

HFE

ψψ NNelHF VHE +=
Λ

                             (2-50)                   

Where ψ is the Slater determinant Hartree-Fock wave function and  and  are 

given by (2-35) and (2-36) respectively.  is the sum of one-electron operators and 

Λ

elH NNV

elH
Λ
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two- electron operators. The HF energy of a diatomic or polyatomic molecule with only 

closed shells is given as 

NNij

n

i

n

i

n

j
ij

core
iiHF VKJHE +++= ∑ ∑∑

= = =

)2(2
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1
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1
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1
                            (2-51) 

Where the one-electron is core Hamiltonian,  and are the coulomb and 

exchange integrals respectively. The HF method looks for those orbitals 

core
iiH ijJ ijK

iφ  that minimize 

the variational integral , also the closed shell orthogonal Hartree-Fock MOs satisfy HFE

)1()1()1( iiiF φεφ =
Λ

                                                 (2-52)  

Where iε is the orbital energy and is the (Hartree-Fock) operator. Molecular orbital 
Λ

F

 (MO) calculations are greatly simplified by the orthogonality of MOs. By multiplying 

(2-34) by iφ and integrating over all space and also using the fact that iφ is normalized we 

obtain 

∫
Λ

= iii dvF )1()1()1( φφε                                    (2-53) 

Simplifying 2-35 result in 

)2(
2/

1
ij

n

j
ij

core
ii KJH −+= ∑

=

ε                            (2-54) 

Finally, solving for  and substituting the result in equation (2-51), the Hartree-

Fock energy is obtained. 
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 In 1951 Roothan proposed to expand the spatial orbitals iφ  as a linear combination 

of a set of one electron basis function : sX

s

b

s
Sii XC∑

=

=
1

φ                                              (2-56) 

Substituting (2-56) in Hartree-Fock equation, we obtain 

s
s

siiS
s

si XCXFC ∑∑ =
Λ

ε                                       (2-57) 

Multiplying by  and integrating (2-57) gives rX

0)(
1

=−∑
=

rsirs

b

s
si SFC ε    ; r = 1, 2, , , , , , b                            (2-58) 

For a non trivial solution we must have 

0)det( =− rsirs SF ε                                                       (2-59) 

Equation (2-58) is the (Hartree-Fock) Roothaan equations and must be solved by an 

iterative process. Because the integrals depend on the orbitalsrsF iφ which in turn depend 

on the unknown coefficients  in practice, the term SCF wave function is applied to any 

wave function obtained by iterative solution of Roothaan equations. The HF-SCF method 

produces the best wave functions that can be expressed as a single Slater determinant. 

The wave function describes electron-electron repulsion in an average sense but does not 

include electron correlation. The correlation may be defined as the difference between the 

exact energy of the system ( ) and the energy calculated by the HF-SCF theory   

siC

exactE HFE

HFexact
HF
C EEE −=                                                      (2-60) 
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The exact energy is determined experimentally or in some cases from more accurate 

calculations. The Hartree-Fock method is available in NWChem by using HF keyword in 

the root section of the input 

 

2. 6. Density Functional Theory (DFT) 

 DFT replaces the N-electron wave function and the associated Schrödinger 

equation by the much simpler electron density and its associated scheme of calculation. 

The original idea of DFT emanates from the works of Thomas and Fermi in 1927. They 

proposed that “electrons are distributed uniformly in the six dimensional phase space for 

the motion of an electron at the rate of two for each  of volume” and that there is an 

effective potential field that “is itself determined by the nuclear charge and this 

distribution of electrons.” [22]. In the Thomas-Fermi method, the kinetic energy of the 

system of electrons is approximated as an explicit functional of the density, but neglect 

exchange and correlation among electrons. Later, the Thomas and Fermi approximation 

was extended by Dirac, who formulated the local approximation for exchange giving rise 

to the energy functional for electrons in an external potential  

3h

][][][][][ ρρρρρ XCJVT
TF EEEEE +++=                                (2-61) 

TE is the kinetic energy of the electron, VE  is the external potential energy (nuclei are 

external to ρ ) from electron-nuclear interaction and nuclear-nuclear repulsion, JE  is the 

electron repulsion term, XCE  is the exchange correlation term equivalent to the usual 

Hartree-Fock energy and representing part of the electron-electron interactions. These 

electron interactions include the exchange energy, from the antisymmetry of the wave 

function and the dynamic correlation in the motion of the individual electrons. 

 The kinetic energy functional of the electron and the electron repulsion functional 

do not provide a practical way of calculating Hartree-Fock energy functional because 

they are unknown. On the other hand, the exchange correlation energy functional is 
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normally written as the sum of exchange functional and correlation functional. The 

exchange correlation functional is the key to the Kohn-Sham DFT calculation of 

molecular properties. It is thus necessary to have a good approximation of this term. 

 The proper approximation of the exchange correlation energy is achieved by 

explicitly separating out the independent particle kinetic energy and the long-range 

Hartree terms;  is reasonably approximated as a local or nearly local functional of 

the density. Thus,  is expressed as 

][ρXCE

][ρXCE

∫= )],([)(][ rrdrE xcXC ρερρ                                          (2-62) 

(2-62) implies that  can be calculated locally at a position r and exclusively from 

the positional value of

][ρXCE

ρ . is the energy per electron at point r that depend only onxcε ρ . 

 Furthermore, the local density and  approximations along with the famous 

Dirac exchange energy produces the exchange energy of a uniform free electron gas in 

the following form: 
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Where ][ρDK  is the Dirac exchange-energy formula and α is an empirical constant for 

the type of system being described and has a value of 2/3 for a uniform free electron gas. 

However, the use of Local Density Approximation (LDA) exchange still leaves about 

10% error in the Hartree-Fock exchange energy [23]. 

 The limitations of the Kohn-Sham Local Density Approximation (KS-LDA) are 

corrected by the Kohn-Sham Local-Spin-Density Approximation (KS-LSDA). The LDA 

for exchange energy functional is given by 
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If the spin polarization parameter is defined as 
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The exchange energy becomes 

drE xX
LSD ),( ςρερ∫=                                             (2-66) 

Where, 

[ ] )()()()(),( 0'0 ςρερερεςρε fxxx
x −+=                              (2-67) 

ς  is zero everywhere for an unpolarised system (closed-shell system, B3LYP) and has a 

value between zero and one for polarized system (open-shell UB3LYP). The spin density 

ρ is zero for a closed-shell system and one for an open-shell system. The spin is one-half 

the product of the total spin density ρ and (ς +1) and the β is the difference between the 

total spin density and the α spin density. The superscript-zero is the exchange energy 

density for the spin-compensated (“paramagnetic”) homogeneous electron gas and the 

superscript-one is for spin-completely-polarized (“ferromagnetic”) homogeneous electron 

gas. 

 It has been pointed out that the major source of error in LDA is the exchange 

energy. So, by imposing the correct exchange hole on the approximate hole given by the 

gradient expansion, the 10% falls to 1% [24]. This new model has further been simplified 

to the so called generalized gradient approximation (GGA) 
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with 
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and 
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642 )2.014296.11()( SSSsF +++=                             (2-71) 

 Much has been done to reduce the error on the exchange correlation energy via 

the exchange functional. Thus any exchange function can be combined with any 

correlation functional. For example the B3LYP exchange-correlation functional is a 

hybrid functional and is written as follows: 
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LYPB cEEcbEaEEaE +−+++−= )1()1( 883              (2-72) 

This functional incorporates HF and DFT exchange terms. Where B88 and LYP stand for 

Becke’s 1988 exchange functional and Lee-Young-Parr correlation functional 

respectively.  

 All in all, the Kohn-Sham theory involves the solving of the following equation 

F (1)ψ = εψ                                             (2-73) 

Where 

XC

j
j VJ

r
Z

F ++−∇−= ∑∑ )1(
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2
1

α α

α                  (2-74a) 
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XC EV                                             (2-74b) 
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When the Kohn-Sham orbitals ( iψ ) are obtained, the electron density may be obtained 

from the sum over the occupied orbitals: 

2∑=
i

iψρ                                                  (2-75) 

Becke’s three-parameter hybrid functional with the Lee-Young-Parr correlation is the 

best known DFT method. 

 

2. 7. Basis Set 

 The set of atomic functions used to construct linear combination of atomic 

orbitals-molecular orbitals (LCAO-MOs) is called basis set. For example  and  

constitute the basis set for the molecular orbital σ1s the two most common basis sets are 

Slater-type orbitals and Gaussian-type orbitals. Although the Slater orbitals were used for 

many years, they are not used directly anymore because the resulting secular 

determinants are difficult to evaluate. In particular, integrals involving more than one 

nuclear center, called multicenter integrals are awkward to calculate. This makes their 

evaluation awkward. Gaussian functions are used instead. For this property study, we 

used the Gaussian type orbitals. Gaussian-type orbitals are of the form 

AHs1
BHs1

),(),,(
21 ΦΘ= −− m

l
rn

nnlm YerNrG αφθ                           (2-76)        

The resulting molecular orbitals are linear combinations of atomic orbitals now expressed 

as sum of Gaussian functions 

i

m

i
kii C φψ ∑

=

=
1

.                                               (2-77) 

Where m is the number of atomic orbitals used to construct molecular orbitals (i, e the 

number of basis set). The use of (2-76) and (2-77) does not distinguish one orbital type 

from the other. A function that adjusts the shape of orbitals is, therefore, needed. This is 
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done by generating the basis set from two Slater type orbital with different orbital 

exponent. This is called the double-zeta basis set. 

 In general, only valence orbitals are expressed by double-zeta representation. The 

inner-shell electrons are still described by single Slater orbital. Basis sets that describe the 

inner-shell electron by a single Slater orbital and the valence-shell by a sum of Slater 

orbitals are commonly referred to as split-valence basis sets. For example 6-31G basis set 

used on a carbon atom means that the1s orbital (inner-shell orbital) is given by a sum of 6 

Gaussian functions. The hyphen indicates a split-valence basis set implying that the 

valence 2s and 2p orbitals are each represented by a pair of Slater orbitals. One of the 

Slater orbitals, the smaller one, is represented by a sum of three Gaussian function (hence 

3) and the larger orbital is represented by a single Gaussian function (hence 1). 

 Atomic orbitals distort as atoms are brought together.  Such an effect is called a 

polarization effect. Polarization effects are accounted for by the addition of orbitals of 

higher orbital quantum number to the mathematical expression of a given orbital e.g. 

 orbital to 1s hydrogen orbital, 3d-orbital to the 2p orbitals. The addition of 3d-

orbitals to 2p orbitals of second row elements of the periodic table is indicated by an 

asterisk to the basis set. A double asterisk indicates polarization is also being added on 

hydrogen atoms by adding 2p orbitals to the hydrogen 1s orbitals. An exception to this is 

the 3-21G* in which the asterisk implies the addition of d-orbitals to the second row 

atoms. This difference is often marked by writing the asterisk in brackets i.e. 3-21G (*) 

Zp2

 The triple-zeta basis set has its valence orbital functions separated into three 

subsets. A typical example of the triple-zeta is 6-311++G (2d) wherein the inner shell is a 

linear combination of 6 Gaussian functions, the hyphen indicates a split valence: in this 

case the inner valence is described by 3 Gaussian functions and the outer valence is 

described by two separate Gaussian functions. The 2d means that a polarization function 

has been added to each part of the outer valence shell. One or two plus signs indicate the 

addition of diffused function with one plus sign indicating the addition of diffuse 

functions on atoms other than hydrogen atom and two plus signs indicating addition of 

diffuse functions on all the atoms in the system. Diffused functions are Gaussian orbitals 
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that have a very small α parameter that allows the wave function to extend far from the 

nucleus; they are used for describing weakly bound states. Also, when polarization is 

considered by adding different orbitals, the added orbitals are represented in parenthesis 

as follows: 6-31G (d, p) means that extra sets of p and d functions have been added to 

non hydrogen atoms and p extra functions have been added to hydrogens. Thus, this is 

synonymous with 6-31G**. 

  Two types of basis sets are commonly used: restricted and unrestricted. 

The restricted basis sets are used to model closed shell systems while the unrestricted 

basis sets are used to model open shell systems. 

2. 8. Solvent Effect. 

 To this point, all that has been discussed is on the stationary-state quantum 

mechanics of an isolated molecule. The molecular properties so calculated are 

appropriate for gas phase molecules not at high pressure. However, molecules with 

biological activities are in an aqueous environment. 

 The most common way to calculate solvent effects is to use a continuum solvent 

model (COSMO) wherein the molecular structure of the solvent is ignored and the 

solvent is modeled as a continuous dielectric of infinite extent that surrounds a cavity 

containing the solute molecule. The continuous dielectric is characterized by its dielectric 

constant (relative permittivity), rε , whose value is the experimental dielectric constant of 

the solvent at the temperature and pressure of the solution. The solute molecule (M) can 

be treated in two ways: one, classically as a collection of charges that interact with 

dielectric. Two, quantum mechanically as the interaction between a solute molecule and 

the surrounding dielectric continuum modeled by a term, , that is added to the 

molecular electronic (fixed nuclei) Hamiltonian (for M in a vacuum). To achieve 

self-consistency between the M charge distribution and the solvent’s reaction field in the 

quantum mechanical implementation of continuum solvation model, the electronic wave 

function and electronic probability density of the solute molecule, M, are allowed to 

Λ

intV

)0(
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change on going from the gas phase to the solution phase. Any treatment in which self-

consistency is achieved is called a self-consistent reaction field (SCRF) model. The 

various versions of SCRF model only differ in how they choose the size and shape of the 

cavity that contains the solute molecule and how  is calculated. 
Λ

intV

 In NWChem, COSMO is a conductor-like screening model of A. Klamt and G. 

Schürman. It describes the dielectric screening effects in solvents. COSMO is invoked by 

specifying the input, COSMO input block with input options followed by the task 

directive specifying the wave function and type of calculation. The COSMO (conductor-

like solvation model) method uses realistic solute-molecule (molecules are modeled to 

real situation). The charges are conductors, rather than dielectric; the initial charges are 

then multiplied by the function ( rε -1) ( rε +0.5) to yield approximations for the charges 

suitable for the dielectric solvent. 

 

2. 9. Atomic Units 

 Most of the results obtained using quantum mechanical calculations are obtained 

using atomic units. The atomic units system is based on Gaussian units defined as 

follows: the unit of mass is the electrons mass ( ), the unit of charge is the proton’s 

charge , and the unit of angular momentum is . It could be concluded that all constants 

in quantum mechanical calculation are considered as unity (they are given an arbitrary 

value of one). Furthermore, the atomic unit of energy 

em

'e h

0

2'

a
e  is called the Hartree ( ) hE

00

2

4 a
eEh πε

= = 27.2116 eV                                       (2-78) 

0a  is the Bohr radius. The Bohr is also the atomic unit of length and the unit of 

permittivity is 04πε  
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 Thus, the use of atomic units save time and memory space 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Computational Details 

NWChem 5.0 from Molecular Sciences Laboratory Software Group of Pacific 

Northwest National Laboratory (MSLSGPNNL) [18-19] and the standard basis set 6-

31G* were used to perform geometric optimization and single point energy calculations 

at the DFT level of theory and the B3LYP [20] exchange correlation functional. The 

calculations were managed and the pictures generated with ECCE 4.0 from 

MSLSGPNNL 

The calculations were performed on a nine node Fedora Core 4 Linux base 

computer cluster consisting of a HP DL 145 G2 master node (dual AMD Opteron 246’S 

3GB RAM, 160 SATA HDD), seven compute nodes (DL 145, dual Opteron 242’S, 1GB 

RAM, 40GB PATA HDD) and a file server node (DL 145, dual Opteron 242’S, 2GB 

RAM~1TB U320 SCSI/SATA RAID 5 drive array). The nodes were connected using a 

dual switched gigabit Ethernet network. 

The hyperfine calculations were performed using Gaussian 98 [26] program on a 

Dell workstation, model Precision 530 with XEON, duo processor on LINUX 60 

professional operating system. The molecular structures were input via Z-matrix of the 

optimized geometries from NWChem. The EPR properties were computed at the DFT 

level of theory using the 6-31 (d) and 6-311 (2dp, f) basis sets at the B3LYP exchange 

correlation functional. The keyword for hyperfine coupling constants (anisotropic) in 

Gaussian 98 is Prop, which is specified in the root section. The root section of Gaussian 

98 job is initiated by a pound sign (#) as the first non blank character of a line. 

The dielectric effect was computed by performing self-consistent reaction field 

(SCRF) calculations using the Polarized Continuum Model PCM [25] with the integral 

equation formalism (SCRF = IEFPCM). The dielectric effect was due to the solvent 

(water) continuum on tesserae with average area of 0.55 squared angstroms. In the PCM 
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framework, the solute molecules are embedded in cavities. The cavities are made up of 

tesserae (small spheres). These cavities are surrounded by water molecules, in the form of 

a continuum, whose polarization is reproduced by point charges distributed on the cavity 

surface. The cavities were computed at the DFT level of theory using the 6-31(d) basis 

and the B3LYP exchange correlation functional with the molecule optimized in the PCM 

cavity, hyperfine calculations were then carried out on the solvated molecules 

 The structures of the systems were specified with Z-matrices including Cartesian 

coordinates. The Cartesian coordinate reference frame work shown below displays the 

relationships between the input data and the definition of centers and angles, the number 

of centers being defined are labeled with the respect to C (the first center consider). 

C

R

i

j

k

i

j

Cα

β

 

Figure 3.1:Relationships between the Centers Bond Angle and the Dihedral Angle in Z-

matrix Input. i, j and k are the Successive Centers from C. (The symbols β and 

α are the dihedral (tortional) and bond angles respectively.) 
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C

β

Input Line:     C i R j   alpha  k  beta +1
 

Figure 3. 2: Relationships between the Centers and Two Bond Angles in Z-matrix Input 

with Optional Parameter Specified as +1. 

k

C

R

i

j

β

α

i

Input Line: C i R j alpha k beta
C

i
j

k

β

-1
 

Figure 3.3: Relationships between the Centers and Two Bond Angles in Z-matrix Input 

with Optional Parameter Specified as -1. 
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The input line in the diagrams above describes the geometric relationship among 

the centers considered: the centers C and i are separated by a distance R (bond length), α 

is the bond angle between the bond lengths Ci and ij and β is the dihedral angle between 

the plane defined by Cij and the bond length ik. +1 and -1 optional parameters are 

defined with respect to the origin of the reference frame. 

3.2 Input Files 

 The input files with the Z-matrices of spin traps and hydroxyl radical based on the 

referential fore mentioned were generated for each system. The input file gives all the 

information about the job that is about to be “launched”. In NWChem, the input files 

always start with the job title and proceeds to indicate the symmetry, overall charge, the 

z-matrix in Cartesian coordinate, the basis set library, the model chemistry and the task to 

be carried out. The input file is made up of strings, each string describing a specific task. 

The model chemistry string is one in which key words are quite often added. 

Table 3.1: NWChem input file of PBN spin trap 

Title "PBN" 

Start PTBN 

echo 

charge 0 

geometry autosym units angstrom 

 C     0.0132390     1.41548     1.23447e-07 

 C     -1.26288     0.672114     1.14930e-07 

 C     -1.25919     -0.800800     8.15835e-08 

 C     0.0206479     -1.53148     -3.41716e-08 

 C     1.30339     -0.794713     -2.15101e-07 

 C     1.32201     0.702811     1.98769e-08 

49  
 



 H     -0.0198805     2.50068     1.36395e-07 

 H     -2.20441     1.21106     1.06111e-07 

 H     -2.19673     -1.34661     8.16780e-08 

 H     0.0204492     -2.61649     -1.10218e-07 

 H     2.19319     -1.40205     -7.71507e-07 

 C     2.54469     1.56620     -1.85923e-07 

 H     2.35140     2.63432     -5.27706e-07 

 N     3.78577     1.15727     1.57228e-07 

 C     4.91316     2.13071     3.06445e-08 

 C     4.85636     3.01608     1.26457 

 H     4.83476     2.38093     2.17608 

 H     5.74519     3.68149     1.31927 

 H     3.95517     3.66362     1.26917 

 C     6.27125     1.38923     8.77383e-08 

 H     6.36614     0.747167     0.902357 

 H     6.36614     0.747167     -0.902356 

 H     7.11823     2.10951     -2.60190e-08 

 C     4.85636     3.01608     -1.26457 

 H     4.83476     2.38093     -2.17608 

 H     3.95517     3.66362     -1.26917 

 H     5.74519     3.68149     -1.31927 

 O     4.06741     -0.147396     1.09847e-06 

end 
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ecce_print /home/jacob/nwchem_run/PTBN/ecce.out 

basis "ao basis" cartesian print 

  H library "6-31G*" 

  O library "6-31G*" 

  C library "6-31G*" 

  N library "6-31G*" 

END 

dft 

  mult 1 

  XC b3lyp 

  mulliken 

end 

driver 

  default 

  maxiter 58 

end 

task dft optimize 
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3.3 Discussion of Results 

3. 3.1 Geometry Analysis 

 The naming system used in this study is shown in Table 3.2 below. 

Table 3.2: Chemical Nomenclature of Systems Studied. 

Acronym Formal Name 

HMPO 2- methyl pyrrolidinium-N- oxide 

HMPO-OH 5-methyl 2-hydroxyl pyrrolidine-N-oxide 

DMPO 2,2 dimethyl pyrrolidinium-N-oxide 

DMPO-OH 2,2-dimethyl 5-hydroxylpyrrolidine-N-oxide 

PPN Benzylidene –N-isopropyl-N-oxide 

PPN-OH Hydroxyl(phenyl) methyl-isopropylaminium-N-oxide 

PBN Benzylidene –N, N-tert-butyl oxide 

PBN-OH Hydroxyl (phenyl)methyl-t-butylaminium-N-oxide 

 

 The spin traps studied are classified into two groups: DMPO-type and PBN-type. 

The structure in each case has distinct characteristics. The calculated N-O and C=N bond 

lengths in both spin traps and spin adducts of the DMPO-types are in the range 1.26-1.28 

and 1.30-1.31Ǻ [14a] which agrees with those determined by Frederick A. Villamena et 

al while the C-N bond length is in the range of 1.27-1.49Ǻ in the spin trap as well as spin 

adducts of the DMPO-types. Also, the O-H bond length in both DMPO-OH and HMPO-

OH adducts are in the range 0.97-0.98Ǻ which is close to the 0.96Ǻ O-H bond length of 

water. The C13-C9-N11 and C16-C12-N10 angles in both HMPO and DMPO 

respectively, are in the range 106.54-111.59˚. Also, the dihedral angle, C13-C9-N11-O12 

drops by 48% in the spin adduct HMPO-OH. The same kind of drop in dihedral angle of 

14% is observed in DMPO-OH spin adduct. This is explained to some extent by the loss 

of the double bond. The double bond contributes to the rigidity of the ring in the DMPO-
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type spin traps. Figures 3.4 and 3.5 are the optimized geometries of DMPO and PBN 

parent spin traps and the daughter DMPO and PBN hydroxyl adduct radicals. 

 Unlike the DMPO-type nitrone where the main skeleton is a ring, the PBN-type 

nitrone has as principal frame, a methyl to which the substituents are attached. The 

feature marks are C=N bond which is 1.32Ǻ in both PBN and PPN spin traps. The C-N 

bond in the spin trap as well as the adduct for both PPN and PBN nitrones is in the range 

of 1.46-1.54Ǻ. Furthermore, the N-O bond is in the range 1.27-1.28Ǻ that agrees with the 

range obtained in DMPO-type as well as the literature. The O-H bond does not change 

much as from the DMPO-type. Table 3.3 compares the calculated bond lengths to the 

experimental bond lengths obtained from X-ray scattering. 

Table 3.3: Comparison of Calculated (DFT/B3LYP/6-31G*) Bond Lengths with 

Experimental Bond Lengths 

Bond Calculated range(Ǻ) Experimental(Ǻ) [14] 

C=N 1.30-1.31 1.291-1.307 

C-N 1.49-1.54 1.50 

N-O 1.26-1.28 1.27 

O-H 0.97-0.98 1.02 

Nph CC −  1.45-1.51 N/A 

 

 .
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(b) 

   Figure3.4: NWChem Optimized Geometries of (a) DMPH-OH and (b) DMPO Spin 

Traps. 
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(b)  

Figure 3.5: NWChem Optimized Geometries of (a) PBN-OH and (b) PBN Spin Traps. 
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The molecular energies of both spin traps and adducts (Table 3.4 below) are 

indicative of the fact that both the DMPO-type and PBN-type are exoergic with the 

DMPO-type being more exoergic. Also the adduct formed are more exoergic than the 

spin traps. This difference in exoergicity implies that the adduct formed are more stable 

than the parent spin traps. The fact that the adduct of the DMPO-type nitrone is more 

stable than that of the PBN-type might be responsible for the selectivity of the PBN-type 

nitrone. It might be important to note the fact that the adducts as well as the spin traps 

increase in stability as the number of atoms in the molecule are decreased. Likewise, the 

stabilization energy decreases as the number of atoms in the molecular skeleton 

increases. Tables 3.4 and 3.5 show the molecular energies as well as the stabilization 

energies of the parent spin traps and the daughter hydroxyl radical adduct as well as the 

hydroxyl adduct radical respectively. 

Table 3.4: Molecular Energies of DMPO and PBN Spin Traps and Adducts at the 

B3LYP/6-31G* Level 

Molecule Molecular Energy*/  hE

OH -75.69 

HMPO-OH -401.68 

HMPO -325.86 

DMPO -365.18 

DMPO-OH -440.99 

PPN-OH -594.61 

PPN -518.81 

PBN-OH -633.92 

PBN -558.12 

*All table energies are in hartrees and 1 hartree is 2625.500 kJ/mol 

 

 

56  
 



 

Table 3.5: Molecular Stabilization Energies of the Hydroxyl Radical Adducts at the 

B3LYP/6-31G* Level 

Molecules Stabilization 

Energy*/  hE

PPN-OH -0.111 

PBN-OH -0.115 

DMPH-OH -0.130 

DMPO-OH -0.131 

*Spin trap + hydroxyl radical – radical adduct 

Table 3.4 shows the molecular energies of the DMPO and PBN spin traps and 

hydroxyl radicals, while the adduct stabilization energies are shown in Table 3.5. From 

the table of values the radical adducts formed are about -0.12 hartrees (-315 kJ/mol) more 

stable than the parent spin trap and free radical. This is in agreement with previous 

studies made by Dr. Frederick A. Villamena et al. [14]. Also, the difference in 

stabilization energy between the two types of spin traps is relatively small 0.01 to 0.02 

hartrees which is about 26.2 to 52.5 kJ/mol. 

 

3.3.2 Solvent Effects 

 Considering the fact that biological probes are generally active in biological 

media, it is wise to carry out a solvent effect study on the spin traps as well as the 

adducts. This is a strong motivation to determine the effect of the solvent on the molecule 

relative to the gaseous phase. This was investigated using the polarizable continuum 

model (PCM). Slight changes in molecular parameters are expected upon solvation: the 

structures are expected to relax to permit greater charge separation (electronic 
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polarization), the solute also is expected to polarize the solvent (electric polarization). 

The molecular free energy in solution can be written as 

repdiscavesPCM
GGGG

−
++=  

(3-1) 

where G is the free energy and the subscripts stand for electrostatic, cavitations and 

dispersion-repulsion respectively. The electrostatic contribution gives an account of the 

various kinds of interaction as shown by the expression. 

)(2/12/1 NNNNES UVPGPhG ++><+>=<  
                                                           (3-2) 

P is the solute density matrix; h and G are the density matrix for isolated solute 

 is the solute nuclear repulsion energy and  describes the solute-solvent 

interaction in terms of the polarization charges.  

NNV NNU

Table 3.6: Electrostatic Free Energies of DMPO-type and PBN-type Spin Traps at the 

B3LYP/6-31G* Level 

Molecules esG (kcal/mol) 

PPN -5.99 

PBN -5.19 

DMPH -8.40 

DMPO -8.70 
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Table 3.7: Electrostatic Free Energies of DMPO-type and PBN-type Hydroxyl Radicals 

at the B3LYP/6-31G* Level 

Molecules esG (Kcal/mol) 

PPN-OH -9.26 

PBN-OH -8.96 

DMPH-OH -6.43 

DMPO-OH -6.14 

From Table 3.6, the values of the energies reveals the strengths of both 

intermolecular and intramolecular interactions that follow the trend PPN-OH > PBN-OH 

> DMPH-OH > DMPO-OH for the adduct hydroxyl radicals, and DMPH > DMPO >PPN 

>PBN for the spin traps. It is also evident from these values that DMPO and DMPH spin 

traps are the more interactive electrostatically in aqueous medium both intermolecular 

and intramolecular-wise than their hydroxyl radical adduct with DMPO being less 

interactive than DMPH, though not very significant. Furthermore, free energy differences 

between the PBN-type and DMPO-type are in the range 3.51-3.21 kcal/mol which gives 

the DMPO-type, an interactive edge over the PBN-type. However, PBN-type hydroxyl 

radicals show a higher degree of interaction with an interactive free energy of about -2.82 

kcal/mol more than that of the DMPO-type hydroxyl radicals as shown by the values in 

Table 3.7 above. Thus, as a whole, solvation will perturb the relative energy of the 

molecules very slightly as a result of the high exothermicity of the molecule in the 

gaseous phase. There is, thus, an agreement with the findings of Frederick A. Villamena 

et al. [14] in their kinetic study of alkoxycarbonyl and dialkoxyphosphoryl nitrones in 

aqueous media in which they found out using the PCM model that the solvation energy of 

a number of molecules, spin traps an adduct radicals, was in a range from -0.77 to 1.50 

kcal/mol, which is very small compare to the energies of the molecules. 
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 The cavity energy is expressed as the sum over the spheres forming the cavity. i.e. 

HS
i

spheres i

i
cav G

R
A

G ∑= 24π
 

 (3-3) 

where is the radius of the ith sphere and  is the cavitation energy for the sphere. 

There is actually no interaction between the solute atoms and the cavities. The absence of 

interaction is from the fact that the solute atoms are embedded in the cavities. As such, 

the whole combination is considered as an entity thus,  has a value of zero and 

consequently,  is also zero. 

iR HS
iG

HS
iG

CAVG

 The dispersion-repulsion term contributes between 61% and 81% to the PCM free 

energy for both the PBN-type and the DMPO-type spin trap and adduct hydroxyl radicals 

alike. However, this term for the PBN-type nitrones is smaller than the DMPO-type 

nitrones. From Tables 3.8 and 3.9, the dispersion-repulsion energy increase in the order 

DMPH > DMPO >PPN >PBN for the spin trap and in the order DMPH-OH > DMPO-

OH > PPN-OH > PBN-OH for the adduct hydroxyl radical. The PCM free energy follows 

the same trend. 

Table 3.8: Dispersion-repulsion Free Energy of DMPO-type and PBN-type Spin Traps at 

the B3LYP/6-31G* Level 

Molecules repdisG −  PCMG  

PPN -21.07 -27.06 

PBN -22.34 -27.53 

DMPO -15.35 -23.75 

DMPH -13.96 -22.66 

Note: All energy terms are in kcal/mol 
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Table 3.9: Dispersion-repulsion Free Energy of DMPO-type and PBN-type Hydroxyl 

Radical Adducts 

Molecules repdisG −  PCMG  

PPN-OH -21.56 -30.82 

PBN-OH -22.79 -31.75 

DMPO-OH -16.50 -22.64 

DMPH-OH -15.09 -21.52 

Note: All energy terms are in kcal/mol 

 From the trend of the PCM cavity free energy, as shown by table 3.9, the solvent-

solute interaction is consistently exothermic with the PBN-type and their hydroxyl radical 

adduct being the more exothermic. Further, confirmation of the trend is shown by the 

calculated dipoles moments as seen from tables 3.10 and 3.11. The higher the dipole 

moment the more exothermic the species. Nonetheless, our calculated values dipoles 

(DMPO, DMPO-OH types) do not agree with those calculated by Frederick A. Villamena 

et al., though the same models (PCM), same basis set  (6-31G (d)) and the same 

correlation functional (B3LYP) were used.  

Table 3.10: Dipole moments of DMPO-type and PBN-type Spin Traps at the B3LYP/6-

31G* Level 

Molecules Calculated dipole 

moment(D) 

Literature values [14b] 

PPN 4.08 n/a 

PBN 4.20 n/a 

DMPO 5.34 3.72 

DMPH 5.37 4.03 
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Table 3.11: Dipole Moments of DMPO-type and PBN-type Hydroxyl Radical Adducts at 

the B3LYP/6-31G* Level 

Molecules Calculated dipole 

moment(D) 

Literature values [14b] 

PPN-OH 4.01 n/a 

PBN-OH 4.48 n/a 

DMPO-OH 3.57 2.5 

DMPH-OH 2.76 2.23 

Note: The dipole moment values in table 3.10 and 3.11 are in Debye (D). 

 

 Finally, the solvation energies of the PBN and DMPO spin traps are constant for 

each type with the DMPO-type having relatively higher solvation energy (52.52 kJ/mol 

higher). The high exothermicity of the solvation of the PBN-type spin traps suggest they 

are less stable in solution than their DMPO-type counter parts. Table 3.12 gives the 

solvation energies (the difference between PCM energy and gas phase molecular energy) 

of both spin traps and adducts of DMPO-type and PBN-type nitrones. It is worth 

mentioning that the solvation of the spin trap is very important for efficient spin trapping 

activities. 

Table 3.12: Calculated Solvation Energies of DMPO-type and PBN-type Nitrones in 

Water at the B3LYP/6-31G* Level 

Molecule Solvation Energy Molecule Solvation Energy 

PPN-OH -0.05 PPN -0.05 

PBN-OH -0.05 PBN -0.05 

DMPO-OH -0.04 DMPO -0.03 

DMPH-OH -018 DMPH -0.03 

The energies are in hartree (1hartree = 2625.500 kJ/mol) 
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Table 3.13: Free Energies of PBN-type and DMPO-type Nitrones with Non-Electrostatic 

Interactions at the B3LYP/6-31G* Level 

Molecule Free Energy Molecule Free Energy 

PPN-OH -594.66 PPN -518.86 

PBN-OH -633.97 PBN -558.17 

DMPO-OH -441.03 DMPO -365.21 

DMPH-OH -401.85 DMPH -325.89 

Energies are in hartree (1hartree =2625.500 kJ/mol) 

On the other hand, hydroxyl adducts radicals of DMPO-type nitrones are more 

stable in solution than the hydroxyl radical adduct of the PBN-type nitrones. This 

stability of the hydroxyl radical is very essential in the concentration build up for EPR 

identification. Table 3.13 shows the free energy of the nitrones with non-electrostatic 

terms i.e. terms that do not involve electrostatic interaction: solute-solute, solute-solvent 

and solvent-solvent interactions. 

3.3.3 Hyperfine Properties

  A close look at the spin density distribution on various hydroxyl adduct radicals 

using natural population analyses reveals the delocalized nature of spin density over all 

the molecular orbitals. In gaseous as well as in aqueous media, the spin densities are 

highly concentrated on the nitrogen nuclei in the range between 40% and 48%. It can be 

seen that in the DMPO hydroxyl radical adduct, at least 1γ -H exhibits a 0.2% spin 

density distribution while several β-H’s spin density distribution can be predicted 

between 0.8% and 3.0%. 

Also, it is worth remarking that 95% of the spin density distribution is on the 

nitrogen and terminal oxygen nuclei. Figure 3.6 below shows the spin density distribution 

on the DMPO hydroxyl radical adduct.  
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Figure3.6: Gaussian View Spin Density Distribution of DMPO Hydroxyl Radical 

Adducts (HMPO-OH and DMPO-OH respectively). 

The PBN hydroxyl radical adducts show a different spin density distribution. A 

0.65%-0.74% spin density distribution is noticeable on the hydroxyl hydrogen. 

Furthermore, as in the case of DMPO hydroxyl radical adduct, 96% spin density 

distribution is on nitrogen and the terminal oxygen. Figures 3.7 and 3.8 are the density 

distribution maps of the PBN and PPN hydroxyl radicals. Unlike the high spin density 

distribution on oxygen and the terminal oxygen, very low spin density is determined on 

the benzene ring. 
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Figure3.7: Gaussian View Spin Density Distribution Map of the PBN-OH Radical 

Adduct. 

 

Figure 3.8: Gaussian View spin density distribution map of the PBN-OH radical adduct. 

 The green color in figures 3.7 and 3.8 indicates the spin density while the blue 

color represents the atomic orbital. Having obtained the values of spin densities on the 

various nuclei, the values of the isotropic hyperfine coupling constant, , for the various 

adducts can be calculated using the expression 

xa
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where , is the g-value for the free electron, eg nβ  is the nuclear Bohr magneton, )0(ρ  is 

the nuclear spin density,  is the nuclear g-factor, ng 0μ is the magnetic dipole. From the 

table 3.14 below, the spin density distributions,  in gaseous phase, on the hydrogen atoms 

seem very insignificant; however, the small spin density distribution gives rise to large 

hyperfine splitting constants. 

Table 3.14: Significant Spin Densities and Hyperfine Splitting Constants of the DMPO 

and PBN Hydroxyl Radicals at the DFT, 6-31G (d)/6-311G (2df, p)/B3LYP Level 

Molecule Atoms ρ  

6-31G(d) 

xa (G) 

6-31G(d) 

ρ  

6-311G(2df,p)

xa (G) 

6-311G(2df,p) 

H13 0.0017 2.43 0.0026 2.54 

H30 0.0074 3.75 0.0077 3.51 

PBN-OH 

N14 0.4100 12.77 0.4000 10.18 

N14 0.4090 12.50 0.3988 9.91 PPN-OH 

H26 0.0065 3.42 0.0067 3.21 

H9 0.0222 16.12 0.0220 16.15 

N10 0.4524 12.99 0.4410 10.11 

DMPO-OH 

H15 0.0021 1.80 0.0020 1.83 

H8 0.0118 6.65 0.0110 6.80 

H10 0.0297 21.12 0.0310 21.03 

HMPO-OH 

N11 0.4347 11.60 0.4310 9.01 

 ρ = spin density, = hyperfine coupling constant. xa
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There is a great difference between the hyperfine splitting constants of PBN 

Hydroxyl adduct and DMPO hydroxyl radicals. The hyperfine splitting constants of 

DMPO hydroxyl radicals are 3-10 times larger than that of PBN adducts 

 The hyperfine properties determined in both cases, gaseous and aqueous media, 

showed no significant difference. The values of the hyperfine splitting constants and spin 

densities in aqueous as well as in gaseous phases were very close to each other. Table 

3.15 shows the hyperfine splitting constant in aqueous environment.   

Table 3.15: Spin Densities and the Hyperfine Splitting Constants of PBN-type and 

DMPO-type Adducts 

Molecule Atoms ρ  

6-31G(d) 

xa (MHz) 

6-31G(d) 
H13 0.0025 2.97 

H30 0.0057 3.15 

PBN-OH 

N14 0.443 13.15 

N14 0.4400 13.28 PPN-OH 

H26 0.0055 3.36 

H9 0.023 16.81 

N10 0.475 13.58 

DMPO-OH 

H15 0.0022 1.91 

H8 0.0140 6.60 

H10 0.0350 22.41 

HMPO-OH 

N11 0.4550 10.73 

 

Furthermore, as suggested by the solvation energies and the free energies as well 

as the solution energies, the hydroxyl radical adduct of DMPO nitrones-type are more 

stable in solution than the hydroxyl radical adducts of the PBN-type nitrones. This 

stability of the hydroxyl radical is essential in the concentration build up for EPR 
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identification. The literature value [16] of the hyperfine splitting constant of the nitrogen 

and beta hydrogen in DMPO-OH (14.90 G and 14.9 G respectively) calculated at the 

HF/6-31G* level differ by 12.8% and 8.2% respectively from the calculated value in the 

gaseous phase. 

 

3.3.4 EPR Spectra 

EPR spectroscopy is the most commonly used technique in spin trap 

characterization. The spin traps are considered to be powdery; data from hyperfine 

coupling was used in the input file. 

 

Figure 3.9: Simulated EPR spectrum of DMPO-OH. 
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Figure 10: Simulated EPR spectrum of DMPH-OH. 

 

 

Figure 11: Simulated EPR spectrum of PPN-OH. 
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Figure 12: Simulated EPR Spectrum of PBN-OH. 

 

 The DMPO-OH adduct is very distinguishable by the nature of its splitting that is 

due to H9 and N14. The rigid ring reinforces the interaction between hydrogen and 

nitrogen. The DMPH-OH has a spectrum that is very similar to that of the DMPO-OH but 

for the fact that the interaction is mainly between N14 and H10 where as the N14, H8 

interaction, is of longer range.  The PPN-OH and PBN-OH adduct spectra are not very 

distinguishable from each other. The nature of interaction between N and H with 

significant spin constant is dependent on the relative distance between N14 and H26 in 

PPN-OH and between N14 and H13 in PBN-OH. Thus, the relative extent of the split 

peak on the PBN-OH spectra is due to the proximity of H13 to N14. 

 

Summary of Results and Future Work 

 The radical adducts formed are about 0.12 hartree (-315kJ/mol) more stable than 

the parent spin trap and free radical. Also, the DMPO spin trap types form relatively 

more stable adducts comparatively to the PBN spin trap types. The difference in 

stabilization energy between the two types of spin traps is relatively small 0.01-0.02 

hartree which is about 26.2 and 52.5 KJ/mol 
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 The value of the electrostatic free energies reveals the strength of both 

intermolecular and intramolecular interactions. The trend is in the order PPN-OH > PBN-

OH > DMPH-OH > DMPO-OH for the adduct hydroxyl radicals, and DMPH > DMPO 

>PPN >PBN for the spin traps. It is also evident from these values that DMPO and 

DMPH spin traps are the more interactive both intermolecular and intramolecular than 

their hydroxyl adduct radical adduct with DMPO being less interactive than DMPH, 

though not very significant.  

 The solvation energies of the PBN and DMPO spin traps are constant for each 

type with the DMPO-type having relatively higher solvation energy (52.52 kJ/mol 

higher). 

 Furthermore, as suggested by the solvation energies and the electrostatic free 

energies as well as the solution energies, the hydroxyl radical adduct of DMPO nitrones-

type are more stable in solution than the hydroxyl radical adducts of the PBN-type 

nitrones. 

 In gaseous as well as in aqueous media, the spin densities are highly concentrated 

on nitrogen nuclei in the range between 40% and 48%. In DMPO hydroxyl radical 

adduct, at least 1γ -H exhibit a 0.2% spin density distribution while several β-H’s spin 

density distribution can be predicted between 0.8% and 3.0%. Also, it is worth remarking 

that 95% of the spin density distribution is on the nitrogen and terminal oxygen nuclei. 

 The future work to be done would be to determine the effects of electrophilic and 

electrophobic substituents on spin density distribution on the molecular orbital. Also, the 

solvent effect could be studied with water molecules in the PCM cavity. 
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APPENDICES 

APPENDIX A: Structural Details of PBN/PBN-OH 

Cartesian coordinates of PBN-OH with DFT/B3LYP/6-31G* 

Title "PTBN" 

  

Start PTBN 

  

echo 

  

charge 0 

  

geometry autosym units angstrom 

 C     0.0132390     1.41548     1.23447e-07 

 C     -1.26288     0.672114     1.14930e-07 

 C     -1.25919     -0.800800     8.15835e-08 

 C     0.0206479     -1.53148     -3.41716e-08 

 C     1.30339     -0.794713     -2.15101e-07 

 C     1.32201     0.702811     1.98769e-08 

 H     -0.0198805     2.50068     1.36395e-07 

 H     -2.20441     1.21106     1.06111e-07 

 H     -2.19673     -1.34661     8.16780e-08 

 H     0.0204492     -2.61649     -1.10218e-07 

 H     2.19319     -1.40205     -7.71507e-07 

 C     2.54469     1.56620     -1.85923e-07 

 H     2.35140     2.63432     -5.27706e-07 

 N     3.78577     1.15727     1.57228e-07 

 C     4.91316     2.13071     3.06445e-08 

 C     4.85636     3.01608     1.26457 

 H     4.83476     2.38093     2.17608 

 H     5.74519     3.68149     1.31927 

 H     3.95517     3.66362     1.26917 

 C     6.27125     1.38923     8.77383e-08 

 H     6.36614     0.747167     0.902357 
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 H     6.36614     0.747167     -0.902356 

 H     7.11823     2.10951     -2.60190e-08 

 C     4.85636     3.01608     -1.26457 

 H     4.83476     2.38093     -2.17608 

 H     3.95517     3.66362     -1.26917 

 H     5.74519     3.68149     -1.31927 

 O     4.06741     -0.147396     1.09847e-06 

end 

  

ecce_print 

/home/jacob/nwchem_run/PTBN/ecce.out 

  

basis "ao basis" cartesian print 

  H library "6-31G*" 

  O library "6-31G*" 

  C library "6-31G*" 

  N library "6-31G*" 

END 

  

dft 

  mult 1 

  XC b3lyp 

  mulliken 

end 

  

driver 

  default 

  maxiter 58 

end 

  

task dft optimize 
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Cartesian coordinates of PBN-OH with DFT/B3LYP/6-31G* 

 

#b3lyp/6-31G(d) scf=tight prop=epr   

 1/38=1/1;       

 2/17=6,18=5,40=1/2;    

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;   

 4//1;       

 5/5=2,32=2,38=4,42=-5/2;    

 

6/7=2,8=2,9=2,10=2,17=2,26=4,28=1/1,2;   

 99/5=1,9=1/99;      

 pbn-oh opt      

 -----------       

 Symbolic Z-matrix:      

 Charge =  0 Multiplicity = 2    

 C                     0.46573   2.02825   1.20585  

 C                     0.0572    3.35955   1.30589  

 C                    -0.48171   4.00606   0.19328  

 C                    -0.61206   3.31749  -1.01611  

 C                    -0.20816   1.98739  -1.11408  

 C                     0.33367   1.33369  -0.00003  

 H                     0.89029   1.52625   2.07292  

 H                     0.16549   3.89007   2.24807  

 H                    -0.79732   5.04353   0.26591  

 H                    -1.03497   3.81769  -1.88328  

 H                    -0.31446   1.44302  -2.04579  

 C                     0.80441  -0.10205  -0.09672  

 H                     1.42957  -0.32847   0.77441  

 N                    -0.31262  -1.0568   -0.07596  

 C                    -0.10399  -2.53208   0.14628  

 C                    -1.31825  -3.03422   0.94478  

 H                    -2.24352  -2.78664   0.42027  

 H                    -1.26023  -4.12083   1.06982  

 H                    -1.3501   -2.57309   1.93835  
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 C                     1.18933  -2.79468   0.92936  

 H                     1.28428  -3.87258   1.09755  

 H                     2.07412  -2.46579   0.37568  

 H                     1.17755  -2.30873   1.91184  

 C                    -0.04306  -3.21631  -1.23302  

 H                     0.03565  -4.30286  -1.11251  

 H                    -0.95042  -2.99015  -1.79944  

 H                     0.82002  -2.85975  -1.80216  

 O                    -1.39604  -0.71947  -0.67521  

 O                     1.53873  -0.35707  -1.29777  

 H                     2.18223   0.36369  -1.39936  

Isotropic Fermi Contact Couplings for PBN-OH at DFT/B3LYP/6-31G* 

 

                       Isotropic Fermi Contact Couplings     

     Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

   1  C(13)             -0.00043      -0.48503      -0.17307      -0.16179 

   2  C(13)              0.00005       0.05123       0.01828       0.01709 

   3  C(13)             -0.00006      -0.06302      -0.02249      -0.02102 

   4  C(13)              0.00000       0.00500       0.00178       0.00167 

   5  C(13)             -0.00039      -0.44238      -0.15785      -0.14756 

   6  C(13)              0.00141       1.58090       0.56410       0.52733 

   7  H                  0.00004       0.15668       0.05591       0.05226   

   8  H                 -0.00001      -0.02577      -0.00919      -0.00859   

   9  H                  0.00001       0.03230       0.01153       0.01077   

  10  H                  0.00002       0.09347       0.03335       0.03118   

  11  H                 -0.00001      -0.03844      -0.01372      -0.01282   

  12  C(13)              0.00161       1.80747       0.64495       0.60291 

  13  H                  0.00152       6.81106       2.43036       2.27193   

  14  N(14)              0.11077      35.78918      12.77047      11.93798 

  15  C(13)             -0.00807      -9.07537      -3.23832      -3.02722 

  16  C(13)              0.00764       8.58735       3.06418       2.86443 

  17  H                 -0.00024      -1.06256      -0.37915      -0.35443   

  18  H                 -0.00026      -1.14871      -0.40989      -0.38317   
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  19  H                 -0.00024      -1.05742      -0.37731      -0.35272   

  20  C(13)             -0.00023      -0.25463      -0.09086      -0.08493 

  21  H                 -0.00036      -1.61632      -0.57674      -0.53915   

  22  H                 -0.00008      -0.37689      -0.13448      -0.12572   

  23  H                 -0.00007      -0.32944      -0.11755      -0.10989   

  24  C(13)              0.01118      12.57152       4.48583       4.19341 

  25  H                  0.00053       2.36272       0.84308       0.78812   

  26  H                 -0.00048      -2.13345      -0.76127      -0.71164   

  27  H                 -0.00033      -1.45777      -0.52017      -0.48626   

  28  O(17)              0.07929     -48.06776     -17.15178     -16.03368 

  29  O(17)              0.06057     -36.72131     -13.10308     -12.24891 

  30  H                  0.00235      10.52251       3.75469       3.50993 

 

PCM structure for PBN-OH at theDFT/B3LYP/6-31G* 

 

#b3lyp/6-31G(d) scrf=(iefpcm,read) scf=tight geom=checkpoint 

prop=epr 

 ---------------------------------------------------------------------   

 1/29=2,38=1,46=1/1;       

 2/40=1/2;           

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;     

 4//1;           

 5/5=2,32=2,38=4,40=2200,42=-5,53=1,54=100/2;   

 6/7=2,8=2,9=2,10=2,17=2,26=4,28=1/1,2;     

 99/5=1,9=1/99;         

 -----------           

 pbn-oh opt         

 -----------           

 Redundant internal coordinates taken from checkpoint file: 

ptbn-oh.chk     

Charge =  0 Multiplicity = 2    

C,0,0.3555984471,1.9921004708,1.28179437  
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C,0,-0.0737746563,3.314613175,1.4165834562  

C,0,-0.5292375933,4.0166098529,0.2988498156  

C,0,-0.5526070702,3.3914000485,-0.9517664261  

C,0,-0.1271318059,2.0696276092,-1.0833019834  

C,0,0.3276852572,1.3597937866,0.0343671952  

H,0,0.7191397386,1.4511911541,2.1525803579  

H,0,-0.0435782197,3.7962395356,2.3899765156  

H,0,-0.8584856874,5.0472359207,0.399123567  

H,0,-0.9024520156,3.9355418763,-1.8248817583  

H,0,-0.1341877012,1.5815896914,-2.0516644514  

C,0,0.809351594,-0.0740211673,-0.0936511579  

H,0,1.4640474032,-0.3017126783,0.7530811339  

N,0,-0.3102363912,-1.0305020576,-0.033909456  

C,0,-0.1082900905,-2.5024882587,0.2234149945  

C,0,-1.2937023103,-2.9732227003,1.0825244681  

H,0,-2.2399416202,-2.7442293589,0.5873029993  

H,0,-1.231805758,-4.0549061095,1.2388407077  

H,0,-1.2853332397,-2.4832878767,2.0621187921  

C,0,1.2110254779,-2.7563942099,0.9637675322  

H,0,1.3021297955,-3.8303408387,1.1545827489  

H,0,2.0766451341,-2.4494185077,0.3695285377  

H,0,1.2411479003,-2.2456289266,1.9322828664  

C,0,-0.1071381155,-3.227768207,-1.135550713  

H,0,-0.0232751257,-4.309200625,-0.9839087384  

H,0,-1.0376269279,-3.0217133495,-1.6714105128  

H,0,0.7331351547,-2.8922385665,-1.7495617503  

O,0,-1.4102489662,-0.6948088949,-0.6062909233  

O,0,1.4897193447,-0.3257452389,-1.3200712228  

H,0,2.2856580736,0.2373237347,-1.3319169643  
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APPENDIX B: Structural Details of PPN/PPN-OH 

Cartesian coordinates of PPN with DFT/B3LYP/6-31G* 

Title "PPN" 

  

Start PPN 

  

echo 

  

charge 0 

  

geometry autosym units angstrom 

 C     -0.174000     1.38900     0.00000 

 C     -1.29000     0.544000     0.00000 

 C     -1.11600     -0.845000     0.00000 

 C     0.174000     -1.38900     0.00000 

 C     1.29000     -0.544000     0.00000 

 C     1.11600     0.845000     0.00000 

 H     -0.312000     2.48400     0.00000 

 H     -2.30600     0.973000     0.00000 

 H     -1.99500     -1.51100     0.00000 

 H     0.311000     -2.48400     0.00000 

 H     2.30600     -0.973000     0.00000 

 C     2.34397     1.77435     3.93267e-17 

 H     2.19897     2.93533     -3.03975e-08 

 N     3.74437     1.18335     3.94908e-08 

 O     3.92779     -0.285242     1.19259e-07 

 C     4.95639     2.10063     -2.94226e-09 

 H     4.93453     2.77577     -0.955301 

 C     4.92761     2.98928     1.25740 

 H     4.94948     2.31414     2.21271 

 H     5.86055     3.69535     1.25740 

 H     3.95095     3.63351     1.25740 

 C     6.24191     1.25267     8.22754e-08 

 H     6.26378     0.577525     0.955301 
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 H     6.26378     0.577525     -0.955301 

 H     7.17485     1.95874     4.88643e-08 

end 

  

ecce_print 

/home/jacob/nwchem_run/Spin_trap/PBNH-

1/ecce.out 

  

basis "ao basis" cartesian print 

  H library "6-31G*" 

  O library "6-31G*" 

  C library "6-31G*" 

  N library "6-31G*" 

END 

  

dft 

  mult 1 

  XC b3lyp 

  mulliken 

end 

  

driver 

  default 

  maxiter 30 

end 

  

task dft optimize 
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Isotropic Fermi Contact Couplings for PPN-OH at DFT/B3LYP/6-31G* 

                       Isotropic Fermi Contact Couplings     

     Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

   1  C(13)             -0.00039      -0.43726      -0.15603      -0.14585 

   2  C(13)              0.00004       0.05018       0.01791       0.01674 

   3  C(13)             -0.00008      -0.09080      -0.03240      -0.03029 

   4  C(13)              0.00007       0.08186       0.02921       0.02731 

   5  C(13)             -0.00029      -0.32773      -0.11694      -0.10932 

   6  C(13)              0.00144       1.61323       0.57564       0.53812 

   7  H                  0.00003       0.13769       0.04913       0.04593   

   8  H                 -0.00001      -0.03462      -0.01235      -0.01155   

   9  H                  0.00001       0.04691       0.01674       0.01565   

  10  H                  0.00001       0.05047       0.01801       0.01683   

  11  H                  0.00000       0.00445       0.00159       0.00149   

  12  C(13)              0.00011       0.11950       0.04264       0.03986 

  13  H                  0.00187       8.33937       2.97569       2.78171   

  14  N(14)              0.11405      36.84987      13.14895      12.29179 

  15  C(13)             -0.00878      -9.86769      -3.52104      -3.29151 

  16  C(13)              0.00829       9.31692       3.32451       3.10779 

  17  H                 -0.00026      -1.15850      -0.41338      -0.38643   

  18  H                 -0.00022      -0.99687      -0.35571      -0.33252   

  19  H                 -0.00025      -1.13868      -0.40631      -0.37982   

  20  C(13)             -0.00016      -0.18527      -0.06611      -0.06180 

  21  H                 -0.00038      -1.71286      -0.61119      -0.57135   

  22  H                 -0.00009      -0.41180      -0.14694      -0.13736   

  23  H                 -0.00007      -0.32290      -0.11522      -0.10771   

  24  C(13)              0.01179      13.25296       4.72899       4.42071 

  25  H                  0.00053       2.36897       0.84531       0.79020   

  26  H                 -0.00049      -2.19353      -0.78271      -0.73168   

  27  H                 -0.00036      -1.59798      -0.57020      -0.53303   

  28  O(17)              0.07650     -46.37742     -16.54862     -15.46984 

  29  O(17)              0.05462     -33.11015     -11.81453     -11.04436 

  30  H                  0.00197       8.82752       3.14988       2.94455   
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PCM structure for PPN-OH at theDFT/B3LYP/6-31G* 

#b3lyp/6-31G(d) scrf=(iefpcm,read) opt=gdiis 

 ppn-oh ESR       

 -----------         

 Symbolic Z-matrix:       

 Charge =  0 Multiplicity = 2     

 C                    -0.87755   1.72044  -0.60551  

 C                    -0.66965   3.05078  -0.96605  

 C                     0.32364   3.80505  -0.33548  

 C                     1.11038   3.22447   0.65997  

 C                     0.90149   1.89274   1.02244  

 C                    -0.08925   1.13283   0.39295  

 H                    -1.63851   1.12472  -1.09678  

 H                    -1.2811    3.49977  -1.74422  

 H                     0.48191   4.84231  -0.61871  

 H                     1.88137   3.80676   1.15732  

 H                     1.51295   1.44153   1.80123  

 C                    -0.31443  -0.30591   0.80698  

 H                     0.24247  -0.50831   1.73342  

 N                     0.20141  -1.25924  -0.18231  

 C                     0.55863  -2.64108   0.22759  

 H                     0.79477  -2.5841    1.2968  

 C                     1.80099  -3.08754  -0.54718  

 H                     1.59842  -3.06056  -1.62135  

 H                     2.65213  -2.43002  -0.34108  

 H                     2.07455  -4.10966  -0.2649  

 C                    -0.63385  -3.58444   0.01741  

 H                    -0.37104  -4.60289   0.32477  

 H                    -1.49976  -3.2512    0.59584  

 H                    -0.90897  -3.59766  -1.04185  

 O                    -1.69661  -0.61091   0.99143  

 H                    -2.0989    0.14124   1.4557  

 O                    -0.05176  -1.05446  -1.42241  
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APPENDIX C: Structural Details of DMPO/DMPO-OH 

Cartesian coordinates of DMPO with DFT/B3LYP/6-31G* 

Start DMPO 

echo 

charge 0 

  

geometry autosym units angstrom 

 C     -0.194607     -0.0466734     0.383930 

 C     0.651491     0.915656     1.25798 

 H     0.129740     1.20520     2.19740 

 H     0.911435     1.85116     0.713995 

 C     1.93373     0.141003     1.58326 

 H     2.83807     0.691141     1.24537 

 H     2.00115     -0.0858319     2.66974 

 C     1.78314     -1.11898     0.814366 

 H     2.52889     -1.90669     0.778319 

 N     0.667426     -1.20301     0.191327 

 O     0.332124     -2.27361     -0.534168 

 C     -0.536567     0.586690     -0.974692 

 H     0.393125     0.845281     -1.52592 

 H     -1.12697     -0.118568     -1.59794 

 H     -1.13267     1.51248     -0.826888 

 C     -1.47916     -0.472301     1.11340 

 H     -2.05051     -1.20399     0.502762 

 H     -2.12596     0.411533     1.30274 

 H     -1.23109     -0.947403     2.08758 

end 

ecce_print 

home/jacob/nwchem_run/DMPO/ecce.out /

  

basis "ao basis" cartesian print 

  H library "6-31G*" 

  O library "6-31G*" 

  C library "6-31G*" 

  N library "6-31G*" 

 

 

  mult 1 

p 
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  default 

  maxiter 50 

end 

task dft optimize 

PCM structure for DMPO-OH at theDFT/B3LYP/6-31G* 

#b3lyp/6-31G(d) scrf=(iefpcm,read) opt=gdiis  

 --------------------------------------------    

 1/14=-1,18=20,19=11,26=3,38=1,46=1/1,3;  

 2/9=110,17=6,18=5,40=1/2;    

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;   

 4//1;      

 5/5=2,38=4,40=2200,42=-5,53=1,54=100/2;  

 6/7=2,8=2,9=2,10=2,28=1/1;    

 7/44=1/1,2,3,16;     

 1/14=-1,18=20,19=11,46=1/3(1);   

 99//99;      

 2/9=110/2;     

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;   

 4/5=5,16=2/1;     

 5/5=2,38=4,40=2200,42=-5,53=1,54=100/2;  

 7/44=1/1,2,3,16;     

 1/14=-1,18=20,19=11,46=1/3(-5);   

 2/9=110/2;     

 6/7=2,8=2,9=2,10=2,19=2,28=1/1;   

 99/9=1/99;     

 -----------      

 dmpo-oh PCM     

 -----------      

 Symbolic Z-matrix:     

 Charge =  0 Multiplicity = 2    

 C                     0.1871    0.98357  -0.01029   

 C                     1.63592   0.51672   0.25629   

 H                     1.90805   0.73604   1.29582   

 H                     2.35492   1.03233  -0.38714   
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 C                     1.62652  -1.01007   0.01856   

 H                     1.70014  -1.24701  -1.04768   

 H                     2.4423   -1.52251   0.53539   

 C                     0.24959  -1.46709   0.49788   

 H                     0.25329  -1.77657   1.55626   

 N                    -0.56743  -0.23393   0.39646   

 O                    -1.83797  -0.33159   0.31055   

 C                    -0.08383   1.26275  -1.49988   

 H                     0.27145   0.44249  -2.13218   

 H                    -1.15978   1.37533  -1.66307   

 H                     0.41823   2.18513  -1.81239   

 C                    -0.25649   2.168     0.85282   

 H                    -1.32723   2.34985   0.71809   

 H                     0.29004   3.07421   0.56945   

 H                    -0.07294   1.96962   1.9142   

 O                    -0.29497  -2.47578  -0.307    

 H                    -1.2616   -2.3884   -0.19378   
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Isotropic Fermi Contact Couplings for DMPO-OH at DFT/B3LYP/6-31G* 

                       Isotropic Fermi Contact Couplings   

     Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

   1  C(13)             -0.00769      -8.64844      -3.08598      -2.88481 

   2  C(13)             -0.00067      -0.75554      -0.26959      -0.25202 

   3  H                 -0.00004      -0.19060      -0.06801      -0.06358  

   4  H                 -0.00023      -1.01497      -0.36217      -0.33856  

   5  C(13)              0.00195       2.19057       0.78165       0.73070 

   6  H                 -0.00013      -0.58263      -0.20790      -0.19435 

   7  H                  0.00029       1.29994       0.46385       0.43361 

   8  C(13)             -0.00782      -8.78791      -3.13575      -2.93133 

   9  H                  0.01054      47.10771      16.80921      15.71344 

  10  N(14)              0.11779      38.05872      13.58030      12.69502 

  11  O(17)              0.07358     -44.60846     -15.91741     -14.87978 

  12  C(13)              0.01902      21.38302       7.63000       7.13261 

  13  H                 -0.00045      -2.01586      -0.71931      -0.67242 

  14  H                 -0.00061      -2.73754      -0.97682      -0.91315 

  15  H                  0.00120       5.35870       1.91212       1.78747 

  16  C(13)              0.01284      14.43126       5.14944       4.81375 

  17  H                 -0.00034      -1.50630      -0.53749      -0.50245 

  18  H                 -0.00001      -0.04754      -0.01696      -0.01586 

  19  H                 -0.00031      -1.37220      -0.48963      -0.45772 

  20  O(17)              0.00260      -1.57404      -0.56166      -0.52504 

  21  H                 -0.00010      -0.46178      -0.16478      -0.15403 

 

 

Cartesian coordinates of DMPO-OH with DFT/B3LYP/6-31G* 

%chk=dmpo-oh.chk       

 %mem=250mb       

 %Nprocs=2       

 Will use up to    2 processors via shared memory.    

 ----------------------------------      
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 #b3lyp/6-31G(d) scf=tight prop=epr     

 ----------------------------------      

 1/38=1/1;        

 2/17=6,18=5,40=1/2;      

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;     

 4//1;        

 5/5=2,32=2,38=4,42=-5/2;      

 6/7=2,8=2,9=2,10=2,17=2,26=4,28=1/1,2;     

 99/5=1,9=1/99;       

 -----------        

 dmpo-oh EPR       

 -----------        

 Symbolic Z-matrix:       

 Charge =  0 Multiplicity = 2      

 C                     0.1871    0.98357  -0.01029     

 C                     1.63592   0.51672   0.25629     

 H                     1.90805   0.73604   1.29582     

 H                     2.35492   1.03233  -0.38714     

 C                     1.62652  -1.01007   0.01856     

 H                     1.70014  -1.24701  -1.04768     

 H                     2.4423   -1.52251   0.53539     

 C                     0.24959  -1.46709   0.49788     

 H                     0.25329  -1.77657   1.55626     

 N                    -0.56743  -0.23393   0.39646     

 O                    -1.83797  -0.33159   0.31055     

 C                    -0.08383   1.26275  -1.49988     

 H                     0.27145   0.44249  -2.13218     

 H                    -1.15978   1.37533  -1.66307     

 H                     0.41823   2.18513  -1.81239     

 C                    -0.25649   2.168     0.85282     

 H                    -1.32723   2.34985   0.71809     

 H                     0.29004   3.07421   0.56945     

 H                    -0.07294   1.96962   1.9142     

 O                    -0.29497  -2.47578  -0.307      

 H                    -1.2616   -2.3884   -0.19378     
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APPENDIX D: Structural Details of HMPO/HMPO-OH 

#b3lyp/6-31G(d) scf=tight prop=epr  

 ----------------------------------   

 1/38=1/1;     

 2/17=6,18=5,40=1/2;   

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;  

 4//1;     

 5/5=2,32=2,38=4,42=-5/2;   

 6/7=2,8=2,9=2,10=2,17=2,26=4,28=1/1,2;  

 99/5=1,9=1/99;    

 -----------     

 dmph-oh EPR    

 -----------     

 Symbolic Z-matrix:    

 Charge =  0 Multiplicity = 2   

 C                     1.41075   1.02707   0.70396  

 H                     1.52644   0.99896   1.79364  

 H                     2.08373   1.78995   0.30575  

 C                     1.64316  -0.37153   0.09129  

 H                     2.48561  -0.89925   0.5477  

 H                     1.84302  -0.27429  -0.98155  

 C                    -0.04028   1.34249   0.35441  

 H                    -0.56679   1.94888   1.10326  

 C                     0.3098   -1.11232   0.29626  

 H                     0.29072  -1.59013   1.28829  

 N                    -0.66388   0.01041   0.32291  

 O                    -1.89874  -0.11196   0.01762  

 C                    -0.0547   -2.14567  -0.76274  

 H                     0.64385  -2.98834  -0.72227  

 H                    -1.06835  -2.51892  -0.59559  

 H                    -0.0129   -1.70376  -1.76408  

 O                    -0.11064   1.9507   -0.91951  

 H                    -1.04319   1.88457  -1.19156  

 ------------------------------------------------------------------------ 
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Cartesian coordinates of HMPO with DFT/B3LYP/6-31G* 

Title "HMPO-1" 

Start HMPO-1 

echo 

charge 0 

  

geometry autosym units angstrom 

 C     0.555701     -1.11842     -0.863836 

 H     1.60950     -1.61686     -0.963706 

 H     -0.0111940     -1.19702     -1.88430 

 C     0.723169     0.364196     -0.482509 

 H     1.33730     0.913560     -1.31314 

 C     -0.252644     -1.84151     0.229468 

 H     -0.379877     -2.96791     -0.0602403 

 H     0.314251     -1.76291     1.24994 

 C     -1.63969     -1.18544     0.360922 

 H     -2.40805     -1.59346     1.14326 

 N     -0.645862     1.01174     -0.352764 

 O     -0.756382     2.44275     0.00834573 

 C     1.46934     0.467652     0.860670 

 H     2.52313     -0.0307878     0.760800 

 H     1.59657     1.59405     1.15038 

 H     0.855207     -0.0817107     1.69130 

end 

  

ecce_print 

/home/jacob/nwchem_run/Spin_trap/HMPO-

1/ecce.out 

  

basis "ao basis" cartesian print 

  H library "6-31G*" 

  O library "6-31G*" 

  C library "6-31G*" 

  N library "6-31G*" 

END 

91  
 



dft 

  mult 1 

  XC b3lyp 

  mulliken 

end 

  

driver 

  default 

  maxiter 30 

end 

task dft optimize 

Isotropic Fermi Contact Couplings for HMPO-OH at DFT/B3LYP/6-31G* 

                       Isotropic Fermi Contact Couplings 

  

     Atom                 a.u.       MegaHertz       Gauss      10(-4) cm-1 

   1  C(13)             -0.00056      -0.62991      -0.22477      -0.21012 

   2  H                  0.00045       2.00386       0.71503       0.66841 

   3  H                  0.00009       0.42002       0.14987       0.14010 

   4  C(13)              0.00280       3.14605       1.12259       1.04941 

   5  H                  0.00028       1.26206       0.45034       0.42098 

   6  H                 -0.00026      -1.17572      -0.41953      -0.39218 

   7  C(13)             -0.00343      -3.85921      -1.37706      -1.28729 

   8  H                  0.00417      18.64097       6.65156       6.21796 

   9  C(13)             -0.01244     -13.98752      -4.99110      -4.66573 

  10  H                  0.01324      59.19310      21.12158      19.74469 

  11  N(14)              0.10063      32.51481      11.60210      10.84577 

  12  O(17)              0.07608     -46.12064     -16.45699     -15.38419 

  13  C(13)              0.01071      12.03976       4.29609       4.01603 

  14  H                 -0.00026      -1.16705      -0.41643      -0.38928 

  15  H                 -0.00033      -1.45342      -0.51862      -0.48481 

  16  H                 -0.00006      -0.27343      -0.09757      -0.09121 

  17  O(17)              0.01293      -7.84126      -2.79796      -2.61556 

  18  H                 -0.00046      -2.06752      -0.73774      -0.68965 
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PCM structure for HMPO-OH at theDFT/B3LYP/6-31G* 

#b3lyp/6-31G(d) scrf=(iefpcm,read) opt=gdiis 

 --------------------------------------------   

 1/14=-1,18=20,19=11,26=3,38=1,46=1/1,3; 

 2/9=110,17=6,18=5,40=1/2;   

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;  

 4//1;     

 5/5=2,38=4,40=2200,42=-5,53=1,54=100/2; 

 6/7=2,8=2,9=2,10=2,28=1/1;   

 7/44=1/1,2,3,16;    

 1/14=-1,18=20,19=11,46=1/3(1);  

 99//99;     

 2/9=110/2;    

 3/5=1,6=6,7=1,11=2,25=1,30=1/1,2,3;  

 4/5=5,16=2/1;    

 5/5=2,38=4,40=2200,42=-5,53=1,54=100/2; 

 7/44=1/1,2,3,16;    

 1/14=-1,18=20,19=11,46=1/3(-5);  

 2/9=110/2;    

 6/7=2,8=2,9=2,10=2,19=2,28=1/1;  

 99/9=1/99;    

 -----------     

 dmph-oh PCM    

 -----------     

 Symbolic Z-matrix:    

 Charge =  0 Multiplicity = 2   

 C                     1.10971   1.31147  -0.45242  

 H                     1.16197   1.55456  -1.5189  

 H                     1.89425   1.86845   0.06492  

 C                    -0.30525   1.59407   0.09773  

 H                    -0.72917   2.52428  -0.2884  

 H                    -0.27831   1.66108   1.19124  

 C                     1.29218  -0.19417  -0.27127  

 H                     1.88165  -0.67902  -1.05758  

 C                    -1.1291    0.36699  -0.32277  

 H                    -1.50642   0.49834  -1.34804  
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 N                    -0.09107  -0.69249  -0.36938  

 O                    -0.3551   -1.93791  -0.48567  

 C                    -2.28743  -0.01666   0.59123  

 H                    -3.06711   0.75056   0.5486  

 H                    -2.72139  -0.96956   0.27605  

 H                    -1.94957  -0.11262   1.62893  

 O                     1.8481   -0.461     1.00348  

 H                     1.92696  -1.42756   1.0913  
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