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ABSTRACT 

Efficacy of Partial ROM Squat in Maximal Strength Training 

by 

Caleb D. Bazyler 

 

Eighteen well trained males (1RM Squat: 150.57 ± 26.79 kg) were assigned to two groups: 

full ROM training (control) and full ROM with partial ROM training (CP) for the seven-week 

training intervention. There was a significant time effect (p<0.05) for 1RM squat, 1RM partial 

squat, IPFa 90°, IPFa 120°, and impulse at 90ms, 200ms, and 250ms at 90° and 120° of knee 

flexion. There was a significant interaction for RFD 200ms at 120° and a near significant 

interaction for 1RM squat scaled (p=0.07). There was a trend for CP to improve over 

control in 1RM squat (+2.3%), 1RM partial squat (+4.1%), IPFa 120° (+5.7%), and impulse 

scaled at all time points for 90° (+6.3-11.9%) and 120° (+3.4-16.8%). Our findings suggest 

that partial ROM squats in conjunction with full ROM squats may be an effective training 

modality for improving maximal strength and early force-time curve characteristics in 

well-trained males. 
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CHAPTER 1 

INTRODUCTION 

 Strength training is believed to have originated in Ancient Greco-Roman times around 

the second century (Drees, 1968; Gardiner, 1930; Robinson, 1955). The training principle of 

overload has its origin in the classic legend of Milo of Croton. Milo lifted a calf every day and as 

the calf grew heavier, Milo was forced to lift more weight. Thus, the concept of progressive 

overload was born. Since Milo, varying volume and intensity over a training program has 

become one of the goals of strength training (Issurin, 2010).  

 In the 1920s Hans Seyle developed the General Adaptation Syndrome, which describes 

how an organism adapts to a stimulus. This theory laid the foundation for subsequent 

descriptions of the adaptation process such as the specific adaptation to imposed demands 

(SAID) principle, which suggests that strength will continue to increase as volume and intensity 

are appropriately manipulated due to muscular and nervous systems adaptations (Mann, 

Thyfault, Ivey, & Sayers, 2010) . In 1964 Leonid Matveyev designed what we now know as the 

traditional periodization model (Matveyev, 1964). Issurin in his 2010 review on periodization 

refers to Matveyev as the father of traditional periodization (Issurin, 2010).  

 Following Matveyev, in the 1970s and 1980s Verkoshansky (1985), Issurin (2010), and 

Stone, Stone and Sands (2007) developed models of periodization differing from the traditional 

model (conjugated-sequencing, block periodization, and phase potentiation, respectively). These 

models differed from the traditional model in that they did not involve a simultaneous increase in 

the fitness abilities (strength, speed, endurance) rather they emphasized a different ability in each 

phase. These phases are organized in such a way that one phase would potentiate the subsequent 

phase. These models are based on the long-term lag of the training effect (Verkoshansky, 1985). 
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That is that there is a lag time between the presentation of a stimulus and its realization in 

training.  

Adaptation is the adjustment of an organism to its environment (Zatsiorsky, 1995). There 

are five features of the strength training adaptation process: overload, accommodation, variation, 

specificity, and individualization. In order to improve maximal strength there must be 

progressive overload of specific musculature. This overload must be sufficient as well as varied 

in order to avoid accommodation to the training stimulus. Finally, the strength training program 

needs to be catered to the individual’s needs in order to maximize adaptation.   

 In addition, a common means by which strength coaches, athletes, and recreationally 

trained individuals provide variation and overload is by including partial lifts in their training 

programs. Partial lifts have been used commonly to improve strength at the terminal range of 

motion (ROM) of a movement, enhance metabolic adaptations, prevent injury, and enhance sport 

performance (Clark, Bryant, & Humphries, 2008; Clark, Humphries, Hohmann, & Bryant, 2011; 

Massey, Vincent, Maneval, Moore, & Johnson, 2004; Massey, Vincent, Maneval, & Johnson, 

2005; Mookerjee & Ratamess, 1999; Pinto et al., 2012; Zatsiorsky, 1995) .  The majority of 

studies including partial lifts have been training studies; however, very few of these studies 

(Graves, Pollock, Jones, Colvin, & Leggett, 1989; Graves et al., 1992; Massey et al., 2004; 

Mookerjee & Ratamess, 1999; Pinto et al., 2012) focused on partial lifts’ efficacy.  

Definitions 

1. Allometric Scaling: A method of normalizing results of strength measures. The strength 

benefit derived from body mass is not linear, thus this scaling method uses a nonlinear 
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function. It is calculated with the formula y=x∙(BdM
2/3

)
-1

 (Challis, 1999; Kraska et al., 

2009). 

a. Where: 

1) y = allometrically scaled mass 

2) x = measured variable to be scaled 

3) BdM = body mass in kilograms 

 

2. Core Lift: Multi-joint movements that involve one or more large muscle groups such as 

squat, bench press, and deadlift (NSCA 2000) 

3. Isometric Force-Time Curve: The tracing that results from plotting force-time data 

obtained from force plate. This tracing, and the data used to create it, allow for a number 

of calculated variables.  

4. Isometric Peak Force (IPF): The highest ground reaction force measured from a force 

plate during an isometric exercise. It is calculated from the force-time curve and 

generally measured in Newtons (N). 

5. Overload: “The magnitude of a training stimulus that is above the habitual level” 

(Zatsiorsky 1995, p. 4). 

6. Partial Lift: Movements that are a portion of a full range of motion (ROM) lift such as a 

quarter squat, rack pull, and bench lockout. 

7. Rate of Force Development (RFD): The rate of rise of contractile force during muscle 

contraction. This is calculated from the force-time curve and can be analyzed at various 

times. RFD is expressed in Newtons per second (N
.
s

-1
) (Aagard et al., 2002). 
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8. Specificity: “The degree to which one movement is similar to another in kinetic, 

kinematic, and metabolic measures.” (Stone et al., 2007, p. 171). 

9. Sticking Point: The point of minimum velocity in a continuous movement; is generally 

related to a changing mechanical advantage (Hales, Johnson, & Johnson, 2009; 

McGuigan & Wilson, 1996). 

Significance of Study 

In the strength and conditioning profession, partial lifts have commonly been 

incorporated into training programs (Clark et al., 2008, Clark et al., 2011; Harris, Stone, 

O’Bryant, Proulx, & Johnson, 2000; Stone, Potteiger, & Pierce, 2000). Some of the proposed 

benefits improved strength at the terminal ROM of a movement, improved weak portions of a 

movement, substituted for full ROM exercise during rehabilitation, injury prevention, enhanced 

metabolic adaptations, increased training volume, variation in training, and enhanced sport 

performance (Clark et al., 2008, Clark et al., 2011; Massey et al., 2004; Massey et al., 2005; 

Mookerjee & Ratamess, 1999; Pinto et al., 2012; Zatsiorsky, 1995). Few studies directly 

examine the efficacy of partial lifts in improving maximal strength (Bloomquist et al., 2013; 

Graves et al., 1989; Graves et al., 1992; Massey et al., 2004; Mookerjee & Ratamess, 1999; Pinto 

et al., 2012). The findings of these studies for maximal strength are conflicting.  

Graves et al. (1989) had untrained males and females train leg extensions once per week 

for ten weeks and found groups that trained with a partial ROM had greater gains in isometric 

strength in the trained ROM than in the untrained. The group that trained through a full ROM 

improved isometric strength equally at all joint angles. Massey et al. (2004) compared full ROM 

with partial ROM and reported an improved 1RM bench press in both groups after training twice 

per week for ten weeks with no statistical difference observed between groups. In contrast, Pinto 
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et al. (2012) compared full ROM vs. partial ROM and found that after 10 weeks of training twice 

per week the full ROM group significantly increased 1RM strength on preacher curls over the 

partial ROM group. Additionally, Pinto reported effect sizes for muscle thickness of 0.57 and 

1.09 in the partial and full ROM group, respectively. Considering the lack of consistency in the 

design and results of the aforementioned studies, further research is warranted. 

Purpose of the Study 

The purpose of our study was to examine the effects of two different training modalities, 

full ROM training (control) and full ROM with partial ROM training (CP), on well-trained males 

during a seven-week training intervention. The study included measurements of 1RM squat, 

1RM partial squat, and maximal isometric squat at 90° and 120° of knee flexion.  

Hypothesis 

 Well-trained males training for 7 weeks (12 weeks total) in both conditions will improve 

dynamic maximal strength; however, CP will improve 1RM partial squat over control. Our 

rationale was based on previous research demonstrating that gains in strength are specific to the 

ROM trained (Graves et al., 1989; Massey et al., 2005; Pinto et al., 2012; Sale & MacDougall, 

1981; Wilson, Murphy, & Walshe, 1996). These studies indicated that greater strength gains 

were made with the trained than the untrained joint angles. All joint angles were being trained in 

both groups, however, there were greater overloads through the terminal ROMs in the CP 

condition due to the supra-maximal loads being used during partial lifts. Thus, the CP condition 

trained with loads optimal for improving maximal strength at the end of the lift, whereas the 

control did not. 
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We hypothesized that both groups would improve for all isometric measures; however, 

CP would improve peak force at 120° over Control. Our rationale is based on the principles of 

specificity and overload (Zatsiorsky, 1995). CP would improve over Control at 120° because of 

the supra-maximal loads used at this joint angle during training.  

Assumptions 

1. All the equipment used for our study provided reliable and accurate results. 

2. All participants adhered to the conditions provided in the Informed Consent Form. 

3. All participants answered the health history questionnaire truthfully. 

4. All participants performed to their utmost potential in each testing session. 

Delimitations 

 The delimitations for this project were that each participant must have at least one year 

training experience in the back squat and squat with at least 1.3 x body weight (BW) resistance. 

Participants must have completed 80% of the programmed repetitions to be included in the data 

analysis. All participants were in the age range of college aged male students (18-24).  

Limitations 

1. Two participants dropped out of the study and a third was not included due to knee pain  

2. Homogeneity of variance was not met for three variables (IPFa 90°, impulse 200ms, 

250ms at 90°). 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

Genetic and Molecular Responses to Resistance Training 

 Mechanical stress modulates muscle tissue form and function and is specific to the type 

of mechanical load. Kumar et al. (2002) found that axial versus transverse mechanical stress 

resulted in activation of distinct intracellular signaling pathways. This is strong evidence for 

mechanotransduction specificity. Thus, the type of mechanical load (i.e. velocity and force of 

contraction) will contribute to the specific adaptations derived from training. 

 Resistance exercise results in a large efflux of Ca
2+

 from the sarcoplasmic reticulum 

resulting in an increase in intracellular [Ca
2+

]. After a single bout of anaerobic exercise Ca
2+ 

release and uptake are significantly impaired and do not return to baseline until 60 minutes of 

recovery (Matsunaga et al., 2002). There is an adaptive response to resistance exercise resulting 

in a smaller disturbance in Ca
2+

 release and uptake. Cytosolic [Ca
2+

] will affect downstream 

events such as gene expression and protein synthesis. The magnitude and duration of Ca
2+

 flux is 

dependent on the mode, intensity, and volume of exercise (Coffey & Hawley, 2007). For 

example, endurance exercise will result in smaller perturbations in Ca
2+

 release and uptake as 

compared to anaerobic exercise (Baar, Blough, Dineen, & Esser, 1999).                                                                                                       

 The redox potential of a muscle cell is dependent on how rapidly NAD can be reduced to 

NADH. Resistance exercise is capable of producing large increases in reactive oxygen species 

(ROS) due to an increased demand for oxygen and the activity of metabolic pathways. As the 

rate of intracellular catabolic reactions increase, there is a concomitant increase in free radical 

synthesis. The oxidative stress resulting in free radical synthesis may modulate signaling 

pathways by effecting transcriptional regulation and decreasing myofilament Ca
2+

 binding 
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sensitivity (Smith & Reid, 2006). These ROS are buffered by antioxidant systems such as 

catalase and glutathione peroxidase.  

 Resynthesis of adenosine tri-phosphate is dependent on both oxidative and non-oxidative 

pathways. ATP production and consumption are regulated by concentrations of substrates such 

as AMP, Pi, CP, and ADP. There is inverse relationship between metabolite concentrations and 

contractile intensity and duration during exercise (Ferguson et al., 2001; Ivy et al., 1987; 

Krustrup, Ferguson, Kjaer, & Bangsbo, 2003).  In particular, AMP is a potent stimulator of ATP 

production via enhanced activation of phosphofructokinase (PFK), the rate-limiting enzyme in 

glycolysis (Stone et al., 2007). Phosphorylation state is a primary messenger of adaptive 

responses and exerts its effects primarily through five adenosine monophosphate (AMPK). 

AMPK regulates multiple signaling cascades, such as fatty acid oxidation, glucose uptake, and 

inhibition of protein synthesis. AMPK is up-regulated to conserve and generate ATP, thus it is 

involved in enhancing glucose uptake to the muscle cell and increasing mitochondrial fatty acid 

oxidation. AMPK has been linked to down-regulating components of the mTOR pathway, thus 

inhibiting protein synthesis. AMPK phosphorylation seems to be greatest when there is an 

extensive and rapid reduction of ATP (Chen et al., 2000). AMPK activation occurs in endurance 

activities due to its ability to regenerate ATP via fat oxidation (Chen et al., 2003; Rasmussen & 

Winder, 1997; Wadley et al., 2006). Durante and colleagues’ (2002) findings support the 

notion that AMPK activation is greater in slow oxidative fibers than fast glycolytic fibers 

(Durante, Mustard, Park, Winder, & Hardie, 2002). However, caution is advised in interpreting 

findings that suggest this fiber type specific AMPK activity because many studies have 

incorporated exercise protocols that are more aerobic in nature (Ferguson et al., 2001, Ivy et al., 

1987, Wadley et al., 2006).    
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 Research on AMPK responses to resistance exercise is limited. Changes in AMPK 

phosphorylation may be linked to the enhanced glucose uptake by increased GLUT 4 receptor 

translocation in response to exercise. Coffey et al. (2005) found that trained cyclists and 

powerlifters experienced a blunted response in AMPK after an exercise bout in their discipline; 

however, when athletes performed a bout of unfamiliar exercise AMPK activity increased 

(Coffey & Hawley, 2007). The authors suggested that the AMPK response may be related to the 

athlete’s phenotype and stimulus applied rather than the mode of exercise. AMPK has also been 

found to inhibit mammalian target of rapamycin (mTOR) hypertrophic effects via 

phosphorylation of tuberous sclerosis complex 2 (TSC 2). 

 IGF-1 may enhance gene expression and satellite cell activation. IGF-1 has been 

associated with greater strength gains following resistance training for 10 weeks (Kostek et al., 

2005). When muscle contractile structure is damaged, satellite cells are activated, the cells 

proliferate and differentiate to repair damaged tissue and add myonuclei. A few transcription 

factors that play a role in satellite cell activation, increased myonuclei and size of the myofiber 

are myogenic differentiation (MyoD) and myogenin transcription factor (MyoG). Both are 

believed to contribute to the compensatory hypertrophy seen with resistance training (Kosek, 

Kim, Petrella, Cross, & Bamman, 2006).   

 Calcium calmodulin-dependent kinases (CaMK) are a group of single and multifunctional 

kinases that respond to [Ca
2+

]. Conclusive data on the effect of CaMK activation on adaptive 

mechanisms are lacking. CaMKII and IV are isoforms of the CaMK family that have been linked 

to gene expression of contractile and mitochondrial proteins, respectively (Wu et al., 2002). 

CaMKII appears to be the primary CaMK activated in response to endurance exercise (Rose & 

Hargreaves, 2003). Calcineurin also seems to have an important role in gene expression. 
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Calcineurin appears to augment muscle fiber hypertrophy along with IGF in combination with 

proliferation and differentiation of satellite cells during regeneration of muscle fibers (Sakuma et 

al., 2003). Calcineurin is also involved in fast-to-slow fiber type transformation (Michel, Dunn, 

& Chin, 2004). These opposing responses may represent adaptations specific to the velocity, 

force, and duration of contraction. More extensive research on the role of calmodulin-

calcineuron dependent pathways in response to exercise in humans is needed.      

 Akt, also known as protein kinase b, is a serine-threonine protein kinase that has been 

associated with enhancing muscle protein synthesis as well as inhibiting degradation. Akt 1 and 

Akt 2, isoforms of Akt, are responsible for muscle hypertrophy and glucose transport signaling, 

respectively (Taniguchi, Emanuelli, & Kahn, 2006). Akt mediates its effects of muscle 

hypertrophy through activation of MTOR. Akt suppresses TSC2, which inhibits protein 

synthesis. Akt has been shown to prevent transcription of atrophy genes by translocating 

forkhead box O (Fox O), a regulator of protein degradation, from the nucleus to the cytosol 

(Latres et al., 2005; Rena et al., 2002). Akt response has varied depending on the exercise mode; 

however, both resistance and endurance exercise have resulted in increases in Akt 

phosphorylation. Akt is expected due to its role in both protein synthesis and glucose transport. 

mTOR is capable of binding with a rapamycin raptor or rictor protein, which are 

responsible for cell growth and Akt activation respectively. Downstream targets of mTOR are 

p70 ribosomal protein S6kinase (p70 S6K) and eIF4E binding protein (4E-BP1), which increase 

protein synthesis and cell size. Dreyer et al. observed an increase in mTOR phosphorylation 

following eight weeks of resistance exercise providing evidence for the role of mTOR in muscle 

anabolism (Dreyer et al., 2006). Downstream of mTOR, p70 S6K has been shown by Bodine and 

colleagues to be a primary regulator of muscle fiber hypertrophy (Bodine et al., 2001). Further 
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research has shown that endurance exercise does not increase p70 S6K activity (Atherton et al., 

2005; Lee et al., 2006). Additionally, endurance stimuli decrease 4E-BP1 phosphorylation 

resulting in a negative effect on protein synthesis (Atherton et al., 2005).  

 Cytokines are released in response to inflammation resulting from damage to the muscle 

fiber. Cytokines initiate protein degradation and suppress synthesis. In particular tumor necrosis 

factor alpha (TNFalpha) has been linked to decreased protein synthesis through suppression of 

IGF-1 (Lang, Krawiec, Huber, McCoy, & Frost, 2006). IGF-1 elevates muscle proteolysis via 

increased ubiquitin gene expression (Garcia-Martinez, Agell, Llovera, Lopez-Soriano, & 

Argiles, 1993). Hamada et al., (1999) observed an increase in TNFalpha three days after a 45-

minute exercise bout consisting of downhill running showing that inflammation persisted for 

days after the induced muscle damage (Hamada, Vannier, Sacheck, Witsell, & Roubenoff, 2005). 

Increased circulation of TNFalpha occurs following heavy eccentric resistance training 

(Ostrowski, Rohde, Asp, Schjerling, & Pedersen, 1999).  However, training seems to decrease 

the local inflammatory response (Coffey & Hawley, 2007).                                                                     

Adaptations to Resistance Training 

 The principle adaptations to heavy resistance training exercise are altered neural 

recruitment patterns and an increase in muscle cross-sectional area (Baechle & Earle, 2000). 

Neural changes include an increase in rate coding, firing synchronicity, and total number of 

motor units recruited. The increase in cross-sectional area is due to a positive nitrogen balance 

where protein synthesis exceeds degradation. Resistance training may also down-regulate 

pathways associated with muscle atrophy allowing for a greater net protein synthesis.  
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Neural 

 Increasing neural drive is crucial for optimizing strength and power performance. The 

ability to recruit higher threshold motor units begins in the motor cortex and the action potential 

is propagated down the descending corticospinal tracts towards the targeted muscle fibers. 

Increasing neural drive is achieved via increases in motor unit recruitment, rate coding, agonist 

synchronization, and the timing and pattern of discharge (Baechle & Earle, 2000). All have been 

reported as adaptations to resistance training. 

 Activation of the motor cortex is enhanced when the amount of force developed increases 

and when learning of new movements (Dettmers, Lemon, Stephan, Fink, & Frackowiak, 1996). 

The majority of neural adaptations to resistance training take place in the descending 

corticospinal tracts. Adams et al. (2000) found that untrained individuals only activated about 

71% of their muscle tissue (Adams, Harris, & Woodard, 2000). Furthermore, strength training 

can enhance the activation of higher threshold motor units leading to improved force production 

(Stone et al., 2007).  

 The order of motor unit activation is governed by the size principle, which is based on the 

relationship between motor unit size and activation threshold. Larger motor units have higher 

activation thresholds (Henneman, Wuerker, & McPhedran, 1965). Thus, in mixed muscle, 

large motor units innervating fast twitch fibers would be activated last. However, once a motor 

unit is recruited it requires less activation to be recruited again. Resistance training may allow for 

higher threshold motor units to be recruited more readily by lowering their activation threshold 

(Baechle & Earle, 2000). 
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 Rate coding is the frequency at which motor units are activated  (Stone et al., 2007). 

Motor units innervating fast twitch fibers are activated at a greater neural discharge frequency. 

There is a positive relationship between firing frequency and RFD. Viitasalo and Komi (1981) 

showed that a rise in EMG activation is associated with a rise in RFD. Improving the nervous 

system’s ability to activate muscle tissue will enhance RFD. The firing frequency and RFD are 

also related to the amount of force produced. Therefore, resistance training that improves 

maximal strength may also increase firing frequency and RFD (Andersen & Aagaard, 2006).  

 Resistance training increases agonist activation and synchronization upon initiation of 

contraction rather than the typical asynchronous activation pattern (Felici et al., 2001; Milner-

Brown, Stein, & Lee, 1975; Semmler, Kornatz, & Enoka, 2003). As force output increases 

greater synchronization occurs. Resistance training enhances both number of motor units 

synchronized and synchronization at lower force outputs (Stone et al., 2007). Increased agonist 

synchronization is more critical to the timing of force production rather than the amount of force 

produced (Semmler & Nordstrom, 1998).                                                                    

 Additionally, other neurological adaptations to resistance training include morphological 

changes to the neuromuscular junction, increased reflex potentiation, and decreased antagonist 

cocontraction. Deschenes et al. (2000) showed that seven weeks of resistance training increased 

motor end plate perimeter and area as well as greater dispersion of acetylcholine receptors over 

this region. Enhancing the efficiency of the stretch reflex via resistance training may lead to 

improvements in RFD and maximal force production. The reduced inhibition may be due to 

decreased antagonist cocontraction following resistance training as well as reduced receptor 

sensitivity (reduced golgi tendon organ reflex activity) (Carolan & Cafarelli, 1992). The reduced 

inhibition may allow for greater forces to be achieved (Aagaard et al., 2000). More recent 
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findings suggest there are differential adaptations when comparing nonballistic with semiballistic 

movements.  

 How do the findings discussed above relate to the effectiveness of partial lifts? Wilson 

(1994) proposed that partial lifts involving supramaximal loads may result in reduced inhibition 

lending to an increase in maximal force production. The increase in maximal force production 

with training may also result in increases in RFD (Aagaard, Simonsen, Andersen, Magnusson, & 

Dyhre-Poulsen, 2002; Hakkinen, Komi, & Alen, 1985); however, these are likely through 

different processes (Holtermann, Roeleveld, Vereijken, & Ettema, 2007). Training the terminal 

ROM of a lift may improve peak force, RFD, and impulse to a greater extent than full ROM 

training alone (Zatsiorsky, 1995). This is because the terminal range of motion is loaded more 

optimally in the partial than in the full ROM lift. The full ROM is limited by the sticking point. 

Muscular 

  It is well reported that gains in strength during the first 6-10 weeks of a resistance 

training program are primarily due to neural adaptations (Sale, 1987; Sale, 1992). As training 

progresses (e.g. more than ten weeks) hypertrophy takes over as the primary adaptation 

contributing to strength gains. Muscular adaptations resulting from resistance training are 

increased hypertrophy, altered biochemical response, enhanced muscle architecture, and fiber 

type transitions (Stone et al., 2007).    

 Resistance training results in myofibrillar hypertrophy, which involves the net accretion 

of muscle proteins, actin and myosin, accompanied by a concomitant increase in myofibrils 

within a muscle fiber (MacDougall et al., 1979). The addition of myofilaments along with the 

increase in pennation angle from chronic resistance training lends to an increase in physiological 
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cross-sectional area (PSCA). There is a strong relationship between cross-sectional area and 

maximal strength, which is a function of sarcomeres being added in parallel. The more 

sarcomeres aligned in parallel the greater the strength of a muscle (Stone et al., 2007).   

 The primary stimulus for muscular hypertrophy is additional mechanical strain and 

tension produced resulting in muscle damage (Goldspink, 1998). Following an acute bout of 

resistance exercise there is an inflammatory response resulting in cytokine release and satellite 

cell proliferation and differentiation (Stauber & Smith, 1998). Satellite cells donate their nuclei 

to existing muscle fibers in order to enhance muscle protein synthesis in accordance with the 

myonuclear domain theory. Muscle damage also leads to the upregulation of growth factors 

involved in myogenesis (such as IGF-1 and mechano growth factor) and down-regulation of 

inhibitory growth factors (such as myostatin) (Baechle & Earle, 2000; Stone et al., 2007).      

 There have been few alterations found in enzyme activity as the result of heavy resistance 

training; however, high volume training may produce anaerobic and aerobic enzyme alterations 

(Stone et al., 2007). An under-studied area is change in isozyme content. Strength and sprint 

training alter the lactate dehydrogenase profile such that LD5, which converts pyruvate to 

lactate, is favored over LD1, which is responsible for the reverse reaction (Karlsson, Diamant, & 

Saltin, 1968). Higher volume resistance training increases fat oxidation postexercise, which 

suggests that high training volumes may be used to alter body composition (McMillan et al., 

1993). In order to enhance acid-base balance during resistance exercise, another adaptation to 

high volume training is an increased buffering capacity. Increased buffering capacity enables the 

individual to maintain force output at a lower blood pH (Costill, Barnett, Sharp, Fink, & Katz, 

1983). Repeated high intensity contractions in an interval fashion may increase ATP and creatine 

phosphate stores within the muscle via supercompensation (MacDougall et al., 1979). 
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Additionally, heavy resistance training for five months increases glycogen stores (MacDougall, 

Ward, Sale, & Sutton, 1977).                                                                    

 Muscle fibers properties are found on a continuum ranging from least to most oxidative. 

The least oxidative in humans, Type IIx, and the most oxidative Type I. The proportion of Type I 

to Type II fibers is genetically predetermined; however, alterations may be made within the 

subtypes as a result of training (Stone et al., 2007). As the volume of training increases there is a 

noticeable shift towards more oxidative fibers, and when training volume is reduced (Kadi & 

Thornell, 1999). The transition of Type IIx to the more oxidative Type IIa is driven by the 

increased demand to resist fatigue during training. This is reversed during a taper theoretically 

allowing for slightly greater power outputs (Ross & Leveritt, 2001). The transitions in fiber 

types, and corresponding myosin heavy chain (MHC) content, occur early in the training 

program. Over an eight-week resistance training program, Staron and colleagues (1994) found 

decreases in the Type IIx percentage in both men and women with a concomitant transition in 

MHC IIx to MHC IIa. There is insufficient evidence to say whether or not there is a transition 

from Type I to Type II or vice-versa (Baechle & Earle, 2000).      

 How do these findings relate to partial ROM training? One of the proposed benefits of 

partial lifts is increased volume-load. In a longitudinal study the additional work from partial lifts 

may result in a greater hypertrophic response; however, it is questionable whether this would be 

greater than the hypertrophic response elicited performing an equivalent amount of work through 

a full ROM. In one of only two studies directly examining muscle thickness with partial lift 

training, Pinto (2012) found that muscle thickness effect size for the full ROM condition was 

twice that of the Partial ROM condition following ten weeks of resistance training (1.09 vs 0.57). 

Even though the average load for the Partial ROM condition was 36% greater than the full ROM 
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condition. Caution is needed in interpreting these findings because there was no attempt to 

equalize volume-load. Additionally, the full ROM condition improved 1RM over the partial 

ROM. Bloomquist et al. (2013) found similar results when comparing a full ROM to partial 

ROM training group. They reported that full ROM training resulted in significantly greater 

increases in 1RM squat, front thigh muscle CSA, LBM of the legs, and isometric knee extensor 

strength at 75° and 105°. These findings (Massey et al., 2005; Sale & MacDougall, 1981; Wilson 

et al., 1996) suggest that partial lift training alone may result in weakness in the untrained angles, 

which would not be an effective means of improving 1RM in a full ROM.  

Strength Training Specificity 

 Training specificity involves both metabolic and mechanical factors. This discussion 

focuses on mechanical specificity and its relation to strength performance. Transfer of training is 

the degree to which a training exercise induces performance adaptations (Stone et al., 2007). The 

more similar the training exercise is to the performance measure the greater the probabilities of 

transfer (McDonagh & Davies, 1984). The kinetic and kinematic parameters influencing greater 

transfer include movement pattern, contraction velocity, contraction type, and contraction force 

(Kumar, Chaudhry, Reid, & Boriek, 2002).         

Movement Pattern Specificity 

 Research has well documented that the degree to which strength improves depends on the 

similarity between the strength test and the training exercise used (Fry, Powell, & Kraemer, 

1992; Sale, 1988). For example, Harris et al. (2000) reported a 10% increase in 1RM squat 

following nine weeks of squatting and pulling movements. However, the high power group, 

which did not perform back squats, did not improve 1RM squat. Wilson et al. (1996) reported a 
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12.4% increase in 1RM bench press and 20.9% increase in 1RM squat after eight weeks of 

training squat and bench press two times per week. This study also found that the increase in 

1RM squat and bench press were poorly correlated with isokinetic knee extension and horizontal 

arm abduction, respectively. The authors concluded that activities, which were performed in a 

position similar to that of weight training, tend to improve the most compared to those performed 

in dissimilar positions. 

 The degree to which a training exercise transfers to the primary movement is related to 

intermuscular movement pattern specificity (Stone et al., 2007). This means that training 

exercises that include similar joints, velocities, and positions have a greater degree of transfer to 

the primary movement. For example, there is a strong correlation between performance in the 

snatch and clean and jerk and vertical jump height (VJ) (Stone et al., 2007). The mechanical 

factors affecting transfer from the Olympic lifts to VJ include high power outputs, high RFDs, 

and movement pattern (i.e., triple-extension of the hips, knees, and ankle joints). Thorstensson 

(1977) trained physical education students on the half squat for eight weeks. Following the eight 

weeks, the students improved half squat by approximately 75%; however, isometric leg press 

improved only about 40% and there was no improvement in knee extension. This study shows 

that differences in movement pattern altered the strength gains on each exercise even though the 

half squat activated similar muscle groups. 

Specificity of Contraction Force, Velocity, and Type 

 In addition to movement pattern specificity, the degree of transfer of the training exercise 

to the performance measure is affected by contraction force, velocity, and type. Harris et al. 

(2000) studied 42 well trained football players for nine weeks. Athletes were placed in either a 
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high force (>80% 1RM), speed-strength, (30-40% 1RM) or combination training (speed-strength 

and high force training) group. After nine weeks, the high force and combination group 

improved on maximum strength measures, whereas the speed-strength group did not. 

Additionally, the combination group and speed strength group improved on measures of power 

and explosiveness, whereas the high force group did not. This is strong evidence for the 

specificity of contraction force and velocity. Groups that trained with heavy loads improved 

maximal strength and groups that trained at higher velocities with lighter loads improved in 

power measurements. This study also demonstrated that combination training produced 

performance gains across a wide spectrum of performance variables.  

 To date there is little evidence on intentionally slow training. There is evidence to suggest 

that some hypertrophy may occur; however, it is not as extensive as that incurred by heavy 

weight training (Keeler, Finkelstein, Miller, & Fernhall, 2001). Stone and colleagues (2007) also 

suggest that for trained individuals intentionally slow training may diminish RFD, power, and 

maximal strength.       

 Alterations in the performance measure are also dependent on the contraction type 

(isometric, isokinetic, dynamic constant external resistance). Isometric tension has not been 

shown to produce extensive hypertrophy; however, maximum strength when measured 

isometrically can be improved by isometric training. Isometric training improvement is angle 

specific, smaller gains in isometric strength are observed when the strength measurement moves 

further from the angle trained (Atha, 1981). Dynamic exercises are recommended over isometric 

exercises because they cover a larger range of motion and have greater transfer to dynamic 

performance measures. Isokinetic training holds angular velocity constant by applying 

accommodating resistance via a machine. However, the external validity and reliability of 
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isokinetic devices is questionable. In fact research has shown that gains from free-weight training 

are not always apparent when measured on isokinetic devices (Stone et al., 2007). As mentioned 

earlier, Wilson et al. (1996) found that a 20.9% increase in 1RM squat did not significantly 

improve isokinetic knee extension at 60 or 270° per second in recreationally trained males after 

eight weeks of training the squat twice per week. Dynamic constant external resistance training 

that involves a stretch-shortening cycle seems to have the greatest transfer to dynamic strength 

measures such as 1RM bench press and squat (Campos et al., 2002; Coffey & Hawley, 2007; 

Stone et al., 2000). Fry et al. (2000) demonstrated that 4 weeks of training squats and leg curls 

twice per week resulted in a significant increase in 1RM back squat in recreationally trained 

males. These studies support the specificity of contraction force, velocity and type in strength 

training. 

Optimizing Strength Training 

 The more important question to ask when it comes to performance enhancement is not 

“does the intervention work?” but “is the intervention optimal?” An untrained individual may 

benefit from a nonperiodized training routine when the individual first begins, but this does not 

mean it is optimal to do so when periodized routines produce equal or greater strength gains in 

trained and untrained individuals (Herrick & Stone, 1996; Kraemer et al., 2000; Kraemer et al., 

2003). There is a multiplicity of factors involved in optimizing strength training. A few of these 

include periodization of training variables (i.e., frequency, intensity, volume, and duration), 

exercise selection, individualization (e.g., training status), and the use of cluster sets and 

assistance exercises. Arguably, the most important factors are the transfer of training exercises to 

the performance measure and the appropriate manipulation of training volume and intensity.  
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 It is first important to distinguish between programming and periodization. Periodization 

refers to the purposeful sequencing of different training units (e.g., macrocycle, mesocycle, 

microcycle) so that athletes can attain a desired state and achieve planned results (Issurin, 2010).  

Programming refers to the numerical models (sets per repetitions) that compose the training 

cycles (Stone et al., 2007). The vast majority of research has focused on programming a 

microcycle rather than the principles and strategies involved in creating an annual plan (Graves 

et al., 1989; Massey et al., 2005; Pinto et al., 2012; Sale & MacDougall, 1981; Wilson et al., 

1996). This is due to the scarcity of longitudinal studies on training periodization. More research 

in needed in this area. 

Periodized Versus Nonperiodized Models 

 There has been extensive research done showing that in untrained and trained males and 

females periodized training routines produce superior gains in strength measures as compared to 

nonperiodized routines (Fleck, 1999; Fleck & Kraemer, 1997; Willardson, 2006). A study by 

Willoughby et al. (1993) showed that periodized training elicited greater increases 1RM bench 

press and squat when compared to nonperiodized training over a 16-week training program in a 

large sample of 92 previously weight-trained college aged males. Schiotz et al. (1998) studied 14 

male ROTC cadets over 10 weeks and demonstrated that 1RM bench press significantly 

increased in the periodized group as compared to the nonperiodized group. Kraemer et al. (2003) 

tracked female tennis players over 9 months, with testing strength and power at months 3, 6, and 

9. The periodized group showed significant increases over the nonperiodized group at each time. 

These studies show that among untrained and trained individuals, periodized routines produce 

superior gains in strength and power.  
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Periodization Models 

 The General Adaptation Syndrome (GAS) was a concept developed by Hans Seyle in the 

1920s to explain physiological responses to stress. GAS was later applied to training adaptations 

and early models of periodization are believed to have stemmed from GAS (Zatsiorsky, 1995). 

There are three phases of the GAS: alarm phase, resistance phase, and exhaustion phase. The 

alarm phase is when the training stimulus is recognized and the individual may experience 

soreness and/or a temporary drop in performance. The alarm phase gives rise to the resistance 

phase where the individual either returns to baseline or supercompensates as a result of positive 

training adaptations. If the stress persists for an extended period, symptoms of the alarm phase 

may reappear (e.g., fatigue, soreness, decreased performance) resulting in an overtrained state. 

The GAS lays the foundation for training variation suggesting that planned decreases in training 

volume or intensity may reduce the likelihood of being overtrained (Baechle & Earle, 2000; 

Stone et al., 2007). There are also external variables (e.g., insufficient sleep, poor diet, and work 

issues) that can contribute to overall stress and hamper positive adaptations.  

 An individual’s preparedness (readiness to perform) is primarily dependent on the 

aftereffects of two training responses: fitness and fatigue. The fitness and fatigue model proposes 

that fitness and fatigue have opposing effects; fatigue falls off faster than fitness creating a 

window of increased preparedness. Therefore, strength training to enhance performance is a 

balance between maximizing fitness benefits while minimizing fatigue. Fitness and fatigue likely 

have different aftereffects based on the different fitness abilities (strength-endurance, agility, 

speed) incorporated into training and can also be influenced by external factors and individual 

differences (e.g. sleep quality and quantity, age, maturation). For example, a strength endurance 

phase may result in diminished 1RM strength and lower T:C ratios; however, after a de-load 
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(microcycle of reduced volume-loads) supercompensation may result in enhanced preparedness 

manifesting as increased cross-sectional area and a greater potential to improve strength in the 

subsequent training phase (Stone & Fry, 1997). Thus, a strength endurance phase may be used to 

potentiate a subsequent strength phase due to the long-term lag of the training effect proposed by 

Verkhoshansky (1985).    

Involution rate (decline of training effects) is another important consideration in program 

design (Zatsiorsky, 1995). The rate of decline is thought to be related to the half-life of various 

glycolytic and oxidative enzymes (Stone et al., 2007). Fitness abilities such as power and speed 

have greater rates of involution than strength (Fry, Webber, Weiss, Frye, & Li, 2000). Thus, 

involution is modulated by the specific fitness ability and the time spent training that ability. The 

greater the training duration of the fitness ability the more stable the residual effect. As a result 

of this stability, adaptations gained during a strength-endurance phase can be maintained during 

the subsequent strength phase with less emphasis on strength-endurance. This is the basis for 

sequenced training, where successive training blocks of different emphasis are superimposed 

against a background of adaptation responses (Zatsiorsky, 1995). 

The fluctuation in volume and intensity and the conflicting demands of specificity and 

variation are fundamental in the structuring of a training program (macrocycle or annual plan). In 

resistance training volume-load is the accepted estimate of work performed during training 

(Stone & O' Bryant, 1987). The traditional periodization model includes general preparation, 

special preparation, competition (with peaking), and active rest over a mesocycle or macro-cycle. 

During the general preparation phase high volume loads are used to increase work capacity and 

readiness for the intensive efforts to follow. This phase does not emphasize technique training in 

order to avoid the compounding effects of fatigue on motor skill development (Chargina et al., 
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1987). During the special preparation phase technique is emphasized while volume is lowered 

and intensity is elevated (Stone et al., 2007). The competition period involves maintenance of 

adaptations gained during the previous phases and peaking for performance. During this period 

volume continues to fall as intensity and technique rise towards a peak. The competition period 

is followed by an active rest period focused on nonsport specific recreational activities with low 

intensities and volumes (Baechle & Earle, 2000). 

 A few limitations of the traditional model are the reduced potential for sport-specific 

fitness to be maintained over the competition period and the inability to maintain a peak for more 

than three weeks. The inability to maintain a peak for longer than 3 weeks may be detrimental to 

team sports with a long competition period or many important competitions close together. This 

model may be appropriate for novices. However, for trained individuals, nontraditional models 

such as the conjugate sequencing system, developed by Verkhoshansky, could provide more 

variation and specificity in training (Stone et al., 2007). The conjugate sequence system (similar 

to block periodization) is based on the premise that the delayed effects of certain training stimuli 

(fitness abilities) can alter the responses to others (Harland & Steele, 1997; Verkhoshansky, 

1999). The system is composed of a series of microcycles (generally 4-week blocks) involving 

periods of accumulation followed by restitution where recovery adaptation takes place and gains 

are achieved (Stone et al., 2007). As mentioned above, if the training goal is to improve 1RM 

strength an accumulation phase may involve primarily strength-endurance work while de-

emphasizing strength training, followed by a restitution block where strength training is 

emphasized and strength-endurance is de-emphasized.  
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Manipulating Volume and Intensity 

 There is evidence demonstrating that appropriate manipulation of volume and intensity is 

essential for improving 1RM (Fry et al., 2000; Rena et al., 2002; Stone et al., 2000; Zourdos & 

Kim, 2012). Studies incorporating additional exercises into the training program include the 

exercises in both the experimental and the control condition. This is due to the vast amount of 

research examining various periodization models, which need to maintain internal validity by 

matching the exercises performed while manipulating other training variables. Fry et al. (2000) 

trained recreational level males twice per week for seven weeks. The exercises were the back 

squat and leg curl. After the first four weeks, participants improved 1RM back squat. For the 

next three weeks participants trained at ≥90% 1RM with the same exercises; however, there was 

a plateau in 1RM. Miranda (2011) divided 20 recreationally trained males into two different 

training groups. Both groups trained 4 days per week for 12 weeks with various assistance 

exercises (leg extension, leg curl, tricep extension, upright rows). They found that both the 

‘linear periodized group’ and the ‘daily undulating group’ produced similar gains in 1RM and 

8RM in bench press and leg press; however, the daily undulating group exhibited superior effect 

sizes. These studies show that the appropriate manipulation of training volume and intensity are 

paramount to improving 1RM.  

Stone et al. (2000) divided 21 college aged males (1RM squat >1.3 x BW) into three 

groups. The control group (Group 1) performed 5x6RM on the core lifts and 3x8RM on 

assistance lifts throughout the entire 12-week study. A step-wise periodized model (Group 2) 

decreased repetitions per set every four weeks and trained at RM values every day. An 

overreaching periodized group (Group 3) trained with heavy and light days and microcycles of 

increased volume were inserted on weeks one and nine. All groups trained three days per week 
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using the same exercises. Squats were performed on Monday and Friday and clean pulls and 

power shrugs on Wednesday. The additional exercises consisted of incline press and lat pull-

downs. Group 1 (non-periodized) performed the same assistance exercises but did not improve 

the 1RM squat. No significant differences were found between the periodized groups (two and 

three) in the 1RM squat. The results of this study indicate that periodized models increase the 

1RM squat to a greater extent than a constant repetition scheme (number of repetitions does not 

change during program), even when the repetitions were equalized (Group 1 vs. Group 2) or 

when the repetitions were substantially fewer (Group 1 vs. Group 3).  Therefore, the efficacy of 

partial lifts may be determined by the timing of inclusion in the training program and how partial 

lifts are used to manipulate volume and intensity. 

 Training studies including additional exercises to the core lifts have consistently 

produced increases in strength (Apel, Lacey, & Kell, 2011; Hakkinen, Pakarinen, & Alen, 1987; 

Stone et al., 2000; Willougby, 1993). However, it is not possible to determine if the strength 

gains were related to the additional exercises used because these exercises were held constant 

while other variables were manipulated (load, volume, rest period, etc.). In contrast, Wilson 

(1996) found that maximal strength improved after eight weeks of training squat and bench press 

twice per week without addition of assistance exercises. Zourdos and Kim (2012) found that 

highly trained powerlifters training squat and bench 3 days per week were able to improve 1RM 

squat and bench without additional exercises. These findings imply that additional exercises are 

unnecessary to induce gains in 1RM strength in recreationally and highly trained males. Harris et 

al. (2000), who varied the assistance work for each group based on the mode (strength-speed, 

high force, or a combination), found that the training adaptation that took place corresponded to 

the training mode. This shows that additional exercises should vary depending on the training 
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mode. For example, a jerk would be an appropriate exercise for a speed-strength phase, whereas 

a strict overhead press would be an appropriate exercise for a strength phase.  

Effect of Training Status on Strength Gains 

 It is well established that during the initial phases of a resistance-training program, 

untrained individuals markedly improve strength measures primarily from neurological 

adaptations (Sale, 1988). The reason hypertrophy may lag behind neural factors is that learning 

to reach maximal exertion must be achieved before a sufficient intensity can be produced. The 

neural adaptations are followed by gains in hypertrophy that continue so long as training volume 

and intensity are appropriately manipulated (Stone et al., 2007). The alterations in strength are 

dependent upon individual training status as well as their previous and current training blocks.   

 The vast majority of training studies include partial lifts in the training program (Campos 

et al., 2002; Harris et al., 2000; Kraemer et al., 2000; Kraemer et al., 2003); however, there is a 

paucity of research examining the efficacy of partial lifts in maximal strength training. Partial 

lifts provide variation to training programs avoiding accommodation and stagnation among 

experienced lifters (Mookerjee & Ratamess, 1999). Partial lifts may also be incorporated to 

increase the volume-load of a training phase and to provide a novel stimuli. However, it is 

unknown whether it is best to increase the volume of the core exercise or incorporate additional 

exercises if the goal is to improve 1RM on a particular lift. One-repetition maximums may 

depend heavily on the training status of the individual (Campos et al., 2002; M. H. Stone, 

Potteiger, & Pierce, 2000). Untrained individuals may benefit more from increasing the volume 

of the core exercise to allow for more practice, whereas highly trained individuals may benefit 

from the additional volume-load and variation provided by partial lifts.  



41 
 

As discussed previously, untrained individuals are likely to improve strength regardless 

of the strength training program used (Campos et al., 2002). Thus, to examine the efficacy of 

partial lifts it would be necessary that the participants involved have prior training experience on 

the core lifts. However, that is not to say experienced lifters would not benefit from higher 

volumes on the core lifts. Zourdos and Kim (2012) found that highly trained powerlifters 

improved the 1RM on bench press, and squat by 9.3% and 5.5%, respectively. These 

improvements occurred after training both lifts 3 days per week for 6 weeks without any 

additional lifts. 

Campos et al. (2002) divided 32 untrained males into four groups: control (no training), 

low repetitions (3-5RM), intermediate repetitions (9-11RM) and high repetitions (20-28RM). 

After 8 weeks of training 2 to 3 days per week, all three groups significantly improved 1RM 

squat and leg press over the control condition; however, within group analysis revealed that the 

low rep group improved more. This study demonstrates that regardless of RM range selected 

untrained individuals will improve lower body strength; however, heavier loading in the low rep 

group produced superior results. As mentioned previously, Harris et al. (2000) divided 42 

collegiate football players into three groups. The speed-strength group was the only group that 

did not improve 1RM squat. The lack of improvement may have been due to the relatively low 

training load (30% to 40% 1RM) used during the training intervention. This study showed that 

individuals with more training experience require more variation to produce further adaptations. 

Therefore, a sequenced approach to training including strength-endurance, strength, and speed-

strength can optimize strength measures as well as measures of agility and power for trained 

individuals (Stone et al., 2007). In contrast, untrained individuals do not require as much 



42 
 

variation to incur strength adaptations. Thus, less trained individuals will yield larger 

physiological gains after shorter periods of training (Apel, Lacey, & Kell, 2011). 

Strength Training Recommendations and Strategies 

 One-RM strength heavy loads (≥85% 1RM) must be lifted for two to six sets of ≤six 

repetitions per set for core exercises (i.e., squat, bench, deadlift) to foster improvements (Baechle 

& Earle, 2000). This recommendation may be over simplified because increases in strength are a 

function of neurological as well as muscular adaptations. The most important mechanisms 

related to maximal strength are physiological CSA of a muscle and total CSA of type II fibers 

(Thorstensson, 1977). Higher training volumes are associated with significantly increased CSA 

(Hather, Tesch, Buchanan, & Dudley, 1991; McDonagh & Davies, 1984). Therefore, in order to 

improve maximal strength, phases including higher volume-loads are pertinent.   

 Consistent training too long with heavy loads (>80% 1RM) may cause stagnation or a 

decrease in the 1RM (Fry et al., 2000; Hakkinen, Pakarinen, & Alen, 1987). There is some 

conflicting evidence showing that gains in strength can be made while consistently training with 

heavy loads three times per week as long as volume-load is carefully manipulated during the 

training program (Zourdos & Kim, 2012). These findings were observed with well-trained lifters 

who adapted to higher training frequencies. Theoretically, if an individual is able to train at 

higher intensities with greater frequency, the individual may increase motor unit recruitment, 

increase rate coding, and thereby increase maximal strength (Plisk & Stone, 2003).  

 An important strategy to avoid staleness resulting from training an exercise for long 

periods is deletion and re-presentation. This involves removing an exercise from the program and 

reinserting it several weeks later (Stone et al., 2007). Deleting an exercise from a training 
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program for too long may cause the loss of intramuscular coordination and detraining of the 

musculature involved in the lift. Thus, it is advised that the exercise supplemented involve a 

similar movement pattern to satisfy specificity demands. Another option is offset loading where 

the volume load of one exercise is decreased across a block while the other is increased. This is 

important in the sport of powerlifting where both the squat and deadlift are performed in 

competitions (Stone et al., 2007). There is muscle group cross-over in these lifts, therefore 

decreasing volume-load in the deadlift while simultaneously increasing volume-load in the squat 

will allow for more optimal gains in both lifts over the training cycle. This will allow for an 

appropriate distribution of work while avoiding excessive fatigue. 

 Another strength training strategy is the use of cluster sets, which are sets with small rest 

periods between repetitions (Haff et al., 1997). This may be more relevant with pulling exercises 

because the weight rests on the ground rather than the lifter (such as in the squat or bench). The 

advantages of this method include short rest periods that can allow heavier loads to be used, and 

greater force, power, and velocity can be maintained throughout a set. This method may be 

particularly advantageous for intermediate and advanced lifters (Roll & Omer, 1987).   

 An often forgotten but important psychological strategy is manipulation of arousal levels. 

The inverted-U theory proposed by Yerkes and Dodson states that arousal facilitates 

performance up to an optimal level beyond which further increases in arousal reduce 

performance (Yerkes & Dodson, 1908). Arousal varies from person to person and from task to 

task. As an individual becomes more familiar with a skill the better the individual can perform at 

less or greater than optimal arousal. Extroverts require heightened stimulation because of their 

tendency to dampen arousal, while introverts require lower levels of stimulation because of their 

tendency to increase arousal (Eysenck, 1967). Regardless of personality type, in order for an 
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individual to properly control his or her arousal the individual needs to be in a nonanxious state 

(Baechle & Earle, 2000). Simple skills can tolerate a higher degree of arousal because they have 

few task-relevant cues to monitor (Oxendine, 1970). For example, performing a machine bicep 

curl may tolerate higher levels of arousal as compared to a clean and jerk due to the lower degree 

of motor control required.  

Efficacy of Partial Lifts in Strength Training 

 The inclusion of partial lifts in training programs has been prevalent for decades as a 

means to optimize training. Some examples are a bench lockout, rack pulls, and quarter squats. 

There is currently no formal definition for partial lifts. Massey et al. (2004) describes a bench 

lockout as the final 5.1 to 12.7 cm of a lift. However, lifters often perform lockouts from 

different positions, some lower than 12.7 cm depending on the location of one’s sticking point. 

Pinto et al. (2012) had participants perform preacher curls in their optimal elbow flexion strength 

curve. Clark et al. (2011) had lifters perform bench press at ¼, ½, and ¾ ROM. Bloomquist et al. 

(2013) had the partial ROM group perform squats to 60° of knee flexion (with full extension 

being 0°). While assistance exercises (such as dumbbell flys or tricep extensions) are generally 

performed to increase work capacity; partial lifts have a more skill-oriented role and are often 

performed to improve weak portions of a lift (e.g., bench lockouts to improve strength through 

the terminal ROM of the bench press). Partial lifts are commonly incorporated into training 

programs to increase maximal strength, impulse, RFD, and volume of training; however, 

research on the topic is lacking and past studies show conflicting results (Clark et al., 2011; 

Massey et al., 2004; Pinto et al., 2012). 
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 In the first peer-reviewed study on partial lifts, Graves et al. (1989) randomly assigned 28 

males and 31 females to three conditions and a control condition that did not train. All three 

groups trained bilateral knee extensions 2 to 3 days per week for 10 weeks. Group A trained in a 

ROM limited to 120-60°, Group B trained in 60-0°, Group AB trained through a full ROM. 

Isometric strength gains for Group AB were similar throughout the entire ROM, whereas 

strength gains for Groups A and B were greater in the trained than in the untrained ROM. In 

addition; there was no statistical difference between control and Group A at 9° and 20°, and no 

difference between control and Group B at 95°. These findings along with other corroborative 

data (Massey et al., 2004; Pinto et al., 2012; Sale & MacDougall, 1981; Wilson et al., 1996) 

suggest that strength gains are specific to the ROM trained. Graves et al. (1992) follow-up study 

tested lumbar extension isometric strength pre- and posttraining. In contrast to their previous 

findings, Graves reported no statistical difference in isometric strength between full ROM and 

limited ROM groups at any angle. It is important to note that in this study, participants only 

trained one day per week. Training 1 day per week may not have provided a large enough 

training stimulus to elicit differences between groups as was observed in their previous study 

where participants trained 2 to 3 days per week. 

 Few training studies on partial lifts have analyzed changes in 1RM (Bloomquist et al., 

2013; Massey et al., 2004; Pinto et al., 2012). In these studies training status, study design, 

exercise performed, and outcome all varied (Table 2.1). Massey et al. (2004) divided untrained 

and recreationally trained males into three groups, full ROM, partial ROM and mixed ROM. All 

groups trained twice per week for 10 weeks. The full ROM group performed three sets of 15 full 

ROM bench presses, partial performed three sets of 15 partial ROM bench presses (5.1 to 12.7 

cm from lockout), and mixed ROM group performed both full and partial repetitions. All three 
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groups improved 1RM bench; however, there was a significant difference in 1RM between 

groups at the beginning of the study with the mixed ROM group being stronger than the others. 

This may explain why the mean increased by 11.4 kg in the full ROM and partial ROM groups 

and only 7.5 kg in the mixed ROM group. These findings suggest that partial lifts can positively 

influence the development of maximal strength in untrained and recreationally trained males. 

The results may have been confounded by the broad range of training experience and strength 

levels and the ambiguity of partial lifts (5.1 to 12.7 cm from lockout). There was also no attempt 

to equate work between groups and the partial bench 1RM was not tested.   

Table 2.1  

Previous Research 

 

Furthermore, Massey et al. (2005) performed a follow-up study with untrained females 

using the same protocol and found the full ROM group increased 1RM bench over the partial 
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ROM and the mixed ROM groups (25.4lb vs. 16.9lb vs. 16.3lb, respectively). These findings are 

in agreement with Pinto et al. (2012) who found the full ROM group improved over the partial 

ROM group after training preacher curls twice per week for 10 weeks. The partial ROM group 

performed preacher curls through the ROM near the optimal angle of the elbow flexion strength 

curve while the full ROM group performed preacher curls through a full ROM. They also 

reported magnitude of the treatment effect for muscle thickness was twice as large in the full 

ROM group compared to the partial ROM group (1.09 vs. 0.57), while the p-value was near 

significance (p=0.07). In regards to work performed, the partial ROM group lifted 36% heavier 

loads than the full ROM group; however, there was no attempt to equate mechanical work 

between groups.  

It is clear from the findings of Sullivan et al. (1996), Pinto et al (2012), and Clark et al. 

(2011) that greater torque is produced during partial lifts compared to full ROM. This is because 

the load used for full ROM training is limited by the sticking point. Thus, Zatsiorksy (1995) and 

Clark et al. (2012) reasoned that partial lifts train different segments of a lift allowing for greater 

control of external loads at different countermovement positions. Clark and colleagues stated that 

the improved control of external loading coupled with greater force production at different 

countermovement positions may result in enhanced sport performance and decrease injury risks 

(Clark et al., 2012).  

 In order to determine if training with partial lifts results in longitudinal performance 

gains, Clark et al. (2012) divided 22 rugby players into a variable ROM (VROM) and full ROM 

group. Both groups trained bench press twice per week during a 5-week training intervention. 

VROM performed sets in the following order: 1- full ROM, 1- ¾ ROM, 1- ½ ROM, 1- ¼ ROM, 

1- full ROM (second day order was reversed to cross-over) while the full ROM group performed 
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four sets through a full ROM. They found no statistical difference between groups in iso-bench 

at ¼ ROM. VROM improved over the full ROM group in iso-kinetic bench at 45°
 
per second 

(particularly in the terminal portion of the movement), ½ ROM bench press throw peak force and 

full ROM bench press throw bar displacement. There was no significant change in any of these 

measures for the full ROM group except for a significant improvement in iso-bench at ¼ ROM 

(the authors suggested this was possibly because of familiarization). These findings suggest that 

VROM training improves force production during the terminal ROM of a lift as evidenced by the 

isokinetic data. The increase in peak force with the ½ ROM bench press throw also suggests 

enhanced mid-ROM reactive strength (Clark 2012). This study provides novel insights into the 

effectiveness of partial lifts in an athletic population. Further research is needed in order to 

elucidate the underlying mechanisms lending to the performance gains and whether gains will 

transfer to other sport-specific tasks (e.g., running, jumping, throwing). 

In a more recent study by Bloomquist et al. (2013), researchers compared full ROM 

training to partial ROM training in 17 untrained males. They found a 20% increase in 1RM squat 

and 1RM partial squat in the full ROM group (0-120° knee flexion), and a 9% and 36% increase 

in 1RM squat and partial squat, respectively, in the partial ROM group (0-60° knee flexion). The 

full ROM group significantly increased 1RM squat over the partial ROM group, and the partial 

ROM group significantly improved partial 1RM squat over the full ROM group. Additionally, 

they found full ROM training resulted in superior increases in front thigh muscle cross-sectional 

area, squat jump (SJ) performance, LBM of the legs, and isometric strength at 75° and 105° of 

knee extension. Interesting to note, the partial ROM group only improved front thigh muscle 

cross-sectional area at the two most proximal sites. No significant differences between groups 

were observed for muscle thickness, pennation angle, collagen cross sectional area or synthesis, 
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and countermovement jump height. These results strongly support the specificity of ROM in 

training adaptations. The authors suggest that the larger muscle–tendon forces over the knee 

joint, greater internal work produced, and longer muscle length of the knee extensors are the 

primary explanations for the superior adaptations in the full ROM compared to the partial ROM 

training group. It is important to note, however, that although groups performed a similar 

training program (matched repetitions and %1RM), no attempt was made to calculate or equate 

work between the two groups. It was assumed that because the external moment arm is about 

twice as long when the femur is parallel to the ground compared to the 60° of knee flexion 

performed by the partial ROM group (also load used was twice as large as the full ROM group), 

that the force on muscle-tendon system was similar between groups. Nevertheless, this has been 

the only known training study that measured 1RM partial squat, muscle CSA, pennation angle, 

collagen cross sectional area and synthesis, and jump performance. The results suggest that 

partial ROM training alone results in inferior adaptations as compared to full ROM training in 

untrained males. This, however, does not rule out the efficacy of partial ROM in conjunction 

with full ROM training in more well trained populations.   

 Examining the findings from the aforementioned studies makes it unclear whether partial 

lifts augment full ROM 1RM strength. Studies by Massey et al. (2004, 2005) show conflicting 

results for untrained participants showing no significant difference between partial ROM and full 

ROM training, and full ROM greater than partial ROM training. Pinto et al. (2012) and 

Bloomquist et al. (2013) found greater improvements in 1RM for full ROM training; however, 

work was not equated between groups and the partial ROM groups did not perform full ROM 

training. In order to fulfill specificity requirements the partial ROM group should continue with 

full ROM training if the training goal is to improve 1RM in a full ROM. Additionally, these 



50 
 

studies only researched untrained participants while multiple studies state that partial lifts, if 

effective, would benefit lifters with previous training experience (Clark et al., 2011; Massey et 

al., 2004; Mookerjee & Ratamess, 1999). The question remains are partial lifts effective in 

improving 1RM in a full ROM?  

Maximal Strength Testing 

Isometric Tests of Maximal Strength 

 As established previously, in order for an isometric test to transfer to a dynamic 

movement there must be a high degree of task specificity (movement pattern, velocity, and 

magnitude of contraction) (Kawamori et al., 2006). Without intermuscular task specificity it is 

not probable that the test will be valid. Isometric testing may provide a sufficient alternative to 

dynamic maximal strength tests because the protocol results in less fatigue and can be performed 

in a shorter time.    

 A few studies have been done to ascertain the joint angles the isometric tests should be 

performed in order to see correspondence with dynamic movement. Smidt (1973) reported that 

the knee extensors produce peak isometric torque at 120° of knee extension.  Therefore, in order 

to use an isometric test that correlates strongly with a dynamic movement, joint angles of the 

isometric test must correspond to the joint angles in the dynamic movement in which force 

output is the highest.  

Another important consideration is the position in the lift when mechanical advantage is 

the lowest (sticking points). Blazevich et al. (2002) found that isometric squats performed at 90° 

of knee flexion are highly correlated (r=0.77) with 1RM squat (depth was 90° of knee flexion). 

This knee angle is considered to be the sticking point in the squat. According to the findings 
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above, an isometric squat performed at 90° and 120° should provide a strong indication of the 

dynamic 1RM squat.  

Dynamic Tests of Maximal Strength 

 The gold standard for assessing lower body maximal strength is 1RM squat. The 1RM 

squat has been used in numerous studies to assess strength in untrained, recreationally trained, 

and highly trained individuals (Campos et al., 2002; Harris et al., 2000; Willougby, 1993; Wilson 

et al., 1996). The 1RM squat is often used to assess dynamic maximal strength because of its 

high degree of specificity with training exercises. The addition of force plates in the testing 

procedure has been used to assess kinetic and kinematic aspects of the squat (Rahmani, Viale, 

Dalleau, & Lacour, 2001).   

 While the tests are reliable, the protocols used to assess 1RM squat are highly variable. 

For example, some studies had the participants perform squats to 90° while others had 

participants descend until the top of their thigh was parallel to the ground (Blazevich, Gill, & 

Newton, 2002). Some studies only reference that a 1RM protocol was performed, while others 

gave a brief outline on the test protocol. There is a considerable amount of research on the rest 

time between sets in a training program; however, there is no research stating the optimal rest 

time between attempts at the 1RM determination (Willardson, 2006). Additionally, there is no 

research stating the appropriate adjustments in weight prior to attempts, between attempts, or 

after a failed attempt. Further research is needed to formulate a standard 1RM protocol for the 

squat.  

 Aside from the variety of protocols used to assess 1RM strength there is an abundance of 

research to support its use as an assessment of strength changes throughout a training program 
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(Campos et al., 2002; Harris et al., 2000; Kraemer et al., 2000; Kraemer et al., 2003; Stone et al., 

2000; Willougby, 1993; Wilson et al., 1996). This may be due to the high degree of 

intermuscular task specificity between the movements performed and the 1RM test. A downside, 

however, is that 1RM tests have a high metabolic cost, they are fatiguing, and require a high 

level of skill compared to isometric tests. Nonetheless, the 1RM tests are still considered the best 

assessment of maximal strength and are the tests most commonly used in training studies 

(Baechle & Earle, 2000).    
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Abstract 

Eighteen well trained males (1RM Squat: 150.57 ± 26.79 kg) were assigned to 2 groups: full 

ROM training (control) and full ROM with partial ROM training (CP) for the 7-week training 

intervention. There was a significant time effect (p<0.05) for 1RM squat, 1RM partial squat, 

IPFa 90°, IPFa 120° and impulse at 90ms, 200ms, and 250ms at 90° and 120° of knee flexion. 

There was a significant interaction for RFD 200ms at 120° and a near significant interaction for 

1RM squat scaled (p=0.07). There was a trend for CP to improve over control in 1RM squat 

(+2.3%), 1RM partial squat (+4.1%), IPFa 120° (+5.7%), and impulse scaled at all time points 

for 90° (+6.3-11.9%) and 120° (3.4-16.8%). Our findings suggest that partial ROM squats in 

conjunction with full ROM squats may be an effective training modality for improving maximal 

strength and early force-time curve characteristics in well-trained males. 
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Introduction 

In the strength and conditioning profession, partial lifts have been incorporated into 

training programs (Clark et al., 2008, Clark et al., 2011; Harris, Stone, O’Bryant, Proulx, & 

Johnson, 2000; Stone, Potteiger, & Pierce, 2000). Some of the proposed benefits are improved 

strength at the terminal ROM of a movement, improve weak portions of a movement, substitute 

for full ROM exercise during rehabilitation, injury prevention, enhance metabolic adaptations, 

increase training volume, provide variation in training, and enhance sport performance (Clark et 

al., 2008, Clark et al., 2011; Massey et al., 2004; Massey et al., 2005; Mookerjee & Ratamess, 

1999; Pinto et al., 2012; Zatsiorsky, 1995) . There are only a few studies that directly examine 

their efficacy in improving maximal strength (Bloomquist et al., 2013; Graves et al., 1989; 

Graves et al., 1992; Massey et al., 2004; Mookerjee & Ratamess, 1999; Pinto et al., 2012), and 

the findings of these studies are conflicting.  

Graves et al. (1989) had untrained males and females perform leg extensions once per 

week for 10 weeks and found groups that trained with a partial ROM had greater gains in 

isometric strength in the trained ROM than in the untrained ROM. The group that trained 

through a full ROM improved isometric strength equally at all joint angles. Massey et al. (2004) 

compared full ROM with partial ROM and reported an improved 1RM bench press in both 

groups after training twice per week for 10 weeks with no significant difference between groups. 

In contrast, Pinto et al. (2012) compared full ROM vs. partial ROM and found that after 10 

weeks of training twice per week, the full ROM group significantly increased 1RM strength on 

preacher curls over the partial ROM group. Additionally, Pinto reported effect sizes for muscle 

thickness of 0.57 and 1.09 in the partial and full ROM groups, respectively. Considering the lack 
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of consistency in the design and results of the aforementioned studies, further research is 

warranted. 

 Previous research has well documented the specificity of ROM in strength training with 

adaptations incurred being specific to the ROM trained. Bloomquist et al. (2013) only found 

significant improvements for the partial group in front thigh muscle CSA at the most proximal 

sites, whereas the full ROM group improved at all sites. They also found full ROM group 

significantly increasing 1RM squat over the partial; however, the partial ROM group 

significantly improved partial 1RM squat over the full. Clark et al. (2011) reported similar 

findings, where the group training at varying ROM of the bench press improved over full ROM 

in iso-kinetic bench at 45° per second the terminal portion of the movement, ½ ROM bench 

press throw peak force and full ROM bench press throw displacement. Additionally, Graves et 

al. (1989) found isometric strength gains for the full ROM knee extension group were similar 

throughout the entire ROM at all knee angles tested, whereas strength gains for partial ROM 

groups were greater in the trained than in the untrained joint angles tested. In fact, post-

intervention isometric strength measured at untrained knee angles was similar to the control 

group that did not train. These results strongly support the specificity of ROM in training 

adaptations. 

Therefore, we hypothesized that both groups would improve from pre to post-

intervention on all dynamic and isometric variables measured; however the FP would improve 

over F at measurements associated with the terminal ROM (1RM partial squat, 120° isometric 

squat peak force, RFD and impulse scaled at all time points).  
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Purpose 

The purpose of our study was to examine the effects of two different training modalities, 

full ROM training (control) and full ROM with partial ROM training (CP), on well-trained males 

during a seven-week training intervention. The study included measurements of 1RM squat, 

1RM partial squat, and maximal isometric squat at 90° and 120° of knee flexion.  

Methods 

Participants 

 Eighteen well trained college males between the ages of 18 and 28 with at least one year 

of resistance training experience and ability to squat at least 1.3 x body weight (BW) volunteered 

for the study. Participants must have completed 80% of the programmed work. (Stone et al., 

2000). Descriptive statistics for all participants can be found in Table 3.1. Participants were 

primarily recruited from the strength and conditioning courses offered at East Tennessee State 

University. Students were informed of the study at the beginning of the spring semester. Those 

who volunteered and met the above criteria were selected. Students who volunteered were 

assigned extra credit for the class. To ensure equal treatment, students who did not volunteer 

were offered alternative options for receiving extra credit. All participants signed an informed 

consent and completed a health history questionnaire before taking part in the study. The study 

was approved by the East Tennessee State University Institutional Review Board.  
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Table 3.1  

Participant Characteristics  

  Control CP 

Age (years) 20.77 ± 1.99 20.67 ± 1.87 

Height (cm) 176.44 ± 6.25 177.56 ± 8.09 

Body Mass (kg) 84.88 ± 10.92 86.06 ± 8.94 

Body Fat % 22.14 ± 8.52 20.82 ± 11.96 

1RM Squat (kg) 148.93 ± 23.70 152.21 ± 30.94 

1RM Partial Squat (kg) 207.90 ± 30.77 223.27 ± 55.57 

IPFa 90 (N/body mass
0.67

) 107.51 ± 6.97 114.87 ± 13.60 

IPFa 120 (N/body mass
0.67

) 196.71 ± 38.24 210.73 ± 35.13 

*data presented in mean ± SD 

Experimental Conditions 

The experiment was a counterbalanced design with one control group and one 

experimental group. The control group performed only full ROM squat exercise, whereas the 

experimental group performed the full ROM squat with a partial ROM squat. Anthropometrics, 

1RM squat and 1RM partial squat were measured during the weeks four and twelve dynamic 

testing sessions. Isometric squat peak force, RFD and impulse at 50, 90, 200, and 250ms were 

also assessed at the same time during the isometric testing session. 

Testing Procedures 

 Participants were asked to abstain from all physical activity 24 hr prior to each testing 

session. They were also instructed to complete a dietary log for the 24 hr prior to the first testing 

session and to replicate the log for all testing sessions thereafter. Participants reported to the 

laboratory on day one of weeks four and twelve at pre-designated times. After the protocol was 

explained anthropometric measurements were obtained. Body composition was measured via 
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skinfolds with Lange calipers (Cambridge Scientific Industries, Cambridge, MD) and the sum of 

seven skinfolds (Ball, Altena, & Swan, 2004). Participants proceeded to the dynamic warm-up 

followed by dynamic measurements on day one and isometric measurements on day two. Tests 

were performed as follows: day one- 1RM squat and partial squat at 100° of knee flexion, day 

two- isometric squat at 90° and 120° of knee flexion. Participants rested 72-96 hr between testing 

sessions. Isometric measures of peak force, RFD, and impulse were determined by uniplanar 

force plates collecting at 1000Hz (0.91 m x 0.91 m; Rice Lake Weighing Systems, Rice Lake, 

WI, USA), data were smoothed using a moving average of 11 data points (all data points equally 

weighted) and analyzed with Labview software (ver. 2010, National Instruments, Austin, TX, 

USA). Because of diurnal variations in maximal strength, participants were tested at the same 

time of the day for both test days (Hakkinen, Pakarinen, Alen, Kauhanen, & Komi, 1988). 

Dynamic Strength Assessment. The 1RM squat was chosen to determine dynamic 

maximal strength because it was the primary exercise performed during the training program. 

Partial squat at 100° was chosen because it is above the typical “sticking point” allowing for 

supra-maximal loads to be lifted during training (Zatsiorsky, 1995). The 1RM protocols involved 

a progressive increase in load and decrease in repetitions per set, modified from McGuigan et al. 

(2006). The protocol consisted of five repetitions at 30% of the 1RM followed by 2 min rest 

(1RM was estimated from previous training), 5 repetitions at 50% followed by 2 min rest, 3 

repetitions at 70% followed by 3 min rest, and 1 repetition at 90% followed by 3 min rest. 

Attempts were selected with the goal of reaching their max in three attempts. Participants were 

given 4 min of rest between each attempt.  

The 1RM partial squat began 3-5 minutes after the 1RM squat. The warm-up protocol for 

the partial squat began with three repetitions at squat 1RM followed by 3 min rest, and 1 
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repetition at 120% followed by 3 min rest. Attempts were selected with the goal of reaching their 

max in 3 attempts. Participants were given 3-4 minutes rest between attempts. In all tests, verbal 

encouragement was given to obtain a maximal effort. 

Testing criteria for the squat was determined using USAPL rules (USAPL & IPF 

Administrators, 2001). Back squat depth was determined as the top of the leg at the hip joint 

arriving below the knee. For the partial squat, the bar was set on the safety pins at the height 

corresponding to 100° of knee flexion as determined during familiarization sessions. The 

participant performed the concentric portion of the squat to a full lockout position then lowered 

the bar back down to the safety pins. This was done to avoid injury from trying to move supra-

maximal loads from the rack to the starting position. Figure 3.1 shows an example of squat and 

partial squat position used for the study. 

 

Figure 3.1. Squat and Partial Squat Positions 

 Isometric Strength Assessment. For isometric squat, participants performed two warm-

up attempts at 50% and 75% maximal effort followed by 2 min rest. After the rest period, at least 



61 
 

two maximal efforts were performed with at least 3 min rest between. Isometric squat testing was 

performed at 90° and 120° of knee flexion (Blazevich, Gill, & Newton, 2002). Knee flexion and 

bar height were recorded to ensure the same position in subsequent testing sessions. The bar was 

placed across the back in the same position used in training and placed against two metal stops to 

prevent upward movement (Figure 3.2). The tester instructed participants to push “as fast and as 

hard as possible” (Holtermann et al. 2007). The tester shouted ‘push’ and participants pushed 

maximally into the ground until peak force was reached when the tester shouted ‘stop’ to end the 

test. As with dynamic testing, verbal encouragement was be given to obtain a maximal effort. 

 

Figure 3.2. Isometric Squat Positions (90° and 120°) 
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Training Protocol 

 Both conditions followed a block-periodized model in order to control for volume and 

intensity fluctuation  (Stone et al., 2007). All participants trained for three weeks in a strength-

endurance phase. During this phase, all participants were familiarized with partial lifts and 

isometric tests to minimize the influence of learning during testing. The strength-endurance 

phase was followed by pre-testing (week 4), strength phase 1 (weeks 5-7), de-load (week 8), 

strength phase 2 (weeks 9-11) and post-testing (week 12). During the intervention, work 

performed was estimated for each participant using the following equation (Clark et al., 2008):                                                                                                                                         

Work (kg 
.
m) = Mass of the external load (kg) x Displacement (m) x Repetitions 

Displacement for squat and partial-squat was measured manually each week during the study. 

Test-retest reliability for squat displacement possessed an ICC of 0.97.  

 Strength-Endurance Phase. All participants performed three weeks of high volume 

training prior to the training intervention. The goal of the strength-endurance phase was to 

equilibrate the training program for all participants and to minimize residual effects from 

previous training (Fry et al., 2000). For example, Harris et al. (2000) had collegiate football 

players perform four weeks of high volume training prior to the training intervention. 

Considering the training status of our sample, participants only trained high volume for three 

weeks. Load used for squats was based off estimated 1RM (Baechle & Earle, 2000). There was a 

10-15% difference in load between heavy and light days. Twice per week, the participants were 

familiarized with partial and isometric squat to prepare for testing. The safety pin heights and bar 

displacements for squat and partial squats were recorded for subsequent training and testing 
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sessions. The training protocol, including exercises, sets, reps, load (%1RM), are detailed in 

Appendix C.  

 Strength Phase I. Following week 4, testing participants were assigned to either 

condition based on absolute and relative strength to control for strength and training differences 

between groups. During Strength Phase 1, the loads for the squat and partial squat were 

calculated using %1RM. Both conditions trained with heavy and light days in order to manage 

fatigue and avoid training to failure (Stone et al., 2000). Rest periods of three to five minutes 

were given in between sets and between exercises. Details of this phase can be viewed in 

Appendix C.  

 De-Load. Following strength phase 1, there was a programmed de-load during week 8. A 

de-load is a planned decrease in the volume-load of a training program usually inserted between 

training blocks. The primary purpose was to dissipate fatigue from previous training and allow 

for the ‘realization’ of strength gains made during the previous training period (Stone et al., 

2007). According to the fitness-fatigue paradigm, fatigue from training and other variables 

‘masks’ gains in fitness. Thus, fitness is not realized until the training load is reduced and fatigue 

dissipates. Fatigue declines more rapidly than fitness; however, each fitness ability has a 

different rate of decline. Maximal strength has a low rate of decline (Fry et al., 2000); therefore it 

is unlikely that a one week de-load caused a net loss in fitness (maximal strength). On the 

contrary, the de-load week may have allowed for supercompensation and subsequently enhanced 

maximal strength. Because the three weeks of strength training caused an accumulation of 

stressors the insertion of a de-load week allowed for fatigue to dissipate and fitness to be realized 

in the next training cycle: Strength Phase 2. Load for squat and partial squat were calculated 

using %1RM. Details of the de-load week can be viewed in Appendix C. 
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 Strength Phase II. Following the de-load, participants began the final block of training. 

This phase further emphasized training with loads >85% 1RM in order to recruit higher threshold 

motor units and increase rate coding. Both of these variables tend to improve neuromuscular 

control with heavier loads, directly contributing to 1RM strength. Details of this phase can be 

viewed in Appendix C. The following week, participants completed the study with post-testing. 

Statistical Analysis 

 The force-time curve data analyzed for this study were computed directly using Labview 

software. The average of two attempts on the isometric squat at 90° and 120° were used for 

analysis. Anthropometric, dynamic and isometric testing data for each group were reported with 

mean and standard deviation. A 2x2 repeated measures ANOVA was used to compare the 

differences between training groups for dependent variables. A paired sample t-test and one-way 

ANOVA were calculated to determine within and between group differences for all dependent 

variables. SPSS software was used to perform all statistical analysis, (IMB Co., NY, USA). 
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Results 

Participants and Anthropometric Data 

 Two participants dropped out of the study prior to the training intervention and one 

participant in the control was not able to complete post-testing due to knee pain. Thus, eighteen 

participants were included in the final data analysis. There was no significant difference (p<0.05) 

between groups during pre and post testing for any of the anthropometric variables. A time effect 

was found for body fat percentage. Both groups improved body composition from pre to post 

testing. Body fat percentage decreased from 22.14 ± 8.52 to 19.86 ± 8.9% and 20.82 ± 11.96 to 

19.68 ± 11.39% in the control and CP groups, respectively. Descriptive statistics, homogeneity 

of variances, repeated measures and paired t-tests for all anthropometric variables can be seen in 

Appendix D.  

Dynamic Strength Assessment 

 1RM Squat. No group by time interaction was found for 1RM squat or 1RM squat 

allometrically scaled. However, 1RM squat scaled was near significant (p=0.073). A significant 

time by 1RM squat and 1RM squat scaled interaction (p<0.001) was found. The mean values for 

1RM squat in control increased from 148.93 ± 23.71 to 156.58 ± 23.86 kg (+5.1%) and in the CP 

from 152.21 ± 30.94 to 163.55 ± 29.45 kg (+7.4%). The mean values for 1RM squat scaled in 

control increased from 7.69 ± 0.65 to 8.10 ± 0.66 kg
.
((body mass

0.67
)
-1

) (+5.3%) and in the CP 

from 7.80 ± 1.35 to 8.40 ± 1.34 kg
.
((body mass

0.67
)
-1

) (+7.7%). Mean values with percent change 

for 1RM squat and 1RM squat scaled for each group can be seen in Appendix E.  
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 1RM Partial Squat. No group by time interaction was found for 1RM partial squat or 

1RM partial squat scaled. A significant time interaction (p<0.001) was found for both 1RM 

partial squat and 1RM partial squat scaled. The mean values for 1RM partial squat in control 

increased from 207.90 ± 30.76 to 229.16 ± 48.79 kg (+10.2%) and in the CP from 223.27 ± 

55.57 to 255.30 ± 60.49 kg (+14.3%). The mean values for 1RM partial squat scaled in control 

increased from 10.77 ± 1.24 to 11.87 ± 2.08 kg
.
((body mass

0.67
)
-1

) (+10.2%) and in the CP from 

11.45 ± 2.52 to 13.11 ± 2.81 kg
.
((body mass

0.67
)
-1

) (+14.5%). Mean values with percent change 

for 1RM partial squat and 1RM partial squat scaled for each group can be seen in Appendix E.  

Isometric Strength Assessment 

 Isometric Squat Peak Force Scaled. No group by time interaction was found for IPFa at 

90° or 120° of knee flexion. A significant time by IPFa 90° and IPFa 120° interaction was found. 

The mean values for IPFa 90° in control increased from 107.51 ± 6.96 to 113.16 ± 8.51 N
.
((body 

mass
0.67

)
-1

) (+5.3%) and in the CP from 114.85 ± 13.60 to 116.32 ± 12.81 N
.
((body mass

0.67
)
-1

) 

(+1.3%). Paired t-test results indicated that the increase for CP from pre-training was not 

statistically significant (p=0.47). The mean values for IPFa 120° in Control increased from 

196.72 ± 38.24 to 201.45 ± 39.47 N
.
((body mass

0.67
)
-1

) (+2.4%) and in the CP from 210.74 ± 

35.13 to 227.74 ± 31.66 N
.
((body mass

0.67
)
-1

) (+8.1%).  Paired t-test results indicated that the 

increase for control from pre-training was not statistically significant (p=0.32). Test-retest 

reliability using ICC for IPFa 90° and 120° was 0.97 and 0.98, respectively. It is important to 

note that homogeneity of variance assumption for IPFa 90° was not met (p=0.02) indicating that 

although reliability of the test-retest exists, the magnitude of variances between groups were 

present for IPFa 90°. Mean values with percent change for IPFa 90° and IPFa 120° for each 

group can be seen in Appendix E.  
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 Isometric Squat Impulse Scaled. No group by time interaction was found for impulse at 

90° or 120° of knee flexion for any time measured (50, 90, 200, 250ms). A significant time 

interaction was found at all tests for both knee angles except for 50ms at 120° (p=0.06). Paired t-

tests showed significant increases from pre-training in CP for all time points at 90° and 120°, but 

for Control only at 250ms 120° (p-values for impulse can be found in Appendix D). The mean 

values for impulse at 200ms for 90° in Control increased from 13.96 ± 1.49 to 14.77 ± 1.58 

N
.
((body mass

0.67
)
-1

) (+5.8%) and in the CP from 14.11 ± 2.41 to 15.99 ± 2.56 N
.
((body 

mass
0.67

)
-1

) (+13.3%). Paired t-test results indicated that the increase for CP from pre-training 

was not significant. The mean values for impulse 200ms 120° in Control increased from 20.21 ± 

5.14 to 22.10 ± 4.79 N
.
((body mass

0.67
)
-1

) (+9.3%) and in the CP from 20.07 ± 3.95 to 22.75 ± 

5.37 N
.
((body mass

0.67
)
-1

) (+13.3%). Test-retest reliability was determined to be ICC >0.92 for 

all time points measured. It is important to note that homogeneity of variance for impulse 200, 

250ms at 90° was not met (p=0.04, 0.02 respectively) indicating that although reliability of the 

test-retest exists, the magnitude of variances between groups were present for impulse 200, 

250ms at 90°.  Mean values with percent change for impulse 200ms at 90° and impulse 200ms at 

120° for each group can be seen in Appendix E.  

 Isometric Squat Rate of Force Development. A significant group by time interaction 

for RFD 200ms at 120° of knee flexion was found. No significant time by knee angle interaction 

was found for any time points (200, 250ms) at either knee angle. The mean values for RFD 

200ms at 90° in Control increased from 3414.10 ± 950.10 to 3580.9 ± 749.13 N
.
s

-1
 (+4.9%) and 

decreased in the CP from 3814.80 ± 854.05 to 3579.82 ± 1106.35 N
.
s

-1
 (-6.2%). The mean values 

for 200ms at 120° in Control increased from 5861.67± 2853.13 to 6910.70 ± 2956.08 N
.
s

-1
 

(+7.9%) and decreased in the CP from 6930.23 ± 2243.61 to 6612.30 ± 1458.01 N
.
s

-1
 (-4.6%). 
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Paired t-test results indicated that the increase for Control from pre-training was not significant. 

Test-retest reliability for all time points at 90° possessed an ICC ranging from 0.74 - 0.9 and 200, 

250ms at 120° ranging from 0.76 - 0.94. RFD 50 and 90ms at 120° were excluded due to low 

test-retest reliability (ICC<0.7). Mean values with percent change for RFD 200ms at 90° and 

120° for each group can be seen in Appendix E.  

 Estimated Work. A one-way ANOVA showed no difference between groups for total 

work. The mean values for estimated work in Control group was 30842.70 ± 5972.043 kg
.
m and 

in CP group 30484.382 ± 5589.329 kg
.
m. In order to be included in the data analysis, participants 

were required to complete >80% or more of the programmed work. Mean values for total work 

for each group can be seen in Appendix E.  

Results without Subject #17 

 Subject 17 was an outlier for all dynamic strength assessment variables because his pre-

training scores were greater than two standard deviation from the mean. As a result, coefficient 

of variation (CV) for the CP group was inflated for all dynamic strength assessment variables. 

For example, CV for pre-training 1RM squat decreased from 20.33% to 15.41% when subject 17 

was removed, whereas CV in the control group for pre-training 1RM squat was 15.92%. 

 Additionally, because the standard deviation was higher for all dynamic strength 

variables, effect size calculated using the formula suggested by Rhea (2004): (Meanpost – 

Meanpre)/Standard Deviationpre, was drastically lower when subject 17 was included.  Effect size 

increased by 0.11 to 0.37 for all dynamic strength variables when subject 17 was removed. 

However, homogeneity of variances for pre-training IPFa at 90°, impulse at 200, and 250ms at 
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90° were still significant when subject 17 was removed. Descriptive data, homogeneity of 

variances, and paired t-tests for all dependent variables are included in Appendix D.  

Results for 1RM Squat over 12 Weeks 

 At the beginning of the study, participants were required to test 1RM squat to determine 

if they were eligible (T0). If the participant was able to squat at least 1.3 x body weight and had 

at least one year of resistance training experience on squat they were considered eligible for the 

study. Participants were not assigned to the control and CP group until after Pre-intervention 

testing. One participant was excluded from the analysis due to a minor injury prior to the 

intervention that did not allow him to train for 1 week of the strength-endurance phase (n=17). 

 No group by time interaction for 1RM squat and 1RM squat scaled was found. As 

expected, there was a main effect for time. The mean values for 1RM squat in control increased 

from 132.68 ± 22.55 to 147.13 ± 24.68 kg (10.9%) to 154.33 ± 24.46 kg (+4.9%) and in the CP 

from 140.87 ± 26.24 to 152.21 ± 30.94 kg (+8.0%) to 163.55 ± 29.45 kg (7.5%). The mean 

values for the allometrically scaled 1RM squat in control increased from 6.95 ± 0.87 to 7.67 ± 

0.69 kg (+10.4%) to 8.06 ± 0.70 kg (+5.1%) and in the CP from 7.25 ± 1.18 to 7.80 ± 1.35 kg 

(+7.6%) to 8.40 ± 1.34 kg (+7.8%). The percent increase in 1RM squat from T0 to post-

intervention was 16.3% and 16.1% for control and CP respectively. The percent increase in the 

allometrically scaled 1RM squat T0 to post-intervention was 16.1% and 16.0% for control and 

CP respectively. Mean values with percent change for 1RM squat and 1RM squat scaled for each 

group can be seen in Appendix E.  
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Discussion 

 The purpose of this study was to examine the effects of two different training modalities, 

full ROM training (control) and full ROM with partial ROM training (CP), on well- trained 

males during a seven-week training intervention. Work was equated between groups in order to 

control for training load. The main findings for dynamic strength were a significant improvement 

in 1RM squat and partial squat in both groups with a 2.3% greater improvement in the CP group. 

For isometric strength, the control group significantly improved IPFa at 90° and the CP group 

significantly improved IPFa at 120°. There were no significant differences between groups at 

pre- or posttests for any variable measured. 

Dynamic Strength Assessment 

 In the current study, mean squat to body mass ratio improved from 1.62 to 1.76 to 1.88 at 

T0, preintervention and postintervention testing sessions respectively. This corresponds to a 9.3% 

increase from T0 to pre-intervention, a 6.3% increase from pre- to postintervention testing, and a 

total increase of 16.2% over the 12 weeks (T0 to postintervention). These findings are similar to 

training studies that have found increases in 1RM squat ranging from 10-20% over a 9-15 week 

period (Harris et al., 2000; Hoffman et al., 2009; Peterson, Dodd, Alvar, Rhea, & Fave, 2008). 

 The findings of this study indicate that there was a 6.3% and 12.4% improvement in 

overall 1RM squat and partial squat, respectively from pre- to postintervention. Compared to the 

only other known study examining the squat exercise in partial lift training, Bloomquist et al. 

(2013) found a ≈15% and 28% increase in overall 1RM squat and partial squat, respectively. The 

reason for the smaller increases in our findings is likely due to the difference in training status. 

Their study recruited untrained males (no previous training experience) and our study involved 
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well-trained (>1.3 x body weight squat) males. Another difference was the partial ROM used.  

They had participants perform partial ROM to 120° of knee flexion, whereas in the present study 

participants performed partial squats to 100° of knee flexion.  

Table 3.2  

Overall Changes in Dynamic Variables Pre- to Postintervention 

Variables (kg.) Pre-Intervention Post-Intervention 

1RM Squat 150.57 ± 26.79 160.06 ± 26.25* (+6.3%) 

1RM Squat scaled 7.74 ± 1.03 8.25 ± 1.04* (+6.6%) 

1RM Partial Squat 215.58 ± 44.28 242.23 ± 54.99* (+12.4%) 

1RM Partial Squat scaled 11.11 ± 1.96 12.49 ± 2.49* (+12.5%) 

Values are in means ± standard deviation.  

*p<0.05, significantly different from pre-training. N=18 

 

 1RM Squat. Although both groups significantly improved in 1RM squat and the 

allometrically scaled 1RM squat, there was no statistical difference between groups. These 

findings are in agreement with Massey et al. (2004) who found no difference in 1RM bench 

between full ROM training and mixed in recreationally males after training twice per week for 

10 weeks. Similar to the present study, both groups improved 1RM bench from pre- to posttests. 

These findings suggest that partial lifts may be an effective training modality for improving 

maximal strength in conjunction with full ROM training. 

 The group by time effect was near significance for 1RM squat scaled (p=0.07). There was 

2.4% difference in rate of gain in the allometrically scaled 1RM squat between groups (5.3% vs. 

7.7%). This difference could be attributed to either greater fatigue in the control group resulting 

in reduced adaptive potential or superior adaptations in the partial ROM group or both. None of 
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these assumptions can be affirmed from the results because there was not a third group for 

comparison.    

 1RM Partial Squat. A major drawback to past training studies on partial lifts is that, all 

except for one (Bloomquist et al. 2013), do not test 1RM for the partial lift. Similar to the 

findings for 1RM squat, both groups significantly improved 1RM partial squat from pre-training 

values with the rate of gain in CP being 4.1% larger than control (14.3% vs. 10.2%). Bloomquist 

reported a 20% and 36% increase for partial 1RM in the full ROM and partial ROM group, 

respectively. The increase in the partial ROM group was statistically significantly greater than 

the full ROM group after 12 weeks of training twice per week. It also important to note that the 

partial ROM group in their study did not perform full ROM training and consequently only 

improved full ROM squat by 9% as compared to 20% in the full ROM group. These findings 

along with the present study suggest that specificity of ROM in training plays a significant role 

in the adaptation process. 

 Harris et al. (2000) found similar results in well-trained football players. After only 

performing 1/4 ROM squats for nine weeks the high power group improved 1RM 1/4 squat, but 

did not improve 1RM squat, whereas the other two groups, training full ROM squat, improved 

1RM squat and 1RM 1/4 squat. The reason there was no improvement in the high power group in 

this study is likely due to the higher training status of the participants. Thus, from these findings, 

it is clear that in order to improve 1RM squat in well-trained individuals, full ROM training is 

indispensable.  
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Isometric Strength Assessment 

 Previous research on partial lift training has not investigated force-time characteristics 

during isometric contractions with the exception of Clark et al. 2012 who measured isometric 

peak force at ¼ ROM bench press. The proposed benefits of partial ROM training may be more 

evident during the onset of force production, thus the present study examined impulse, RFD, and 

allometrically scaled peak force at 50, 90, 200, and 250ms during isometric squat at 90° and 120° 

of knee flexion. 

 Similar to findings by Blazevich et al. (2002), a strong, significant correlation was found 

between IPFa 90° and 1RM Squat (r=0.72); however, the correlation between IPFa 120° and 

1RM Squat was not as strong (r=0.45). As previously noted, this suggests that force produced 

through the “sticking point” is more closely related to 1RM squat strength than force produced in 

the terminal ROM. However, only the control group significantly improved IPFa 90° even 

though CP had a 2.3% greater improvement in 1RM squat scaled. One would expect to see a 

similar trend for IPFa 90°. The larger percent increases in 1RM squat scaled and partial squat 

scaled in the CP condition may be alternatively explained by greater improvements in impulse at 

all time measured at 90°. 

 Isometric Squat Peak Force Scaled. There was no group by time interaction for IPFa 

90°. Only the improvement in the control group was significant from pre to post-intervention.  

The control group improved IPFa at 90° over CP by a 3.9% margin (5.2% vs. 1.3%); however, 

the control group only improved 1RM squat scaled by 5.1% compared to the 7.4% increase in 

the CP group. One possible explanation is that the control group had a greater potential for 

improvement on this measure. The greater overall volume of full ROM squats performed by the 



74 
 

control group may also explain the difference between groups for IPFa 90°. The total work 

performed through full ROM squat was significantly greater than CP (67,996.44 ± 13,166.09 vs. 

43,515.76 ± 9,387.71 kg
.
m). This corresponds well with the specificity of ROM in training 

adaptations. Practically speaking, this data suggests that higher volumes of full ROM squats 

improve strength at the sticking region to a slightly greater degree than lower volumes of full 

ROM squat combined with partial ROM squat during short training phases (≤7 weeks).  

 Conversely, CP significantly improved IPFa 120°, whereas the control condition did not. 

The CP improved IPFa 120° by 5.7% over control. A similar trend was seen for 1RM partial 

squat scaled, with the CP improving 4.3% over control. This again may be related to specificity 

of the ROM trained. As proposed by Zatsiorsky (1995), Wilson et al. (1996), and Clark et al. 

(2011), the greater loads used during partial ROM training seemed to have resulted in the ability 

to produce higher forces at a knee angle similar to the ROM trained. In regards to training 

applications for strength athletes, this would be advantageous for geared powerlifters who need 

to produce higher forces at the terminal ROM where they have less support from their gear. 

 Isometric Squat Impulse Scaled. CP significantly improved impulse at all time points 

measured for both knee angles, whereas control only improved impulse at 250ms 120° scaled 

(p=0.049). These findings seem to agree with Clark et al. (2011) who found greater 

improvements in iso-kinetic bench peak force at 45° per second in the terminal portion of the 

movement, ½ bench press throw peak force, and full bench press throw displacement in the 

group that trained with variable ROM over full ROM alone. The 7.5% and 4% greater increase in 

the CP over control for impulse at 200ms 90° scaled and 120° scaled, respectively, is comparable 

to the 3.4% and 4.3% greater increase in 1RM squat scaled and 1RM partial squat scaled. Effect 

size for all impulse time points ranged from 0.63 to 1.04 and 0.08 to 0.57 in the CP and control 
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group, respectively. Within groups, effect size was larger at earlier time points for the CP, and 

larger at later time points for control. For example, effect size for impulse 50ms 120° scaled was 

1.04 vs. 0.08, whereas effect size for impulse 250ms 120° was 0.63 and 0.34, for CP and control 

respectively. This trend was seen for both knee angles. Effect sizes for all time points can be 

found in Appendix D. The larger effect sizes at earlier time points may have significant 

implications for strength-power athletes. This will be discussed further below. 

 The greater improvements in impulse at earlier time points at 90° may explain why CP 

improved 1RM squat although there was no significant improvement in IPFa 90°. Increased 

impulse at all time points could be beneficial for 1RM strength because it may enhance ability to 

get through the sticking point. Theoretically, if greater forces can be produced through that time 

window then more weight can be lifted during a maximal attempt. If force produced during this 

brief time window is not large enough to overcome torque then the repetition will not be 

completed.  While this theoretical conclusion is not fully supported in the literature, future 

research is needed to understand kinetic characteristics specifically of the sticking region.  

 The larger effect sizes for impulse at all time points in the CP group also suggests that 

partial lifts may have significantly improved rate coding, recruitment of high threshold motor 

units, motor unit synchronization, as well as decreased neural inhibition. All of which are 

associated with the onset of force production (Aagaard et al., 2000; Semmler & Nordstrom, 

1998; Stone et al., 2007). For a sprinter this may mean decreased contact times and greater 

turnover rate resulting in faster times.  

 Isometric Squat Rate of Force Development. The only significant group by time 

interaction found in the present study was for RFD 200ms at 120°. However, there was no 
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significant time interaction found for RFD at any time point. Additionally, paired t-tests results 

showed RFD 200ms at 120° was near significance in the control group (p=0.06) with a moderate 

effect size (0.37). No within-group differences were found for RFD at any time point for 

isometric squat at 90° or 120°. There was a trend for RFD at 200, 250ms at both knee angles to 

increase in the control and decrease in the CP. This can likely be explained by the changes in the 

force time curve for each group. A leftward shift in the force time-curve in the CP condition 

would explain the larger effect sizes for impulse at earlier time points and the decrease in RFD at 

later time points. RFD, the slope of tangent line to the function, may have begun to level off at 

later time points (200, 250ms).  

 Earlier RFD time points (50 and 90ms at 120°) were not as reliable (r<0.7) and therefore 

not included in the analysis. However, RFD at 50, 90ms at 90° were more acceptable (r>0.83). 

For these time points there was no significant difference in RFD between pre and post-

intervention for either group. Considering the small effect sizes (<0.3) and large coefficients of 

variation (19.6%-48.7%) for RFD at all time points, impulse seems to be a better representation 

of changes during the early stages of isometric force production. Thus, partial ROM training in 

conjunction with full ROM training may be effective because it results in larger improvements in 

IPFa and impulse at 120° to offset the slight decrease in RFD. 

Conclusion 

  Partial lifts have often been incorporated in periodized resistance training programs 

aimed at improving maximal strength; however, their efficacy has not been thoroughly 

investigated. Therefore, the purpose of our study was to expand upon the paucity of research on 

partial lift training by uniquely comparing a group performing only full ROM training (control) 

to an equated volume group that performs both full and partial ROM training (CP). The primary 
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finding of our study was a trend for CP to improve over control in 1RM squat (2.3% greater), 

1RM partial squat (4.1% greater), IPFa 120° (5.7% greater), and impulse for all time points at 

90° (6.3%-13.2% greater) and 120° (3.4%-16.8% greater). These findings demonstrate that 

partial ROM training can be an effective training modality for improving maximal strength in 

conjunction with full ROM training. However, further research is needed to ascertain whether 

combined training is more effective than full ROM training alone for improving maximal 

strength.  

Practical Applications 

 In relation to athletic performance, previous authors have proposed partial ROM training 

as an effective training modality for improving strength and power in the terminal ROM. These 

authors claim that partial ROM training more optimally loads the terminal ROM where joint 

angles, force-velocity relationship, and movement patterns are more similar to those in sport 

(Clark et al., 2011; Wilson et al., 1996; Zatsiorsky, 1995). Although the participants in the 

present study were not collegiate athletes, their strength level is comparable to previous research 

on athletes (Baker, Wilson, & Carlyon, 1994; Clark et al., 2011; Harris et al., 2000; Hoffman et 

al., 2009). The findings of the present study suggest that combined training may be more 

effective than full ROM training alone for improving early force-time curve characteristics.  The 

larger effect sizes for IPFa at 120° (0.48) and impulse at 120° (0.63-1.04) in the CP group have 

implications for strength-power athletes. For example, the contact time for an elite sprinter is 

~90ms, the effect size for impulse at 90ms 120° was 0.93 vs. 0.22 in CP and control, 

respectively. For an elite sprinter, producing larger forces in that narrow time window may be 

the difference between finishing first or finishing fourth.  
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 As stated previously, partial ROM training is commonly practiced, particularly amongst 

geared powerlifters. The larger improvements in peak force and impulse at 120° found in the 

experimental group suggest that partial ROM squats may be beneficial for geared powerlifters 

who struggle finishing the lift. The larger improvements in impulse at 90° may also enhance 

their ability to move through the sticking point. Thus, partial squats can be included in the 

training program while peaking for a competition to enhance maximal strength in the terminal 

ROM.  

 If nothing else, this study supports the use of partial ROM training as an effective means 

of providing variation in a training program for well-trained lifters. As discussed previously, at 

higher training levels variation becomes a lager component of the program design. Thus, from a 

practical standpoint, partial ROM training could be incorporated during a strength-speed 

mesocycle in preparation for a sprinter’s upcoming competition. Future studies on partial ROM 

training should include analysis of kinetic and kinematic variables during athletic movements 

(such as countermovement jump, 40m sprint and agility testing), longer training programs, 

measures of CSA with total work controlled, and different training exercises (bench press and 

deadlift).  

 

 

 

 

 



79 
 

References 

Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, S. P., Halkjaer-Kristensen, J., & 

Dyhre-Poulsen, P. (2000). Neural inhibition during maximal eccentric and concentric 

quadriceps contraction: Effects of resistance training. Journal of Applied Physiology 

(Bethesda, Md.: 1985), 89, 2249-2257.  

Baechle, T., Earle, R., & NSCA. (2000). Essentials of strength training and conditioning. 

Champaign, IL: Human Kinetics. 

Baker, D., Wilson, G. J., & Carlyon, R. (1994). Theeffects on strength of manipulating 

volume and intensity. J Strength Cond Res, 8, 235-242.  

Ball, S. D., Altena, T. S., & Swan, P. D. (2004). Comparison of anthropometry to DXA: A new 

prediction equation for men. Eur J Clin Nutr, 58, 1525-1531.  

Blazevich, A. J., Gill, N., & Newton, R. U. (2002). Reliability and validity of two isometric 

squat tests. Journal of Strength and Conditioning Research / National Strength & 

Conditioning Association, 16, 298-304.  

Bloomquist, K., Langberg, H., Karlsen, S., Madsgaard, S., Boesen, M., & Raastad, T. (2013). 

Effect of range of motion in heavy load squatting on muscle and tendon adaptations. 

European Journal of Applied Physiology, doi:10.1007/s00421-013-2642-7 

Clark, R. A., Bryant, A. L., & Humphries, B. (2008). An examination of strength and concentric 

work ratios during variable range of motion training. Journal of Strength and Conditioning 



80 
 

Research / National Strength & Conditioning Association, 22, 1716-1719. 

doi:10.1519/JSC.0b013e318173c529 

Clark, R. A., Humphries, B., Hohmann, E., & Bryant, A. L. (2011). The influence of variable 

range of motion training on neuromuscular performance and control of external loads. 

Journal of Strength and Conditioning Research / National Strength & Conditioning 

Association, 25, 704-711. doi:10.1519/JSC.0b013e3181c6a0ff 

Fry, A. C., Webber, L. S., Weiss, L. W., Frye, B. A., & Li, Y. (2000). Impaired performances 

with excessive high-intensity free-weight training. J.Strength Cond Res., 14, 54-61.  

Graves, J. E., Pollock, M. L., Jones, A. E., Colvin, A. B., & Leggett, S. H. (1989). Specificity of 

limited range of motion variable resistance training. Medicine and Science in Sports and 

Exercise, 21, 84-89.  

Graves, J. E., Pollock, M. L., Leggett, S. H., Carpenter, D. M., Fix, C. K., & Fulton, M. N. 

(1992). Limited range-of-motion lumbar extension strength training. Medicine and Science 

in Sports and Exercise, 24, 128-133.  

Hakkinen, K., Pakarinen, A., Alen, M., Kauhanen, H., & Komi, P. V. (1988). Neuromuscular 

and hormonal responses in elite athletes to two successive strength training sessions in one 

day. European Journal of Applied Physiology and Occupational Physiology, 57, 133-139.  

Harris, G., Stone, M., O’Bryant, H., Proulx, C., & Johnson, R. (2000). Short-term performance 

effects of high power, high force, or combined weight-training methods. J.Strength Cond 

Res., 14, 14-21.  



81 
 

Hoffman, J. R., Ratamess, N. A., Lkatt, M., Faigenbaum, A. D., Ross, R. E., Tranchina, N. M., & 

Kraemer, W. J. (2009). Comparison between different off- 

season resistance training programs in division III American college football players. J 

Strength Cond Res, 23, 11-19.  

Holtermann, A., Roeleveld, K., Vereijken, B., & Ettema, G. (2007). The effect of rate of force 

development on maximal force production: Acute and training-related aspects. European 

Journal of Applied Physiology, 99, 605-613. doi:10.1007/s00421-006-0380-9 

Massey, C. D., Vincent, J., Maneval, M., & Johnson, J. T. (2005). Influence of range of motion 

in resistance training in women: Early phase adaptations. Journal of Strength and 

Conditioning Research / National Strength & Conditioning Association, 19, 409-411. 

doi:10.1519/R-14643.1 

Massey, C. D., Vincent, J., Maneval, M., Moore, M., & Johnson, J. T. (2004). An analysis of full 

range of motion vs. partial range of motion training in the development of strength in 

untrained men. Journal of Strength and Conditioning Research / National Strength & 

Conditioning Association, 18, 518-521. doi:10.1519/13263.1 

McGuigan, M. R., Winchester, J. B., & Erickson, T. (2006). The importance of isometric 

maximum strength in college wrestlers. Journal of Sports Science and Medicine, (CSSI-1), 

108-113.  

Mookerjee, S., & Ratamess, N. (1999). Comparison of strength differences and joint action 

durations between full and partial range-of-motion bench press exercise. J.Strength Cond 

Res., 13, 76-81.  



82 
 

Peterson, M. D., Dodd, D. J., Alvar, A. B., Rhea, M. R., & Fave, M. (2008). 

Undulation training for development of hierarchical fitness andimproved firefighter job perf

ormance. J Strength Cond Res, 22, 1683-1695.  

Pinto, R. S., Gomes, N., Radaelli, R., Botton, C. E., Brown, L. E., & Bottaro, M. (2012). Effect 

of range of motion on muscle strength and thickness. Journal of Strength and Conditioning 

Research / National Strength & Conditioning Association, 26, 2140-2145. 

doi:10.1519/JSC.0b013e31823a3b15 

Semmler, J. G., & Nordstrom, M. A. (1998). Motor unit discharge and force tremor in skill- and 

strength-trained individuals. Experimental Brain Research.Experimentelle 

Hirnforschung.Experimentation Cerebrale, 119, 27-38.  

Stone, M. H., Potteiger, J. A., & Pierce, K. C. (2000). Comparison of the effects of three 

different weight-training programs on the one repetition maximum squat. J.Strength Cond 

Res., 13, 332-337.  

Stone, M., Stone, M., & Sands, W. (2007). Principles and practice of resistance training. 

Champaign, IL: Human Kinetics. 

USAPL & IPF Administrators. (2001). USAPL rulebook and by-laws. 

Wilson, G., Murphy, A., & Walshe, A. (1996). The specificity of strength training: The effect of 

posture. Eur J Appl Physiol, 73, 346-352.  

Zatsiorsky, V. (1995). Science and practice of strength training. Champaign, IL: Human 

Kinetics. 



83 
 

CHAPTER 4 

CONCLUSION 

  Partial lifts have often been incorporated in periodized resistance training programs 

aimed at improving maximal strength; however, their efficacy has not been thoroughly 

investigated. Therefore, the purpose of our study was to expand upon the paucity of research on 

partial lift training by uniquely comparing a group performing only full ROM training (control) 

to an equated volume group that performs both full and partial ROM training (CP). The primary 

finding of our study was a trend for CP to improve over control in 1RM squat (2.3% greater), 

1RM partial squat (4.1% greater), IPFa 120° (5.7% greater), and impulse for all time points at 

90° (6.3%-13.2% greater) and 120° (3.4%-16.8% greater). These findings demonstrate that 

partial ROM training can be an effective training modality for improving maximal strength in 

conjunction with full ROM training. However, further research is needed to ascertain whether 

combined training is more effective than full ROM training alone for improving maximal 

strength.  

 In relation to athletic performance, previous authors have proposed partial ROM training 

as an effective training modality for improving strength and power in the terminal ROM. These 

authors claim that partial ROM training more optimally loads the terminal ROM where joint 

angles, force-velocity relationship, and movement patterns are more similar to those in sport 

(Clark et al., 2011; Wilson et al., 1996; Zatsiorsky, 1995). Although the participants in the 

present study were not collegiate athletes, their strength level is comparable to previous research 

on athletes (Baker et al., 1994; Clark et al., 2011; Harris, et al., 2000). The findings of the present 

study suggest that combined training may be more effective than full ROM training alone for 

improving early force-time curve characteristics.  The larger effect sizes for IPFa at 120° (0.48) 
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and impulse at 120° (0.63-1.04) in the CP group have implications for strength-power athletes. 

For example, the contact time for an elite sprinter is ~90ms, the effect size for impulse at 90ms 

120° was 0.93 vs. 0.22 in CP and control, respectively. For an elite sprinter producing larger 

forces in that narrow time window may be the difference between finishing first or finishing 

fourth.  

 As stated previously, partial ROM training is commonly practiced, particularly amongst 

geared powerlifters. The larger improvements in peak force and impulse at 120° found in the 

experimental group suggest that partial ROM squats may be beneficial for geared powerlifters 

who struggle finishing the lift. The larger improvements in impulse at 90° may also enhance 

their ability to move through the sticking point. Thus, partial squats can be included in the 

training program while peaking for a competition to enhance maximal strength in the terminal 

ROM.  

 If nothing else, this study supports the use of partial ROM training as an effective means 

of providing variation in a training program for well-trained lifters. As discussed previously, at 

higher training levels variation becomes a lager component of the program design. Thus, from a 

practical standpoint, partial ROM training could be incorporated during a strength-speed 

mesocycle in preparation for a sprinter’s upcoming competition. Future studies on partial ROM 

training should include analysis of kinetic and kinematic variables during athletic movements 

(such as countermovement jump, 40m sprint, and agility testing), longer training programs, 

measures of CSA with total work controlled, and different training exercises (bench press and 

deadlift).  
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APPENDICES 

Appendix A: Informed Consent Documents 
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Appendix B: Health History Questionnaire 

1. Has your doctor ever said that you have a heart condition and that you should only do 
physical activity recommended by a doctor?  

Yes/No 

2. Do you feel pain in your chest when you do physical exertion?  

Yes/No 

3. In the past month, have you had chest pain when you were not doing physical activity? 

Yes/No 

4. Do you lose your balance because of dizziness or do you ever lose consciousness? 

Yes/No 

5. Do you have a bone or joint problem (for example, back, knee or hip) that could be made 
worse by a change in your physical activity? 

Yes/No 

6. Is your doctor currently prescribing drugs (for example, water pills) for a blood pressure 
or heart condition? 

Yes/No 

7. Do you know of any other reason why you should not do physical activity? 

Yes/No  

If yes, please explain:  

 

8.  Please list all medications that you are currently taking.  Please include vitamins or 
supplements. 

9.  Have you been lifting consistently for the past year ( perform squat and bench press at 
least once/week)  

Yes/No 

10. Do you squat at least 1.3 x body weight  

Yes/No 

11. Have you ever been diagnosed with any of the health conditions below (check those 
applicable): 
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_ heart disease     _ congenital heart disease 

_ heart surgery     _ high blood pressure 

_ high cholesterol     _ stroke 

_ diabetes      _ premature death 

_ heart attack 

12. Do any of your immediate family/grandparents have a history of (check those 
applicable): 

_ heart disease     _ congenital heart disease 

_ heart surgery     _ high blood pressure 

_ high cholesterol     _ stroke 

_ diabetes      _ premature death 

_ heart attack 

If yes, please note relationship and age         _______________________ 

________________________________________________________________________ 

________________________________________________________________________ 

13. Has there been a death in the family via heart attack, heart disease, or stroke? 

Yes/No 
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Appendix C: Training Mesocycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strength-Endurance Phase: 

 

***3-4 minutes rest between sets

Day 1 # Day 3 Day 1 # Day 3 #

Squat Squat Partial squat (100 ± 5 deg) Iso-squat (90 ± 5 deg)

Lunges Lunges Iso-squat (120 ± 5 deg)

Hyperextensions Hyperextensions

Day 1 # Day 3 #

Day 1 # Day 3 Partial squat (100 ± 5 deg) Iso-squat (90 ± 5 deg)

Squat Squat Iso-squat (120 ± 5 deg)

Lunges Lunges

Hyperextensions Hyperextensions

Day 1 # Day 3 #

Partial squat (100 ± 5 deg) Iso-squat (90 ± 5 deg)

Day 1 # Day 3 Iso-squat (120 ± 5 deg)

Squat Squat

Lunges Lunges

Hyperextensions Hyperextensions

Exercise Knee Angle Plates Y/N

Partial Squat (100 deg)

*Squat based off %1RM Iso-Squat (90 deg)

Iso-Squat (120 deg)

Exercise

Squat

Name:

Subject #

4x8 77.5-82.5% 3x8 -10-15%

4x8 75-80% 3x8 -10-15%

Strength-Endurance Phase

Week 1-3

Initial bar height (cm) Transition phase bar height (cm)

4x8 80-85% 3x8 -10-15%

Safety Pins

50%, 75% and 100%

Familiarization Sessions (in weight room)

Week 1-3

Measurements Measurements

3x5 ML 50%, 75% 

3x5 M
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Strength Phase 1 (CP): 

 

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Partial Squats # reps Partial Squats # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Partial Squats # reps Partial Squats # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Partial Squats # reps Partial Squats # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

3x5 85-87% 3x5 -10-15%

Strength Phase 1 (CP)

Week 5-7

3x5 87-89% 3x5 -15-20%

Mon Thursday

3x5 86-88% 3x5 -10-15%

Strength Phase 1 (Control): 

 

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Strength Phase 1 (Control)

Week 5-7

6x5 -10-15%

Mon

6x5 85-87%

Thursday

Mon Thursday

6x5 87-89% 6x5 -15-20%

Mon Thursday

6x5 86-88% 6x5 -10-15%
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De-Load (Control): 

 

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Mon Friday

6x3 -15% 6x3 -30%

De-Load (Control)

Week 8

De-Load (CP): 

 

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Partial Squats # reps Partial Squats # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

3x3 -15% 3x3 -30%

Mon Friday

De-Load (CP)

Week 8
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Strength Phase 2 (Control): 

 

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

7x3 88-90% 7x3 -10-15%

Strength Phase 2 (Control)

Week 9-11

7x3 90-92% 7x3 -15-20%

Mon Friday

7x3 89-91% 7x3 -10-15%

Strength Phase 2 (CP): 

 

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Partial Squats # reps Partial Squats # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Partial Squats # reps Partial Squats # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Squat # reps Squat # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

Partial Squats # reps Partial Squats # reps

Warm-up Sets Warm-up Sets

Main Sets Main Sets

3x3 88-90% 3x3 -10-15%

Strength Phase 2 (CP)

Week 9-11

3x3 90-92% 3x3 -15-20%

Mon Thursday

3x3 89-91% 3x3 -10-15%
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Appendix D: Statistical Analysis for All Dependent Variables 

 

 

 

 

 

 

 

 

 

Repeated Measures

Variable Time Condition by Time Condition

Mass

Height

Age

Percent Fat *

Skinfold thickness *

Lean Body Mass *

IPFa 90deg *

RFD200ms 90deg

RFD250ms 90deg

Impulse50ms 90deg scaled *

Impulse90ms 90deg scaled *

Impulse200ms 90deg scaled *

Impulse250ms 90deg scaled *

IPFa 120deg *

RFD200ms 120deg *

RFD250ms 120deg

Impulse50ms 120deg scaled

Impulse90ms 120deg scaled *

Impulse200ms 120deg scaled *

Impulse250ms 120deg scaled *

1RM Squat **

1RM Partial Squat **

1RM Squat scaled **

1RM Partial Squat scaled **

* denotes p<.05

** denotes p<.001

no change in any variable when subject #17 is removed
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Descriptive Statistics, T-tests and Effect Sizes 

Variable Group p Cohen's d

Mean SD COV Mean SD COV

Percent Fat (%) Control 22.14 8.52 38.49 19.86 8.90 44.84 0.027 0.27

CP 20.82 11.96 57.45 19.68 11.39 57.86 0.046 0.10

Skinfold thickness (mm) Control 135.00 32.46 24.05 126.06 34.30 27.21 0.023 0.28

CP 128.67 43.62 33.90 124.44 41.94 33.70 0.055 0.10

LBM (kg) Control 65.54 6.22 9.50 67.33 7.18 10.66 0.017 0.29

CP 67.51 8.09 11.99 68.38 8.11 11.85 0.038 0.11

Mass (kg) Control 84.88 10.92 12.86 84.66 10.69 12.63 0.516 0.02

CP 86.06 8.94 10.39 85.79 8.62 10.05 0.537 0.03

Height (cm) Control 176.44 6.25 3.54 176.22 6.40 3.63 0.169 0.04

CP 177.56 8.09 4.56 177.44 7.89 4.45 0.681 0.01

Age (years) Control 20.78 1.99 9.56 20.78 1.99 9.56

CP 20.67 1.87 9.05 20.67 1.87 9.05

Pre-intervention Post-intervention

Descriptive Statistics, T-tests and Effect Sizes 

Variable Group p Cohen's d

Mean SD COV Mean SD COV

IPFa 90 N.((body mass^0.67)-1) Control 107.51 6.97 6.48 113.16 8.52 7.53 0.008 0.81

CP 114.87 13.60 11.84 116.32 12.80 11.01 0.474 0.11

RFD200ms 90deg (N.s-1) Control 3414.09 950.07 27.83 3580.90 749.12 20.92 0.578 0.18

CP 3814.81 854.04 22.39 3579.81 1106.35 30.91 0.532 0.28

RFD250ms 90deg (N.s-1) Control 3136.56 818.02 26.08 3183.18 676.75 21.26 0.823 0.06

CP 3439.56 630.74 18.34 3157.77 865.69 27.41 0.357 0.45

Impulse50ms 90deg scaled N.((body mass^0.67)-1) Control 2.76 0.41 14.98 2.88 0.36 12.62 0.138 0.30

CP 2.70 0.49 18.05 3.20 0.51 16.01 0.006 1.03

Impulse90ms 90deg scaled N.((body mass^0.67)-1) Control 5.26 0.74 14.08 5.50 0.65 11.75 0.104 0.33

CP 5.27 0.98 18.53 6.16 0.99 16.08 0.004 0.91

Impulse200ms 90deg scaled N.((body mass^0.67)-1) Control 13.97 1.48 10.62 14.76 1.58 10.73 0.069 0.53

CP 14.11 2.42 17.16 15.99 2.55 15.93 0.003 0.78

Impulse250ms 90deg scaled N.((body mass^0.67)-1) Control 18.53 1.76 9.51 19.54 1.94 9.93 0.066 0.57

CP 18.76 2.92 15.59 20.97 3.26 15.55 0.003 0.76

IPFa 120 N.((body mass^0.67)-1) Control 196.71 38.24 19.44 201.47 39.46 19.58 0.317 0.12

CP 210.73 35.13 16.67 227.73 31.65 13.90 0.020 0.48

RFD200ms 120deg (N.s-1) Control 5861.67 2853.13 48.67 6910.69 2956.09 42.78 0.062 0.37

CP 6930.23 2243.60 32.37 6612.29 1458.03 22.05 0.401 0.14

RFD250ms 120deg (N.s-1) Control 5377.22 2267.18 42.16 5631.87 2005.41 35.61 0.555 0.11

CP 6051.89 1638.27 27.07 5861.72 1036.57 17.68 0.562 0.12

Impulse50ms 120deg scaled N.((body mass^0.67)-1) Control 3.74 0.85 22.59 3.81 0.62 16.36 0.754 0.08

CP 3.51 0.60 17.00 4.13 1.03 24.94 0.045 1.04

Impulse90ms 120deg scaled N.((body mass^0.67)-1) Control 7.34 1.79 24.39 7.73 1.40 18.07 0.334 0.22
CP 6.99 1.30 18.66 8.20 2.08 25.41 0.027 0.93

Impulse200ms 120deg scaled N.((body mass^0.67)-1) Control 20.22 5.12 25.32 22.09 4.78 21.66 0.058 0.36

CP 20.07 3.93 19.61 22.76 5.36 23.54 0.015 0.68

Impulse250ms 120deg scaled N.((body mass^0.67)-1) Control 27.04 6.53 24.15 29.24 6.32 21.60 0.049 0.34

CP 27.08 4.97 18.37 30.20 6.75 22.35 0.017 0.63

Pre-intervention Post-intervention
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Descriptive Statistics, T-tests and Effect Sizes 

Variable Group p Cohen's d

Mean SD COV Mean SD COV

1RM Squat (kg) Control 148.93 23.70 15.92 156.58 23.86 15.24 0.006 0.32

CP 152.21 30.94 20.33 163.54 29.45 18.01 0.000 0.37

1RM Partial Squat (kg) Control 207.90 30.77 14.80 229.16 48.79 21.29 0.045 0.69

CP 223.27 55.57 24.89 255.30 60.49 23.69 0.001 0.58

1RM Squat scaled kg.((body mass^0.67)-1) Control 7.69 0.65 8.41 8.10 0.66 8.19 0.003 0.64

CP 7.80 1.35 17.35 8.40 1.34 15.89 0.000 0.45

1RM Partial Squat scaled kg.((body mass^0.67)-1) Control 10.77 1.24 11.52 11.87 2.09 17.57 0.036 0.89

CP 11.45 2.52 22.02 13.11 2.82 21.47 0.001 0.66

WorkSquat (kg.m) Control 67996.44 13166.09 19.36 0.000

CP 43515.76 9387.71 21.57
WorkTotal (kg.m) Control 67996.44 13166.09 19.36 0.897

CP 67206.48 12322.35 18.34

Pre-intervention Post-intervention

Descriptive Statistics, T-tests and Effect Sizes without subject # 17

Variable Group p Cohen's d

Mean SD COV Mean SD COV

Percent Fat (%) Control 22.14 8.52 38.49 19.86 8.90 44.83

CP 17.58 7.45 42.39 16.65 7.34 44.05 0.102 0.12
Skinfold thickness (mm) Control 135.00 32.46 24.05 126.06 34.30 27.21

CP 117.50 29.86 25.42 113.81 29.11 25.58 0.115 0.12
LBM (kg) Control 65.54 6.22 9.50 67.33 7.18 10.66

CP 69.46 5.96 8.58 70.25 6.27 8.92 0.082 0.13
Mass (kg) Control 84.88 10.92 12.86 84.66 10.69 12.63

CP 84.64 8.41 9.93 84.60 8.39 9.91 0.926 0.00
Height (cm) Control 176.44 6.25 3.54 176.22 6.40 3.63

CP 179.13 7.04 3.93 179.00 6.80 3.80 0.685 0.02
Age (years) Control 20.78 1.99 9.56 20.78 1.99 9.56

CP 20.88 1.89 9.03 20.88 1.89 9.03

Pre-intervention Post-intervention
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Descriptive Statistics, T-tests and Effect Sizes without subject # 17

Variable Group p Cohen's d

Mean SD COV Mean SD COV

IPFa 90 N.((body mass^0.67)-1) Control 107.51 6.97 6.48 113.16 8.52 7.53

CP 112.76 12.88 11.42 114.43 12.26 10.71 0.471 0.13
RFD200ms 90deg (N.s-1) Control 3414.09 950.07 27.83 3580.90 749.12 20.92

CP 3897.76 873.38 22.41 3576.51 1182.69 33.07 0.444 0.37

RFD250ms 90deg (N.s-1) Control 3136.56 818.02 26.08 3183.18 676.75 21.26

CP 3429.66 673.54 19.64 3114.40 914.95 29.38 0.364 0.47

Impulse50ms 90deg scaled N.((body mass^0.67)-1) Control 2.76 0.41 14.98 2.88 0.36 12.62

CP 2.71 0.52 19.15 3.24 0.53 16.51 0.010 1.01

Impulse90ms 90deg scaled N.((body mass^0.67)-1) Control 5.26 0.74 14.08 5.50 0.65 11.75

CP 5.33 1.03 19.28 6.25 1.01 16.23 0.007 0.65

Impulse200ms 90deg scaled N.((body mass^0.67)-1) Control 13.97 1.48 10.62 14.76 1.58 10.73

CP 14.33 2.50 17.42 16.21 2.63 16.20 0.006 0.50

Impulse250ms 90deg scaled N.((body mass^0.67)-1) Control 18.53 1.76 9.51 19.54 1.94 9.93

CP 19.01 3.01 15.86 21.23 3.39 15.95 0.012 0.66

IPFa 120 N.((body mass^0.67)-1) Control 196.71 38.24 19.44 201.47 39.46 19.58

CP 206.91 35.50 17.16 225.39 32.99 14.64 0.024 0.52

RFD200ms 120deg (N.s-1) Control 5861.67 2853.13 48.67 6910.69 2956.09 42.78

CP 7024.29 2379.47 33.87 6615.04 1558.67 23.56 0.332 0.17

RFD250ms 120deg (N.s-1) Control 5377.22 2267.18 42.16 5631.87 2005.41 35.61

CP 6113.60 1740.16 28.46 5841.48 1106.23 18.94 0.455 0.16

Impulse50ms 120deg scaled N.((body mass^0.67)-1) Control 3.74 0.85 22.59 3.81 0.62 16.36

CP 3.54 0.63 17.87 4.24 1.05 24.78 0.043 1.11

Impulse90ms 120deg scaled N.((body mass^0.67)-1) Control 7.34 1.79 24.39 7.73 1.40 18.07

CP 7.05 1.38 19.58 8.43 2.11 25.02 0.020 0.83

Impulse200ms 120deg scaled N.((body mass^0.67)-1) Control 20.22 5.12 25.32 22.09 4.78 21.66

CP 20.34 4.12 20.24 23.33 5.43 23.27 0.016 0.52

Impulse250ms 120deg scaled N.((body mass^0.67)-1) Control 27.04 6.53 24.15 29.24 6.32 21.60

CP 27.45 5.18 18.88 30.90 6.86 22.19 0.034 0.45

Pre-intervention Post-intervention

Descriptive Statistics, T-tests and Effect Sizes without subject # 17

Variable Group p Cohen's d

Mean SD COV Mean SD COV

1RM Squat (kg) Control 148.93 23.70 15.92 156.58 23.86 15.24

CP 144.58 22.28 15.41 156.49 21.89 13.99 0.000 0.53

1RM Partial Squat (kg) Control 207.90 30.77 14.80 229.16 48.79 21.29

CP 207.80 32.69 15.73 238.74 36.88 15.45 0.004 0.95

1RM Squat scaled kg.((body mass^0.67)-1) Control 7.69 0.65 8.41 8.10 0.66 8.19

CP 7.52 1.12 14.96 8.14 1.14 14.04 0.000 0.55

1RM Partial Squat scaled kg.((body mass^0.67)-1) Control 10.77 1.24 11.52 11.87 2.09 17.57

CP 10.83 1.83 16.86 12.43 2.06 16.56 0.004 0.88

Pre-intervention Post-intervention
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Variable

Levene Statistic p Levene Statistic p

Percent Fat 0.275 0.607 0.382 0.545

Skinfold thickness 0.156 0.698 0.230 0.638

LBM 0.964 0.341 0.300 0.592

Mass 0.602 0.449 0.819 0.379

Height 0.823 0.378 0.668 0.426

Age 0.009 0.924 0.009 0.924

IPFa 90 7.210 *0.016 1.346 0.263

RFD200ms 90 0.208 0.654 1.334 0.265

RFD250ms 90deg 0.065 0.802 0.818 0.379

Impulse50ms 90 scaled 0.673 0.424 0.893 0.359

Impulse90ms 90 scaled 1.732 0.207 1.122 0.305

Impulse200ms 90 scaled 5.153 *0.037 1.315 0.268

Impulse250ms 90 scaled 6.239 *0.024 1.453 0.246

IPFa 120 0.027 0.873 0.161 0.694

RFD200ms 120 0.277 0.606 1.858 0.192

RFD250ms 120 1.252 0.280 2.170 0.160

Impulse50ms 120 scaled 2.052 0.171 1.571 0.228

Impulse90ms 120 scaled 1.368 0.259 0.826 0.377

Impulse200ms 120 scaled 0.826 0.377 0.044 0.836

Impulse250ms 120 scaled 0.917 0.353 0.019 0.892

1RM Squat 0.173 0.683 0.086 0.773

1RM Partial Squat 1.646 0.218 0.013 0.911

1RM Squat scaled 4.275 0.055 4.056 0.061

1RM Partial Squat scaled 2.876 0.109 0.967 0.340

WorkSquat 0.012 0.914

WorkTotal 0.012 0.914

Pre-intervention Post-intervention

Homogeneity of Variances
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Variable

Levene Statistic p Levene Statistic p

Percent Fat 0.737 0.404 0.501 0.490

Skinfold thickness 0.651 0.432 0.547 0.471

LBM 0.006 0.941 0.011 0.918

Mass 1.167 0.297 1.193 0.292

Height 0.276 0.607 0.181 0.676

Age 0.051 0.825 0.051 0.825

IPFa 90 6.250 *0.025 1.337 0.266

RFD200ms 90 0.224 0.643 2.667 0.123

RFD250ms 90deg 0.000 0.993 1.424 0.251

Impulse50ms 90 scaled 1.278 0.276 1.249 0.281

Impulse90ms 90 scaled 2.225 0.157 1.360 0.262

Impulse200ms 90 scaled 5.217 *0.037 1.239 0.142

Impulse250ms 90 scaled 6.409 *0.023 1.451 0.283

IPFa 120 0.030 0.864 0.079 0.782

RFD200ms 120 0.119 0.734 1.300 0.272

RFD250ms 120 0.738 0.404 1.589 0.227

Impulse50ms 120 scaled 1.499 0.240 1.744 0.206

Impulse90ms 120 scaled 0.977 0.339 0.976 0.339

Impulse200ms 120 scaled 0.693 0.418 0.049 0.829

Impulse250ms 120 scaled 0.803 0.384 0.008 0.929

1RM Squat 0.311 0.586 0.367 0.554

1RM Partial Squat 0.078 0.784 0.813 0.382

1RM Squat scaled 1.154 0.300 1.622 0.222

1RM Partial Squat scaled 2.108 0.167 0.065 0.802

WorkSquat 2.234 0.156

WorkTotal 0.393 0.540

Homogeneity of Variances without Subject #17

Pre-intervention Post-intervention
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Appendix E: Graphs of Dependent Variables 

 

Comparison of mean pre to post 1RM squat between groups. Control=core lift. CP=core and 

partial lift. 1RM squat strength increased significantly in both groups compared to pre-training 

measures (p<0.001). *p<0.001, significantly different from pre-training.  

 

 

Comparison of mean pre to post 1RM squat scaled between groups. Control=core lift. 

CP=core and partial lift. 1RM squat scaled increased significantly in both groups compared to 

pre-training measures (p<0.001). *p<0.001, significantly different from pre-training.  
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Comparison of mean pre to post 1RM partial squat between groups. Control=core lift. 

CP=core and partial lift. 1RM partial squat increased significantly in both groups compared to 

pre-training measures (p<0.001). *p<0.001, significantly different from pre-training.  

 

Comparison of mean pre to post 1RM partial squat scaled between groups. Control=core 

lift. CP=core and partial lift. 1RM partial squat scaled increased significantly in both groups 

compared to pre-training measures (p<0.001). *p<0.001, significantly different from pre-

training.  
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Comparison of mean pre to post IPFa 90° between groups. Control=core lift. CP=core and 

partial lift. IPFa 90° increased significantly in Control group only compared to pre-training 

measures (p<0.05). *p<0.05, significantly different from pre-training.  

 

Comparison of mean pre to post IPFa 120° between groups. Control=core lift. CP=core and 

partial lift. IPFa 120° increased significantly in CP group only compared to pre-training 

measures (p<0.05). *p<0.05, significantly different from pre-training.  

 

 

 

100

105

110

115

120

125

Control CP

IPFa 90deg 

IPFa 90deg Pre

IPFa 90deg Post

* 
5.2% 1.3% 

145

155

165

175

185

195

205

215

225

235

245

Control CP

IPFa 120deg 

IPFa 120deg Pre

IPFa 120deg Post

* 
2.4% 8.1% 



126 
 

 

Comparison of mean pre to post Impulse 200ms 90° between groups. Control=core lift. 

CP=core and partial lift. Impulse 200ms 90° increased significantly in CP group only compared 

to pre-training measures (p<0.05). *p<0.05, significantly different from pre-training.  

 

 

Comparison of mean pre to post Impulse 200ms 120° between groups. Control=core lift. 

CP=core and partial lift. Impulse 200ms 120° increased significantly in CP group only compared 

to pre-training measures (p<0.05). *p<0.05, significantly different from pre-training.  
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Comparison of mean pre to post RFD 200ms 90° between groups. Control=core lift. CP=core 

and partial lift. There was no interaction. The Control group increased RFD 200ms 90° 4.9% and 

CP decreased 6.2% from pre- to post-training. 

 

 

Comparison of mean pre to post RFD 200ms 120° between groups. Control=core lift. 

CP=core and partial lift. There was a group by time interaction for RFD 200ms 120° in the 

Control group (p<0.05). #p<0.05, significantly different rate of gain from pre to post compared 

to CP.  
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Comparison of mean total work between groups. Control=core lift. CP=core and partial lift. 

There was no significant difference between groups for total work completed (p>0.05). 

 

 

Comparison of mean T0 to pre to post 1RM squat between groups. Control=core lift. 

CP=core and partial lift. 1RM squat increased significantly in both groups from T0 to pre-

intervention and from pre to post-intervention measures (p<0.001). *p<0.001, significantly 

different from pre-training. #p<0.001, significantly different from T0.  
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Comparison of mean T0 to pre to post 1RM squat scaled between groups. Control=core lift. 

CP=core and partial lift. 1RM squat scaled increased significantly in both groups from T0 to pre-

intervention and from pre to post-intervention measures (p<0.001). *p<0.001, significantly 

different from pre-training. #p<0.001, significantly different from T0.  
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