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ABSTRACT 

Prelamin A Influences a Program of Gene Expression 
 

In Regulation of Cell Cycle Control 

by 

Christina Norton Bridges 

 

The A-type lamins are intermediate filament proteins that constitute a major part of the 

eukaryotic nuclear lamina—a tough, polymerized, mesh lining of the inner nuclear 

membrane, providing shape and structural integrity to the nucleus.  Lamin A (LA) 

filaments also permeate the nucleoplasm, providing additional structural support, but 

also scaffolding numerous tethered molecules to stabilize, organize, and facilitate 

molecular interactions to accomplish critical functions of cellular metabolism.  Over the 

past 2 decades, much attention has been focused on roles of LA in maintenance of 

nuclear structural integrity.  Only since the late 1990s have scientists discovered the 

devastating effects of LA gene (LMNA) mutations, as they have associated hundreds of 

LMNA mutations to a large group of diseases, called laminopathies, with a broad 

spectrum of phenotypes, ranging from skeletal, muscular, and neurological defects, to 

defective lipid storage, to accelerated aging phenotypes in diseases called progerias.  

Recent advances demonstrate LA regulatory functions include cell signaling, cell cycle 

regulation, transcription, chromatin organization, viral egress, and DNA damage repair.  

Amidst the flurry of fascinating research, only recently have researchers begun to focus 

attention on the different isoforms that exist for LA, a precursor form among them.  LA is 

initially synthesized as Prelamin A (PreA), and undergoes a series of modifications that 
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truncate the protein to produce “mature” LA.  Existence of the precursor form, and its 

complex maturation pathway, have puzzled researchers since their realization.  With a 

pattern of expression related to cell cycle phase, we hypothesized a role for PreA in cell 

cycle control.  To investigate, we have performed array studies to assess gene 

expression effects at the levels of transcript expression, protein expression, and 

phosphorylation modification status.  Here, we present evidence for a PreA-mediated 

program of cell cycle regulatory gene and protein expression modulation.  Implicated 

pathways include RB-E2F, p53, p27Kip1, FoxOs, p300, and the Cyclins, with additional 

evidence indicating a role for the Pin1 prolyl isomerase in mediating PreA regulation of 

the cell cycle. 
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CHAPTER 1 

INTRODUCTION 

The Nuclear Lamins 

 The nuclear lamins are a Class V family of intermediate filament proteins that 

form a thin, fibrous scaffold lining the inner nuclear membrane, thereby providing 

structural rigidity to the nucleus1,2.  Two primary types of lamina proteins exist: the A-

type and B-type lamins.  Three genes encode the 2 primary lamina proteins.  The A-

type lamins, Lamins A and C, are both encoded by the single Lamin A (LMNA) gene by 

alternative splicing3-5.  There are 2 Lamin B isoforms, B1 and B2, that are encoded by 

the LMNB1 and LMNB2 genes, respectively6.  The B-type lamins are ubiquitously 

expressed in vertebrate cells from the earliest stages of development throughout 

differentiation and have been described as “essential1,7,” whereas expression of A-type 

lamins is associated with the advent of some level of cellular differentiation8, and are 

expressed in most, but not all differentiated cells9,10.  Lmnb -/- mice die in early 

developmental stages, demonstrating the null phenotype is lethal.  Lmna -/- mice, 

however, are able to survive at least several weeks after birth, though they demonstrate 

some phenotypes of disorders experienced by humans with mutations in LMNA or in the 

genes that code for proteins that process Lamin A (LA)11.  Our studies focus on LA, 

which has been shown to play a role in many cellular functions, the complexities of 

which are continuously developing.  Recent research has revealed important functions 

in processes ranging broadly from maintenance of structural and mechanical integrity of 

the nuclear membrane, to modulation of organismal aging and preservation of the 

fidelity of the genome. 
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Post-Translational Lamin Processing 

 LA  is initially synthesized as a 74 kDa precursor, Prelamin A (PreA)12,13, which 

undergoes an unusual maturation sequence in which 2 endoproteolytic cleavages occur 

to yield a 72 kDa mature LA protein14 (Figure 1). The first cleavage is initiated by the 

attachment of a farnesyl group (farnesylation) to the cysteine residue of a C-terminal 

CaaX-motif (where “C” is a cysteine, “a” is an aliphatic amino acid and “X” is usually 

serine, glutamine or methionine)15-17.  Farnesylation of mammalian proteins is reported 

to target the affected proteins to membranes18,19, through inducing specific protein-

protein interactions20, and  is catalyzed by the enzyme farnesyltransferase (FTase)21, 

which recognizes the C-terminal CaaX motif  of its substrate proteins.  FTase transfers 

a farnesyl group from farnesyl pyrophosphate to the CaaX cysteine, forming a thioether 

linkage.  Once farnesylated, these proteins typically undergo 2 further C-terminal 

modifications.  Endoproteolytic removal of 3 C-terminal amino acids, this cleavage 

(often referred to as “-aaXing”)16, can be carried out by the endoproteases 

Zmpste2422,23 or Rce124. The –aaXing cleavage is followed by carboxyl methylation of 

the newly created C-terminus, carried out by isoprenyl carboxyl methyl transferase 

(ICMT)25.  In a further processing step, LA undergoes a second endoproteolytic 

cleavage to remove an additional 15 C-terminal amino acid residues (aa 647-661, 

human sequence), including the farnesylated cysteine26,27.  This second cleavage is 

unique to LA in higher vertebrates, and is specifically carried out by Zmpste2428.   

  



25 
 

 

 

Figure 1.  Maturation of Lamin A Protein by Proteolytic Posttranslational Processing.  
The precursor protein undergoes successive modifications: by the enzyme FTase 
(which attaches a farnesyl moiety), followed by Zmpste24- or Rce1-mediated cleavage 
of the –SIM residues (-aaXing), after which ICMT methylates the carboxyl terminus, 
signalling the 2nd proteolysis, by Zmpste24 (uniquely) between the tyrosine (Y) and 
leucine (L) residues of the RSYLLG Zmpste24 recognition  site, releasing the 2 kDa  
farnesylated C-terminal fragment to yield mature LA (72 kDa). 
 
 The LA precursor isoform is reportedly toxic to the cell, and it accumulates in 

several laminopathies29,30.  Though previous work, including much from our own 

laboratory [including 21,27,28,31], has provided insight into the processing pathway of PreA, as 

described above, the functional significance of the pathway remains puzzling.  Clearly, 

the processing introduces differences compared to the other lamins:  The B-type lamins 

also have a CaaX motif, are farnesylated, and undergo the same initial aaX-peptide 

cleavage processing as Lamin A (in which the 3 c-terminal amino acids are removed), 

followed by carboxymethylation of the truncated protein.  However, because the B 
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lamins are not subjected to the second cleavage, they maintain the farnesyl 

modification.  By virtue of this permanently farnesylated state, Lamin B remains tightly 

associated with the membrane even through mitosis, while the A-type lamins dissociate 

during mitosis and reassemble32-34.  Lamin C, which lacks the CaaX motif altogether, 

and is thus never farnesylated, maintains only a loose association with the nuclear 

membrane, primarily through polymerization with Lamin B and Lamin A35.  Existing in a 

heteropolymeric tapestry together with each other, the different lamin isoforms 

demonstrate some structural and functional overlap, yet their different structural 

characteristics convey different functions from each other, as well.  

The Laminopathies 

 Diseases resulting from mutations in the lamins, or in the genes that encode the 

proteins responsible for lamin processing, are collectively termed “laminopathies.”   At 

least 12 distinct laminopathies have been described, comprising a surprisingly diverse 

group of phenotypic disorders36,37,38, and most result from some of the >250 mutations 

that have been identified within the LMNA gene39.  These phenotypes range from 

inability to properly accumulate and/or process lipids, as in the several different types of 

lipodystrophies, including Dunnigan’s Partial Lipodystrophy (DPLD) and Familial Partial 

Lipodystrophy (FPLD2), as well as musculoskeletal phenotypes associated with several 

types of muscular dystrophies, such as Emery Dreyfus Muscular Dystrophy (EDMD) 

and Limb-Girdle Muscular Dystrophy (LGMD1B), cardiac defects as found in Dilated 

Cardiomyopathy (CMD1A), and neurological defects, as in Autosomal Recessive 

Charcot-Marie-Tooth syndrome (CMT-AR).  Additionally, mutations in LMNA, or in 

genes coding for LA-processing proteins, cause a group of premature aging disorders, 
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called progerias or progeroid diseases, including Hutchinson Gilford Progeria Syndrome 

(HGPS), Atypical Werner Syndrome (A-WS), Restrictive Dermopathy (RD), and 

Mandibuloacral Dysplasia (MAD)[reviewed in 38,40].  Phenotypic expression in the progerias 

include several of the aforementioned phenotypes (perturbations of lipid metabolism, 

cardiac and musculoskeletal defects, etc.), in addition to increased DNA damage 

accumulation, early cellular senescence, and several other pathogenic phenotypes that 

are typically associated with progressive aging, such as bone degeneration, alopecia, 

and atherosclerosis41-46.  HGPS is perhaps the most studied of these progerias and is 

usually caused by a heterozygous LMNA point mutation in the third nucleotide of codon 

608 that, while not changing the encoded amino acid, introduces a cryptic splice site 

that removes 150 nucleotides from the mRNA transcript, resulting in a 50 residue-

truncation of the protein product47-49.  This mutation is frequently referred to as 

“LAdel50,” and the mutant protein has become known as “progerin.”  HGPS patients 

typically die around a median age of 13 years due to atherosclerotic/cardiac-related 

pathology17,41,47,48,50-55 [and a few of many HGPS/Progeria reviews: 17,22,29,31,40,42-44,46,55-78].   

 A 2-category classification system for laminopathies has been suggested79, 

grouping them by phenotypic similarity derived through hierarchical cluster analysis.  

The first class of laminopathies includes those with skeletal muscle, cardiac and 

neurological involvement, such as EDMD, LGMD1B, CMD1A, and CMT-AR. The 

second class of laminopathies includes those with partial lipodystrophy, bone dysplasia, 

and progeric involvements, such as FPLD2, MAD, HGPS, A-WRN, and RD.  

Interestingly, mutations in the first class of laminopathies are found mainly in the LMNA 

region upstream of the nuclear localization signal (NLS, located at residues 416–423), 
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while mutations downstream of the NLS appear to result in diseases in the second class 

of laminopathies.  The structure in Figure 2 schematically represents the domain/exon 

arrangement of Lamin A80. 

 

 

 

 Figure 2. Structure and Domain Arrangement of Lamin A Protein.  The Lamin A central 
rod domain has 4 subdomains 1A, 1B, 2A, 2B (red); the nuclear localization signal 
(NLS) is indicated by a grey box (residues 417-422); the immunoglobulin (Ig) fold is  
represented by the molecular ribbon structure (at residues 436-544), and the C-terminal 
CaaX sequence is represented by a green box (terminal residues 661-664).  Exon 
nucleotide base-pair lengths are demarcated by the blue rectangular bar, top. 

 

  The central α-helical rod domain region upstream of the NLS is essential for the 

intra-molecular interactions in the nuclear lamina that contribute to structural integrity, 

while the DNA-binding region, located downstream of the NLS,  is more likely to be 

involved in interactions involving chromatin remodeling complexes and transcription 

factors81.  Such a nonrandom association between the mutation position and organ 

system involvement suggests a phenotype–genotype relationship79, suggestive of 

different pathogenic mechanisms accounting for the 2 groups of laminopathies, either 

Adapted from Shumaker, et al., 2003 
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involving compromise of the nuclear structure and stability, or aberrance in the 

chromatin organization that controls transcription79,82,83. 

Lamin A Structural Functions 

 The central rod domain of the A type nuclear lamins, similar to the B-Lamins, is 

approximately 45 kDa.  When these intermediate filaments form polymers by homo- or 

hetero-dimerizing longitudinally in 50–52-nm long 2-stranded a-helical coiled coils, the 

coiled coils are flanked at each end by 2 globular heads corresponding to the C-terminal 

tail domains of each individual filament protein2,5.  Once PreA is fully processed to 

mature LA (mLA), and no longer farnesylated, the obligatory membrane association is 

apparently relaxed20,21, but multimeric polymerization with Lamin B assists in 

maintenance of a meshwork of LA proteins on the internal surface of the nuclear 

membrane.  The LA polymers infiltrate the nucleoplasm84, thus providing nuclear 

integrity and shape (Schematic, Figure 3)1. 
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Figure 3.  Lamin A at Nuclear Envelope and throughout Nucleoplasm.  Peripheral 
nuclear Lamin A and fibrous structural permeation of the nucleoplasm (red structures).  
Various binding partners/lamina-associated moieties (ie. chromatin (blue), nuclear pore 
complexes (crossing the membrane), proteins such as Rb or PCNA). 

 

 Nuclei of LA-deficient cells have fragile membranes, subject to mechanical 

rupture, and microscopically presenting deformations such as blebbing and 

invaginations7,80,85,86.  Nuclear organization, stiffness, and shape-stability are reported to 

rely primarily on A-type lamins87.  Some have suggested the mechanisms of pathology 

related to LA mutation derive simply from a compromised nuclear membrane structure, 

such as aberrant placement and stability of nuclear pore complexes, alteration of 

membrane transport of molecules, impaired access to receptors for membrane binding 

proteins, general nuclear disorganization, and cell death due to rupture of the fragile 

nucleus88,89. 

 

Adapted from Goldman et al., Genes Dev 2002 
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Lamin A Non-Structural Functions 

 In addition to providing nuclear integrity and shape, the Lamin A polymer mesh 

permeating the nucleoplasm provides a scaffolding system upon which numerous 

proteins rely for spatiotemporal organization of interactions and processes.  In this role, 

Lamin A has been demonstrated as critical to the functional control of many 

transcriptional regulators and cellular processes that regulate cellular homeostasis.  

This function is more widely accepted as the source of LA-dysfunction-related pathology 

mechanisms that result in the most devastating phenotypic outcomes for affected 

organisms.  In addition to spatiotemporal organization of interacting molecules, binding 

to LA has been shown to affect expression levels of many proteins.  Typically, the 

effects on expression are through stabilization of the bound protein, usually by 

preventing ubiquitination and subsequent proteosomal degradation.  These interactions 

are defective even in many cases in which LMNA mutations do not alter the nuclear 

envelope structure and fail to perturb the structural nucleoplasmic mesh.  Therefore, LA-

related dysfunction in such disorders could not be attributed merely to integrity of the 

nuclear structure.  Instead, control of cellular functions involving these molecules rely on 

interactions with LA in a role independent of structural maintenance of the 

nucleus[Reviews include 85,86,88-91]. 

Lamin A Functions in Cell Cycle Regulation   

 Many studies have examined contributions of the A-type lamins to regulation of 

cell proliferation and tissue homeostasis[ reviewed 92,93].  The LA role in cell cycle regulation 

incorporates both structural and nonstructural functions.  For instance, as cells replicate 

genetic material and divide in proliferation, the nuclear envelope must depolymerize and 
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“dissolve” properly when needed, but then must repolymerize and reassemble with 

precision of arrangement and timing to form viable daughter cells32, providing 

implications of a structural LA function in the process.  At the same time, cell cycle 

progression involves extremely tight regulation of the spatiotemporal control of the 

interactions between a large number of different molecules, such as transcriptional 

regulators and target proteins, thus involving nonstructural LA functions.  Cells that are 

committed to differentiate but still undergoing proliferation contain intra-nuclear 

populations of A-type lamins that interact with the major lamin-associated protein 

LAP2α92.  This lamin-LAP2α complex has been shown to bind to and regulate the 

localization and activity of a major cell cycle regulatory protein, the tumor suppressor 

retinoblastoma protein (pRb)94.  The harmonic expression of these components appears 

be the keystone determining cellular decisions at the most fundamental points of 

regulation of cell proliferation and differentiation95,96. 

 In cells that express the A/C lamins, LA is one of the most abundantly expressed 

proteins in the cell, and it has been shown that small amounts of new LA are being 

incorporated into the lamina on a constant basis13.  LA proteins exhibit a fairly low rate 

of turnover (though, even that rate is higher than for B-type lamins), which, coupled with 

the steady low-level synthesis of new LA, leads to a gradual increase in the actual level 

of protein expression in the cell.  However, as cell size increases with cell growth, 

mainly through G1 phase, the overall result is a relatively stable proportion of lamin 

protein to cell size, maintained throughout the entire cell cycle35,97.  Phosphorylation 

induces dramatic depolymerization of the lamins in mitosis, effectively dissolving the 

nuclear membrane.  Studies have shown that much LA protein appears to be conserved 
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in the process of cell division, as cytokinesis occurs fairly rapidly, and daughter cells are 

able to regenerate much of their nuclear membranes from the pre-existing, 

depolymerized, residual LA from the parent cell13,32,33,97,98.  It is the reuse of existing LA 

protein in daughter cells that contributes to the accumulation of progressively higher 

levels of mutant protein with aging or successive cell culture passaging.   

  The endoproteolytic cleaving of PreA is such an efficient and rapidly executed 

process84, the progenitor is largely undetectable in cycling cells.  However, we and 

others99,100 have noted PreA accumulation in senescent cells.  We also detect PreA 

accumulation under conditions of quiescence, such as with serum starvation or high-

density cell culture plating.  Cells that express the A/C lamins are typically able to enter 

quiescence under conditions of contact inhibition or mitogen deprivation, as from serum 

starvation of cultured cells. Conversely, cells that do not express A/C lamins lack a 

quiescent state7,8.  Frequently, cell cycle-dependent changes in expression of a 

particular protein, such as those detected for PreA, indicate some role in regulating the 

cycle.  While numerous studies provide demonstration of LA functions in cell cycle 

control [reviewed in (among others): 63,68,86,88,94,101-103], less is known about the precursor isoform, 

which is the specific isoform of the LA protein that seems to exhibit a cell cycle-

dependent expression pattern.   

 Our hypothesis:  accumulation of the PreA protein isoform is induced as part of 

program of modulating gene expression and posttranslational modifications to an array 

of regulators from several different cell cycle pathways, thereby coordinating these into 

a network of interactions resulting in spatio-temporal regulation of the cell cycle, wherein 

different isoforms of LA exert different effects on cell cycle control, regulation of mitotic 
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progression, DNA repair checkpoint controls, chromatin organization, and influences on 

the processes leading to and maintaining cell cycle exit. 

 

Aims of This Study 

 This study aims to investigate the role of PreA as a cell cycle regulator, by 

examining its expression patterns and the effects of its expression on, or interactions 

with, other known mediators of control over mitotic cell cycle progression. Owing to the 

aforementioned efficiency of the proteolytic processing of PreA, in order to assist in the 

study of the effects of expression of the unprocessed, immature protein, we have 

developed a stable cell line harboring an inducibly-expressed uncleavable mutant form 

of PreA in which the site of the second cleavage is mutated (“L647R PreA”).   Several 

relationships between PreA and its interacting partners indicate this protein isoform 

could have a distinct purpose of its own, independent of simply existing as a precursor 

form of the mature LA (mLA).  In all likelihood, PreA serves as an integral scaffolding 

protein for many interactions, as does mLA, though perhaps each of the 2 isoforms, and 

other isoforms, as well, are able to interact uniquely with distinct molecules in a 

mechanism that helps to coordinate cellular operations in a cell cycle specific manner.  

We ask 3 main questions.  First, is accumulation of the PreA isoform is a byproduct of 

cell cycle arrest or an induction factor for that arrest?  Second, does expression of the 

PreA isoform result in effects on cell cycle regulatory genes and proteins?  Finally, do 

cell cycle regulators have interactions with the C-terminal fragment of the PreA isoform, 

that constitutes the difference between the LA isoforms, and therefore would imply 

isoform-specific activity?  
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 Our current study evaluates some PreA-specific effects on cell cycle control by 

comparing the differential effects on cell cycle related genes when exogenous PreA is 

expressed versus conditions without exogenous expression of any LA isoform.  We 

examine PreA isoform-expression effects on direct and indirect interaction partners 

already known to act in cell cycle regulatory roles. Among these are transcription factors 

and coactivators, such as E2F, p300 and FOXO proteins; cyclins, such as cyclins D and 

E; cyclin dependent kinase inhibitors (CKIs), such as p27Kip1 and p21Waf1; and tumor 

supressors retinoblastoma (RB/pRB) and p53.  We evaluate the overall profile of altered 

cell cycle gene expression induced by exogenous PreA expression in the context of the 

known cellular functions of the affected genes to begin to ascertain potential PreA 

functional roles in regulation of the cell cycle.  Additionally, we consider a motif analysis 

of the c-terminal region of the full length LA protein, which constitutes the differentiating 

peptide sequence between PreA and mature LA.  We focus the motif analysis on the 

kinase substrate sites and phosphorylation-mediated protein-binding sites and consider, 

as well, these phosphorylation-related motifs in the context of sites for many of the 

known binding proteins for this region.  Finally, we examine the potentially LA-relevant 

expression of Pin1, a peptidyl prolyl cis/trans isomerase, shown to play a key role in 

control of mitosis and cell cycle progression.   
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CHAPTER 2 

MATERIALS AND METHODS 

Materials 

General Laboratory Chemicals, Buffers, and Reagents 
 
100bp DNA Ladder, GibcoBRL Life technologies, USA 
1Kb DNA Ladder, GibcoBRL Life technologies, USA 
Agar, Bacto, BD Diagnostics, Sparks, MD, USA 
Agarose, NuSieve, Lonza/Fisher Scientific, USA 
Albumin bovine fraction, Sigma, USA 
Ampicillin, MP Biomedical/Fisher Scientific 
Bacto-peptone, Difco, BD Diagnostics, USA 
Bacto-yeast extracts, Difco, BD Diagnostics, USA 
Bis-Tris 4-12% Gradient Polyacrylamide Gels, NuPAGE, Invitrogen/Life 
 Technologies, USA 
BondBreaker  tris(2-carboxyethyl)phosphine (TCEP), Pierce/Thermofisher, USA  
BSA (bovine serum albumin) Pierce/Thermofisher, USA  
Calcium chloride dehydrate, Fisher Scientific, USA 
Coomassie Blue G250, GelCode Blue Safe Protein Stain, Pierce/Thermofisher, USA  
DNA Loading Solution, 6X, Sigma-Aldrich, USA 
Dithiothreitol (DTT), Pierce/Thermofisher, Rockford, IL,USA  
Doxycyclin, MP Biomedicals, USA 
Dulbecco’s modified eagle medium (DMEM) with and without Phenol Red /with and 
 without Phosphate, Lonza/Fisher Scientific, USA 
Dimethyl Sulfoxide (DMSO), Sigma-Aldrich, USA  
ECL Hyperfilm GE Healthcare Amersham/Fisher Scientific, USA 
Ethylenediaminetetraacetic acid (EDTA), ACROS Organics/Fisher Scientific, USA 
Ethanol, Fisher BioReagents/Fisher Scientific, USA 
Ethidium Bromide, Sigma-Aldrich, USA 
Fetal bovine serum, Lonza/Fisher Scientific, USA /Gibco, USA 
Fetal calf serum, Lonza/Fisher Scientific, USA /Gibco, USA 
Formaldehyde 16%,  Fisher BioReagents, Fisher Scientific, USA 
G418 antibiotic,  MP Biomedicals, USA 
GenoStat, Millipore/Fisher Scientific, USA 
Glycerin (Glycerol), Sigma-Aldrich, USA 
HCl Fisher BioReagents, Fisher Scientific, USA 
HygromycinB, MP Biomedicals, USA 
Iodoacetamide, Sigma-Aldrich, USA 
Isopropanol, Fisher BioReagents, Fisher Scientific, USA 
Juglone, Santa Cruz Biotechnology, USA 
Kanamycin, MP Biomedicals, USA 
2/β- Mercaptoethanol (2-ME/BME), Sigma-Aldrich, USA 
MES 20X Buffer concentrate, NuPAGE, Invitrogen/Life Sciences, USA 
Methanol, Sigma-Aldrich, USA 
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Milk powder, various, USA 
MOPS 20X Buffer concentrate, NuPAGE Invitrogen/Life Sciences, USA 
NP-40, Sigma, USA 
Orthophosphate ([32]P-orthophosphate), New England Nuclear 
PBS (phosphate-buffered saline), Lonza-Biowhittaker/Fisher Scientific, USA 
Penicillin/Streptomycin, MP Biomedicals, USA 
Propidium iodide (PI)+ RNase, BD Diagnostics, USA 
Protease and Phosphatase Inhibitor Cocktail, Halt, Pierce/Thermofisher, USA  
Protein A Magnetic Protein Separation/Immunoprecipitation Beads, Dynabeads, 
 Invitrogen/Life Sciences, USA 
Protein A Agarose Beads, Invitrogen/Life Sciences, USA  
Protein Molecular Weight Marker: Sharp Prestained, Invitrogen/Life Sciences, USA 
Protein Molecular Weight Marker: Cruz Marker, Santa Cruz Biotechnology, USA 
RheoSwitch® Ligand RSL1 (5 mM in DMSO), New England Biolabs (NEB), USA 
Skatole/ BNPS Skatole (3-bromo-3-methyl-2-l(2-nitrophenyl)thiol-3H indole), 
 Sigma-Aldrich, USA 
SDS (sodium dodecyl sulphate), Sigma, USA 
Sodium acetate Sigma-Aldrich, USA 
Sodium chloride Fisher BioReagents, Fisher Scientific, USA 
[3H]-Thymidine, New England Nuclear, USA 
Tris base, Fisher BioReagents, Fisher Scientific, USA 
Triton X-100, Sigma-Aldrich, USA 
Trypsin, Proteomics Grade, Bioreagent, Dimethylated, Sigma-Aldrich, USA 
Trypsin/Versene-EDTA, Lonza-Biowhittaker/Fisher Scientific, USA 
Tryptone, Difco, BD Diagnostics, USA 
Tween 20, Sigma-Aldrich, USA 
Yeast extracts, Difco, BD Diagnostics, USA 

 
Enzymes, Kits 
 
 Enzymes for DNA Manipulation: 
 
 DNA restriction endouncleases, NEB, USA (NotI, SalI, AsisI, MluI) 
 DNA restriction endouncleases, Promega, USA (NotI, SalI) 
 DNAse I, Qiagen, USA 
 RNAse A Qiagen, USA 
 Shrimp Alkaline Phosphatase, TSAP, Promega, USA 
 T4 DNA Ligase Kit, Ligafast Rapid, Promega, USA 
 TaqGold® DNA Polymerase, PCR Buffer, and dNTPs, Applied Biosystems, USA 

 
 Commercial Kits: 
 
 BCA protein assay(Reducing Agent Compatible), Pierce/Thermofisher,   
  USABioRad 
 DC Detergent Compatible Protein Assay, BioRad, USA 
 Cell Cycle Control Pathway Antibody Array, Full Moon Biosystems, USA 
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 Magnetofect Polymag Transfection System, OzBiosciences, France  
 NE PER Nuclear/Cytoplasmic Extract Reagent Kit, Pierce/Thermofisher, USA 
 MicroBCA Protein Assay Reagent Kit, Pierce Chemical, Rockford, IL 
 SuperSignal West Pico ECL Western Blotting Detection Reagents Kit, Pierce/  
  Thermofisher, USA 
 SuperSignal West Dura ECL Western Blotting Detection Reagents Kit, Pierce/  
  Thermofisher, USA 
 GeneAmp PCR Reagent Kit, Applied Biosystems,USA 
 Plasmid Mini Plasmid DNA Extraction Kit, Qiagen, USA  
 Plasmid Miniprep Kit, Zymo, USA 
 Plasmid Midi Plasmid DNA Extraction Kit, Qiagen, USA  
 Plasmid Maxi Endo-free Kit Plasmid DNA Extraction Kit, Qiagen, USA 
 Qiaquick DNA Gel-Extraction Kit, Qiagen, USA 
 QuikChange® Lightning Site-Directed Mutagenesis Kit, Stratagene/Agilent  
  Technologies, USA 
 Rheoswitch Inducible Gene Expression Vector System, New England Biolabs,  
  Germany/USA 
 RNEasy Protect Cell Mini RNA Extraction Kit, Qiagen, USA 
 SA- β-Galactosidase Staining Assay Kit, Cell Signaling, USA 
 SABiosciences RNA Extraction Kit, SABiosciences/Qiagen, USA 
 SABiosciences RT2 Profiler Mouse Cell Cycle PCR Arrays, PAMM-020  
  SABiosciences/Qiagen, USA 
 RT² First-Stand cDNA Synthesis Kit, SABiosciences/Qiagen, USA  
 RT² qPCR SYBR Green Master Mixes, SABiosciences/Qiagen, USA 
 
General Laboratory Supplies and Equipment 
 
Microcentrifuge, Eppendorf MiniSpin, Eppendorf, USA 

Tabletop Centrifuge, Sorvall, Thermofisher, USA 

High Performance Centrifuge, Beckman J-14, Beckman, USA 

Flow Cytometer, Accuri C6 Modular, BD, USA / Heidelberg, Germany 

Gel Documentation & Imaging System, Alpha Innotech, USA 

Hunter Thin Layer Electrophoresis (HTLE) Chromatography System, CBS Scientific, 

 USA 

MiniGel Electrophoresis System, XCell Surelock MiniCell, Invitrogen/Life Sciences, USA 

iBlot Dry Gel Blot Transfer System, Invitrogen/Life Technologies, USA 

iBlot Transfer Stacks, Regular or Mini, PVDF or Nitrocellulose, Invitrogen/Life 

 Technologies, USA 

Micropipettors, Gilson, Rainin Pipetman,  

Needles (22, 26 Gauge)/Syringes, BD-Becton Dickinson, USA 

Spectrophotometer, NanoDrop ND 1000, Thermofisher, USA 

Sterile filter 0.22 μm, Millipore/Fisher Scientific, USA 

Fluorescent Microscope ,Nikon, USA/Germany 

pH Meter, Corning, USA 
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Chemiluminescence Imaging System, Fujifilm LAS4000 

Gel Imaging System, Alpha Innotech, USA 

Thermocyclers (9700, 9720, 9600), Applied Biosystems 

Genetic Analyzers/ “Sequencers” (3100, 3130), Applied Biosystems 

 

Materials Used in Cloning/Subcloning and Bacterial Cell Culture 

 
Bacterial Strains (E.coli): 
 
 XL1-Blue, Stratagene, USA 
 XL10-Gold, Stratagene, USA 
 Zymo Z-competent DH5-α, Zymo, USA  
 
Media: 
 
 Normal Growth Medium- 
  LB (Luria Bertani) Medium (10 g/L tryptone, 5 g/L yeast extract,   
   5g/L NaCl, pH 7.2)  
 
 Antibiotic Selection Media- 
  LB/Ampicillin Medium (50 μg/ml Ampicillin) 
  LB/ Kanamycin (25 μg/ml Kanamycin) 

 
 

Plasmids and Oligonucleotides 

 Cloning vectors: 
 
 pCMV6-XL: TruORF Entry Vector, Expressed Zmpste24 protein in mammalian  
  cells, Origene, USA 
 pCMV6-AN-GFP: TruORF Destination Vector, Expressed Zmpste24   
  protein in mammalian cells, Origene, USA 
 pEGFP-C1:  Expressed a green fluorescence fusion protein in mammalian  
  cells, Clontech, USA 
 pEGFP-C3:  Expressed a green fluorescence fusion protein in mammalian  
  cells, used as a transfection control plasmid, Clontech, USA 
 pNEBR-R1 Rheoswitch regulator plasmid:  Inducibly expressed regulatory  
  protein in mammalian cells, NEB, USA 
 pNEBR-X1 Hygro Rheoswitch expression plasmid:  Inducibly expressed   
  protein in mammalian cells, under control of pNEBR-R1    
  Rheoswitch regulator plasmid, NEB, USA 
   
 Constructs Used in Experiments: 
 
  pCMV6-XL-Zmpste24, Origene, USA 
  pEGFP-C1-Myc-Lamin A (Gift from Francis Collins 65 to Michael Sinensky) 
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  pEGFP-C1-Myc-Lamin A-del50 (Gift from Francis Collins65 to Michael  
   Sinensky) 
  pEGFP-C1-Myc-Lamin A-L647R (generated by site-directed mutagenesis  
   from pEGFP-C1-Myc-LaminA) 
  pEGFP-C1-Myc-Lamin A stably in Tet-On HeLa cells (Gift from Robert D.  
   Goldman63 to Michael Sinensky and Antonio Rusinol)  
  pEGFP-C1-Myc-Progerin (Lamin A-del50) stably in Tet-On HeLa cells  
   (Gift from Robert D. Goldman63 to Michael Sinensky and Antonio  
   Rusinol)  
  pNEBR-X1-Hygro-EGFP-Myc-Lamin A  (generated by subcloning EGFP- 
   Myc-Lamin A from pEGFP-C1-Myc-Lamin A into pNEBR-X1-Hygro) 
  pNEBR-X1-Hygro-EGFP-Myc-Lamin A-L647R (generated by subcloning  
   EGFP-Myc-Lamin A-L647R  from pEGFP-C1-Myc-Lamin A-L647R   
   into pNEBR-X1-Hygro) 
  pNEBR-X1-Hygro-EGFP-Myc-Lamin A-del50 (generated by subcloning  
   EGFP-Myc-Lamin A-del50  from pEGFP-C1-Myc-Lamin A-del50   
   into pNEBR-X1-Hygro) 
  pNEBR-X1-Hygro-EGFP (generated by subcloning EGFP from pEGFP-C1 
   into pNEBR-X1-Hygro)  
  pGST-Pin1 (from Addgene, plasmid  #19027, deposited by MB Yaffe104) 
  
 Oligonucleotides Used: 

  DNA Amplification Primers-      
   Insert Amplification* from pEGFP-C1-Lamin A/ Lamin A del50 
   NotI-EGFP-Fwd  5’-ATCAGCGGCCGCATGGTGAGCAAG-3’    
   LA-Sal1-Rev 5’-GCGCGTCGACTGCAG AATT CTTAC ATGATG-3’ 

       *also used as sequencing primers in confirmation of DNA isolated  
   from stably transfected cells 

  DNA Sequencing Primers- 
   Origene TruORF vector sequencing, for Zmpste24 construct   
   sequencing, provided with kit from manufacturer, sequence not  
   provided: 
    “VP1.5” Forward Sequencing Primer for Origene TruORF  
    vector sequencing; “XL39” Reverse Sequencing Primer for  
    Origene TruORF vector sequencing 
 
   pEGFP-C1-1465-1485 reverse sequencing primer for pEGFP-C1  
   constructs: 
     5’-gttcagggggaggtgtgggag-3’ 

   RheoSwitch R-X1 Sequencing Primer for confirming constructs in  
   Rheoswitch pNEBR-X1 vector:  

    5´ (GGGTATATAATGGGGGC) 3´ 
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  Mutagenesis Primers- 
  Mutagenesis of pEGFP-C1-Myc-Lamin A to generate pEGFP-C1-Myc- 
   Lamin A-L647R: 
   FWD Primer 5’-GACCCCGCTGAGTACAACCTG  -3’ 
   REV Primer 5’-AAAGAAAAATAACCCTTTGGTTTTTTTC-3’ 

 

Transfection Reagents 
 
 TransPass D1, NEB, Ipswich, MA, USA/Frankfurt, Germany 
 Polymag Magnetofection reagent, OzBiosciences, France 
 Mirus TransIT-3T3, Mirus Bio, USA 
 
 
Antibodies 
 
 Primary Antibodies:  The following primary antibodies were used either in   
  immunoblot analysis or as primary antibodies in immunoprecipitation. 
 
 Anti-GFP, Rabbit, ab290, Abcam, USA  
 Anti-PreA (In House, Rabbit IgG Anti-Serum) 
 Anti-Lamin A (H102), C-Term 563-664, Rabbit, #20680, Santa Cruz, USA 
 Anti-Lamin A/C (H-110), N-Term, Rabbit  #20681, Santa Cruz, USA 
 Anti-Lamin A  4C11, Mouse, #4777, Cell Signaling, USA  
 Anti-Pin1 (H-123), Rabbit, sc-15340, Santa Cruz, USA 
 Anti-FoxO3a, rabbit, #9467, Cell Signaling, USA 
 Anti-p27 (M-197), Rabbit, #776, Santa Cruz, USA 
 Anti-Ki67, Rabbit, Cellomics/Thermofisher, USA 
 Anti-Tubulin, Abcam, USA 
 Anti-β-actin, Abcam, USA 
 
 Secondary Antibodies: 
   
 From Santa Cruz, USA- 
  Goat Anti-Rabbit IgG-HRP sc-# 2030,  
  Rabbit Anti-Mouse IgG-HRP, sc-#358914 
 
 From Cell Signaling Technology, USA- 
  Goat Anti-Rabbit-AlexaFluor®488 (Green) and -Alexa Fluor®555 (Red) 
  Rabbit Anti-Mouse-Alexa Fluor®488 (Green) and -Alexa Fluor®555 (Red) 
 
 From Molecular Probes, Invitrogen, USA 
  Rabbit Anti-Mouse-FITC(Green) and -Texas Red (Red) 
   Goat Anti-Rabbit-FITC and -Texas Red  
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Mammalian Cell Culture 
 
Mammalian Cell Lines: 
WI-38 (Human lung adherent fibroblast cells growing as monolayer, 24 hr doubling 
 time, approx 40-50 psgs competent), CCL-75, ATCC, USA 
BJ (Human foreskin fibroblast adherent monolayer cells, telomerase negative, 72 
 psgs competency), CRL-2522, ATCC, USA 
HeLa (Human cervical epithelial adenocarcinoma fibroblast adherent monolayer cells) 
 CCL-2, ATCC, USA 
3T3-L1 (Swiss mouse embryo fibroblast pre-adipocyte adherent monolayer cells, 
 capable of chemical induction of differentiation), CL-173, ATCC, USA 
 Inoculate 3 to 5 X 10(3) cells/cm2 
NIH 3T3 (Swiss mouse embryo fibroblast adherent monolayer cells), CRL-1658, ATCC, 
 USA Inoculate 3 to 5 X 10(3) cells/cm2 
NIH 3T3 (Rheoswitch, containing pNEBR-R1 regulator plasmid), NEB, USA 
 
Mammalian Cell Culture Media, Reagents, Antibiotics: 

Doxycyclin, MP Biomedicals, USA 

Dulbecco’s modified eagle medium (DMEM) with and without Phenol Red /with 
 and without Phosphate, Lonza/Fisher Scientific, USA 
Dimethyl Sulfoxide (DMSO) Sigma-Aldrich, USA  
Fetal bovine serum, Lonza/Fisher Scientific, USA /Gibco, USA 
Fetal calf serum, Lonza/Fisher Scientific, USA /Gibco, USA 
G418 antibiotic , MP Biomedicals, USA 
HygromycinB, MP Biomedicals, USA 
PBS (phosphate-buffered saline), Lonza-Biowhittaker/ Fisher Scientific, USA 
Penicillin/Streptomycin, MP Biomedicals, USA 
Trypsin/Versene-EDTA, Lonza-Biowhittaker/ Fisher Scientific, USA 

 
Buffers 
 
Cell Lysis: 
 Standard Cell Lysis Buffer- 
   10 mM Tris-HCl, pH 7.0, 10 mM NaCl, 3 mM MgCl2, 0.4% Nonidet P-40  
  (NP-40) 
 Immunoprecipitation (IP) Lysis Buffer (Non Denaturing)- 
  20 mM Tris HCl pH 8; 137 mM NaCl; 10% glycerol; 1% NP-40 or Triton X- 
  100; 2 mM EDTA 
   
 RIPA buffer- 
  1% (v/v) NP40; 0.5%(w/v) Deoxycholate; 0.1%(w/v) SDS; 0.15 M NaCl 
  5mM EDTA; 50 mM Tris pH 8.0 
 
Other Buffers:  
 TBE (5X)- 
 0.45 M Tris-Borate; 0.01 M EDTA pH8.3, autoclaved 
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 TBS (10X)- 
 0.2 M Tris base; 1.5 M NaCl pH7.4, autoclaved 
   
 TE (10X)- 
 0.1 M Tris-HCl; 0.01 M EDTA  pH 7.5, autoclaved 
 
 MOPS and MES electrophoresis buffers- 
 1X solutions were prepared from commercial concentrates, 20X) 
 
 
Software 
 
SABiosciences Online/Web-Based Array Data Analysis Software 
 Used to analyze RT-qPCR gene expression array data, and calculate statistics. 
BioRad iQData 
 Used to process raw data from RT-qPCR, to prepare for SABiosciences analysis. 
PANDA Online/Web-Based Array Data Analysis Software 
 Used to analyze data from Full Moon Biosystems Antibody Array, and calculate 
 statistics. 
ScreenHunter5.1 from Wisdom-Soft 
 Was used to capture images from computer desktop and save in convenient 
 digital photo formats. 
Adobe photoshop 
 This image manipulation software was used to change the size and 
 improve the contrast of experimental images. 
Primer3 
 This software was used analyze the secondary structure (hairpin etc.) and 
 annealing temperature of PCR primers.  
GeneRunner 
 This software was used analyze the secondary structure (hairpin etc.) and 
 annealing temperature of PCR primers.  
ClustalW Web Based NCBI 
 Used for comparing the homology between the target DNA and sequenced DNA. 
Sequencher Sequence Analysis Software, Gene Codes Software Co.  
 ModFit LT 3.2 from Verity House Software and FCS Express V3 De Novo 
 Software 
 
 
 

Methods I.: Molecular Biology Methods 
 

 
Preparation and Purification of Plasmid DNA from Bacteria 

 Plasmid Midi and Mini preparations were carried out with QIAquick commercial 

kits from Qiagen or the Zymo Plasmid Mini kit.  The process followed the manuals 
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provided with the kits. The Plasmid Midi Kit was used to purify up to 100 μg of plasmid 

DNA. The Endo-free plasmid Max preparation Kit was used to obtain endotoxin-free 

plasmid DNA for all transfections into mammalian cells.  

 

Digestion of DNA with Restriction Endonucleases 

 The restriction digestions were performed by the protocol provided by the 

supplier companies. For example, 1 μg plasmid DNA was digested with 5 units of a 

given enzyme and 1x digestion buffer in 20 μl total volume for an incubation of 1 hour at 

37°C. 

 

Polymerase Chain Reaction (PCR) 

 Polymerase chain reaction was used to amplify DNA targets of interest, using 

Applied Biosystems reagents, ABI thermocycler, and standard ABI protocol.  Primers 

noted in Oligonucleotides Section.  PCR products were analyzed by agarose gel-sizing 

and/or Sequencing.  

 

Automated DNA Cycle Sequencing 

 Cycle sequencing was performed using the dye dideoxy chain termination 

method based on the original dideoxy chain termination method developed by Sanger. 

PCR products or plasmid vectors were sequenced in this work, using commercially pre-

prepared solutions from Applied Biosciences:  Big Dye Terminator Ready Reaction Mix 

V1.3, and the manufacturer’s protocol.  Unincorporated dye was removed from the 

sequencing reaction using a resin-based clean-up column, the Qiagen Dye-Ex 2.0 spin 
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prep system.  Purified reactions were dried with heat in a Speed-Vac system and 

resuspended in 15 μl Hi-Di Formamide.  The suspension was denatured at 95°C for 5 

min prior to loading onto an automated capillary sequencing analyzer, the ABI 3100 or 

3130.  Sequence results were analyzed using Sequencher Software or web-based tools 

such as ClustalW. 

 

Site-Directed Mutagenesis of DNA 
 
 Primer design for site directed mutagenesis, used the following guidelines: 
 
The mutagenic oligonucleotide primers were designed to incorporate the desired point 

mutations and bind to adjacent sequences of the template plasmids. The length of 

primer should be between 25 and 45 bases with the melting temperature at least 75°C. 

The GC percent of the whole primer should be more than 40% and at least 1 C or G at 

3’ terminal.  (Primer sequences are listed under Oligonucleotides Section)  Primers 

were designed using Primer3 web- program (http://frodo.wi.mit.edu/primer3/)105. 

 Mutagenesis Reactions used the Stratagene QuikChange® Lightning Site-

Directed Mutagenesis Kit (Stratagene is now Agilent Technologies, USA) per 

manufacturer’s protocol.  Briefly, the following Mutagenesis PCR Reaction Mix was 

prepared (per each reaction):  

   5 µl 10x rxn buffer         
 1.25 μl (125 ng) of primer L647R Fwd[100ng/µl]     
 1.25 μl (125 ng) of primer L647R Rev[100ng/µl]     
 1 μl of dNTP mix         
 8.5 uL mix each rxn, added to  
 3 μl (30 ng) of dsDNA template plasmid (pEGFP-C1-Myc-Lamin A) 
 dH20 to 50 μl TV=11.5 μl 
 1 μl PfuUltra HF DNA polymerase (2.5 U/μl)  
 
And thermocycled with the following conditions: 
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   95° C 30 seconds  
    95°C 30 seconds 
  18 cycles  55°C 1 minute 
     68°C 5 minutes (1 minute/kb of plasmid length)  
   4°C Hold Infinity  

 

 After the PCR reaction had cooled to 37°C , 1µl Dpn I (10 units) was added to the 

PCR reaction, followed by incubation at 37°C for 1 hour to digest the parental (i.e., the 

nonmutated) supercoiled dsDNA. 

 Transformation of mutated plasmids into competent cells (Note: this protocol is 

also used for transformation of other plasmids into bacteria, the specific feature related 

to SDM, here, is the use of the Ultracompetent cells to enhance transformation, 

otherwise, “traditional” competent cells are used in routine cloning exercises). 

 After Dpn I treatment, XL10-Gold® ultra competent E. coli cells were transformed 

with the mutagenesis mixture.  In this step, 1μl of the treated reaction mixture was 

transformed into 50 μl of the ultra competent cells, which had been thawed on ice.  After 

gently swirling and incubating on ice 30 minutes, the tubes were heat pulsed at 42°C in 

a waterbath for 45 seconds, then placed on ice for 2 minutes.  Prewarmed (42°C) SOC 

broth (0.5 ml aliquot) was added to the bacteria/mutagenesis mix in the Falcon tube, 

and incubated, with 250 rpm shaking, for 1 hour at 37°C.  Finally, 250 μl was plated on 

each of 2 LB agar plates containing 25 μg/ml Kanamycin.  The plates were incubated at 

37°C overnight (>16 hours) and examined for colony formation. 

 Colony Selection: Isolated colonies were marked with a permanent marker on the 

bottom of the agar plate and each (typically 5 colonies per transformation) was picked 

up with a sterile 10 μl micropipette tip and transferred into prewarmed (37°C) LB broth 
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medium containing 25 μg/ml Kanamycin.  The cultures were incubated at 37°C, shaking 

at 250 rpm, overnight (approximately 16-22 hours). 

 

DNA Gel Electrophoresis 

 DNA gel electrophoresis was used to check the results of restriction enzyme 

digestions, PCR reactions and DNA purification. Fragments of between 400 bp and 12 

Kbp were separated by using 0.5% agarose gels. The gels were stained with ethidium 

bromide (EtBr) at a concentration of 0.5 μg/ml and the DNA was visualized under UV 

light (365 nm). DNA fragments less than 400 bp were separated on 1% or 1.5% 

agarose gels. 

 

Purification of DNA Fragments from Agarose 

 In order to obtain single DNA fragments from digested plasmids, gel 

electrophoresis was performed, and the QIAquick Gel Extraction kit was used to extract 

the DNA from the gel.  The band of interest was excised from the gel and the weight of 

the gel slice was determined. Three volumes solubilisation buffer (components 

proprietary) from the kit were added into the sample tube. The tube was vortexed and 

incubated at 50°C for 10 minutes or longer until the agarose was completely dissolved. 

The solution was loaded onto the ion–exchange column by centrifugation at 12,000 x g 

for 1 minute.  500 μl solubilisation buffer was added to wash the column followed by an 

additional centrifugation at 12,000 x g for 1 minute. Three volumes high salt ethanol 

wash buffer were used to wash the column.  Elution of the DNA from the column was 

carried out by adding 50μl of 10 mM Tris-HCl, pH8.5 to the column and centrifuging 1 



48 
 

minute at 12,000 x g.  In experiments where it was necessary to increase the DNA 

concentration in the eluate, the eluate was centrifuged through the column an additional 

time.  This procedure was also used for the purification of PCR products.  

 

Precipitation of DNA 

 When the DNA fragment was used for sequencing or some enzymatic reaction 

that was sensitive to residual salt, it was necessary to precipitate the DNA. The 

precipitation of DNA was achieved by adding 0.1 volume (of the starting DNA) of 3M 

KAc and 2.5 volumes 100% ethanol, and incubating at –20°C for 10 minutes. After 

removal of the supernatant the pellet was washed with 70% ethanol and air-dried. 

 

Cloning and Sub-Cloning of DNA 

 Restriction Enzyme-Based Method.  Cloning was performed by restriction 

endonuclease digest to remove the Zmpste24 cDNA sequence from the pCMV6-XL-

Zmpste24 construct (Entry Vector) and transfer to the pCMV6-AN-GFP destination 

vector.  Per manufacturer instruction, restriction enzymes MluI and AsisI were used.  

Digests were performed according to manufacturer instructions.  Following digests, 

fragments were separated on an agarose gel and visualized with EtBr on an ultraviolet 

lightbox.  Size discrimination was used to discern insert fragment from vector.  The 

fragment was cut from the agarose and extracted/purified using the QIAquick Gel 

Extraction protocol, as described. 

 PCR-Based Method.  The EGFP and EGFP-Lamin A/ Lamin A-L647R/ Lamin A-

del50 fragments were copied from the pEGFP-C1-Myc-Lamin A/ Lamin A-L647R/ Lamin 
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A-del50 constructs by PCR amplification, using primers (described in Oligonucleotides 

section), to copy the EGFP/EGFP-lamin fusion coding region and add on a restriction 

enzyme cutting site.  The Forward primer incorporated a NotI recognition site N-terminal 

to the EGFP sequence, and the Reverse primer attached a SalI site to the C-terminus of 

the coding section.  PCR product was gel-purified and analyzed for appropriateness of 

molecular weight of the amplified insert, with extraction by the QIAquick Gel Extraction 

protocol, as described. 

 DNA Ligation.  This procedure was performed to construct a new plasmid by 

ligating the purified target fragment with vector plasmid. First, the target vector was 

digested with the restriction enzymes compatible to the insert, and after heat 

inactivation of that enzyme, the vector was then treated with shrimp alkaline 

phosphatase (SAP) to prepare the ends for ligation.  SAP catalyzes the removal of 5´ 

phosphate groups from DNA, thus preventing the recircularization and 49elegation of 

linearized (empty) cloning vector DNA during ligation.  The DNA ligation reaction was 

performed following the protocol for Ligafast T4 DNA Ligase (Promega, USA). Briefly, 4 

μl 5X Ligase Reaction Buffer (250 mM Tris-HCl (pH 7.6), 50 mM MgCl2, 5 mM ATP, 5 

mM DTT, 25% PEG8000) from kit, 1 μl T4 DNA Ligase (1U/μl) and 3:1 (molar ratio) 

insert DNA: vector DNA were mixed together in a microcentrifuge tube.  The reaction 

mix was incubated at room temperature for 2 to 4 hours or for 16 hours at 16°C.  

Bacterial transformation was then carried out as in the Site Directed Mutagenesis 

section, but Zymocompetent cells were used as the “ultracompetency” needed in 

mutagenesis reactions is not required for this routine subcloning. 
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Transfection of Mammalian Cells 

 Transient Transfections.  Two different methods of introducing plasmid DNA into 

mammalian cells (magnetic or cationic lipid polymer-mediated transfection) were used 

in this work. The magnetic method was carried out as described by the manufacturer 

(OzBiosciences, France) for the Polymag Magnetofection reagent, in which the DNA is 

adhered to microscopic magnetic particles prior to bathing adhered cells with the 

DNA/magnet particle suspension, then placing the dish on an ultrastrong magnet, 

forcing the microscopic/DNA coated particles to pierce the membranes of the cells.  The 

Mirus Transit-3T3 or NEB TransPass D1 reagents are cationic lipid vesicle-based 

reagents, that carry the complexed DNA through the membrane using those membrane-

permeation qualities.  The tissue culture plates (0.5 x 106 cells per 100 mm plate) were 

prepared 1 day before the transfection. The incubation time of plasmid DNA/liposome 

mixture with the cells was about 24 hours at 37°C with 10% CO2, after which fresh 

medium was added to the plates. Two days after transfection, the cells were harvested 

or processed for selection, depending on the exact experiments. The transfection 

efficiency was assessed by using fluorescence microscopy for the GFP-fused 

constructs, or otherwise by indirect immunofluorescence. Transient transfections of WI-

38 and NIH 3T3-L1 cells with pCMV6-AN-GFP-ZMPSTE24 were performed using 

Polymag Magnetofection Transfection Reagent, per manufacturer instructions. 

 Stable Transfections.   To generate the RheoSwitch Inducible Gene Expression 

Cell line system, RheoSwitch NIH3T3–47 cells (“Rheoswitch 3T3 cells”) were 

purchased already harboring the optimally selected pNEBR-R1 regulator plasmid 

encoding the RheoReceptor-1 and RheoActivator protein.  The pNEBR-X1-Hygro EGFP 
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and pNEBR-X1-Hygro EGFP-Myc-Lamin A/ Lamin A-L647R/ Lamin A del50 constructs, 

as described under Plasmid Constructs section, were transfected with TransPass D1 

according to the manufacturer’s instructions. The day before transfection, Rheoswitch 

3T3 cells were seeded at 1.5 × 105 cells/cm2. The cells were then transfected with the 

inducible pNEBR-X1-Hygro constructs.   After 30 hours, 500 nM RSL1 or GenoStat 

(“induction reagent”) was added to medium.  The cells were incubated/induced 14 hours 

and observed for GFP expression by fluorescence microscopy.  Following visual 

confirmation of transfection, medium containing induction reagent was removed, cells 

were rinsed 2 times with 1X PBS, split, and plated out under sparse conditions in 

medium containing both G418 and Hygromycin to establish stable cell lines.  Single 

colonies were picked, reseeded, and expanded.  From expanded clonal populations, 

cells were plated, induced 24 hours, then observed for GFP expression.  Three clonal 

lines with the strongest intensity of expression were selected for each construct and 

further expanded, while other clones were discontinued.  Finally, 1 clone was selected 

as the best expresser and cultivated as the primary cell line for the stable expression of 

each construct. 

 Cotransfection.   This process involved transient transfection of GST-Pin1 as an 

additional plasmid vector into the RheoSwitch Cell Lines (which already stably harbored 

the pNEBR-X1-Hygro-EGFP-Lamin A-L647R construct).  The cotransfection was 

performed using Mirus TransIT-3T3, per manufacturer recommendations, and as noted 

above.  Cells were harvested after 48 hours. 
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Methods II.:  Protein Chemistry and Biochemistry Methods 
 

 
Preparation of Mammalian Cell Lysates 

 In order to analyze target protein expression in mammalian cells, cells were 

typically lysed in RIPA buffer.  Transfected cells were washed with PBS 2 times at room 

temperature, then 0.25% Trypsin/EDTA was added, followed by incubation at 37°C until 

the adherent cells were detached.  DMEM medium with fetal calf serum was added to 

neutralize the activity of Trypsin.  The cells were transferred to a fresh 15 ml tube and 

centrifuged at 1500 rpm for 3 minutes.  Ice-cold PBS was added to wash the cell pellet 

2 times.  The cell pellet was resuspended in 600 µl of RIPA buffer, containing Halt 

Protease and Phosphatase Inhibitor Cocktail (1X).  The resuspended cells were 

transferred to a fresh microcentrifuge tube and incubated on ice for 30 minutes.  The 

sample was vortexed for 30 seconds every 10 minutes. Then the solution was 

centrifuged at 10,000 x g for 10 minutes at 4°C. The supernatant was transferred to a 

new microcentrifuge tube.  The cell pellet was resuspended in an additional 300 µl Lysis 

Buffer with inhibitors, sonicated on ice (on low setting), 5 times in 3 second pulses with 

10 seconds between pulses.  After an additional centrifugation at 10,000 x g for 10 

minutes at 4°C, the supernatant was transferred to the microcentrifuge tube containing 

the previous supernatant, and vortexed to mix well, forming the total cell lysate.  Lysates 

were stored briefly at -20°C, or at -80°C for longer term storage, thawed, and kept on 

ice during experimental set-up.  Protein concentration was assayed using Pierce BCA, 

micro BCA, or detergent-compatible protein assay methods, per kit instructions, with 

measurements taken spectrophotometrically, comparing to a standard curve generated 
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by measurement of a dilution series, in the lysis buffer used for the cell lysates being 

assayed, using BSA protein standard of known concentration. 

 

Cellular Compartment Lysate Fraction Preparation 

 Cytoplasmic and Nuclear fractions were separated, per manufacturer 

instructions, using the NE-PER nuclear protein extraction method.  Stepwise lysis of 

cells and centrifugal isolation of nuclear and cytoplasmic protein fractions, involving a 

short series of progressively more harsh lysis buffers and faster speeds of 

centrifugation, using a benchtop microcentrifuge.  Whole cell fractions were maintained 

for each lysate that underwent fractioning, as reference. 

 

Electrophoretic Separation of Proteins 

   Protein samples were solubilized by boiling in the presence of 1X NuPAGE LDS 

Buffer, with 10% reducing agent (Bond Breaker TCEP or DTT).  An aliquot of the 

sample was loaded onto a precast 1-dimensional denaturing NuPAGE Novex 4-12% 

Bis-Tris SDS PAGE gel (typically 50 µg total protein for most applications, or other, as 

noted for each experiment).  Electrophoresis was performed at a constant 200 volts, 

running time approximately 45 minutes to 1 hour, dependent upon the sizes of the 

expected protein bands.  Commercial protein standards enabled the estimation of 

apparent molecular weights. 
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Protein Blotting 

 Protein transfer from gel to PVDF or nitrocellulose membrane was carried out by 

electroblotting in a dry electroblotter, the iBlot, as described by the manufacturer 

(Invitrogen/Life Technologies, USA). The protein transfer process lasted approximately 

7 minutes. After transfer, gel and membranes were checked to verify the protein 

standards were clearly visible on the membrane. 

 

Immunodetection (Western Blotting) 

  The Western Blotting procedure was performed according to the protocols from 

Santa Cruz Biotechnology, Cell Signaling Technology, and Abcam.  Briefly, the 

membrane was blocked against nonspecific binding by incubating the membrane in 

freshly prepared 1X TBST/5% Nonfat Milk (or BSA, if instructed by antibody 

manufacturer) for 1 hour at room temperature or overnight at 4°C. The membrane was 

washed in 1X TBST 5 times (2 x 1 min, 3 x 5-10 min) and incubated with primary 

antibody diluted at appropriate concentration for the antibody in 1X TBST/5% Nonfat 

Milk (or BSA) for 1 hour at room temperature or overnight at 4°C. The membrane was 

washed in 1X TBST 5 times (2x1 min, 3x 5-10 min), and incubated with the secondary 

(2°) antibody-HRP (horseradish peroxidase) conjugate at room temperature for 1 hour.  

After this, the membrane was washed in 1X TBST 5 times (2x1 min, 3x 5-10 min) at 

room temperature to remove excess 2° antibody conjugate. The specific protein bands 

were detected using ECL chemiluminescence reagent and developed for 5 minutes at 

room temperature.  Excess chemiluminescence reagent was drained, and membranes 

with were wrapped in plastic film and imaged on a Fuji Chemiluminescence Imaging 
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System, with digital photo-documentation using Multi Gauge Software that was also 

used for digital semi-quantitative densitometry analysis for graphics production in some 

experiments. 

 

Zmpste 24 Protease Activity Assay 

 Zmpste24 was assayed in triplicate on crude human diploid fibroblast nuclei from 

cells essentially as previously described26.  A significant modification was that the 

substrate used was the simple hexapepide: RSY*LLG, where Y* is a 14C-labeled 

tyrosine.  The labeled peptide was prepared by conjugation with 14C-methylamine-

glutaraldehyde, also as previously described106.  Briefly, nuclei were prepared from cell 

pellets by resuspending the cells to a final density of 4 x 108 cells/ml in lysis buffer. 

Nuclei were isolated after 2 more washes, in the same buffer, and pelleting by 

centrifugation in a Beckman J-14 rotor for 10 minutes at 365 x g.  For assay, the nuclei 

were resuspended in the same buffer without NP-40.  Protein concentration was 

obtained by means of the Micro BCA Protein Assay Reagent Kit. The endoprotease 

reaction is initiated by the addition of 14C-labeled peptide (RSY* LLG, final 

concentration: 5 µM) to the nuclear preparation in a final volume of 200 µl in 10 mM 

MES, pH: 6.0. The reaction stopped at the end of 20 min by the addition of 5 µl of 

glacial acetic acid. The RSY* peptide reaction product was isolated by reverse phase 

thin layer chromatography (Analtech, Inc. Newark, DE) and visualized by 

autoradiography. A synthetic, 14C-RSY* peptide standard was run on each plate to aid 

in the identification of this expected product. The amount of labeled RSY formed in the 
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assay was determined by scraping the appropriate spots into tubes and quantitation of 

radioactivity with a gamma counter.  

 

Peptide Phosphorylation Residue Mapping by Edman Degradation 

 This assay detects phosphorylation of amino acid residues.  HeLa cells 

containing a Doxycline-Inducible GFP-LA or GFP-Progerin (A gift from Dr. R. Goldman, 

Northwestern University) construct were induced for expression for 24 hours prior to 

labeling, as described in “Cell Culture” section.  Labeling of phosphopeptides was 

achieved by removing growth medium from adhered, induced cells, rinsing with 

phosphate-free medium containing 10% phosphate-reduced fetal-bovine serum, 

doxycyclin, and [32P]-orthophosphate (1mCi/ml).  Cells were incubated overnight at 

37°C in 5% CO2
107,108.  Lysates were prepared in immunoprecipitation buffer from 

expression induced, phospho-labeled cells expressing GFP-fused wild type LA or GFP-

Progerin that had been incubated overnight with 32P to label phospho-proteins.  

Immunoprecipitation was performed with anti-GFP antibody bound to Protein A-

conjugated sepharose beads overnight at 4°C.  Immunoprecipitated protein was 

digested with 3-bromo-3-methyl-2-l(2-nitrophenyl)thiol-3H indole (BNPS-skatole), as 

previously described109.  Briefly, cleavages were performed in 70% distilled acetic acid 

0.1%/phenol for 48 hours at room temperature by using a 10-fold excess of the reagent. 

After the addition of β-mercaptoethanol (10-fold excess) and a further incubation for 5 

hours at 37°C, the excess BNPS-skatole was extracted with ethyl acetate and the 

resulting aqueous phase dried by evaporation.  The protein was precipitated 1 hour in 

the presence of BSA and 15-20% ice cold trichloroacetic acid (TCA) then centrifuged at 

3000 rpm for 5 minutes at 4°C.  Supernatant was removed and pellet was centrifuged 
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again to remove additional supernatant before washing with ice cold absolute ethanol.  

Ethanol supernatant was removed in 2 additional centrifugation-supernatant removal 

steps, and the pellet was air dried then resuspended in 250 µl 1X LDS Sample Buffer. 

25 µl aliquots of the suspensions were loaded onto SDS gels alongside protein ladders, 

electrophoresed, and transferred to PVDF by electroblotting.  Coomasie staining 

revealed 5 peptide fragments generated by the BNPS-skatole, and the C-terminal band 

was identified by Western blot with an antibody directed to C-terminal Lamin A. Using 

the staining gels as a guide, the portions of the PVDF membranes containing the 

Western Blot-identified C-termini were excised and incubated with trypsin110,111.  To 

avoid the formation of oxidation-state isomers, the protein was oxidized to completion 

by resuspension of the TCA pellet in 50 μl cold performic acid and incubating for 1 hour 

on ice, before adding 400 μl deionized water, freezing, and lyophilizing.  Manual Edman 

degradation was initiated by resuspending the lyophilized pellet in 50 μl 6 M HCl and 

incubating for 1 hour at 110°C to hydrolyze the protein to liberate the individual 

phosphoamino acids.  After additional lyophilization to remove HCl, Hunter Thin Layer 

Electrophoresis (HTLE) was performed as directed for phosphoamino acid analysis by 

the manufacturer (CBS Scientific, USA), and as previously described112.  

 

Preparation of Cell Extracts for Mass Spectrophotometry 

 Proteins were separated and purified by SDS-PAGE, visualized by Coomassie 

staining and the appropriate bands excised. The isolated proteins were treated with 

iodoacetamide and digested with trypsin. MALDI-TOF was performed with a PerSeptive 
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Voyager DE-RP mass spectrometer in the linear or reflector mode by staff at the Protein 

Chemistry Core Facility at Columbia University. 

 

Methods III.:  Cell Biology Methods 
 
 
Cell Culture-General Cell Culture Techniques 

 All mammalian cell lines were cultured in a humidified incubator at 37°C with 5% 

or 10% CO2, per cell requirements.  Cell culture work was done in a laminar-flow hood 

for which sterility was promoted by UV light treatment at all times when not in use. All 

work surfaces within, and materials used inside the hood were surface-cleaned with 

70% ethanol before and after work in the hood. 

 HeLa cells, BJ human diploid fibroblasts, and WI-38 human diploid fibroblasts 

were plated in standard DMEM growth supplemented with 10% fetal bovine serum 

(FBS) in 5% CO2, at 37°C.  Tet-On HeLa cells containing pEGFP-C1-Myc-LA/LA-del50 

had 2 μg/ml doxycyclin added to the growth medium for 24–50 h when induction of 

expression was desired only.  All 3T3 cells were cultivated in DMEM supplemented with 

10% calf serum (CS) and incubated at 37°C with 5% or 10% CO2.  As the DMEM 

formulation contains 3.7% NHCO3, 10% CO2 was used to prevent ammonia buildup in 

the medium, when required to optimize growth pH for the transfected cell cultures, as 

recommended by NEB and Invitrogen.   DMEM from ATCC was also used, and as it 

contains 1.5% NHCO3, 5% CO2 was used.  The fibroblast RheoSwitch Cell Line 

NIH3T3–47 (“Rheoswitch Cells,” New England Biolabs, Frankfurt, Germany) were 

derived from mouse NIH 3T3 cells, stably transfected with pNEBR-R1 Vector 

(“Regulator Plasmid,” see details below describing plasmid constructs), and selected for 
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optimal RSL1 inducible expression properties.  These cells were additionally 

supplemented with 800 µg/mL G418 antibiotic as selection reagent to maintain the 

stable transfection with the Regulator Plasmid, as well as 200 µg/ml Hygromycin B to 

maintain the Expression Plasmid.   

 

Induction of Rheoswitch Expression System 
 
 RSL1 ligand (New England Biolabs, Frankfurt, Germany) or GenoStat (Millipore, 

Billerica, MA, USA) are both synthetic diacylhydrazine [(N-(2-ethyl-3-methoxybenzoyl)-

N´-(3,5-dimethylbenzoyl)-N´-tert-butylhydrazine].  Diacylhydrazine is one member of a 

family of compounds that have been found to act as nonsteroidal ecdysone agonists 

and can function as gene inducers113,114.  

 

Indirect Immunofluorescence and Protein-Protein Co-Localization in Mammalian Cells 

 To examine intracellular protein localization, fluorescent microscopic analysis of 

the green fluorescent protein-fused proteins was used.  Growth medium was removed 

prior to visualization, cells were rinsed with 1X PBS, and medium was replaced using 

DMEM without additives (including no Phenol Red) for visualization under fluorescence 

microscopy. The cells were cultured in coverslip chamber cell culture dishes or plated 

as usual in culture dishes and harvested by trypsinization prior to transferring to 

coverslip chamber dishes.  For microscopic visualization using indirect 

immunofluorescence, cells were plated on glass coverslips in culture dishes, treated, 

and incubated as per the requirements of the specific experiment, then rinsed with 1X 

PBS prior to fixing by incubation in 4% formaldehyde PBS (pH 7.4)  for 15 minutes at 
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room temperature, or 100% methanol for 5 minutes at -20oC. Following 3 washes in 

PBS, the cells were permeabilized with 0.2% Triton X-100 in PBS for 5 minutes on ice, 

quickly washed, and blocked with 10% BSA in PBS for 5 minutes on ice. The coverslips 

were incubated for 1 hour at room temperature with primary antibody at concentrations 

noted per experiment. Cells were then washed and incubated at room temperature for 1 

hour with fluorophore-conjugated 2o antibody.   After 3 final PBS washes, DAPI-

perfused antifade mounting edium was used to seal the stained cells between the 

coverslip and a microscope slide.  Images were obtained by on a Nikon Diaphot 200 

microscope equipped with a Photometrics Sensys cooled CCD digital camera. 

 

Cell Cycle Manipulation 

 For serum starvation experiments, medium was removed from actively growing 

cells, cells were rinsed with PBS, and medium was added containing the minimum 

amount of serum required for survival (0.5% serum for HeLa, WI-38, or BJ cells; 0.3% 

serum for the 3T3 cells).  The minimal serum is insufficient to supply mitogens for cell 

proliferation.  Cells were collected at stated time points after serum removal.  For 

contact inhibition experiments, the cells were seeded sparsely (2.5 × 103
 cells/cm2) or 

densely (1 × 105 cells/cm2) and cultivated for indicated times. 

 

Cell Cycle Analysis Methods: 

 Cell Cycle Analysis by Flow Cytometry.  Cells were plated at the same density 

and control and experimental cells treated the same way except that no DMSO was 

added instead of induction reagent, in a volume to duplicate the DMSO vehicle of the 
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induction reagent used for the experimental cells. Cells were harvested by trypsinization 

using 0.25% Trypsin-EDTA, washed 3 times with 5-10 ml 1X PBS, and fixed in ice cold 

70% ethanol, added dropwise with gentle trituration, with tubes in ice, to a volume of 3-5 

ml ethanol.  Tubes were then transferred to –20oC for a minimum of 2 hours, or 

overnight to allow for complete fixation. To stain DNA for flow cytometric DNA 

content/cell cycle analysis, cells were centrifuged to form a loose pellet, washed 3 times 

with 10 ml PBS, then after removal of supernatant PBS, cells were spun again to 

remove residual PBS.  After removal of ethanol, cells were stained with 50 μg/ml 

Propidium Iodide/RNase in the dark for 30 minutes at room temperature and analyzed 

on an Accuri C6 flow cytometer.   Collected data were further analyzed by using FCS 

Express V3 or ModFit LT 3.2 cell cycle analysis software programs.  Gates were set 

over each of the sub-G1, G0/G1, S, and G2/M peaks, and then the percentages of cells 

in different cell cycle phases were calculated to determine percentages of cells in 

different cell cycle phases.   

   Assay of Cellular Proliferation by BrdU Incorporation.  3T3 cells or L647R 

RheoSwitch cells were seeded in triplicate at 4 x 103 cells/well in a 96-well plate and 

incubated overnight. Cells were then treated with various concentrations of GenoStat 

inducer, or DMSO as vehicle control, for 48 hours. Finally, 10 μM BrdU was added to 

the plate and cells were incubated for 4 hours.  BrdU incorporated into DNA was 

detected by incubation with monoclonal anti-BrdU antibody linked to horseradish 

peroxidase (HRP). The HRP substrate 3,3’, 5,5”-tetramethyl-benzidine (TMB) was used 

to develop the color.  Stop solution was added after 30 minutes of development, and 

absorbance at 450 nm was measured using a platereader, with quantification of 
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absorbance representing amount of BrdU incorporated into cells to indicate level of 

proliferation occurring in the corresponding cells.  

   Assay of Cellular Proliferation by Incorporation of [3H]-Thymidine.  This 

proliferation assay was performed in conjunction with the Zmpste24 activity assay.  

DNA synthesis was monitored by pulse labeling for 30 mm with (1 uCi/ml) [3H]- 

thymidine at various times. The plates (1 x l06/100mm plate) were washed 2 times with 

cold PBS (1X), and the cells harvested by scraping with a rubber policeman into 1 ml of 

PBS. The suspension was homogenized by sonication, and a 0.2-ml aliquot was mixed 

with 1 ml of 10% cold trichloroacetic acid (TCA). The insoluble material was collected on 

a Millipore filter and washed with cold TCA. The filter was dried and the radioactivity 

incorporated was determined by liquid scintillation counting. 

 Assay of Cellular Proliferation by Detection of Ki-67.  Ki-67 is a nuclear protein 

commonly used as a negative marker for quiescence, as G0 is the only cell cycle phase 

in which it is not found.  Detection was carried out by immunostaining with an anti-Ki67 

primary antibody and a fluorescence-conjugated secondary antibody, as described in 

“Indirect Immunofluorescence” on L647R PreA construct Rheoswitch cells that were 

plated on coverslips and treated with induction reagent or DMSO, as indicated.  

Presence of Ki-67 indicates active cell cycling.  

 

Methods IV.:  Gene Expression Analysis Methods 
 
 

 Whole Genome Exon Transcript Microarray 

 Total RNA was isolated and pooled from 3 culture dishes 48-hours 

posttransfection, for whole genome microarray gene expression profiling, using an 
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Affymetrix Mouse Exon 1.0ST GeneArray, as directed by the Affymetrix GeneChip 

Whole Transcript (WT) Assay for Exon Chips Labeling Manual Ver 4 (Affymetrix, Santa 

Clara, CA).  Processing of the GeneChip and initial extraction of raw data was 

performed at the University of Tennessee-Knoxville, Microarray Corelab Facility.  In 

brief, RNA reduction was performed using a RiboMinus kit from Invitrogen using 1 µg 

total RNA starting material, which was subjected to first and second strand cDNA 

synthesis with the GeneChip Sample Cleanup Module for cRNA.  The resultant cRNA 

product was quantified with the Nanodrop ND-1000.  A second round of cDNA synthesis 

was performed with the GeneChip WT cDNA synthesis kit with 10 µg of cRNA.  The 

remaining cRNA strand was hydrolyzed with RNase H and the single-stranded cDNA 

was isolated with the GeneChip Sample Cleanup Module for cDNA.  The single 

stranded cDNA was quantified by Nanodrop and 5.5 µg of ssDNA was fragmented to 

50-200 bp with WT Terminal Labeling kit UDG and APE1 enzymes.  The fragmented 

ssDNA was terminally labeled with the DNA labeling reagent and TdT enzyme from the 

kit.  A hybridization cocktail was prepared with the resultant cDNA and recommended 

controls then injected into the Mouse Exon 1.0ST arrays prior to hybridization for 16 

hours at 45oC in Affymetrix’s 640 Hybridization Oven.  Hybridized arrays were washed 

and stained using the Affymetrix 450 Fluidics Station and the GeneChip Hybridization 

Wash and Stain kit.  Arrays were held in the dark at room temperature and immediately 

scanned with the Affymetrix 7G GeneChip Scanner.  Resultant raw signal files were 

imported into Partek Genomics Suite 6.4 (St. Louis, MO) using the RMA (robust 

multichip algorithm) for normalization.  All data were log2 transformed during the 

importation process, and a PCA (Principle Components Analysis) plot was generated 
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with all probe sets to determine that samples grouped according to treatment.  Initial 

results indicated the chips grouped according to treatment as expected (quality 

evaluation plots not shown).  A gene level summary was created as recommended by 

the EXON flow path in Partek using the following parameters: Mean, Exclude outliers 

above and below 3 standard deviations from the mean.  Detection of differentially 

expressed genes was performed by ANOVA with exclusion criteria of p-value</=0.05.  

After receiving the raw data, these were uploaded to Ingenuity Pathways Analysis™ 

Software (Ingenuity® Systems, www.ingenuity.com) for further evaluation. This software 

was use to formulate a “Functional Analysis,” a “Canonical Pathways Analysis,” and to 

generate “Networks” and “Pathways” of the implicated molecules.  Molecules from the 

dataset that met the differential gene expression value cutoff of p-value</=0.05, as 

determined by the ANOVA analysis from the Partek software, were considered for the 

Ingenuity analyses.  The Functional Analysis identified the biological functions and/or 

diseases that were most significant to the dataset, while the Canonical pathways 

analysis identified the pathways from the IPA library of canonical pathways that were 

most significant to the data set.  For the Functional Analysis, molecules from the dataset 

were associated with biological functions and/or diseases in the Ingenuity Knowledge 

Base, and a Right-tailed Fisher’s exact test was used to calculate a p-value determining 

the probability that each biological function and/or disease assigned to that data set is 

due to chance alone.  The Canonical Pathway Analysis associated the molecules with a 

canonical pathway in the Ingenuity Knowledge Base.  The significance of the 

association between the data set and the canonical pathway was measured in 2 ways: 

1) a ratio of the number of molecules from the data set that map to the pathway divided 

http://www.ingenuity.com/
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by the total number of molecules that map to the canonical pathway is displayed. 2) 

Fisher’s exact test was used to calculate a p-value determining the probability that the 

association between the genes in the dataset and the canonical pathway is explained 

by chance alone.  For the “Network Generation,” the molecules, were overlaid onto a 

global molecular network developed from information contained in the Ingenuity 

Knowledge Base.  Networks were then algorithmically generated based on their 

connectivity. The “My Pathways” Path Designer produces graphical representations of 

the molecular relationships between molecules. Molecules are represented as nodes, 

and the biological relationship between 2 nodes is represented as an edge (line). All 

edges are supported by at least one reference from the literature, from a textbook, or 

from canonical information stored in the Ingenuity Knowledge Base. Human, mouse, 

and rat orthologs of a gene are stored as separate objects in the Ingenuity Knowledge 

Base but are represented as a single node in the network. The intensity of the node 

color indicates the degree of up- (red) or down-(green) regulation. Nodes assayed in the 

dataset but not revealing a statistically significant change in regulation are in gray, while 

genes not assayed but contained in the IPA knowledge base as related to the assayed 

genes are represented as white nodes.  Nodes are displayed using various shapes that 

represent the functional class of the gene product. Edges are displayed with various 

labels that describe the nature of the relationship between the nodes (e.g., P for 

phosphorylation, T for transcription). 

  

 Cell Cycle Pathway-Focused RT-qPCR Array 

   Cell cycle gene expression was determined using SABiosciences RT-qPCR Cell 

Cycle Gene Expression Analysis Assay (RT2 Profiler PCR Array Cell Cycle Pathway 
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Focused Assay), and the My iQ5 system (Bio-Rad) according to the manufacturer's 

protocol. In preparation for the cells from the Rheoswitch 3T3 inducible construct 

expression cell lines (as described in “Development of a Model System of Inducible 

Stable Lamin Isoform Expression Cell Lines” section),  cells were plated in standard 

growth medium for the Rheoswitch Inducible cell lines (as described in Cell Culture 

section) at 3 x 106 cells/50 cm2 tissue culture dish and allowed to adhere in the 

incubator for at least 4 hours prior to adding induction reagent (Genostat) or DMSO.  

500nM Genostat was used for induction, with a corresponding volume of DMSO added 

to the media of control (uninduced/NI “Not-Induced”) plates.  The cells were incubated 

for an additional 24 hours, at which time they were collected by brief trypsinization, 

which was neutralized by addition of serum-containing medium, prior to gentle (1,300 x 

g) centrifugation in a 50 ml conical tube for 5 minutes, followed by rinsing 2x in cold 1X 

PBS.  Cells were then flash frozen in liquid nitrogen and stored at -80oC until RNA 

isolation was performed.  For the RNA isolation, the cells were thawed briefly on ice, 3 

samples were pooled for each genotype and purified using the Qiagen™ RNeasy Mini 

kit protocol.  RNA quantity and purity were determined using a NanoDrop ND-1000, and 

aliquots were submitted to the ETSU Molecular Biology Core Facility for assessment of 

RNA integrity by determining the 28S/18S ratio and RNA integrity number using the 

Expert Eukaryote Total RNA Nano assay on the Bioanalyzer 2100 (Agilent 

Technologies, USA).  Results indicated excellent RNA quality (RNA Integrity Scores 

ranged from 9.7/10-10/10), and concentrations varied from 59 ng/µl to 768 ng/µl.  A 

quantity of 2µg of high-quality RNA (260/280 ratios slightly higher than 2.0 and 260/230 

ratios higher than 1.7, RIN>8.0) for each pooled sample was used to perform each cell 
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cycle gene pathway-focused quantitative RT-PCR (RT-qPCR) array plate assay.  The 

assays were performed as directed by the manufacturer, beginning with Genomic DNA 

Elimination, followed by first strand cDNA synthesis using the RT2 First Strand cDNA 

Kit.  All RT-qPCR reactions use the RT2 SYBR Green qPCR Master Mix.  Each cDNA 

sample is used to prepare a single reaction mix aliquoted equally into all wells of a 

single 96-well reaction plate.  This plate contains a primer set for 84 separate cell cycle 

pathway-focused genes, along with a standard set of 5 routinely used “housekeeping 

genes” for normalization of experimental runs.  In addition, each plate has 3 control 

wells for demonstration of genomic DNA contamination, reverse transcription efficiency, 

and PCR efficiency.  All significant changes in gene expression levels are reported in 

the article; the complete list of genes assayed on the array are presented in the full 

assay results in Appendix A.  Further information can be found at the manufacturer's 

website (http://www.sabioscience.com/rt_pcr_product/HTML/PAMM-020A.html). 

   The BioRad iQcycler Raw data were analyzed on BioRad iQ5 software, with 

parameters set uniformly for all plates as follows: Data Analysis Window was set at Full 

cycle scan, Rolling Boxcar Intracycle Digital Filter, PCR Baseline Subtracted Curve Fit 

Analysis Method, with Base Line Cycles set automatically by the software using the 

built-in optimization algorithm, and a baseline threshold set at 61 (above background 

and within lower ¾ of logarithmic amplification phase for all samples assayed).  For 

each gene included on the array, the threshold cycle (Ct) data, representing the cycle 

number at which amplification for a given analyte surpassed the baseline threshold, 

indicating amplification above background, and, once normalized, represents the 

amount of a given transcript that is present within the assayed sample.  The Ct data 

http://www.sabioscience.com/rt_pcr_product/HTML/PAMM-020A.html
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were assembled into an Excel upload file per SABiosciences Data Analysis Instructions 

and uploaded to the SABiosciences web-based data analysis module.  In determining 

which genes available on the array to use as our reference (“housekeeping”) gene, 

Heat-Shock Protein 90 (Hsp90) was selected because no significant effect on its 

expression level had been detected in any of our gene expression analyses involving 

these lamin constructs or the EGFP-only construct, compared to uninduced cells. 

Hsp90, along with data for the Reverse Transcription Control and Positive PCR Control, 

were used to normalize the data for comparison.  Initial data from 2 array plate assays 

of uninduced cells (DMSO-treated/NI, “Not Induced”), per cell line (wtLA, L647R PreA, 

and del50 cells), were compared to each other to establish consistency of “baseline 

gene expression” among uninduced cells.  The establishment of a consistent baseline 

of gene expression between uninduced cells is critical for comparative evaluation of 

gene expression changes, between each cell line, that are due to induction of 

expression of the lamin constructs.  As the cells used in development of the cell lines 

were each originally taken from the same parent culture, transfected with the different 

constructs and then clonally selected, we expected to see only the most subtle 

differences in gene expression between the 3 uninduced cell lines.  Upon comparison to 

each other, we found more gene expression variation among the uninduced cell lines 

than we had expected.  Therefore, subsequent experiments were postponed for wtLA 

and del50, and a triplicate assay for statistical relevance focused only upon comparing 

L647R PreA induced cells and the uninduced cells of the same line.  After determining 

cell line-cell line variation of gene expression was exhibited among uninduced cells of 

each cell line, a third assay of uninduced cells was performed only for the L647R PreA 
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cell line, followed by a triplicate set of array plates for the induced L647R PreA cell line.  

The gene expression profile of the induced L647R PreA-expressing cells was compared 

to the uninduced cells of the same line.  Using the SABiosciences data analysis 

software, Volcano Plot analyses were prepared, representing the statistical significance 

of gene expression changes.  In those graphic analyses, the X-axis plots the log2 of the 

fold-differences, while the y-axis plots their p-values based on the student’s t-test of the 

uploaded replicate raw Ct data. Symbols outside the gray area indicate fold-differences 

larger than the user defined threshold, which was set to 2-fold-expression for these 

analyses. The red symbols identify up-regulated genes, and the green symbols identify 

down-regulated genes.   Symbols in the Volcano Plots above the blue line identify fold-

differences at least as statistically significant as the defined threshold, which was set to 

p</=0.05.  The Volcano Plot can be found as Appendix B.  Using the Volcano Plot data, 

Excel graphics were prepared for further visual comparison of the data, and are 

included within Chapter 3 Results Section text. 

RT qPCR Cycling Conditions:   Cycles—Duration--Temperature 
        1 cycle--10 minutes--95°C 
       
     40 cycles-- 15 seconds 95°C 
       1 minute2 60°C 
            
  Followed by 2-Step Amp+Melt.tmo Dissociation (Melting) Curve, as 
recommended by SABiosciences for BioRad: iCycler®, MyiQ cycler, iQ5. 
 

Cell Cycle Control Pathway-Specific Antibody Array (Protein Array) 

 The Full Moon Biosystems Cell Cycle Control Phospho Antibody Array 

(PCC238) Assay was performed as per manufacturer instructions.  Briefly: L647R PreA 

cells that had been plated in 2 50 cm2 cell culture dishes and induced 72 hours using 
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500 nM GenoStat, or, for control, treated with DMSO for 72 hours, were rinsed twice in 

1X PBS, before adding 500 µl of ice cold 1X PBS containing 1X Halt Protease and 

Phosphatase Inhibitors, and using a cell scraper to scrape the cells from the dish culture 

surface and transfer to a microcentrifuge tube on ice.  Culture density at harvest was 

approximately 60-70%. Cell lysates were prepared as previously described, except 

using the Protein Extraction Buffer provided in the Full Moon Biosystems Antibody Array 

Kit, to which Halt Protease and Phosphatase Inhibitors had been added (1X final 

concentration).  The protein concentration was measured by performing a micro BCA 

assay per manufacturer protocol (Pierce/Thermofisher), and concentration was adjusted 

to10 µg/µl using additional Lysis Buffer with inhibitors.  Lysates were packaged in 

parafilm-secured microcentrifuge tubes and shipped on dry ice overnight to the Full 

Moon Biosytems Facility in California, USA, to the attention of Dr. Yaping Zong, who 

graciously performed the next steps of the assay in his laboratory, where conditions and 

equipment are optimized for the processing.   

 Proteins were labeled in Labeling Buffer, using the Biotin/Dimethylformamide, 

both reagents from the Antibody Array kit, with a 2-hour incubation at room temperature.  

Stop Reagent (from the kit) was added and the mix was incubated an additional 30 

minutes at room temperature, with mixing.  Full Moon Biosystems Cell Cycle Control 

Phospho Antibody Array (PCC238) Slides were submerged in Blocking Buffer (from the 

kit) and shaken 40 minutes at room temperature.  After rinsing the slides with Milli-Q 

grade water, they were incubated in the Coupling Chamber (from the kit) with 85 µg of 

labeled protein sample in 6 ml Coupling Solution (from the kit) on an orbital shaker for 2 

hours at room temperature.  Slides were removed from the coupling chamber and 
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washed 3 times with fresh Wash Buffer then rinsed extensively with deionized (DI) 

water.  For detection, each slide was submerged in 30 ml of Cy3-Streptavidin solution (5 

µg/ml), and incubated on an orbital shaker for 45 minutes at room temperature in the 

dark.  Slides were then washed 3 times with fresh Wash Buffer and rinsed extensively 

with DI water, then dried with compressed nitrogen before scanning on the Axon 

GenePix Array Scanner.  PANDA software was used for analysis. 

 

Peptidyl Prolyl Isomerase (Pin1) Inhibition with Juglone 

 Juglone, a chemical derived from the Black Walnut, has been shown to 

specifically and irreversibly inhibit the prolyl isomerization/rotamase activity of 

mammalian/human Pin1, Ess1 in yeast, or parvulin in E. coli.  Cells were treated with 5-

15 µM Juglone for 72 hours, as previously described115. 

 

Lamin A Multi-Isoform Motif Analysis  

 The publicly available online databases Human Protein Reference Database 

(HPRD, www.HPRD.org), Phospho.ELM Database (http://elm.eu.org/)116 and 

PhosphoSite (www.Phosphosite.org)117-119  were used to survey the LA protein 

sequence (with a focus on the PreA C-Terminal 66-Amino Acid Residue Fragment), for 

sites known to be substrates of indicated kinases or binding sites of indicated proteins, 

or sites known to, in similar context, act as substrates or bind the proteins.  The sites 

were queried, cross-referenced among each other and among published scientific 

literature.  HPRD is a compendium of annotated motifs for which curated literature is 

cross-referenced to support the indicated interactions with the recognized motifs120.  
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The Phosphosite website is also a curated database of protein phosphorylation 

information that was valuable.  While curated data are maintained in the Phospho.ELM 

Database, this database also generates predictive interaction information116. 
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CHAPTER 3 

RESULTS 

PreA Expression is Detected in Cell Cycle Arrest 

 PreA expression is not readily detected in proliferating cells but can be induced 

by conditions that stimulate cell cycle exit, as in quiescence induced by serum 

starvation, contact inhibition, or as in senescence by passaging cultured cells to high 

population doublings. Ukekawa and associates described a dramatic increase in PreA 

expression in cells induced to enter senescence and postulated PreA might cause cells 

to become senescent in response to a disruption of interaction of chromatin, pRb, or 

other molecules with mature LA121.  The Kennedy group found short-term 

overexpression of PreA to reduce cellular proliferation, while they associated long-term 

overexpression with delayed entry to senescence103.  Additionally, Ragnauth et al. 

recently suggested PreA expression occurred prior to vascular smooth muscle cells’ 

arrival at senescence, under inducing conditions, and furthermore, this expression 

accelerated entry to senescence122.  To investigate whether PreA expression is directly 

related to quiescence, as well, we first address the question of whether PreA expression 

appears to be a side effect or cause of quiescence.  Initially, we demonstrated PreA 

expression when cells are induced to enter quiescence by serum starvation.  In Figure 

4, immunoblotting of lysates collected from HeLa cells at 24 and 48 hours after removal 

of serum from the culture reveal increasing accumulation of PreA.  Detection of this 

expression in serum starved cells is in contrast to the absence of detectable PreA in 

lysates from proliferating cells maintained in full serum.  The levels of mLA are 

consistent, with a minimal degree of decreasing expression as the precursor 



74 
 

accumulates rather than contributing to the continuing supply of processed lamin.   

Figure 4.  Accumulation of Prelamin A as Cells Enter Quiescence.  Panel A: Western 
Blot of lysates from proliferating HeLa cells in full serum (+FBS), 24 hours and 48 hours 
after removal of serum (-FBS), using a PreA C-terminus specific antibody (Top blot 
panel), and an antibody that detects multiple LA isoforms (Lower blot panel). Immuno-
fluorescence using the PreA C-terminus antibody in 48-hour serum starved BJ (human 
foreskin) fibroblasts (Panel B), and full serum (Panel C). 
 
 
 In Figure 4, the smaller A-type lamin isoform, Lamin C, is demonstrated as a 

band below the mature LA (mLA) band.  PreA presents as an additional band situated 

above the mLA band, present in the –FBS lanes only, with increased accumulation 

evident at 48 hours compared to 24 hours of serum starvation. Immunofluorescence 

using the PreA c-terminus antibody demonstrates PreA accumulation in the nuclei of 

serum-starved BJ fibroblasts that is completely absent from the proliferating cells in full 

serum. 

Panel B:  Serum Starved Cells            Panel C:  Proliferating Cells

Panel A:  Western Blot

Panel A:  Western Blot 

-Prelamin A 
-Lamin A 
 

-Lamin C 
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Accumulated PreA is Farnesylated and Carboxymethylated 

  As mitogen deprivation and contact inhibition are able induce quiescence and 

PreA accumulation, and FTI-treATMent of cells also causes quiescence and 

accumulation of PreA, we asked the question if mitogen deprivation or contact inhibition, 

then, might interfere with the enzyme-mediated modifications that trigger proteolytic 

cleavage of PreA?  We subjected lysates isolated from serum-starved or contact-

inhibited, quiescent cells to analysis by mass spectrometry (Figure 5).  

 

 
Figure 5.  Mass Spectrometry Analysis Reveals Accumulated Prelamin A is Farnesyl-
Carboxymethylated (FC’d).  A Mass Spectrometry Trace of Serum-starved BJ 
demonstrates the presence of FC-PreA (arrow), Left Panel.  The graphic in the right 
panel compares the ratio of FC-PreA in proliferating BJ Fibroblasts, to that in RD 
Fibroblasts (Zmpste24-null or -deficient) which accumulate PreA.  Lamin B is 
permanently FC’d. 
 
 
 

  As shown in Figure 5, Mass Spectrometry demonstrates accumulated PreA in 

serum starved or Zmpste24-deficient cells is farnesylated and carboxy-methylated.  The 

farnesylated-carboxymethylated status of PreA in these cells indicates that 
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accumulating PreA has undergone FC-processing.  This means the posttranslational 

enzymatic processing system that prepares PreA for the Zmpste24-specific cleavage is 

intact in these cells.  Therefore, the accumulation of PreA seen in serum-deprived, 

quiescent cells is not due to lack of FT or ICMT activity. 

 

Zmpste24 Expression Level Does Not Parallel Activity Level in Quiescent Cells 

  As we demonstrated, the enzymatic modification pathway that prepares the PreA 

substrate for proteolytic processing remains intact in quiescent cells, yet Zmpste24 

proteolysis fails to occur.  We reasoned, therefore, some direct inhibition of the 

Zmpste24 protease must occur.  To investigate if Zmpste24 activity is hindered in 

conditions that induce quiescence, such as serum starvation, we assayed Zmpste24 

activity in proliferating cells and serum starved cells, as they progress toward 

quiescence.  We used a fluorescently-tagged synthetic substrate to measure Zmpste24 

activity, and radioactively labeled thymidine to simultaneously measure cell proliferation 

(Figure 6).  Measurement of the fluorescence level produced by cleavage-fluorophore 

activation serves to indicate the level of Zmpste24 activity in the lysates, while the level 

of retained radioactivity indicates rate of proliferation of the cells.  
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Figure 6.  Zmpste24 Activity Decreases Parallel to the Rate of Cellular Proliferation as 
Serum Starvation Induces Quiescence.  Cells were incubated with 3H-Thymidine for 30 
minutes prior to collection of lysates.  In Panel A, lysates were collected at the time of 
serum removal (0 h), and at 4-hour increments over a 32-hour serum deprivation time 
course.  Scintillation counting measured the radioactive nucleotide in the lysate, which 
indicates the rate of DNA synthesis in the cells assayed, and thus the rate of cellular 
proliferation (dpm/mg protein,Y1-axis, left).  Lysates from the same timepoints were 
incubated with a fluorophore-conjugated synthetic peptide substrate, homologous to the 
PreA cleavage site.  Zmpste24 cleavage exposes the fluorophore, allowing measurable 
fluorescence emission.  Cleaved substrate was measured in proportion to the input 
substrate to indicate the level of Zmpste24 activity in the lysates (pmol/mg protein, Y2-
axis, right).  In Panel B, following quiescence, cellular proliferation and Zmpste24 
activity are measured upon return of serum to the cultures.  Timepoints are shown on 
the X-axis. 
 Clearly, the rate of substrate cleavage declines in parallel to the rate of DNA 

synthesis, indicating Zmpste24 activity is decreased in quiescent cells and correlates 

with the accumulating levels of PreA we previously demonstrated.  When serum was 

returned to these cells, proliferation was stimulated, and a concurrent spike in Zmpste24 

activity is observed.  Proliferation and Zmpste24 activity then gradually decrease as the 

dividing cells progress toward contact-inhibition-induced quiescence.  

  Next, we asked whether the mitigation of Zmpste24 activity in quiescence is 

related to a decreased level of expression of the endoprotease.  While it was previously 
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noted that PreA expression in senescence was accompanied by a decreased 

expression level of Zmpste24 mRNA121, it is important to note the transcript was 

measured after 3 days of senescence induction, and that senescence and quiescence 

might not, necessarily, follow the same paths.  Also, as we found the enzymatic activity 

level was significantly abolished in less than 10 hours following removal of serum and 

had reached a state of virtual inactivity within approximately 30 hours, we were 

interested to measure the expression level of Zmpste24 during the first 2 days after 

serum removal, as well.   

 As shown in Figure 7, we measured expression levels of Zmpste24 protein and 

mRNA transcripts in proliferating cells in full serum culture conditions (10% FBS), and 

daily during a quiescence-inducing 5-day course of serum starvation (0.5% FBS).   

Figure 7.  Zmpste24 
Expression and Proteolytic 
Activity Do Not Decrease 
at the Same Rate with 
Induction of Quiescence.  
Western blot (Panel A) 
using anti-Zmpste24 
antibody on lysates 
collected from proliferating 
cells in full serum, and at 
24-hour timepoints for 5 
days after removal of 
serum from cultures (Anti-
Hsp90 loading control).  
Northern blotting of RNA 
collected at the same 
timepoints, was performed 
with a Zmpste24-directed 
oligonucleotide probe 
(Panel B, anti-Actin-probe 
loading control). 
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  The Western blotting with a Zmpste24 antibody revealed a decrease in the 

expression of Zmpste24 protein after approximately 3 days of serum starvation (Panel 

A), while Northern blotting demonstrates the level of Zmpste24 mRNA is diminished 

after 2 days (Panel B).  Both findings are consistent with the previous study121.  

Importantly, however, neither the Zmpste24protein nor transcript levels decrease during 

the initial 24 hours of serum starvation, in contrast to enzymatic activity that dropped 

sharply (by at least 60%) within 10 hours.  After 48-hours of serum deprivation, the 

Zmpste24 protein level is unchanged, and although the level of transcript is decreased 

compared to the full serum- or 24-hour timepoints, a significant quantity of RNA 

remains, findings that are incongruous with the lack of activity of the enzyme observed 

within approximately 30 hours of serum removal.  In fact, both transcript and protein 

levels persist at significant, though progressively decreasing, levels for the entire 5 days 

of serum starvation.  Taken together these results demonstrate the expression of 

Zmpste24 is not significantly decreased in a mode parallel to quiescence-associated 

accumulation of PreA, suggesting a posttranslational mode of Zmpste24 regulation is 

likely.  Given the tendency of cell cycle regulated proteins to be controlled by 

phosphorylation, and the presence of several kinase substrate motifs within the amino 

acid sequence of Zmpste24, indicated by Phosphosite117-119, Phospho.ELM116, and 

HPRD120,123-125 databases, phosphorylation seems an obvious likelihood for this 

regulatory mechanism. This prediction is supported by evidence that at least one 

residue, Ser-310, undergoes cell-cycle-related phosphorylation, specifically in 

mitosis126.  Further studies will reveal if phosphorylation is, indeed, the mechanism 

controlling Zmpste24 activity, and if so, which residues and kinases are involved.
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Overexpression of Zmpste24 Leads to Bypass of Quiescence  

Our results indicate PreA accumulation upon stimulation of quiescence 

corresponds to a decrease in Zmpste24 activity and not directly to a decreased 

Zmpste24 expression level.  However, in diseases in which Zmpste 24 expression is 

deficient or otherwise inhibited, cells also chronically accumulate PreA.  We asked 

whether, as the reverse, overexpression of Zmpste24 protein may serve to provide 

sufficient excess of Zmpste24 to overwhelm the activity-limiting mechanism(s) that 

appear to be initiated upon quiescence-inducing stimuli.  If so, we could test whether 

prevention of PreA accumulation has an effect on cell cycle progression.  We used 

transient transfection of WI-38 human diploid fibroblast cells with a vector expressing 

the Zmpste24 endoprotease (pCMV6-XL-Zmpste24) to demonstrate effects of 

Zmpste24 overexpression.  Zmpste24 expression was verified by Western Blot (data 

not shown).  Transfected cells and mock-transfected control cells (empty vector) plated 

at high- or low-density were treated with BrdU to measure cell proliferation.  Detection of 

BrdU foci in treated cells by fluorescence microscopy indicates active proliferation.  High 

density plating normally induces quiescence.  Figure 8 reveals WI-38 cells expressing 

exogenous Zmpste24 continue to proliferate despite high density plating conditions, 

apparently bypassing cell cycle arrest.  These results suggest the cells may be unable 

to arrest in the absence of accumulated PreA.  
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Figure 8.  Zmpste24-Overexpressing Cells Bypass Cell Cycle Exit Under Quiescence-  
Inducing Conditions.  WI-38 human diploid fibroblasts were plated on glass coverslips at 
low density (upper panels), or high density (lower panels), transiently transfected with 
Zmpste24 expression vector (right panels), or left untransfected (left panels), incubated 
for different timepoints, BrdU pulse labeled (30 min). Anti-BrdU-FITC left panels), 
incubated for different timepoints, BrdU pulse labeled (30 min). Anti-BrdU-FITC foci 
highlight replicating cells, nuclei are DAPI stained.  Panels A (DAPI) and B (anti-BrdU-
FITC) are from the timepoint at 48-hours posttransfection. 

 

  Figure 9 plots time after Zmpste24 transient transfection against the percentage 

of cells containing BrdU foci.  These experiments suggest quiescence-inducing 

treatments lead to accumulation of PreA protein that is dependent on Zmpste24 activity 

level, but not on normally-limited Zmpste24 expression levels.  Additionally, when 

Zmpste24 is exogenously overexpressed, we observe cells’ failure to arrest as usual, 

also suggesting that preventing PreA accumulation prevents cell cycle arrest.  Taken 

together, these findings support the suggestion that PreA accumulation is necessary for 

cell cycle exit, indicating it to be a cause of cell cycle exit rather than a byproduct.  

Panel A  (DAPI)   Panel B  (Anti-BrdU/FITC)

B 

A 
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Figure 9.  Cells Overexpressing Zmpste24 Bypass Quiescence.  Graphic demonstrates 
failure of Zmpste24-overexpressing cells to properly quiesce when exposed to high 
density cell plating conditions that otherwise cause a drastic contact-inhibition-mediated 
decrease in proliferation. Proportions of BrdU-foci-containing cells in untransfected cells 
at low density (red circles) and high density (red triangles), to Zmpste24-transfected 
cells at low density (blue circles) and high density (blue triangles).  
 
 

Development of an Uncleavable PreA Expression Construct 

 We reasoned if preventing accumulation of endogenous PreA prevents cell cycle 

exit, then overexpression of PreA might induce cell cycle exit and would offer further 

evidence that PreA accumulation induces cell cycle exit.  Progression through the 

mitotic cell cycle is governed by a complex program regulating gene expression127-129 

and by many posttranslational modifications126,130,131.  Therefore, a PreA-mediated role 

controlling cell cycle arrest would require PreA protein expression to alter the 

expression pattern of genes involved in cell cycle control.  To investigate, we used site-

directed mutagenesis to mutate the Zmpste24 cleavage site in the LMNA cDNA 
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sequence in a green fluorescent protein-tagged recombinant vector-based expression 

system, thus generating a full-length PreA protein that is unable to undergo the final 

maturation cleavage to form mature Lamin A.  The construct, pEGFP-C3-EGFP-LMNA-

L647R, produces an EGFP-tagged protein termed “L647R PreA,” in which the CaaX-

box is intact, so the farnesyl modification, -aaX cleavage and carboxyl methylation can 

occur as for Wild-Type PreA.   

 

Effects of Accumulated PreA on Global Gene Expression by Microarray Analysis 

  To examine effects of PreA expression on functional gene pathways, we first 

assayed for effects on global gene expression. We transiently transfected mouse 3T3 

cells with either the EGFP-L647R PreA- expressing construct or the pEGFP-C3 empty 

vector, which expresses EGFP alone, and isolated total RNA from these cells 48 hours 

after transfection.  We elected to use the EGFP-expressing vector as a control for 

comparison because a model over-expressing “wild-type” (unmutated) LA can quickly 

become an expression system for PreA, instead, once available Zmpste24 in the cells is 

exhausted from processing the exogenous protein.  From the total RNA, cDNA was 

prepared and used to interrogate mouse whole genome-scale transcript microarrays 

(Affymetrix).  We note results indicating altered expression levels on the microarray for 

the cyclin dependent kinase inhibitors (CKIs) p16INK4A, p19ARF, p21Waf1, and 

p27Kip1, all of which demonstrate upregulated transcript expression levels in L647R 

PreA-expressing cells (each upregulated approximately 1.5- to 2-fold).  Also, Cdc25A, 

CDK2, and c-Myc, genes associated with promotion of proliferation, each demonstrate 

decreased transcript expression levels (approximately -2-fold).  Rather than making an 
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attempt to study individual genes that demonstrate altered regulation with L647R PreA 

expression in the cells, we chose to first evaluate the microarray data in terms of likely 

functional roles and affected pathways for gene expression changes, then narrow the 

scope in subsequent investigations. 

 

Ingenuity Pathways™ Analysis: Physiological Function Analysis  

  Ingenuity Pathways Analysis™,132 software was used to interpret the impact on 

gene expression in the context of cellular functions in “Functional Analysis” (Figure 10). 

In this analysis, changes in gene expression related to particular cellular functions or 

disease conditions indicate which of these cellular functions experience the most 

statistically significant impact from L647R PreA expression, compared to EGFP 

expression. 

The functional analysis indicates expression of L647R PreA affects cell cycle, cell 

growth and differentiation, cell death, and numerous metabolic processes and disease 

states that would be largely impacted by altered cell cycle regulation.  Aside from the 

distinct cell-cycle regulation pathways, an impact on cell cycle regulation could indirectly 

impact several of the other functional processes found to be affected by expression of 

L647R PreA, but the implications may be less obvious.  For instance, genes involved in 

“Organismal Injury” or “Cellular and Tissue Development” would certainly be affected by 

altered control of the cell cycle, as these are pathways involving cell proliferation, cell 

death and turnover, and tissue repair or regeneration.  Loss of LA has been previously 

shown to be associated with disease recurrence in colon cancer133, and it is not unlikely 

that potential roles in apoptosis, cellular proliferation, and growth would implicate PreA 
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expression in other Gastrointestinal Diseases, Reproductive System Diseases, or 

Responses to Infection or Inflammation.  Modes of Cellular Signaling could affect, and 

be affected by, any factor that would affect cell cycle regulation, as well as the obvious 

role the nuclear lamina would play in maintaining nuclear pore complexes and overall 

nuclear structure and integrity. 

Figure 10. Ingenuity Pathways Analysis™ “Functional Analysis.” Shows the 22 most 
statistically significant gene expression changes induced by transient L647R PreA 
expression in 3T3 cells, in the context of cellular functions and diseases, as compared 
to levels in EGFP-expressing cells. Analysis used data from a mouse whole genome-
scale transcript assay (Affymetrix).  Genes with altered expression levels were 
compared and grouped by function according to the Ingenuity Knowledge Base.  A 
Right-tailed Fisher’s exact test was used to calculate a p-value (converted to –Log of 
the p-value).   

0.00 5.00 10.00 15.00 20.00

Biological Function                                       p-value            -Log (p-value)

Biological Function p-Value -Log (p-Value) 

Cancer 3.24E-16 15.49 

Gastrointestinal Disease 8.94E-12 11.05 

Genetic Disorder 3.63E-11 10.44 

Cellular Growth and Proliferation 2.72E-09 8.57 

Cell Cycle 1.09E-08 7.96 

DNA Replication and Repair 6.69E-08 7.17 

Cell Death 4.81E-07 6.32 

Reproductive System Disease 2.21E-06 5.66 

Cellular Movement 3.53E-06 5.45 

Immune Cell Trafficking 2.18E-05 4.66 

Cell-To-Cell Signaling and Interaction 2.33E-05 4.63 

Tissue Development 2.33E-05 4.63 

Cellular Development 2.61E-05 4.58 

Skeletal and Muscular System Development and Function 3.92E-05 4.41 

Nervous System Development and Function 4.12E-05 4.39 

Organismal Injury and Abnormalities 4.35E-05 4.36 

Infectious Disease 7.12E-05 4.15 

Antigen Presentation 7.67E-05 4.12 

Antimicrobial Response 7.67E-05 4.12 

Cell-mediated Immune Response 7.67E-05 4.12 

Humoral Immune Response 7.67E-05 4.12 

Inflammatory Response 7.67E-05 4.12 
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Ingenuity Pathways™ Analysis: Canonical Pathways Analysis 

  Pathways of gene expression influenced by expression of L647R PreA were 

evaluated for pathway-relevance by the “Canonical Pathways Analysis.”  (Table 1, 

Figures 11-12).  This analysis associated the genes in the dataset having altered 

expression with known canonical pathways in the IngenuityTM Knowledge Base.  The 

significance of the association between the data set and the canonical pathway was 

measured in 2 ways: 1) a ratio of the number of genes from the data set that map to the 

pathway divided by the total number of genes that map to the canonical pathway, and 2) 

Fisher’s exact test was used to calculate a p-value determining the probability that the 

association between the genes in the dataset and the canonical pathway is explained 

by chance alone.  Table 1 lists the 21 canonical pathways that demonstrate statistically 

significant changes in gene expression in L647R PreA-expressing cells, versus those 

expressing EGFP alone.   
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  Similar to the Functional Analysis, results of analyzing the canonical pathways 

affected by expression of L647R PreA indicate an effect on cell cycle regulation.  While 

other pathways not clearly related to cell cycle regulation are indicated, we have 

concentrated further analysis of results on those functional pathways with a clear 

relationship to cell cycle control, as investigation of the cell cycle regulatory role of PreA 

Ingenuity™ Canonical 

Gene Pathway 

-Log (p-

Value) 

Overall 

Fold-

Change 

Pathway 

Gene 

Expression 

Genes in Pathway 

 Aryl Hydrocarbon Receptor 

Signaling 

3.72E00 -3.28 

CCNE1, CCNE2, CCNA2, CDKN1A, CHEK1, NR2F1, 

GSTT1, FOS, RARA, TGFB2, DHFR, GSTO2, ALDH3A1, 

ALDH6A1, MGST1, MCM7, P300, RB, SUMO, AHR, 

ARNT, AIP, MYC, SP1, ESR, NFKB 

 Glutathione Metabolism 
3.01E00 -3.46 

GSTT1, MGST1, TRHDE, IDH3A, GSTO2, GSS, ANPEP, 

GSTT3, IDH1 

Bacteria/Virus Pattern 

Recognition Receptors  2.82E00 -3.13 
PTX3, TLR2, IFIH1, TLR1, IRF7, C3, DDX58, TLR6, 

CCL5, TLR3 

 Nicotinate and 

Nicotinamide Metabolism 2.39E00 -3.69 
NNMT, DAPK1, ENPP1, NEK2, SGK1, ENPP5, AOX1, 

TTK, CDC2, AOX3 

 BRCA1DNA Damage 

Response 2.36E00 -2.89 
SMARCA2, CDKN1A, SLC19A1, RFC5, STAT1, CHEK1, 

RFC3 

 Interferon Signaling 2.27E00 -2.54 STAT2, IRF9, IFNAR2, STAT1, TAP1 

 Bile Acid Biosynthesis 2.19E00 -4.01 LIPA, ADH7, ALDH1A7, ADH1C, ALDH3A1, ACAA2 

 Pyrimidine Metabolism 
2.11E00 -4.13 

TYMS, PRIM1, NME1, POLR2D, APOBEC1, DCK, 

DPYSL3, RFC5, UMPS, RRM1, NME3, TK1, RFC3 

 Cell Cycle: G1/S 

Checkpoint Regulation 2.09E00 -3.07 
CCNE2, CCNE1, PA2G4, SUV39H1, CDKN1A, CDKN1B, 

CDKN2A,TGFB2, HDAC9, MYC, CDK2, CDC25A 

 JAK/Stat Signaling 1.89E00 -3.20 RRAS, CISH, CDKN1A, SOCS2, SOCS6, STAT2, STAT1 

 p38 MAPK Signaling 
1.83E00 -3.40 

IL18, TIFA, DDIT3, DUSP1, TGFB2, MEF2C, STAT1, 

FAS, PLA2G4C 

 Valine, Leucine and 

Isoleucine Degradation 1.82E00 -3.93 
ALDH1A7, MCEE, AOX1, ALDH3A1, ACAA2, 

ALDH6A1, AOX3 

 Metabolism of Xenobiotics 

by Cytochrome P450 1.78E00 -4.25 
GSTT1, ADH7, MGST1, AKR1C3, ADH1C, CYP2J2, 

CYP2J9, GSTO2, ALDH3A1, GSTT3, EPHX1 

 IRF Activation by 

Cytosolic Pattern 

Recognition Receptors 1.75E00 -3.38 DHX58, IFIH1, IRF7, DDX58, STAT2, IRF9, STAT1 

 Factors Promoting 

Cardiogenesis in Vertebrates 1.72E00 -3.46 
CCNE2, CCNE1, FZD4, CDC6, FZD3, TGFB2, MEF2C, 

FZD7 

 N-Glycan Degradation 1.67E00 -2.91 FUCA2, MAN2B2, GM2A, HEXB 

 p53 Signaling 
1.56E00 -3.48 

PRKDC, TP53INP1, SNAI2, CDKN1A, HDAC9, BIRC5, 

CHEK1, SERPINE2 

 Glycerolipid Metabolism 
1.56E00 -4.18 

NAGA, LIPA, ADH7, ALDH1A7, LPL, ADH1C, LIPG, 

ALDH3A1 

 VDR/RXR Activation 1.39E00 -3.51 SPP1, IL1RL1, CDKN1A, TGFB2, HES1, VDR, CCL5 

 Eicosanoid Signaling 1.37E00 -3.81 PTGIR, AKR1C3, PLA2R1, PTGS2, WISP2, PTGER4 

 Toll-like Receptor 

Signaling 1.32E00 -3.43 TLR2, TLR1, FOS, TLR6, TLR3 

 

Table 1.  The Canonical Pathway AnalysisTM   
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is the focus of this study.  Some genes show overlap among pathways, such as the cell 

cycle inhibitory kinase, Chk1, and the cyclin dependent kinase inhibitor CDKN1A (also 

known as p21WAF1).   Figure 11 shows the statistical significance of L647R PreA 

expression effects on gene expression within cell cycle-related pathways, versus EGFP 

expression.  Those pathways containing the highest proportion of genes demonstrating 

effects on expression are considered to be the most significant pathways for this 

analysis.  Level of expression changes of the implicated genes is not factored into this 

part of the analysis. 

 
 
Figure 11. Ingenuity Pathways AnalysisTM Pathways Demonstrating Statistically 
Significant Gene Expression Regulation.   Analysis of expression data from Affymetrix 
microarray indicates Cell Cycle-Related Pathways of Gene Expression that are affected 
by L647R PreA expression with statistical significance.  Significance is determined by 
dividing the total number of genes in the pathway by the number of genes in the 
pathway with changed expression in cells expressing L647R PreA versus EGFP, 
Fisher’s exact test was used to calculate p-value (converted to –Log of the p-value).  
 

0 1 2 3 4 

1.32 

1.56 

1.83 

1.89 

2.09 

2.36 

3.72 

-Log (P-value) 

Aryl Hydrocarbon Receptor Signaling 

Role of BRCA1 in DNA Damage 

Response 

Cell Cycle: G1/S Checkpoint Regulation 

JAK/Stat Signaling 

p38 MAPK Signaling 

p53 Signaling 

Toll-like Receptor Signaling 
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  Surprisingly, the AHR Pathway was determined to be the most statistically 

significantly regulated gene expression pathway in L647R PreA-expressing cells 

compared to cells expressing EGFP only.  Not a well known factor in cell cycle 

regulation, the AHR is a transcriptional regulator implicated in development and a 

variety of physiological processes such as response to hypoxia, hormone receptor 

function, and toxin metabolism134.  As a number of compounds, including several toxic 

chemicals, act as AHR ligands135, most literature involving this pathway is focused on 

studies of toxin metabolism. Other studies, however, have also recently found AHR 

contributes to the inhibition of cell cycle progression by directly interacting with the 

RB/E2F complex to block its phosphorylation in G1136,137.  This interaction constitutes a 

major G1 checkpoint in cells exposed to AHR ligands138, and according to some 

researchers, in the absence of ligand, as an elemental, though relatively little known, 

mechanism of cell cycle control137.  As for the BRCA1 Role in DNA Damage Response 

pathway, the statistically significant indication of a role for L647R PreA expression is 

consistent with previous studies indicating LA roles in DNA damage repair and 

perturbation of the assembly of DNA damage repair response proteins in cells 

expressing PreA69,139 [reviewed in 101].  Also, BRCA1 overexpression has been shown to 

have an inhibitory effect on cell cycle progression and affect the expression of various 

other cell cycle regulatory genes140.  Thus, perhaps PreA-induced effects on gene 

expression within this pathway may indicate it is a mechanism of PreA-related cell cycle 

control, or that PreA expression is used as a mechanism to affect expression of other 

cell cycle genes by the BRCA1-mediated DNA damage repair and cell cycle control 

pathway.   
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  Significant regulation of the G1/S checkpoint and p53 signaling is an important, 

and expected, indication from this data, and these pathways comprise an integral part of 

our further investigation of the cell cycle regulatory roles of PreA.  In fact, in another 

type of evaluation of the L647R PreA effects on cell cycle-related gene pathways in the 

Ingenuity Pathway AnalysisTM, we consider the magnitude of impact from L647R PreA 

expression, compared to EGFP expression, on the expression levels of genes within the 

indicated pathways, and we find p53 signaling to be most affected (Figure 12).  

Whereas the previous measure counted statistical significance as the proportion of 

genes within the pathways demonstrating any level of changed expression, this analysis 

looks at the actual level of gene expression changes within the pathways, regardless of 

the affected number of genes within that pathway.   

Figure 12.  Ingenuity Pathways AnalysisTM Pathways Demonstrating the Highest Level 
of Impact from L647R PreA Expression.  These pathways experienced the most altered 
levels of gene expression when L647R PreA was expressed, compared to EGFP.  
demonstrating statistical significance of effects from expression of L647R PreA. 
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   As shown in Figure 12, the genes involved with or affected by p53 signaling 

experience the most change in expression levels when L647R PreA is expressed 

compared to levels in the EGFP-expressing cells.  A similar level of gene expression 

downregulation is indicated for genes related to Toll-Like Receptor Signaling, p38MAPK 

signaling, the Aryl Hydrocarbon Receptor Pathway, JAK/Stat signaling, G1/S checkpoint 

regulation, and the BRCA1-DNA damage response. 

 

Ingenuity Pathways™ Analysis: Integrated Pathway Network Analysis  

  As a form of integrated analysis of overlapping gene expression pathways, the 

patterns of regulated gene expression specifically indicated in our test system were 

considered by Ingenuity Pathways Analysis™ to generate the “Networks and Pathways” 

analyses (Figures 13-16).  These analyses generated a series of “GeneNetworks” by 

comparing gene expression in cells expressing L647R PreA compared to cells 

expressing EGFP (48 hours posttransfection), and overlaying the altered genes onto a 

global molecular network developed from information contained in the Ingenuity 

Knowledge Base.  Networks were then algorithmically generated based on their 

connectivity.  Graphical representations of relationships between molecules were 

produced, each relationship indicated is supported by at least one reference from the 

literature or from canonical information stored in the Ingenuity Knowledge Base. Each 

gene occupying a position within a Network is called a “node.”  The intensity of the node 

color in the figures indicates the degree of regulation.  Also, included in the graphics are 

assayed gene products not demonstrating a statistically significant expression change, 

and genes not assayed but related to the assayed genes according to the IPA 
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Knowledge Base. Nodes are displayed using various shapes that represent the 

functional class of the gene product.  Edges (connecting lines) are displayed with 

various labels describing the nature of the node relationships (e.g., P for 

phosphorylation, T for transcription).

 
Figure 13.  Ingenuity Pathways Analysis™ GeneNetwork1(with L647R PreA 
Expression):  G1/S Checkpoint Regulation Part 1. Generated from gene expression 
change data in L647R PreA expressing cells vs. EGFP-expressing cells.  
Green=downregulated/ Red=upregulated/ Gray=not regulated/ No color=not assayed, 
but related to assayed genes.
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Figure 14. Ingenuity Pathways Analysis™ GeneNetwork 2(with L647R PreA 
Expression):  G1/S Checkpoint Regulation Part 2. Network generated from gene 
expression change data in L647R PreA expressing cells vs. EGFP-expressing cells.  
Green=downregulated gene expression/ Red=upregulated gene expression/ Gray=no 
change/ No color=not assayed, but related to assayed genes. 
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Figure 15.  Ingenuity Pathways Analysis™ GeneNetwork 3 (with L647R PreA 
Expression): p53 Signaling Regulation. Generated from gene expression change data in 
L647R PreA expressing cells vs. EGFP-expressing cells.  Green=downregulated gene 
expression/ Red=upregulated gene expression/ Gray=no change/ No color=not 
assayed, but related to assayed genes.   

Extracellular Environment 

Cytoplasm  

 Nucleus  
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Figure 16.  Ingenuity Pathways 
Analysis™ GeneNetwork 4 (with L647R 
PreAExpression): AHR-RB-p300 
Control of E2F Transcription.  Adapted 
from Gene Network generated by IPA 
analysis of gene expression changes in 
L647R PreA expressing 3T3 cells (48 
hours post-transfection), compared to 
those expressing EGFP.  Figure 
enhanced to reflect AHR ability to 
displace p300 from E2F promoters, thus 
inhibiting E2F-regulated gene 
transcription, and AHR role enhancing 
RB inhibitory effects. 
Green=downregulated gene 
expression/Red=upregulated gene 
expression.  No color=not assayed, but 
related to assayed genes.  Red dashed 
line=enhances activity. 

 

Development of a Model System of Inducible, Stable  

Lamin Isoform Expression Cell Lines 

 
  While the pathway-focused gene expression analysis of cells transiently 

transfected to express L647R PreA demonstrated a significant level of impact on gene 

expression in several cell cycle-related gene expression pathways, including the p53 

signaling pathway, the AHR pathway, the G1/S cell cycle checkpoint, BRCA1-mediated 

DNA damage repair pathway, and signaling within Jak/Stat, p38 MAPK, and Toll-Like 

Receptor Pathways, an acknowledged limitation of the transient transfection is the likely 

dilution of effects of subtle changes in gene expression, as transfection efficiency does 

not approach 100%.  To further distill the cell cycle-specific gene expression effects of 

L647R PreA, generated a stable system of inducible expression cell lines.  To do this, 

we transferred the N-terminally EGFP-fused LMNA-L647R cDNA cassette to the 

  RB 
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RheoSwitch Mammalian Inducible Expression System (New England Biolabs, MA), for 

construction of a stable cell line.  This is a dual vector switch system in which the target 

cells are cotransfected with 2 plasmids, one that requires an induction reagent to 

express a ligand, this ligand is required to activate target gene expression from the 

second plasmid141-144.   

Figure 17.  The RheoSwitch® Mammalian Dual Vector Inducible Expression System.  
Dual vectors are transfected into the target cell, where the ligand is expressed by the 
pNEBR-R1 plasmid when induction reagent (RSL1 or GenoStat brands of synthetic 
diacylhydrazine, in these experiments) is added to the culture medium.  The expressed 
ligand is necessary for target gene expression to occur from the pNEBR-X1Hygro 
plasmid.  (Adapted From New England Biolabs, Inc.) 
 
 
  The induction reagent, [N-(2-ethyl-3-methoxybenzoyl)-N´-(3,5-dimethylbenzoyl)-

N´-tert-butylhydrazine], is a synthetic diacylhydrazine.  Diacylhydrazine is a nonsteroidal 

analogue of the insect molting hormone, ecdysone114,145.  The synthetic reagent (RSL1  

from New England Biolabs, Inc., MA; or GenoStat from Millipore Corp., MA) has been 

shown to be invisible to mammalian nuclear receptors and inert within all cell lines 

tested141.  The result is an expression system not affected by the sometimes “leaky” 

expression of the target DNA seen in many inducible systems, as well as quick 
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response of activating or deactivating expression by addition or removal, respectively, of 

the induction reagent.  After using restriction enzyme digestion to remove the EGFP-

LMNA-L647R cDNA sequence from the pEGFP-C3 plasmid, it was ligated into the 

second plasmid in the RheoSwitch® pNEBR-X1Hygro vector, and the resulting 

expression construct, pNEBR-X1Hygro-EGFP-LMNA-L647R was transfected into the 

target cells.  The cells used were mouse NIH3T3 fibroblast cells already containing the 

ligand-expressing plasmid vector (pNEBR-R1).  Retention of pNEBR-R1, which 

contains a Neomycin resistance cassette, was maintained by supplementing the culture 

medium with G418 antibiotic.  Following transfection with the pNEBR-X1Hygro-EGFP-

LMNA-L647R plasmid vector, which contains a Hygromycin resistance cassette, cells 

containing the second plasmid in addition to the first were selected by additionally 

supplementing the G418-containing culture medium with Hygromycin.  Twelve separate 

cell colonies were selected and transferred to new culture vessels for propagation, and 

after a sufficient number of cells were present, a sampling of these were transferred to 

coverslip culture chambers in medium containing 500 nM GenoStat induction reagent.  

After 24 hours of induction, cells were observed under fluorescence microscopy for 

evaluation of EGFP-fused L647R PreA expression.  The 3 colonies with cells 

expressing the most EGFP-tagged protein were identified, and cultures of the other 9 

cell colonies were discarded.  The 3 colonies selected for further propagation were 

evaluated for morphology, growth patterns, in addition to induction of EGFP-L647R 

PreA.  In the absence of induction reagent, the cell lines demonstrated normal 

morphology resembling that of the cells prior to transfection, all 3 appeared to proliferate 

at a rate within a range similar to the proliferation rate of the untransfected cells 
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(empirical observations, not quantitatively measured), and upon induction all 3 

expressed EGFP-tagged protein in a pattern consistent with documented PreA 

expression62,146.  Expression of some genes can be detected within 1 hour of induction 

in the RheoSwitch® system, with maximal levels of expression at 48-72 hours, and 

some dosage-effect can be obtained with different dose amounts of the induction 

reagent.  We were able to detect faint expression of some GFP-tagged protein after 

approximately 4-hours, with maximal levels reached around 72 hours.  The cell line that 

consistently expressed a slightly more intense fluorescence of its EGFP-tagged protein 

was selected for future experiments, and cells from the other 2 cultures were frozen and 

maintained as back-up cell lines.  We also used this system, and the same procedures, 

to construct stable inducible cell lines expressing the wild type Lamin A sequence 

(wtLA), a mutant Lamin A sequence (del50), and the EGFP protein alone.  The wtLA 

construct expresses the full length immature PreA protein, modified only by the N-

terminal EGFP fusion, and undergoes the full maturation processing to yield LA, and 

likely, though unconfirmed, alternative splicing to produce Lamin C.  The del50 mutant 

construct, with a deletion of 150 nucleotides near the C-terminus of the Lamin A coding 

sequence, expresses a 50-amino acid-truncated protein that mimics the HGPS mutant 

protein progerin.  While expression of progerin in HGPS patients typically results from a 

point mutation introducing a cryptic alternative splice site that leads to deletion of the 

corresponding nucleotides from the processed RNA transcript, this methodology of 

engineering the truncated protein by deleting nucleotides from the cDNA sequence is 

commonly used by researchers and regarded to yield a mutant protein equivalent to 

progerin60,147,148.  
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  To characterize the expression of the constructs from these cell lines, DNA was 

extracted from the cells and sequenced with an EGFP primer and LA C-terminal primer 

to confirm expression of the EGFP/lamin fusion-constructs.  Also, the protein expression 

patterns were evaluated by fluorescence microscopy detection of the GFP fused to the 

lamins.  In Figure 18, fluorescence microscopy images reveal the expected expression 

pattern of the EGFP-fused L647R PreA protein, demonstrating GFP concentration at 

the nuclear rim with amorphous-shaped aggregates in the nucleoplasm with an uneven 

nuclear topography demonstrating ridges, invaginations, and some blebbing.  Likewise, 

expression patterns of GFP-fused LA and del50 were examined and found to match 

expected patterns: LA presents as a smooth veil over and throughout rounded, oval, or 

slightly bean shaped nuclei with smooth-appearing surface texture with a subtle 

concentration of GFP at the nuclear rim.  The del50 expression manifests as dramatic 

intranuclear aggregate clumps and highly irregular nuclear membranes.  These nuclei 

present the same type of blebbing, ridges, and invaginations as the L647R PreA-

expressing cells but on a more extreme scale.  These patterns are consistent with all 

known descriptions of these isoforms.  Finally, EGFP-only expressing cells, the control 

line, presents light green fluorescence throughout the cell that is not localized in the 

nucleus. 
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Figure 18.  Evaluation of Induced Recombinant Protein Expression in the RheoSwitch® 
Lamin Isoform-Construct Expression Model System (GFP).  Fluorescence microscopy 
(Top, L-R) demonstrates expression from the GFP-fused L647R-Lamin A (PreA) cell 
line and GFP-Lamin A (LA), and (Bottom, L-R) demonstrates expression from the GFP 
control cell line and the GFP-Lamin A-del50 cell line.  Expression represented is after 
48 hours induction with 500 nM Genostat.  
 
 
  In addition to the direct fluorescence detection of expression of the GFP- lamins, 

we also further examined the induced expression in the L647R PreA cell line by indirect 

immunofluorescence with an antibody to GFP, after imaging the direct GFP expression 

(Figure 19).  
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Figure 19.  Immunostaining of 
EGFP-L647R Lamin A (PreA), 
with Antibody to GFP. This 
imaging demonstrates indirect 
immunofluorescence, and 
enhanced microfluoroscopic 
visualization of lamin 
distribution after induction 
(500 nM Genostat, 48 hours), 
compared to detection of the 
direct fluorescence emission 
from the protein (inset).  Cells 
were plated on coverslips and 
induced 48 hours to express 
the protein (500 nM 
Genostat). After imaging the 
direct fluorescence of GFP-
construct expression, cells 
were immunostained as 
described for indirect 
immunofluorescence 
detection. 
 

  While the recombinant GFP-lamin expressed in the engineered cell lines 

demonstrates the appropriate subcellular localization, to further evaluate the integrity of 

the expressed proteins, we performed immunoblotting of lysates prepared from each 

cell line to confirm the protein is reactive with an antibody specific for Lamin A/C as well 

as anti-GFP.  Reactivity of the same bands with both anti-Lamin A/C and anti-GFP, is 

indicative of an expressed fusion protein (Figure 20). 

(GFP)

(Anti-GFP)
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Figure 20.  Immunoblotting of Expressed Lamin Isoforms Using the Rheoswitch 
Inducible Expression System.  Rheoswitch cells (Del50, L647R PreA, or wtLA) were 
induced with 500 nM Genostat for 48 hours.  L647R cells treated with equal volume of 
DMSO were used for the uninduced control.  A volume of each cell lysate to equal 50 
µg total protein per lane was separated by SDS PAGE on two 4-12% gradient Bis Tris 
Gels, in duplicate, and transferred to nitrocellulose membranes. One membrane was 
immunoblotted with a Lamin A/C antibody (Panel A) and β-actin antibody, and the 
second membrane was probed with anti-GFP antibody (Panel B), and Lamin B 
antibody, as a loading control.   
 

  As it was critical that the isoform expressed by the L647R PreA cell line was the 

uncleaved isoform, and that we were certain it is posttranslationally modified in the 

same manner as endogenous protein (specifically, farnesylation and carboxy-

methylation), we also prepared lysates from the L647R PreA cells, induced for 48 hours 

with 500 nM Genostat, for mass spectrometry analysis (Figure 21).  The trace patterns 

in the analysis indicate that the FC-PreA isoform is abundant in the L647R PreA-

expressing cells (barely detectable in cycling cells not exogenously expressing it), while, 

as we would expect, endogenous mLA is present in the cells, as well. 

A B
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Figure 21.  Mass Spectrometry Demonstrates RheoSwitch® Model L647R PreA Recombinant Protein Expressed is FC-
PreA.  Peak A represents a peptide fragment representative of unprocessed PreA, while Peak B specifically represents 
Farnesylated, Carboxymethylated (FC) PreA.  Peak C represents cleaved, mature LA. 
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  Effects of Uncleavable PreA (L647R PreA) Expression on Cell Cycle Progression 

  Using these stable cell lines, we further investigated the effects of PreA protein 

accumulation on cell cycle progression.  In support of our earlier suggestion that PreA 

accumulation is a cause, rather than a byproduct, of cell cycle exit, we show cells 

induced to express L647R PreA exhibit decreased proliferation.  First, a -bromo-2’-

deoxyuridine (BrdU, a pyrimidine analogue)-uptake assay demonstrates cellular 

proliferation by labeling newly synthesized DNA (Figure 22).  Using 3T3 cells that do not 

contain a lamin expression vector as controls, they, as well as cells from the 

RheoSwitch L647R PreA cell line, were treated with various concentrations of the 

induction reagent, GenoStat, or DMSO, for 48 hours before addition BrdU to the 

medium to label cells undergoing active proliferation.  

Figure 22.  Decreased Rate 
of Cellular Prolifer-ation in 
L647R PreA-Expressing 
Cells (BrdU Incorporation 
Assay). This assay 
demonstrates L647R PreA 
Expression inhibits cell 
proliferation.  3T3 cells 
(Squares) or L647R PreA 
Rheoswitch cells (Triangles) 
were treated with various 
concentrations of GenoStat 
inducer (filled symbols) or 
DMSO (empty symbols) for 
48 hours.  BrdU (10 μM) was 
added to the plate and cells 
were incubated for 4 hours.  
Incorporated BrdU was 
detected by monoclonal anti-
BrdU antibody linked to 
HRP. HRP substrate TMB 
was used to develop the 
color (Absorbance: 450 nm). 

Genostat (nM)

0 200 400 600 800 1000 1200

A
b
s
o
rb

a
n
c
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5



105 
 

 Figure 22 also demonstrates repressed proliferation in L647R PreA-expressing 

cells does not result simply due to toxicity of increasing GenoStat inducer dosage, per 

the lack of effects on proliferation in the unmodified 3T3 cells (ie, 3T3 cells not 

adulterated with recombinant DNA construct) treated with the same doses of GenoStat.  

The lack of effects on proliferation in DMSO-treated cells ensures the effects on 

GenoStat-treated RheoSwitch cells are due to induction of the expression system. 

  To further explore the effects of L647R PreA expression on cell cycle 

progression, we used flow cytometry to assay DNA content as an indicator of cell cycle 

phase.  Cell cycle phase distribution analyses of asynchronously growing cells induced 

to express L647R PreA were compared to uninduced (passage-matched, L647R PreA 

construct-containing, DMSO-treated) cells under the same conditions.  We also used Ki-

67 protein-staining as a final measure of cell proliferation in these cells.  Ki-67 is a 

nuclear protein associated with DNA replication and proliferation, though its exact role is 

not well understood.  Ki-67 protein expression is absent only in the G0 stage of the cell 

cycle, and it is a commonly-used and widely available indicator of cellular proliferation.  

We assayed for presence of the Ki-67 protein using immunofluorescence microscopy 

and an antibody directed to the Ki-67 protein (Figure 23). 
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Figure 23.  Decreased Rate of Cellular Proliferation in L647R PreA-Expressing Cells 
(Flow Cytometry and Ki67 Immunofluorescent Stain Assay).  Flow cytometry analysis 
reveals L647R PreA affects cell cycle progress.  In Panel A, Flow cytometry was used 
to measure propidium iodide (PI)-stained cellular DNA content to demonstrate cell cycle 
phase, where 2N DNA content represents G0/G1 phase cells, 4N represents G2/M 
phase cells, and S-phase cells are located between the 2N-G0/G1 and 4N-G2/M peaks.  
Uninduced Cells (DMSO-treated) are shown in Left Panel, Induced L647R PreA Cells in 
Center Panel, with a bar graph quantitative comparison in Panel A, far right.  Panel B 
shows Ki67 immunostaining of Uninduced Cells (Left), and Induced L647R Cells 
(Right).  Induction method: 500 nM GenoStat, 48 hours. 
 
 
  As expected, flow cytometry analysis reveals uninduced cells cultured in full 

serum demonstrate normal proliferation, while, in comparison, a G0/G1 peak-shift 

(representative of progression toward cell cycle arrest, and consistent with a developing 
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quiescent phenotype) is seen in cells induced to express L647R PreA for 48 hours.  

Ki67 protein is readily detected in uninduced cells but almost absent in the induced 

cells, further indicating exit from the cell cycle.  Taken together, results of the 

proliferation assays by measurement of BrdU uptake, flow cytometry approximations of 

cell cycle progress, and nuclear immunostaining for Ki67, suggest expression of L647R 

PreA has an inhibitory effect on cell cycle progression. 

 

Effects of Accumulated PreA on Cell Cycle  
Pathway-Specific Gene Expression (by RT-qPCR Array) 

 
 

  To more specifically evaluate the effects of PreA expression on cell cycle specific 

genes, we used cDNA derived by reverse transcription of total RNA extracted from cells 

induced 72 hours to express L647R PreA in a quantitative real-time polymerase chain 

reaction (RT-qPCR) assay of cell cycle related genes.  For comparison, RheoSwitch 

cells induced to express wtLA and del50 were also assayed.  Uninduced cells 

(passage-matched to their induced counterparts) from each cell line were used to 

determine baseline expression of the assayed genes for each cell line.  When results of 

the gene expression assays on uninduced cells of each cell line were compared, there 

were some modest differences in the expression profiles (data not shown).  We attribute 

these “baseline” expression differences in uninduced cells to clonal variation.  The cell 

lines were all created by transfection into cells from the same original host cell line, from 

the same culture, and from within a few passages of the same culture.  However, it is 

common for subtle differences to arise in cells derived after the repeated passages 

involved in clonal expansion of populations from single cell isolates of a common 
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culture.  In addition to clonal variation, another possibility we considered to explain the 

different baselines of gene expression among the uninduced L647R PreA cells and 

wtLA cells is the difference in passage number, as the passage numbers were not 

matched between cell lines (after the clonal expansion process and maintenance 

passaging of working cultures).  In future studies, matching of passages of compared 

cells could provide more uniformity of cell line-to-cell line expression baselines, allowing 

a more reliable comparison of the L647R PreA and wtLA cell lines.  However, we do 

acknowledge accumulation of endogenous LA occurs as PreA and note the likelihood 

that the endoproteolytic processing capability of endogenous Zmpste24 could be quickly 

overwhelmed by increasing accumulation of EGFP-wtLA protein.  This would result in 

the presence of some processed EGFP-wtLA, and some unprocessed EGFP-wtPreA.  

Therefore, this model would become another model for overexpressing the PreA 

isoform and would not suffice as a control for comparison to the L647R PreA-expressing 

model.  Future experiments might include a cell line containing a LA construct in which 

the cDNA is modified to directly encode a truncated protein equivalent to a 

posttranslationally modified mature LA protein.  This model could allow a more accurate 

comparison of effects of overexpressing a PreA isoform, represented by the L647R 

PreA construct, to effects of overexpressing mLA isoform.  Additionally, with replicates 

in future experiments, it could be possible to determine if a ratio can be deconvolved for 

“housekeeping” reference genes to allow meaningful comparison among all of the cell 

lines.  Regardless, for the purposes of the current study, we have chosen not to 

compare the gene expression data from the induced cells to each other, as such 

comparison could yield false exaggeration of differences in gene expression, or fail to 
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detect subtle, but true, changes in expression of some genes.  Rather, we simply 

compare the expression profile of cell cycle-related genes in the cells induced to 

express L647R PreA versus the uninduced (treated with DMSO vehicle only), passage-

matched cells split from the same culture, to determine expression level changes 

related to the expression of the uncleavable lamin mutant. 

  Table 2 lists all genes demonstrating a fold-change in expression with statistical 

significance, which we define here as having at least a 2-fold change in expression level 

with a p-value </= 0.05 (-log p-value of >/= 1.3).  A complete listing of all assayed genes 

is presented as Appendix A, with a corollary Volcano Plot as Appendix B. For ease of 

reference, this assay is referred to herein simply as “the RT-qPCR assay.”  Also, for 

simplification purposes, all gene references using the short-hand notations of 

“upregulated,” or “downregulated,” mean the gene expression levels have the indicated 

regulation as indicated by RT-qPCR assay of transcript levels for the gene in induced 

L647R PreA-expressing cells (24-hours/500nM GenoStat) compared to the expression 

levels in the passage-matched, DMSO-treated, uninduced control cells.   



110 
 

Table 2.  Cell Cycle-Related Genes Demonstrating Statistically Significant Altered 

Expression in Response to L647R PreA Induction†  

 
†
SABiosciences Cell Cycle Pathway specific RT-qPCR analysis results demonstrating expression 

fold-change in total RNA isolated from RheoSwitch 3T3 cells induced 24 hours with 500 nM GenoStat 
to express L647R PreA versus from uninduced control cells (DMSO-treated) 
 

 

Gene 

Symbol

Fold 

Regulation p-value

-Log 

(pvalue)

Gene 

Symbol

Fold 

Regulation p-value

-Log 

(pvalue)

Actb 14.8 0.001826 2.74 Macf1 9.8 0.001208 2.92

Ak1 7.9 0.007293 2.14 Mad2l1 2.7 0.002314 2.64

Apbb1 40.9 0.024349 1.61 Mcm2 17.7 0.003508 2.45

Atm 4.0 0.000362 3.44 Mdm2 2.1 0.004183 2.38

Brca1 19.4 0.001086 2.96 Mre11a 6.3 0.000679 3.17

Brca2 14.1 0.000323 3.49 Mtbp 17.5 0.001469 2.83

Camk2a 13.8 0.00348 2.46 Nek2 15.6 0.000507 3.29

Camk2b 15.2 0.000098 4.01 Nfatc1 5.5 0.000785 3.11

Casp3 4.5 0.007064 2.15 Notch2 10.7 0.000094 4.03

Ccna1 6.2 0.043674 1.36 Npm2 16.5 0.000513 3.29

Ccna2 4.5 0.000071 4.15 Pkd1 4.6 0.000072 4.14

Ccnb2 -2.1 0.035362 1.45 Ppm1d 4.3 0.003941 2.40

Ccnc 10.0 0.002486 2.60 Ppp2r3a 20.5 0.001368 2.86

Ccnd1 5.8 0.003651 2.44 Ppp3ca 2.8 0.020588 1.69

Ccne1 18.4 0.002771 2.56 Psmg2 3.0 0.00115 2.94

Cdk2 2.1 0.000622 3.21 Rad9 5.4 0.002484 2.60

Cdk4 37.3 0.001031 2.99 Rad21 2.4 0.000601 3.22

Cdk5rap1 9.0 0.000637 3.20 Rbl1 p107 11.5 0.000749 3.13

Cdkn1a 6.3 0.001935 2.71 Rbl2 p130 2.5 0.011955 1.92

Cdkn1b 23.2 0.000095 4.02 Sesn2 5.5 0.000701 3.15

Chek1 22.1 0.000703 3.15 Sfn 25.3 0.000532 3.27

Ddit3 4.6 0.000761 3.12 Shc1 6.0 0.00036 3.44

Dst 25.4 0.000002 5.70 Skp2 4.0 0.00511 2.29

E2f1 6.4 0.00158 2.80 Smc1a 19.5 0.000743 3.13

E2f3 2.8 0.000833 3.08 Stag1 2.4 0.001397 2.85

E2f4 9.6 0.00157 2.80 Taf10 2.5 0.004552 2.34

Gapdh 3.8 0.003657 2.44 Terf1 3.4 0.000185 3.73

Hus1 17.6 0.000044 4.36 Tfdp1 2.8 0.001374 2.86

Inha 7.0 0.001369 2.86 Trp53 2.8 0.000597 3.22

Itgb1 9.6 0.000031 4.51 Wee1 24.9 0.000156 3.81
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  The variety among genes demonstrating altered levels of transcript expression in 

the L647R PreA expressing cells compared to the uninduced cells complicates 

interpretation of the specific and direct PreA-interactions that lead to the overall effect of 

PreA on cell cycle gene expression.  Is it possible all of these gene products directly 

bind or associate with PreA?  While possible, the more likely explanation of the variety 

is related to the very nature of cell cycle regulatory signaling, which occurs with 

cascades of gene activation or repression among individual pathways, as well as 

crosstalk with other pathways.  In an effort to focus on particular gene-types in 

evaluating the expression data from the qPCR assay, we used literature sources and 

databases (GeneCards149 and Entrez Gene150) to categorize the data as follows:  1-

Cyclins, Cyclin Dependent Kinases, Cyclin Dependent Kinase Inhibitors; 2-Kinases and 

Phosphatases; 3-Transcription Factor-Related Genes; 4-DNA Damage-Related Genes; 

and 5-Genes Associated with Chromosomal/ Nuclear/Cellular Integrity or Microtubule/ 

Mitotic Assembly.  To begin to unravel the direct effects of PreA expression on cell-

cycle related gene expression, we examined the expression profile in the context of the 

known functions of affected genes. 

 

Cyclins, Cyclin Dependent Kinases (CDKs), Cyclin Dependent Kinase Inhibitors (CKIs) 

  Cyclins are eukaryotic proteins that play an active role in controlling nuclear cell 

division cycles151.  In brief review:  in vertebrates, there are 2 G2-phase cyclins, A and 

B, and at least 3 G1 cyclins, C, D, and E152.  It has been shown recently that, upon 

mitogenic signaling, Cyclin C, in complex with CDK3, helps cells to exit the G0 state and 

enter the G1 phase by stimulation of retinoblastoma protein (pRb) phosphorylation at 
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S807/811153.  From the G1 phase, Cyclin D complexes with CDK4/6 to begin the 

phosphorylation of pRb that is complexed with the transcription factors E2F/DP.  

Following pRb phosphorylation, cyclin E activates CDK2 to effect further 

phosphorylation of pRb, thereby enabling the cells to cross the G1-restriction point.  The 

pRb-E2F/DP complex disassociates, providing a positive signal for DNA synthesis in the 

S phase.  Cyclin E is replaced by cyclin A, which binds to CDK2 and leads to 

phosphorylation of DP-1 subunits (inhibitor of DNA binding), and CDC6 (initiator of DNA 

replication) to complete DNA replication.  On completion of the S phase, Cyclin B-CDK1 

complex (mitosis-promoting factor) is activated.  Progression from G2 to M phase 

requires sustained activity of CDK1-Cyclin B complex within the nucleus.  Subsequent 

entry into anaphase relies critically on the sudden destruction of the CDK1-Cyclin B 

activity that guarantees the global inhibition of protein biosynthesis, DNA replication, 

and DNA transcription154,155.  

 It was surprising to find an overall increase in cyclin gene expression in L647R-

PreA expressing cells compared to uninduced cells, as this seems contrary to our 

observations of PreA expression leading to decreased cell proliferation and potential 

cell cycle exit. In the cyclin gene expression profile (Figure 24), upregulation was 

demonstrated for Cyclin A1/2, C, D, and E.  The key regulator of G2–M transition of the 

cell cycle is M-phase promoting factor (MPF), a complex composed of CDK1/CDC2 and 

a B-type cyclin.  Cyclin B was the only gene we observed to be significantly 

downregulated, possibly indicating a modest inhibition of entry to mitosis in these cells.  

Cyclin F interacts with Cyclin B to control Cyclin B nuclear localization, thus controlling 

activation of MPF through regulation of the amount of Cyclin B available in the nucleus 
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to form the MPF complex150,156.  Notably, there was no change in Cyclin F expression in 

L647R PreA-expressing cells compared to uninduced cells, thus no increased level of 

nuclear localization of Cyclin B should be expected, perhaps correlating to an overall 

downregulation of Cyclin B activity.  

 

Figure 24. L647R Effects on Gene Expression (RT-qPCR Assay of Transcript  
Expression):  Cyclins, CDKs, CKIs.  Results compare cells induced 24 hours (500 nM 
GenoStat), versus uninduced cells treated with DMSO only.  P-values </=0.05 for each 
fold-change value, see Table 2. 
 

 Although cyclin levels vary with cell cycle stage, the kinases regulated by them 

are described to be constitutively expressed, dependent on the varying cyclin levels to 

direct control of the complexes in cell cycle regulation.  Considering this, altered 

expression levels of the CDKs between different cells may or may not be of 

consequence, but we observed a slight expression upregulation of CDK2 (2.1-fold) and 
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a strong upregulation of CDK4 (37.3-fold)  in L647R PreA expressing cells compared to 

uninduced cells (Figure 24).  As described, Cyclin E-CDK2 complexes initiate the G1/S 

transition of the cell cycle, and Cyclin D-CDK4 complexes phosphorylate Rb protein, 

leading to liberation of E2F.  E2F transcription factors, several of which (E2F1, 3, and 4) 

were observed to be upregulated by L647R PreA, control expression of key genes in 

controlling the transition from G1 to S phase.  Increases in CDK2 and CDK4 expression, 

as well as in their respective cyclin counterparts, Cyclin E and Cyclin D, within the same 

cells, accompanied by E2F-upregulation, surely indicates pressure to progress forward 

in the cell cycle. 

 An important consideration, however, in cyclin-CDK control of cell cycle 

progression, is the fact CKIs bind these complexes and potently inhibit their activity.  We 

observed the CKI Cdkn1a/p21Cip1/Waf (herein p21Waf1) demonstrates a 6.3-fold 

upregulation of expression, while Cdkn1b/p27/Kip1 (herein p27 Kip1) is upregulated 23.2-

fold (Figure 22).  These inhibitors, along with p19Arf (for which no statistically significant 

change in expression was observed between cells expressing L647R PreA and 

uninduced cells), are known to be the primary mediators of cell cycle arrest and are 

associated with quiescence, senescence, and/or apoptosis[as reviewed in 157].  The transcript 

upregulation of these inhibitors could imply early stage initiation of cell cycle arrest 

despite the increased expression levels of the cyclins and CDKs.  Several researchers 

have demonstrated p21Waf1 has a “threshold level” of activation, whereby modest 

induction stimulates proliferation, which is quickly staunched upon reaching the p21Waf1 

expression level threshold[as reviewed in 158].  Additionally, Cdk5rap1 (expression 

upregulated 9-fold, Figure 24) is a specific inhibitor of CDK5, a CDK shown to 
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phosphorylate and activate the p53 transcription factor, promoting apoptosis150,159, so 

upregulation of Cdk5rap1 would favor cell survival over apoptosis.  Overall, the Cyclin, 

CDK, CKI profile in 24-hours-induced L647R PreA-expressing cells suggests a forward 

pressure to cycle and avoid apoptosis with strong indications of early-stage cell cycle 

arrest initiation in progress.  

 

Kinases (Non-Cyclin-Dependent) and Phosphatases 

 Other kinases, besides those dependent on cyclins, are active in regulation of the 

cell cycle, as well.  Whereas phosphorylation activates the functions of some proteins, 

others are deactivated or tagged for degradation by the modification, thus phosphatases 

are also important in regulation of expression and activity of kinase substrate proteins.  

Several kinases and phosphatases demonstrate altered expression levels in response 

to induction of L647R PreA expression (Figure 25).  Among these, Adenylate kinase 1 

(AK1) is associated with metabolic sensing of body energy and facilitating 

phosphotransfer in the adenosine triphosphate (ATP) synthesizing pathway in which a 

phosphate is transferred from one adenosine diphosphate to another, leaving an 

adenosine monophosphate (AMP) as an ATP is formed (ADP+ADPAMP+ATP energy 

producing exchange)160.  In addition, an AK1 isoform that is associated with the nuclear 

membrane and is a transcriptional target of the transcription factor p53 (p53 transcript 

expression is elevated 2.8-fold in cells induced to express L647R PreA versus control, 

Figure 26-Transcription Factors and Related Genes).   
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Figure 25.  L647R Effects on Gene Expression (RT-qPCR Assay of Transcript 
Expression): Kinases & Phosphatases.   Expression of Kinase and Phosphatase Genes 
in L647R PreA-expressing cells was altered.  Changes shown are between cells 
induced (24 hours, 500 nM GenoStat) to express L647R PreA, compared to uninduced 
cells (DMSO-treated control), as assayed by RT-qPCR.  P-values </=0.05 for each fold-
change value, see Table 2. 
  

 The p53-activated AK1 was shown to be a critical part of p53-mediated cell cycle 

arrest in response to cellular stresses such as hypoxia or DNA damage from irradiation. 

AK1 overexpression is sufficient to induce a reversible p53-mediated cell cycle arrest 

without apoptosis induction for extended periods of time161.  Also, in this metabolic 

stress pathway, the Ca+/Calmodulin dependent kinase II isoforms (Camk2a/b) were 

upregulated. Camk2a/b inhibit activity of the cAMP response element binding protein 

(CREB) transcription factor, which lists c-Fos, Cyclin A1, and Cyclin D2 among its 

nearly 5000 transcriptional targets162.  Camk2b also activates AMP-activated protein 
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kinase (AMPK), a critical regulator of cellular energy homeostasis. AMPK is activated 

following periods of cellular stress during which the ATP to AMP ratio decreases (such 

as during mitogen deprivation/starvation), which correlates to an increase in intracellular 

calcium, thus activating the Ca+/calmodulin dependent kinases163.  The activation of 

AMPK serves to stimulate several metabolic processes to conserve energy or use 

energy stores, activate cell cycle checkpoints, and halt cell cycle progression.  AMPK 

inhibits protein synthesis by downregulating growth factor and nutrient sensing mTOR-

mediated S6 ribosomal translation.  AMPK partners with p53 in these processes, as its 

expression and activity are shown to be upregulated by p53, and p53 transcriptional 

targets Sestrin1 (Sesn1, expression level not measured in RT-qPCR assay) and Sestrin 

2 (Sesn 2, transcript expression upregulated 5.5-fold in L647R PreA-expressing cells, 

Figure 26-Transcription Factors and Related Genes) have also been shown to activate 

AMPK.  The Ataxia telangiectasia-mutated (ATM) kinase also phosphorylates AMPK in 

response to depleted cellular energy and metabolic stress164.  Transcript expression, 

according to the RT-qPCR assay, of the ATM serine/threonine kinase, a phosphatidyl-

inositol-3 kinase-like kinase (PIKK) family member, is upregulated 4-fold in L647R PreA-

induced cells compared to control.  Though the AMPK transcript expression level is not 

directly measured in the RT-qPCR assay, increased expression of ATM and Camk2b, 

as well as p53 and Sesn2, creates a favorable set of conditions for activation of AMPK.  

Control of cell cycling, cellular homeostasis and aging, cell fate decisions between 

apoptosis, quiescence, and senescence by p53 and mTOR is significant, and we 

discuss this in more detail in other sections of this work.    
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 ATM and Checkpoint kinase 1 (Chek1/Chk1) are most commonly associated with 

response to DNA damage but also have important functions in mediating cell cycle 

progression and control of traversing cell cycle checkpoints.  ATM is activated by auto-

phosphorylation or trans-phosphorylation in response to double strand DNA breaks 

(DSBs), whether these are caused by a genotoxic insult or as a normal phenomenon in 

the course of DNA replication, transcription, or V(D)J and class-switch recombination.  

ATM phosphorylates a number of effector proteins, primarily Chk2 (expression not 

assayed in the qPCR) but also Chk1.  Chk1 (expression upregulated 22.1-fold) is most 

often part of the single strand DNA break (SSB) response and is thus typically activated 

by the Ataxia telangiectasia-related kinase (ATR, not included in the qPCR assay), the 

close PIKK relative of ATM that is most frequently associated with response to 

SSBs165,166.  As both DSBs and SSBs can occur during DNA replication, ATM and ATR 

are both often recruited to the DNA breaks that occur in DNA replication167.  In fact, ATR 

activity is activated by ATM, and possibly vice-versa168.   

 Increased expression and activation of Chk1 can negatively regulate cell cycle 

progression even when checkpoints are unperturbed.  This occurs in part by inhibitory 

phosphorylation of CDKs and by phosphorylation of Cdc25 proteins, which leads to their 

degradation thus, decreases the rate of dephosphorylation of CDK.   Chk1 has been 

shown to repress gene transcription (of, for example, cyclin genes) through participating 

in histone modifications. In addition to being required for the intra-S-phase checkpoint 

response to stalled replication forks, Chk1 plays a role in proper formation of the mitotic 

spindle and in activation of the spindle checkpoint to prevent entry to mitosis with 

spindle aberrances.  Chk1 phosphorylates Rb to enhance its binding to E2F, thus 
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antagonizing E2F-related transcription169, although, as an apparent negative-feedback 

loop, Chk1 is an apparent E2F transcriptional target153.  To further introduce fine-tuned 

control to this regulatory loop, E2F1 is one of the transcription factors phosphorylated by 

ATM (E2F1 demonstrates a 6.4-fold expression upregulation with L647R PreA 

expression, in the qPCR assay, Figure 26).   

 Another transcription factor substrate for ATM phosphorylation is p53 (slightly 

upregulated, Figure 26), which is also phosphorylated by Chk1 and Chk2.  Chk1/2-

dependent phosphorylation of the tumor suppressor protein p53 leads to its stabilization 

and activation of both the G1 and G2 checkpoint pathways166,170-173.  Chk1 also interacts 

with, and recruits the activity of, the nucleolar protein nucleophosmin, which stabilizes 

p53 and p21 by preventing their degradation174,175.  Nucleophosmin (Npm2), which 

demonstrates a 16.5-fold upregulation in L647R-expressing cells (Figure 23-

Transcription Factors and Related Genes), functions as a threshold modulator for p53, 

acting to repress its tumor suppressive and apoptosis-induction activities when p53 

expression is below a threshold level.  Once p53 expression level reaches a high level, 

Npm2 switches to its strong role as a p53- and p21-stabilization factor176.  

 Ppp2r3a (upregulated 20.5-fold) is a subunit of a protein phosphatase 

holoenzyme (formerly known as “Pp2A”) that is 1 of 4 major serine/threonine kinases 

implicated in negative regulation of cell growth and division, as it actively reverses the 

phosphorylations carried out by kinases, especially the cyclin dependent kinases150,177.  

For example, the cell division control protein 6 (Cdc6) is required for DNA replication by 

its action in forming the pre-replication complexes necessary for “licensing” of 

replication origins to control the timing of replication.  Cyclin dependent kinases 
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phosphorylate Cdc6 to protect it from ubiquitination and degradation, thus promoting S- 

and M-phase entry, replication of genetic material and cell division.  Protein 

phosphatase 2 reverses Cdc6 phosphorylation, leading to its degradation and 

consequently prevents DNA replication and arrests the cell cycle178.  Additionally, this 

phosphatase is reported to dephosphorylate pRb to mediate the hypophosphorylated 

status required for pRb to remain in its inhibitory complex with the E2F transcription 

factor. 

 Wee1 is tyrosine kinase responsible for inhibitory phosphorylation of Cdc2/Cdk1 

in complex with CyclinB.  This modification disables the Cyclin B/Cdk1-mediated entry 

of cells to mitosis, and thus results in cell cycle arrest at the G2/M transition179.  In the 

RT-qPCR assay, we find a 24.9-fold upregulation of Wee1, implying the possibility of its 

actions in negative regulation of cell proliferation and division. 

 The phosphatases Ppmd1/Wip1 and Ppp3a were upregulated in L647R PreA- 

expressing cells. Ppmd1/Wip1 (herein Wip1) dephosphorylates and thus inhibits p53 

(Ser 15) and Chk1 (Ser 345), thereby abrogating cell cycle checkpoints.  While this is an 

antiapoptotic action, and necessary for cells to re-enter the cell cycle following a 

completed checkpoint, it can also serve to promote potential tumorigenesis and Wip1 is 

often deregulated in cancers180.  Ppp3a is a subunit of another protein phosphatase 

holoenzyme, protein phosphatase 3 (formerly called 2B), and functions in calcium-

dependent dephosphorylation of proteins149.  Taken together, the kinase/phosphatase 

profile of L647R PreA-expressing cells is difficult to interpret in terms of elucidating 

specific mechanisms of direct PreA effects on cell cycle gene-regulation; however, it 
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does strongly suggest activation of several moieties that participate in cell cycle arrest 

processes.  

 

Transcription Factors and Associated Genes  

 In addition to the transcription factors and related genes already mentioned (p53, 

E2Fs, Npm2, Sesn2) several others demonstrate expression level effects from L647R 

PreA expression (Figure 26).  As the 2 primary systems of cell cycle-related 

transcriptional control, expression of genes related to Rb-E2F association or p53 

function are critical in evaluating regulation of the cycle.  These pathways are controlled 

by a multitude of posttranscriptional and posttranslational mechanisms.  Therefore, 

measurement of transcript expression levels, alone, for Rb-family suppressors, and 

E2F-family transcription factors, might not ultimately be informative regarding actual 

function.   

 While pRb expression was not directly measured in the qPCR assay, the other 

pocket proteins, Rbl1 (p107) and Rbl2 (p130), were assayed and shown to have 

transcript expression upregulation, while E2Fs 1, 3, and 4 also demonstrate 

upregulation.  Also slightly upregulated in this gene category is Tfdp1 (DP-1), a 

transcription cofactor protein that complexes with E2F transcription factors to enhance 

inhibitory binding of hypophosphorylated pRB to the E2F/DP complex, or, when pRB 

becomes phosphorylated and dissociates from the complex, DP-1 actually stimulates 

E2F-mediated transcription of its target genes. 
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Figure 26.  L647R Effects on Gene Expression (RT-qPCR Assay of Transcript 
Expression):  Transcription Factors & Related Genes.  Changes were found in 
expression of transcription factors and related genes in L647R PreA-expressing cells. 
Transcript levels in cells induced (24 hours, 500 nM GenoStat) to express L647R PreA 
were compared to uninduced cells (DMSO-treated control) by RT-qPCR assay. P-
values </=0.05 for each fold-change value, see Table 2. 
 

 In terms of regulating the actual expression level of p53, few other genes are 

more important than “mouse double minute 2” (Mdm2).  Mdm2 (upregulated 2.1-fold 

with L647R PreA expression) is an E3 ubiquitin ligase that negatively regulates p53 

function by promoting its proteasomal degradation181 [and reviewed in 182 ].  Interestingly, 

Mdm2 is a p53 transcriptional target apparently expressed as part of a negative 

feedback regulator of p53 expression183.  In another layer of control, Mdm2 can also 
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undergo autoubiquitination in which it directs its own targeting for proteasomal 

degradation.  As a result, Mdm2 inhibitory effects on p53 are relieved, resulting in 

stabilization and increased activity of p53 in its cell cycle arrest and apoptotic functions.  

In addition to a role in negative regulation of the expression level of p53, Mdm2 also 

negatively regulates the expression levels of p21Waf1 184 and pRb185, as well as the 

Mdm2-binding protein (Mtbp).  Mtbp, which is upregulated with L647R PreA expression, 

has an apparent “switch” mechanism in which it can either function to stabilize or 

destabilize Mdm2 expression and function, depending on the ratio of expression 

between the 2 proteins.  When Mdm2 expression levels are higher, Mtbp levels are 

lower, and Mdm2-autoubiquitination is blocked, thus directing Mdm2 ubiquitin ligase 

activity toward p53.  Mtbp also enhances Mdm2 binding to p53, facilitating p53 

degradation and promoting cell survival.  Conversely, when expressed at higher levels, 

Mtbp can effectively reverse its stabilizing effects on Mdm2, facilitating Mdm2 

autoubiquitination and degradation, thereby promoting p53 stabilization and increased 

p53 activity186.  Rb can be ubiquitinated and downregulated by Mdm2.  In another 

negative regulatory role toward Mdm2, Mtbp interacts with pRb to elicit a p53-

independent cell cycle arrest187.  Possibly, this set of opposing activities exists as a 

means to arrest the cell cycle when necessary without activating apoptosis. 

 The stratifin gene (Sfn), more commonly known as 14-3-3σ, is significantly 

upregulated (25.3-fold), at the transcript level in cells expressing L647R PreA versus 

control.  Members of the 14-3-3 family of proteins are directly involved in many of the 

cellular processes crucial for normal growth and development, including cytokinesis, 

cell-contact inhibition, anchorage-independent growth, and cell adhesion--the same 
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pathways often dysregulated in disease states such as cancer.  Most 14-3-3 family 

members enhance the activity of survival and/or proliferation-associated proteins (such 

as the Raf kinase), or they antagonize the activity of proteins that promote cell death 

and senescence (such as Bad, Bim, and Bax).  In contrast, however, 14-3-3σ acts as a 

tumor suppressor and its expression is typically upregulated coordinately with p53 and 

BRCA1.  This isoform serves to sequester Cdk1-Cyclin B complexes in the cytoplasm, 

thus delaying cell cycle progression, and is also a crucial regulator of translation during 

mitosis.  Additional 14-3-3σ tumor suppressor activity comes from its dual roles in 

stabilization of  p53.  First, it binds and negatively regulates Mdm2 by promoting its 

ubiquitination and degradation, thus stabilizing p53 by protecting it from Mdm2-

mediated ubiquitination.  Second, 14-3-3σ enhances p53 stability and activity by 

scaffolding it to assist formation of p53 tetramer structures188.  

 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential glycolytic 

enzyme that is expressed in all prokaryotic and eukaryotic organisms and found to be 

upregulated 17.6-fold in cells expressing L647R PreA in our RT-qPCR assay.  Studies 

suggest that GAPDH is a multifunctional protein with a number of functions independent 

of its role in glycolysis. These activities include phosphorylating transverse-tubule 

proteins189, stimulating RNA transcription190, interacting with microtubules191, influencing 

RNA catalysis192, and acting as a diadenosine tetraphosphate binding protein to 

influence DNA replication and DNA repair193.  GAPDH is also upregulated by p53 after 

exposure to apoptotic insult194.   

 The transcription factors BRCA1 and BRCA2 (upregulated 19.4-fold and 14.1-

fold, respectively) are activated by ATM, ATR, and Chk1 in response to DNA damage 
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upon genotoxic exposure, as well as in the DNA breakage that occurs in DNA 

replication.  They mediate intra-S phase and cell cycle checkpoints and function to 

ensure error-proof DNA repair.  It has previously been demonstrated that BRCA1 can 

transcriptionally activate expression of p27Kip1 [195] , upregulate p21Waf1 and 

GADD45196,197, as well as coactivate the transcription of other p53-regulated genes196.  

BRCA2 has also been shown to be phosphorylated in a cell cycle dependent manner by 

cyclin dependent kinases, to potentially mediate cytokinesis, and functions 

nonredundantly with BRCA1, especially in the G2/M cell cycle checkpoint198. 

 Expression of the gene mutated in Polycystic Kidney Disease, Pkd1, is 

upregulated 4.6-fold in the L647R PreA-induced cells compared to the uninduced cells.  

The gene product of Pkd1, the Polycystin protein, inhibits mTOR by complexing with 

Tuberous Sclerosis 1 and 2 (TSC1/2) to stabilize the complex by inibiting ERK-mediated 

phosphorylation of TSC1/2.  The Polycystin-stabilized TSC1/2 complex inhibits the 

mTORC1 activating GTPase activity of Rheb, thereby inactivating the mTOR promotion 

of S6 ribosomal translation of a multitude of proteins199.  Polycystin-1 also activates the 

JAK/STAT pathway, thereby upregulating p21Waf1, and inducing cell cycle arrest in 

G0/G1200.  Suppressing DNA synthesis as well as protein synthesis, and also serving to 

upregulate p21Waf1 expression, is the Notch signaling pathway receptor protein Notch2.  

Notch2 demonstrates a 10.7-fold transcript upregulation with L647R PreA expression 

over uninduced cells.  In contrast to the Notch1-mediated inhibition of transcription of 

the phosphatase and tensin homologue (PTEN) protein, Notch2 has been shown 

upregulate PTEN expression and lead to Akt dephosphorylation, thus inhibiting the Akt-

mediated mTOR pathway of protein synthesis201. 
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 Amyloid β–precursor binding protein B (Apbb1/Fe65), herein Fe65, is an adapter 

protein that binds the β-amyloid precursor protein, which has a central role in the 

pathology of Alzheimers Disease.  Recent studies have also shown overexpression of 

Fe65 is sufficient to effectively block cell cycle progression in G1 phase by completely 

abolishing the activation of a key S phase gene, the thymidylate synthase (TS) gene, 

which is driven by the transcription factor LSF/CP2/LBP1 (LSF)202.   Additionally, Fe65 

has been shown to stabilize p53203.  The significant upregulation of expression of Fe65 

(40.9-fold) in cells induced to express L647R PreA, compared to uninduced cells, 

certainly warrants further investigation as a potential PreA mechanism of inducing cell 

cycle arrest.  A PreA-mediated increase in Fe65 at such a dramatic level could lead to 

cell cycle arrest202,203, although posttranslational factors would likely play a critical role in 

determining if that phenomenon occurs. 

  The DNA damage inducible transcript 3(Ddit3) transcription factor, also known 

as Chop10/Gadd153 (herein Chop10), is modestly upregulated in L647R PreA 

expressing cells.  Chop10 is a Forkhead box O1 (FoxO1) transcriptional target 

expressed in response to cell stresses, especially those directly affecting the 

endoplasmic reticulum, such as increased reactive oxygen species and presence of 

unfolded proteins204.  Chop10 dimerizes with the C/EBP transcription factor to inhibit 

transcription and induces growth arrest or apoptosis205.  Interestingly, the amyloid β–

precursor protein (APP, which regulates and is regulated by Fe65206) potentiates 

Chop10 induction and cell death in response to ER Ca2+ depletion207.  The RT-qPCR 

assay revealed that the spectrum of transcription factors and transcription factor-related 

genes demonstrating altered transcript levels is quite broad upon L647R PreA 
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expression.  Therefore, the data offer little clarification of specific mechanisms of PreA 

in regulating the cell cycle.  However, the response to L647R PreA-expression by such 

a multitude of these factors strongly suggests the activation and involvement of multiple 

pathways in arrest of the cell cycle. 

DNA Damage-Related Genes 

 As mentioned, although ATM phosphorylation has roles in unperturbed cell cycle 

progression, its primary functions are in relation to DNA damage response.  In addition 

to the previously noted substrates involved in unperturbed cell cycling in addition to the 

response to DNA damage (BRCA1/2, p21/p27, Chk1, Ddit3, p53), ATM also 

phosphorylates the mediator and adaptor proteins MDC1, 53BP1, H2AX, and Mre11, all 

which assist in the assembly of multiprotein complexes at the sites of DSBs and in the 

subsequent DNA repair activities149,150,167,168.  Of those 4 target proteins, only the Mre11 

(meiotic recombination 11) transcript level is assayed in our RT-qPCR panel and is 

upregulated 6.3-fold (Figure 27). The nuclease activity of ATM-activated Mre11 is 

required for the processing of DNA double-strand breaks (DSBs) to generate the 

replication protein A (RPA)-coated ssDNA needed for ATR recruitment and the 

subsequent phosphorylation and activation of Chk1167. 

 Structural maintenance of chromosomes 1a (Smc1a), as the central component 

of the Cohesin complex required for proper cohesion of sister chromatids after DNA 

replication, is most aptly fit into the category for mitotic structure proteins; however, it is 

activated by ATM and does participate with ATM- or ATR-activated BRCA1 in mediating 

S-phase checkpoint control and DNA repair and thus bears mention in this category.   
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Figure 27.  L647R Effects on Gene Expression (RT-qPCR Assay of Transcript 
Expression):  DNA Damage-Related Genes.  Expression changes were seen in several 
DNA damage-related genes in L647R PreA-expressing cells. Cells induced (24 hours, 
500 nM GenoStat) to express L647R PreA were compared to uninduced cells (DMSO-
treated control), using the RT-qPCR assay. P-values </=0.05 for each fold-change 
value, see Table 2. 
 

 As seen in Figure 27, the Smc1a transcript expression level in L647R PreA-

induced cells is upregulated a substantial 19.5-fold over the level found in uninduced 

cells.  As demonstrated by altered expression of several kinases, transcription factors 

and transcription factor-associated genes, and DNA damage response and repair 

effectors, some role for PreA accumulation in affecting the gene expression program in 

DNA damage response appears evident.  Although previous studies have suggested a 

potential inhibitory role for PreA in modulating DNA repair208, considering the complexity 

of the response and the potentially PreA-regulated participants, future studies should 

consider PreA-mediated roles of these genes.  
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Genes Associated with Cell Structure and Integrity/Chromatin/Chromosome 
Organization and Maintenance/Mitotic Assembly 
 
  Actin is one of the most highly-conserved proteins known and is ubiquitously 

expressed in all eukaryotic cells.  Actin polymers form polar intracellular 'tracks' for 

kinesin motor proteins, allowing the transport of vesicles, organelles, and other cargo.  

These polymers also give mechanical support to cells and attach them to each other 

and the extracellular matrix at adherens junctions. In combination with myosin, actin 

forms the myofibrils that polymerize and depolymerize to function in cell motility.  As 

manipulation of the cell cycle involves rearrangement and trafficking of many cellular 

components, as well as morphological changes to the cell (and even cytokinesis), it 

comes as no surprise to find β-Actin upregulated (14.8-fold) in cells overexpressing a 

protein (the L647R PreA) that has apparent functions in alteration of the progress of the 

cell cycle. 

 Expression of other filamentous cytoskeletal components are upregulated in the 

L647R PreA-expressing cells, as well, such as the Microtubule-actin crosslinking factors 

1 and 2 (Macf1/2).  These proteins link intermediate filaments, actin, and microtubules 

to play a role in organizing the cytoskeletal and nuclear envelope structure of the cell.  

Macf1 is upregulated 9.8-fold, while Macf2, also known as Dystonin (Dst), and noted as 

important in adhesion junctions as well as anchoring keratin-containing intermediate 

filaments to hemidesmosomes209, is upregulated 25.4-fold.  Integrin β1(Itgb1), for which 

cells expressing L647R PreA demonstrate a 9.6-fold upregulation, also functions in cell 

adhesion and cell signaling.   

  Several genes with products responsible for regulating formation of the mitotic 

spindle demonstrate an increased expression in cells induced to express L647R PreA, 
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such as the NIMA (never in mitosis gene A)-related expressed kinase 2 (Nek2).  The 

Nek2 protein kinase (upregulated 15.6-fold) is involved in regulating the G2/M transition 

by controlling the mitotic spindle-assembly checkpoint that is necessary for proper 

chromosome segregation during metaphase-anaphase transition.  Nek2 activity is 

required for association of another protein, mitotic arrest deficient 2-like 1 (Mad2l1), to 

the kinetochore.  Mad2l1 (upregulated  2.7-fold) is also required for the execution of the 

mitotic checkpoint and monitors the process of kinetochore-spindle attachment, 

functioning to inhibit the activity of the anaphase promoting complex (APC), thus 

preventing onset of anaphase, by sequestering Cdc20 until all chromosomes are 

properly aligned at the metaphase plate. 

Figure 28.  L647R Effects on Gene Expression (RT-qPCR Assay of 
TranscriptExpression): Genes Involved in Chromosomal/Nuclear/Cellular Integrity or 
Microtubule/Mitotic Assembly.  L647R PreA-expressing cells had altered expression of 
genes involved with chromosomal organization, structural integrity, assembly of 
microtubules, and the mitotic spindle.  Expression levels in cells induced (24 hours, 500 
nM GenoStat) to express L647R PreA were compared to levels in uninduced cells 
(DMSO-treated control), by the RT-qPCR assay. P-values </=0.05 for each fold-change 
value, see Table 2. 
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 Mcm2, a phosphorylation substrate of Cdc2/Cdk1 and Cdc7, is one of the highly 

conserved mini-chromosome maintenance proteins (MCM) that are involved in the 

initiation of eukaryotic genome replication and is upregulated 17.7-fold in the L647R 

PreA-induced cells.  The hexameric protein complex formed by MCM proteins (Mcm2, 

along with Mcm4, 6, and 7) is the putative replicative helicase essential for 'once per cell 

cycle' DNA replication initiation and elongation in eukaryotic cells.  Mcm2 is reported to 

be the regulator of the helicase activity of the Mcm-complex, and as such, it is a key 

component of the prereplication complex (pre-RC) and may be involved in the formation 

of replication forks and in the recruitment of other DNA replication related proteins149,150. 

  Finally, the expression level of the TRF1/Terf1 gene, the transcript of which is 

translated to yield a component of the Shelterin telomere-capping protein complex, is 

upregulated 3.4-fold upon expression of L647R PreA.  While this is not a spectacular 

increase, it is potentially significant given the critical nature of maintenance of telomeric 

structure in the preservation of genomic integrity, activation of senescence, apoptosis, 

and cellular aging210-213. 

Effects of Accumulated PreA on Cell Cycle Control-Specific Protein 
Expression and Phosphorylation Assay by Antibody Array 

 
 
  While the data from the RT-qPCR assay of transcript levels of cell cycle related 

genes present compelling evidence of some role for the PreA isoform of LA in the 

regulation of the genes that control the cell cycle, we acknowledge significant regulation 

of many of these factors occurs primarily at the level of the protein and through 

posttranslational modifications.  To expand the profiling of PreA-mediated effects on cell 

cycle, we assayed the expression level of a number of proteins involved in cell cycle 
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control.  We used a commercially available protein/antibody microarray comprising 

biotinylated antibodies specific to proteins that control the cell cycle (Fullmoon 

Biosystems).  Additionally, as the bulk of cell cycle-related posttranslational modification 

occurs in the form of protein phosphorylation, this array system also features phospho-

specific antibodies to measure the comparative levels of phosphorylation of many cell 

cycle control proteins.  Analysis of the array results revealed changes in expression 

levels and phosphorylation status of several key cell cycle proteins when we induced 

expression of L647R PreA. 

  From cells of the Rheoswitch 3T3 L647R PreA cell line, whole cell lysates were 

prepared as per the antibody array manufacturer instructions in a lysis buffer containing 

both protease and phosphatase inhibitors.  Two lysate samples were prepared from 

replicate cultures, one from cells induced with 500 nM GenoStat for 72 hours to express 

the L647R PreA mutant protein and the other, an uninduced control sample (treated 

only with DMSO for the 72-hour period).  A 72-hour timepoint was selected to 

encourage an optimal level of L647R PreA expression induction in asynchronously 

growing cells (as we have tried to avoid “artificial interruption” of the cell cycle by 

commonly used synchronization methods).  The antibody array slides were hybridized 

and scanned at the Fullmoon Biosystems facility to ensure correctness of the 

processing steps without the expense of conducting trials necessary to optimize the 

processing in house.  Each antibody was spotted in replicates of 6 on each slide, 

statistical evaluation of the 6 antibody fields per protein and hybridization and 

fluorescence controls were conducted on an “interslide basis,” in comparison between 

the L647R PreA-induced cell lysate slide and the noninduced slide, as well as on an 
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“intraslide” basis to determine outliers resulting from any inefficient or uneven labeling or 

hybridization within the replicates on the same slide.  After subtracting fluorescence 

background of negative controls, outliers were excluded and relative expression levels 

of proteins compared.  In addition, we analyzed the levels of phosphorylation of the 

proteins using  PANDA, (Phosphor Antibody Array Data Analysis), which is a web-

based software program developed at Emory University for analyzing phosphorylation 

antibody arrays214.  It identifies phosphorylated antibodies in the microarray and 

statistically quantifies the extent of phosphorylation for targets of these antibodies, 

enabling the quantitative evaluation of the phosphorylation changes, at each 

phosphorylation site, with a 95% confidence interval.  Results of the antibody array 

assay are shown in Table 3.  In the text, references to a particular protein’s 

“upregulation” or “downregulation” are intended, for simplicity to refer to the expression 

level or the phosphorylation level of the protein, in L647R PreA-expressing cells (after 

72 hours of expression, induced by 500 nM GenoStat), compared to uninduced control 

cells. 
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Total Protein

Total Protein 

Expression             

Ratio 

L647R/NI

log2 of 

Ratio 

(Fold 

Change)

Phospho-Residue-Specific 

Protein

Phospho 

Protein Ratio†                 

P/NP-L647R/ 
P/NP-NI

log2 of 

Ratio 

(Fold 

Change)

Protein List NI L647R Phospho protein NI L647R

14-3-3 theta/tau (Ab-232) 0.84 -0.26 0.03 0.02 14-3-3 theta/tau (Phospho-Ser232) 0.69 -0.53 0.08 0.06

14-3-3 zeta  (Ab-58)  1.38 0.47 0.03 0.02 14-3-3 zeta  (Phospho-Ser58) 0.27 -1.90 0.13 0.20

14-3-3 zeta/delta (Ab-232) 0.76 -0.40 0.17 0.19 14-3-3 zeta/delta (Phospho-Thr232) 0.63 -0.66 0.18 0.05

ABL1 (Ab-204) 0.98 -0.03 0.33 0.38** Abl1 (Phospho-Tyr204) 2.00 1.00 0.09 0.07

ABL1 (Ab-754/735) 0.88 -0.19 0.03 0.02 ABL1 (Phospho-Thr754/735) 0.59 -0.75 0.12 0.06

c-Abl (Ab-412) 0.88 -0.18 0.13 0.07 Abl1 (Phospho-Tyr412) 0.88 -0.18 0.05 0.06

Average for  ABL1/c-Abl 0.88 -0.19 c-Abl (Phospho-Tyr412) 0.87 -0.21 0.24 0.13

c-Abl (Phospho-Tyr245) 0.41 -1.27 0.18 0.10

AKT(Ab-473) 0.61 -0.70 0.14 0.16 AKT (Phospho-Ser473) 0.78 -0.36 0.05 0.02

AKT1 (Ab-246) 0.86 -0.21 0.03 0.03 AKT1 (Phospho-Ser246) 0.65 -0.62 0.33** 0.05

AKT (Ab-308) 0.72 -0.46 0.07 0.06 AKT (Phospho-Thr308) 0.80 -0.31 0.09 0.19

AKT (Ab-326) 0.82 -0.29 0.02 0.03 AKT (Phospho-Tyr326) 0.27 -1.90 0.20 0.01

AKT1 (Ab-124) 0.90 -0.15 0.10 0.14 AKT1 (Phospho-Ser124) 0.15 -2.70 0.04 0.02

AKT1 (Ab-450) 0.66 -0.61 0.07 0.09 AKT1 (Phospho-Thr450) 0.95 -0.07 0.14 0.09

AKT1 (Ab-72) 0.77 -0.38 0.06 0.09 AKT1 (Phospho-Thr72) 0.98 -0.03 0.03 0.03

AKT1 (Ab-474) 1.01 0.14 0.03 0.03 AKT1 (Phospho-Tyr474) 0.59 -0.76 0.05 0.03

Average for  AKT1 0.79 -0.35

AKT2 (Ab-474) 0.72 -0.48 0.05 0.02 AKT2 (Phospho-Ser474) 0.82 -0.29 0.16 0.05

ATM (Ab-1981) 0.98 -0.03 0.03 0.09

ATRIP (Ab-68/72) 1.02 0.03 0.07 0.09 ATRIP (Phospho-Ser68/72) 0.54 -0.89 0.10 0.09

Beta actin 1.91 0.93 0.02 0.06

BRCA1 (Ab-1423) 1.04 0.06 0.09 0.09 BRCA1 (Phospho-Ser1423) 0.88 -0.19 0.10 0.06

BRCA1 (Ab-1457) 0.66 -0.60 0.16 0.05 BRCA1 (Phospho-Ser1457) 1.02 0.03 0.11 0.06

BRCA1 (Ab-1524) 0.85 -0.23 0.03 0.05 BRCA1 (Phospho-Ser1524) 1.64 0.72 0.11 0.02

Average for  BRCA1 0.82 -0.29

CDC25A (Ab-124) 0.63 -0.66 0.02 0.02 CDC25A (Phospho-Ser124) 1.04 0.06 0.16 0.17

CDC25A (Ab-75) 0.85 -0.24 0.05 0.05 CDC25A (Phospho-Ser75) 1.16 0.21 0.35** 0.11

Average for  CDC25A 0.75 -0.42

CDC25B (Ab-323) 0.79 -0.34 0.04 0.03 CDC25B (Phospho-Ser323) 0.85 -0.24 0.03 0.09

CDC25B (Ab-353) 0.50 -0.99 0.04 0.01 CDC25B (Phospho-Ser353) 1.10 0.14 0.07 0.04

Average for  CDC25B 0.65 -0.62

CDC25C (Ab-216) 1.44 0.53 0.16 0.13 CDC25C (Phospho-Ser216) 0.57 -0.82 0.08 0.09

CDC25C (Phospho-Thr48) 0.47 -1.09 0.14 0.01

CDC2 (Ab-15) 0.84 -0.25 0.07 0.06 CDC2 (Phospho-Tyr15) 0.44 -1.17 0.14 0.28**

CDK1/CDC2 (Ab-14) 0.80 -0.32 0.08 0.06 CDK1/CDC2 (Phospho-Thr14) 0.60 -0.73 0.16 0.02

Average for CDK1/CDC2 0.82 -0.29

CDK2 (Ab-160) 0.82 -0.28 0.06 0.14 CDK2 (Phospho-Thr160) 0.81 -0.30 0.07 0.11

CDK7 (Ab-170) 0.67 -0.57 0.02 0.08 CDK7 (Phospho-Thr170) 0.97 -0.04 0.05 0.06

Chk1 (Ab-280) 0.75 -0.42 0.10 0.04 Chk1 (Phospho-Ser280) 1.06 0.08 0.10 0.06

Chk1 (Ab-286) 0.70 -0.51 0.05 0.01 Chk1 (Phospho-Ser286) 1.26 0.33 0.20 0.02

Chk1 (Ab-317) 0.79 -0.34 0.07 0.02 Chk1 (Phospho-Ser317) 1.14 0.19 0.15 0.08

Chk1 (Ab-345) 0.80 -0.31 0.02 0.04 Chk1 (Phospho-Ser345) 0.75 -0.42 0.17 0.09

Average for  Chk1 0.76 -0.39 Chk1 (Phospho-Ser296) 0.00 0.00 0.11 0.07

Chk1 (Phospho-Ser301) 1.02 0.03 0.10 0.12

Chk2 (Ab-383) 0.78 -0.37 0.09 0.05 Chk2 (Phospho-Thr383) 0.91 -0.13 0.08 0.09

Chk2 (Ab-387) 0.82 -0.29 0.11 0.12 Chk2 (Phospho-Thr387) 0.55 -0.87 0.14 0.05

Chk2 (Ab-516) 0.57 -0.81 0.09 0.06 Chk2 (Phospho-Ser516) 1.49 0.58 0.04 0.09

Chk2 (Ab-68) 0.94 -0.09 0.08 0.08 Chk2 (Phospho-Thr68) 0.57 -0.80 0.15 0.07

Average for  Chk2 0.78 -0.36

Cyclin A(A1/A2) (inter) 0.63 -0.68 0.05 0.05

Cyclin A1 (C-term) 0.66 -0.59 0.11 0.10

Average for  CyclinA1/2 0.65 -0.62

**Not Statistically Significant: A data-point contained within the set demonstrated a high CV (>0.20) 

Table X Page 2 of 3

†P/NP-L647R/P/NP-NI= Phosphorylation Ratio (Phosphospecific protein detected in assay/Total protein detected in assay) of L647R PreA Expressing 

"L647R" (Test) Cell Lysate/Phosphorylation Ratio of "NI" (Not Induced) Control Cell Lysate

****Table continues, next page****

Green Text=Expression Significantly Downregulated (>/= 0.31-fold down = a ratio of 0.80 or less); Red Text=Expression Significantly Upregulated (>/= 

0.26-fold up= a ratio of 1.20 or more)

*L647R="L647R PreA": Lysates extracted from 3T3 RheoSwitch cells induced 72 hours (500nM GenoStat) to express L647R PreA; NI="Not Induced": 

Lysates extracted from cells treated with DMSO only (no induction reagent) 

Text Highlighted in Blue=An Average of the Expression Data Values from Multiple Antibodies to the Same Protein, or for Phospho-protein, the Total 

Protein Expression Average was used in calculating the Phosphorylation Ratio for some phospho-sites in proteins for which a matched "non-phospho 

specific" antibody was unavailable or had a high CV 

CV of 6 

Replicates on a 

Slide

CV of 6 

Replicates on a 

Slide

Table 3. Results of Antibody Array: Changes in Protein Expression Levels and Phosphorylation 
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Table 3 (continued)

Total Protein

Total Protein 

Expression             

Ratio 

L647R/NI

log2 of 

Ratio 

(Fold 

Change)

Phospho-Residue-Specific 

Protein

Phospho 

Protein Ratio†                 

P/NP-L647R/ 
P/NP-NI

log2 of 

Ratio 

(Fold 

Change)

Protein List NI L647R Phospho protein NI L647R

Cyclin B1 (Ab-126) 0.76 -0.40 0.03 0.03 Cyclin B1 (phospho-Ser126) 0.89 -0.17 0.01 0.09

Cyclin B1 (Ab-147) 0.74 -0.42 0.07 0.04 Cyclin B1 (phospho-Ser147)) 0.89 -0.16 0.10 0.11

Average for  CyclinB1 0.75 -0.41

Cyclin D1 (ab-286) 0.75 -0.41 0.13 0.12 Cyclin D1 (Phospho-Thr286) 0.83 -0.27 0.20 0.07

Cyclin D2 (Ab-280) 0.74 -0.43 0.09 0.05

Cyclin D3 (Ab-283) 0.67 -0.58 0.07 0.05 Cyclin D3 (Phospho-Thr283) 0.82 -0.29 0.09 0.02

Cyclin E1 (Ab-395) 0.77 -0.37 0.02 0.03 Cyclin E1 (Phospho-Thr395) 0.79 -0.34 0.07 0.08

Cyclin E1 (Ab-77) 0.62 -0.68 0.17 0.11 Cyclin E1 (Phospho-Thr77) 1.26 0.33 0.13 0.04

Average for  CyclinE1 0.71 -0.49

Cyclin E2 (Ab-392) 0.94 -0.09 0.02 0.04

DNA-PK (Ab-2638) 0.81 -0.30 0.05 0.02 DNA-PK (Phospho-Thr2638) 0.76 -0.40 0.11 0.03

DNA-PK (Ab-2647) 1.80 0.84 0.06 0.08 DNA-PK (Phospho-Thr2647) 0.35 -1.52 0.13 0.16

Average for  DNAPK 1.31 0.39

E2F1 (Ab-433) 0.84 -0.26 0.13 0.09 E2F1 (Phospho-Thr433) 0.73 -0.45 0.12 0.04

E2F2 (inter) 0.76 -0.39 0.09 0.06

E2F4 (N-term) 0.56 -0.84 0.05 0.04

E2F6 (inter) 0.31 -1.69 0.10 0.06

FKHR (Ab-256) 1.79 0.84 0.06 0.05 FKHR (Phospho-Ser256) 0.41 -1.28 0.18 0.19

FKHR (Ab-319) 0.79 -0.33 0.07 0.09 FKHR (Phospho-Ser319) 0.61 -0.71 0.08 0.06

FKHRL1/FOXO3 (Ab-253) 0.88 -0.18 0.06 0.04 FKHRL1 (Phospho-Ser253) 0.97 -0.05 0.11 0.11

FOXO1/3/4-PAN (Ab-24/32) 0.73 -0.46 0.07 0.07 FOXO1/3/4-PAN (Phospho-Thr24/32) 0.19 -2.42 0.03 0.03

FOXO1A (Ab-329) 0.59 -0.77 0.05 0.04 FOXO1A (Phospho-Ser329) 1.06 0.08 0.05 0.05

Average for FoxO1/3/4 0.99 -0.02 FOXO1A/3A (Phospho-Ser322/325) 0.68 -0.56 0.04 0.04

Average for FoxO1/FKHR 1.06 0.08

GAPDH 1.39 0.48 0.05 0.07

GSK3 beta (Ab-9) 0.20 -2.36 0.02 0.03 GSK3 beta (Phospho-Ser9) 2.79 1.48 0.06 0.02

GSK3a-b (Ab-216/279) 0.68 -0.55 0.02 0.02 GSK3a-b (Phospho-Tyr216/279) 0.62 -0.68 0.07 0.38**

HDAC1 (Ab-421) 0.90 -0.16 0.12 0.26** HDAC1 (Phospho-Ser421) 0.73 -0.45 0.17 0.06

HDAC2 (Ab-394) 0.91 -0.13 0.02 0.19 HDAC2 (Phospho-Ser394) 0.96 -0.05 0.09 0.08

HDAC3 (Ab-424) 0.73 -0.46 0.10 0.04 HDAC3 (Phospho-Ser424) 0.93 -0.11 0.09 0.03

HDAC4 (Ab-632) 0.82 -0.28 0.09 0.08 HDAC4 (Phospho-Ser632) 0.98 -0.03 0.08 0.04

HDAC5 (Ab-259) 0.74 -0.43 0.04 0.08 HDAC5 (Phospho-Ser259) 0.94 -0.08 0.04 0.06

HDAC5 (Ab-498) 0.79 -0.33 0.10 0.05 HDAC5 (Phospho-Ser498) 0.94 -0.09 0.10 0.08

Average for HDAC5 0.76 -0.39

HDAC6 (Ab-22) 0.69 -0.54 0.02 0.06 HDAC6 (Phospho-Ser22) 0.40 -1.33 0.30 0.04

HDAC7 (C-term) 0.60 -0.73 0.05 0.03

HDAC8 (Ab-39) 0.81 -0.30 0.05 0.02 HDAC8 (Phospho-Ser39) 0.85 -0.23 0.09 0.05

HDAC9 (C-term) 0.57 -0.81 0.07 0.07

HDAC10 (inter) 0.55 -0.85 0.04 0.03

Histone H2A.X (Ab-139) 1.12 0.16 0.07 0.07 Histone H2A.X (Phospho-Ser139) 0.67 -0.58 0.11 0.13

MDM2 (Ab-166) 0.97 -0.04 0.12 0.06 MDM2 (Phospho-Ser166) 0.66 -0.59 0.08 0.09

MDM4 (Phospho-Ser367)* 0.75 -0.42 0.10 0.08

Myc (Ab-358) 0.72 -0.48 0.21 0.08 Myc (Phospho-Thr358) 0.42 -1.25 0.10 0.05

Myc (Ab-373) 0.83 -0.27 0.16 0.05 Myc (Phospho-Ser373) 0.84 -0.25 0.03 0.04

Myc (Ab-58) 0.82 -0.29 0.13 0.04 Myc (Phospho-Thr58) 0.64 -0.64 0.10 0.06

Myc (Ab-62)  0.68 -0.56 0.03 0.08 Myc (Phospho-Ser62) 1.39 0.48 0.08 0.12

Average for Myc 0.75 -0.42

MYT1 (Ab-83) 0.68 -0.55 0.09 0.06

P15INK (C-term) 0.75 -0.41 0.07 0.06

p18INK (inter) 0 0 0.08 0.08

p21Cip1 (Ab-145) 0.75 -0.42 0.03 0.04 p21Cip1 (Phospho-Thr145) 0.82 -0.28 0.07 0.03

p27Kip1 (Ab-10) 0.79 -0.33 0.03 0.02 p27Kip1 (Phospho-Ser10) 1.57 0.65 0.09 0.08

p27Kip1 (Ab-187) 0.65 -0.62 0.04 0.04 p27Kip1 (Phospho-Thr187) 1.29 0.37 0.11 0.04

Average for p27Kip1 0.67 -0.57

**Not Statistically Significant: A data-point contained within the set demonstrated a high CV (>0.20) 

***Total Protein Not Measured, Expression is in terms of Phospho-specific Protein only; Ratio of phos/total protein not available

†P/NP-L647R/P/NP-NI= Phosphorylation Ratio (Phosphospecific protein detected in assay/Total protein detected in assay) of L647R PreA Expressing 

"L647R" (Test) Cell Lysate/Phosphorylation Ratio of "NI" (Not Induced) Control Cell Lysate

Text Highlighted in Blue=An Average of the Expression Data Values from Multiple Antibodies toward the Same Protein, or for Phospho-protein, the 

****Table continues, next page****

Green Text=Expression Significantly Downregulated (>/= 0.31-fold down = a ratio of 0.80 or less); Red Text=Expression Significantly Upregulated 

*L647R="L647R PreA": Lysates extracted from 3T3 RheoSwitch cells induced 72 hours (500nM GenoStat) to express L647R PreA; NI="Not Induced": 

Lysates extracted from cells treated with DMSO only (no induction reagent) 

CV of 6 

Replicates on a 

Slide

CV of 6 

Replicates on a 

Slide
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Table 3 (continued)

Total Protein

Total Protein 

Expression             

Ratio 

L647R/NI

log2 of 

Ratio 

(Fold 

Change)

Phospho-Residue-Specific 

Protein

Phospho 

Protein Ratio†                 

P/NP-L647R/ 
P/NP-NI

log2 of 

Ratio 

(Fold 

Change)

Protein List NI L647R Phospho protein NI L647R

p300 (N-term) 0.22 -2.20 0.05 0.06

p300/CBP (C-term) 0.38 -1.39 0.01 0.03

Average for p300 0.30 -1.74

p53 (Ab-15) 0.63 -0.67 0.06 0.05 p53 (Phospho-Ser15) 0.86 -0.22 0.14 0.08

p53 (Ab-18) 0.76 -0.39 0.01 0.03 p53 (Phospho-Thr18) 0.92 -0.11 0.06 0.04

p53 (Ab-20) 0.93 -0.10 0.10 0.07 p53 (Phospho-Ser20) 0.70 -0.52 0.04 0.03

p53 (Ab-315) 0.55 -0.86 0.15 0.04 p53 (Phospho-Ser315) 1.42 0.51 0.05 0.04

p53 (Ab-33) 0.94 -0.08 0.17 0.06 p53 (Phospho-Ser33) 0.52 -0.94 0.17 0.05

p53 (Ab-37) 0.74 -0.43 0.22 0.15 p53 (Phospho-Ser37) 0.80 -0.31 0.09 0.02

p53 (Ab-376) 0.61 -0.70 0.05 0.03

p53 (Ab-378) 1.63 0.70 0.04 0.13 p53 (Phospho-Ser378) 0.49 -1.03 0.04 0.04

p53 (Ab-387) 0.59 -0.77 0.04 0.13

p53 (Ab-392) 0.85 -0.24 0.09 0.09 p53 (Phospho-Ser392) 0.70 -0.52 0.11 0.04

p53 (Ab-46) 0.93 -0.10 0.08 0.06 p53 (Phospho-Ser46) 0.82 -0.29 0.08 0.04

p53 (Ab-6) 0.59 -0.77 0.04 0.04 p53 (Phospho-Ser6) 0.94 -0.08 0.07 0.04

p53 (Ab-9) 0.83 -0.28 0.11 0.02 p53 (Phospho-Ser9) 0.25 -2.00 0.30** 0.03

Average for p53 0.80 -0.30 p53 (Phospho-Ser366) 0.93 -0.11 0.12 0.07

p53 (Phospho-Thr81) 0.89 -0.18 0.15 0.15

P90RSK (Ab-359/363) 1.11 0.15 0.08 0.09 P90RSK (Phospho-Thr359/Ser363) 0.67 -0.59 0.08 0.08

P90RSK (AB-380) 0.78 -0.36 0.05 0.08 P90RSK (Phospho-Ser380) 0.97 -0.05 0.10 0.13

P90RSK (Ab-573) 0.77 -0.38 0.06 0.09 P90RSK (Phospho-Thr573) 0.91 -0.14 0.05 0.03

Average for p90RSK 0.89 -0.17

p95/NBS1 (Ab-343) 0.80 -0.32 0.16 0.05 p95/NBS1 (Phospho-Ser343) 0.78 -0.35 0.12 0.16

PLK1 (Ab-210) 0.79 -0.35 0.20 0.20

PP2A-a (Ab-307) 0.93 -0.11 0.17 0.27 PP2A-a (Phospho-Tyr307) 0.80 -0.31 0.12 0.09

RAD51 (Ab-309) 0.64 -0.64 0.05 0.05 RAD51 (Phospho-Tyr315) 1.15 0.20 0.05 0.03

RAD52 (Ab-104) 0.82 -0.28 0.13 0.08 RAD52 (Phospho-Tyr104) 0.99 -0.02 0.09 0.05

Rb (Ab-608) 0.78 -0.35 0.07 0.15 Rb (Phospho-Ser608) 1.00 0.00 0.11 0.06

Rb (Ab-780) 0.98 -0.02 0.08 0.09 Rb (Phospho-Ser780) 0.78 -0.36 0.03 0.08

Rb (Ab-795) 1.01 0.02 0.11 0.11 Rb (Phospho-Ser795) 0.61 -0.70 0.10 0.08

Rb (Ab-807) 0.94 -0.09 0.11 0.07 Rb (Phospho-Ser807) 0.63 -0.67 0.04 0.04

Rb (Ab-811) 0.79 -0.34 0.06 0.03 Rb (Phospho-Ser811) 1.05 0.07 0.04 0.10

Average for pRb 0.90 -0.10 Rb (Phospho-Thr821) 0.56 -0.84 0.08 0.04

Smad2/3 (Ab-8) 0.75 -0.42 0.03 0.01 Smad2/3 (Phospho-Thr8) 0.89 -0.16 0.20 0.09

Smad3 (Ab-179) 0.70 -0.51 0.02 0.05 Smad3 (Phospho-Thr179) 0.73 -0.46 0.01 0.06

Smad3 (Ab-204) 0.44 -1.20 0.06 0.14 Smad3 (Phospho-Ser204) 0.79 -0.35 0.09 0.02

Smad3 (Phospho-Ser208) 0.89 -0.17 0.02 0.03

Smad3 (Ab-213) 0.88 -0.18 0.03 0.06 Smad3 (Phospho-Ser213) 0.68 -0.55 0.09 0.07

Smad3 (Ab-425) 0.63 -0.67 0.06 0.07 Smad3 (Phospho-Ser425) 1.12 0.17 0.14 0.04

Average for Smad3 0.66 -0.60

Smad4 (inter) 0.77 -0.37 0.03 0.03

SMC1 (Ab-957) 1.09 0.13 0.20 0.04 SMC1 (Phospho-Ser957) 0.69 -0.54 0.04 0.03

TGFBR1 (Ab-165) 0.17 -2.54 0.04 0.14

TGF beta receptor II (inter) 0.64 -0.65 0.15 0.06

TGFBR2 (Ab-250) 0.52 -0.93 0.05 0.15

Average for TGFBR2 0.57 -0.82

TGF beta1 (inter) 0.74 -0.43 0.06 0.03

TGF beta2 (inter) 0.81 -0.30 0.06 0.03

TGF beta3 (inter) 0.78 -0.36 0.06 0.03

TOP2A/DNA topoisomerase 

II (Ab-1106) 0.57 -0.81 0.06 0.08

TOP2A/DNA topoisomerase II (Phospho-

Ser1106) 1.16 0.22 0.02 0.03

Topoisomerase II beta (inter) 0.65 -0.63 0.04 0.04

Average for TOPO2 0.61 -0.71

WEE1 (Ab-53) 0.65 -0.61 0.07 0.04 WEE1 (Phospho-Ser642) 1.01 0.01 0.09 0.03

**Not Statistically Significant: A data-point contained within the set demonstrated a high CV (>0.20) 

†P/NP-L647R/P/NP-NI= Phosphorylation Ratio (Phosphospecific protein detected in assay/Total protein detected in assay) of L647R PreA Expressing 

"L647R" (Test) Cell Lysate/Phosphorylation Ratio of "NI" (Not Induced) Control Cell Lysate

Text Highlighted in Blue=An Average of the Expression Data Values from Multiple Antibodies toward the Same Protein, or for Phospho-protein, the 

CV of 6 

Replicates on a 

Slide

CV of 6 

Replicates on a 

Slide

Green Text=Expression Significantly Downregulated (>/= 0.31-fold down = a ratio of 0.80 or less); Red Text=Expression Significantly Upregulated 

(>/= 0.26-fold up= a ratio of 1.20 or more)

*L647R="L647R PreA": Lysates extracted from 3T3 RheoSwitch cells induced 72 hours (500nM GenoStat) to express L647R PreA; NI="Not Induced": 

Lysates extracted from cells treated with DMSO only (no induction reagent) 
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Cross-Referencing Transcript Expression and Protein Expression 

  In terms of proteins included in the antibody array for which the qPCR array had 

indicated transcription was upregulated at 24 hours after L647R PreA expression 

induction, several indicate a decreased protein level at 72 hours after induction.  Among 

these are Cyclins A, D, and E, cyclin dependent kinase inhibitors p21 and p27, Chk1, 

E2F4, p53, and Wee1.  Cyclin B, for which downregulation of the mRNA transcript was 

indicated at 24 hours of L647R PreA expression induction, maintained downregulation 

at the protein level.  Differential phosphorylation analysis reveals some additional 

information about the protein products of those transcripts.  The remaining Cyclin E 

present in the L647R PreA expressing cells has downregulated phosphorylation at one 

site (Ser 395) on which phosphorylation blocks ubiquitination.  At the same time, it has 

upregulated phosphorylation on a different site (Thr77) where phosphorylation is 

associated with targeting the protein for ubiquitin-mediated degradation. With the 

downregulation and upregulation of phosphorylation occurring at -0.34-fold, and +33-

fold, respectively. It would seem further Cyclin E degradation is likely to occur in these 

cells. 

  Despite an overall downregulation of protein expression, the remaining p27 

exhibits a pattern consistent with stabilization of the protein, as phosphorylation of 

Ser10 phosphorylation is associated with stabilization and upregulated 0.65-fold in 

L647R PreA- expressing cells.  Notably, however, Ser 187 is thought to be a site on 

which phosphorylation signals ubiquitination, and it demonstrates 0.37-fold upregulation 

of phosphorylation with L647R expression.  However, the stabilizing Ser10 

phosphorylation is reported to be more potent215.  Similarly, though p53 total protein is 
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downregulated, the remaining p53 should be protected from the degradation-promoting 

ubiquitin ligase effects of Mdm2, as the demonstrated dephosphorylation of Mdm2 

(Ser166) indicates inactivation216.  The p53 phosphorylation profile (with upregulated 

phosphorylation of Ser315 along with downregulated phosphorylation of Ser20, 33, and 

37, and no change in phosphorylation of Ser 6, 15, 46 or Thr 18 or 81) is most 

consistent with replicative senescence217.    

  The tumor suppressor gene BRCA1 indicated upregulation of transcript 

production at 24 hours on the RT-qPCR array, but at 72 hours, the protein level of 

BRCA1 is either at normal levels or is slightly downregulated with a modest -0.29-fold 

change from the protein level detected in uninduced cells.  The phosphorylation level, 

however, of Ser1524 is upregulated 0.72-fold.  Phosphorylation of this site aids BRCA1 

facilitation of ATM-mediated phosphorylation of p53 in response to DNA damage (ATM-

mediated but not ATR-mediated response), as part of induction of the G1/S cell cycle 

arrest program of DNA damage response218.   

  Other DNA damage related proteins downregulated at 72 hours after induction of 

L647R PreA expression, for which transcript levels had been upregulated at 24 hours, 

include the DNA DSB-induced S-phase checkpoint-activating protein Smc1a and the 

phosphatase PP2A/Pppr2r3a.  These demonstrate a decreased level of phosphorylation 

on sites that are known to functionally activate these proteins, thus indicating 

downregulation of activity of these proteins in L647R PreA-expressing cells219,220. 

Significantly Altered Expression of Key Cell Cycle Proteins 

   The antibody array assayed a number of proteins whose transcripts were not 

included in the RT-qPCR assay, several of which were significantly affected, either at 
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the level of expression or phosphorylation, in L647R PreA-expressing cells.  Among 

these, the Rb protein did not demonstrate any significant changes in the expression 

level but was found to be significantly hypophosphorylated and was thus indicated to be 

actively repressing E2F-related transcription.  Coordinately, in addition to the previously 

mentioned E2F4, the E2F2 and E2F6 transcriptional regulator proteins are 

downregulated with 72 hours of L647R PreA expression.  Whereas the RT-qPCR 

measured the transcript levels of the genes encoding p107 and p130, but not pRb, the 

antibody array measures pRb expression/ phosphorylation, but not that of p107 or p130.  

  Among other proteins included on the antibody array that were not measured at 

the transcript level by the RT-qPCR array is the Cdc25 phosphatase family, members A, 

B, and C.  Cdc25A acts during the G1/S phase of the cell cycle in concert with the 

CDK2/cyclin E complex, which it dephosphorylates to enhance cell cycle progression, 

and this activity is specifically required for the progression from G1 to S phase. Cdc25A 

expression is appreciably downregulated (by as much as -0.66-fold) by L647R PreA on 

the antibody array.  CDK2 is not significantly hypophosphorylated, which supports the 

indication of the relative lack of Cdc25A activity in L647R cells.  Also downregulated, by 

as much as half the normal expression level is Cdc25B, which is required for the G2/M 

phase transition.  Cdc25B is phosphorylated and activated by aurora kinase A at the 

start of mitosis, and as mitosis progresses is then further phosphorylated in an auto-

amplification loop, along with Cdc25C, by the CDK1/Cyclin B complex.  Both Cdc25A 

and Cdc25B can be inactivated by the DNA damage checkpoint kinase, Chk1, thereby 

inhibiting progression to mitosis.149  In contrast to members A and B of the Cdc25 

phosphatase family, Cdc25C is significantly upregulated with L647R PreA expression, 
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at 0.53-fold over normal.  Cdc25C phosphorylation, whether mediated by the 

CDK1/Cyclin B complex-autophosphorylating feedback route or by polo-like kinase 

1(Plk1, which also phosphorylates Cdc25C during mitosis), leads to greater activity of 

the CDK1/Cyclin B complex.  CDK1, the M-Phase Promoting Factor serine/threonine 

kinase required for both G1/S and G2/M phase transitions is tightly controlled in 

regulation of the cell cycle, and inhibition of its activity is maintained by constitutive 

phosphorylation of Thr14 and Tyr15.  These 2 sites are the targets of dephosphorylating 

activity of Cdc25C, resulting in activation of CDK1, cell cycle progression at G1/S or 

G2/M phase transition, and the ability to block p53-induced growth arrest149.  Notably, in 

addition to an M-phase promoting upregulation of Cdc25C protein level, the Cdc25C 

hypophosphorylation at Ser216 is also indicative of activated Cdc25C.  The inhibitory 

phosphorylation of Cdc25C at Ser216 facilitates its complexing with 14-3-3, which 

occurs throughout interphase but not in mitosis, and results in Cdc25C localization and 

sequestration in the cytoplasm221.  On the contrary, the hypophosphorylation of Cdc25C 

Thr48 indicates inactivation, though it is noted that transitional variants exist between 

full inactivation and full activation of the phosphatase, featuring combinations of hyper- 

and hypophosphorylated inhibitory and/or activating regulatory phosphor-sites222.  

Meanwhile, although its total protein level is downregulated, CDK1 is 

hypophosphorylated at Thr14 (Tyr15 demonstrates hypophosphorylation as well, but the 

CV is too high for this data point to be reliably informative).  This implies an activated 

status for CDK1 (which, in order to be functional, would have to be in complex with 

either Cyclin A or B, a variable not measured in this study).  As previously mentioned, 



141 
 

the expression levels of both Cyclin A and Cyclin B are decreased in this expression 

profile. 

  Glycogen synthase kinase 3 (Gsk3) is a kinase involved in glycogen processing 

and energy metabolism, Wnt signaling, and cellular proliferation via modulation of Cyclin 

D levels.  Gsk3β is constitutively active, promoting nuclear export and degradation of 

Cyclin D, but is inactivated by mitogenic stimuli and growth factors that induce 

phosphorylation on Gsk3β Ser9 (mediated by Akt, p90Rsk/MAPKAPK1, others)223,224.  

While we note inactivating Ser9 hyperphosphorylation of the detected Gsk3β in the 

antibody array, it is concurrent with a total protein expression level downregulation of 

almost 2.4-fold compared to cells not induced for L647R expression, indicating a 

substantial overall downregulation of Gsk3β.   However, as the Cyclin D levels are also 

significantly downregulated in the L647R PreA expressing cells, the decrease in Gsk3β 

likely has more implication for energy metabolism than for proliferation.  

  The cytokine known as transforming growth factor β (TGFβ) has effects on cell 

proliferation that are context-dependent.  In some situations, it can cause “transforming” 

cellular proliferation, as in the experiments involving its overexpression in normal rat 

kidney in which it was first described, and from which it derives its name225.  

Alternatively it can, apparently more commonly, act as an instigator of cell cycle arrest 

and apoptosis226.  In the L647R PreA expressing cells, TGFβ, its signal transducing 

proteins, the Smads, and its receptors, TGFβR1 and TGFβR2, each demonstrate 

downregulated expression on the antibody array.  This multi-component downregulation 

within the pathway seems to clearly demonstrate that, at least by 72 hours of L647R 

PreA expression, the TGFβ pathway is thoroughly inactivated in these cells. 
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 The global transcriptional coactivator p300 demonstrates a significantly 

decreased expression level in cells induced 72 hours to express L647R PreA.  p300 

demonstrates 2 modes of activity in transcriptional regulation:  as a histone acetyl 

transferase (HAT)227 or as a critical bridging coactivator linking the activation domains of 

numerous transcription factors to the DNA transcriptional machinery, and the RNA pol 

II, in particular228.  p300 shares a very high level of homology with another such 

transcriptional coactivator, Creb Binding Protein (CBP), and the 2 are frequently 

referred to as a single entity,  p300/CBP149.  (Herein, I will simply refer to p300, with the 

implication CBP could serve many of the same functions.)  p300 acetylates 

nucleosomal histones to activate transcription [reviewed in 229]230,231 , while deacetylation of 

histone tails by histone deacetylases (HDACs) generally results in transcriptional 

repression232.  It is required for cell and tissue function during embryonic development, 

cell differentiation in vitro233,234,235, indicating a lack of redundant functions from other 

coactivators.   According to the protein expression levels detected by two different 

antibodies on the antibody array, one directed toward the N-terminus and the other to 

the C-terminus of the protein, the L647R PreA-expressing cells demonstrated between -

1.39-fold and -2.20-fold change in p300 expression, respectively.  Considering p300 cell 

cycle functions, which include direct regulation of CyclinE expression levels and activity 

and, consequently, activity of the Cyclin E-Cdk1 complex and E2F transcription factors 

in promoting cell cycle progression, a decreased p300 protein level could mediate PreA-

related cell cycle arrest. 

  The kinase Akt  (also known as protein kinase B, PKB), is a downstream target of 

the phosphatidylinositol 3-kinase, is stimulated by growth factors and has many 
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functions in metabolism, differentiation, proliferation, and apoptosis149,236.  One 

important Akt function is to positively regulate the mTOR pathway, controlling protein 

synthesis and cell growth.  Its activity is frequently upregulated in cancers, as it 

suppresses the cell cycle-inhibiting and apoptosis-promoting expression of the FoxO 

genes.  Akt phosphorylation of FoxO proteins induces binding of 14-3-3 or interaction 

with the nuclear export protein exportin (Crm1), and subsequent nuclear exclusion, by 

exporting out of the nucleus and/or sequestering FoxO in the cytoplasm, where it is not 

functional and tends to be degraded149,237-239.  Results of the antibody array indicate a 

downregulation of Akt in the L647R PreA expressing cells, but the FoxO1 and FoxO3 do 

not appear to be significantly up- or down-regulated by measuring total protein level.  

Three different FoxO1 antibodies indicate downregulation at -0.33-, or -0.79-fold, or 

upregulated at 0.84-fold, respectively, while the FoxO3 antibody indicates an very slight 

downregulation at -0.18-fold.  Antibodies directed toward peptides common to FoxO 

isoforms 1, 3, and 4, demonstrate -0.46-fold regulation of total protein expression.  

However, the subcellular localization of FoxO is the primary means by which it is 

regulated, and this cannot be determined with the antibody array assay.  

Phosphorylation, which leads to FoxO inactivation and export from the nucleus, is 

significantly downregulated, indicating likely nuclear localization and activated FoxOs.  

Likewise, as previously mentioned, expression of transcriptional targets of FoxO, the 

cell cycle inhibitory p27 and p21, is slightly downregulated. The subcellular localization 

of those is also critical to functionality and not measured by this assay. 

 Taken together, the results of the antibody array demonstrate changes in 

expression levels of a variety of proteins that participate in regulation of the cell cycle, 
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as well as altered phosphorylation of a number of activating or inhibitory sites on cell 

cycle control proteins.  These proteins represent several different pathways of cell cycle 

control, and implicate PreA as a potential modulator of a network connecting these 

pathways in cell cycle regulation. 

 

Motif Analysis of LA Isoforms 

 An analysis of the peptide motifs of LA isoforms reveals insights to interaction 

partners and suggests cell cycle regulatory activity related to those interactions.  While 

the array studies provide evidence of L647R PreA mediated changes in the expression 

levels and apparent functions of many cell cycle proteins, the mechanisms by which 

PreA interacts with some or all of these regulators, or with factors upstream of the 

measured proteins, are not clear.  Thus, we found it necessary to consider factors that 

can interact directly with PreA, as potential initiator(s) in cascades of interactions 

between other molecules to accomplish the expression level changes we have detected 

among cell cycle regulating factors.  It is well documented that LA is phosphorylated in a 

cell cycle dependent manner and that modification by phosphorylation precedes the 

dissociation of LA proteins from the nuclear membrane during mitosis240,241.  Several 

different phosphorylation sites have been reported in mature LA242.  As phosphorylation 

modification of proteins is a key regulatory mechanism for directing the cell cycle, we 

started our motif analysis by focusing on kinase substrate motifs, then we examined 

binding site motifs that require phosphorylation to activate or inactivate binding 

potential, and, finally, we briefly review other binding sites or interaction partners 

described in the current scientific literature.  
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Kinase Substrate Motifs in PreA 

 To survey kinase substrate motifs to determine possible PreA binding and 

interaction partners, we performed an initial motif analysis on the amino acid sequence 

of full length PreA, using the using the PhosphoMotif Finder application 243  on the 

Human Protein Repository Database (HPRD, http://www.hprd.org/), which is a 

compendium of annotated motifs for which curated literature is cross-referenced to 

support the indicated interactions with the recognized motifs120.  The Phosphosite 

website is also a curated database of protein phosphorylation information that was 

useful (www.Phosphosite.org)117-119.  We also queried the Phospho.ELM Database 

(http://elm.eu.org/)116, which performs analyses similar to HPRD PhophoMotif Finder but 

uses homology to intuitively predict interactions (which HPRD claims, specifically, not to 

do), comparing the target sequence to “incidents” (sequence matches against 

previously encountered motifs) in its database.  ELM does cross-reference  against 

annotations from literature sources by pattern hit initiated (PHI) basic local alignment 

search tool (BLAST) methodology, which focuses a BLAST search on patterns that 

belong to a known interaction motif[reviewed in 244].  This database introduces to the 

analysis a number of filters for “SMART” exclusion of homology-based predictions 

based upon the domain context of the peptide sequence, such as excluding predicted 

interactions that would not be known to occur within a globular domain when the motif in 

question occurs within a sequence indicating the presence of that particular structural 

domain116.  However, this database could also possibly return predicted motif matches 

that do not have support in literature, and such computational predictions must be 

interpreted more succinctly as predictions only.  In the PhosphoMotif Finder analysis243, 
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we found 363 motifs in Prelamin A that would be susceptible to phosphorylation by a 

variety of Serine/Threonine kinases and 13 Tyrosine kinase substrate sites.  As we 

have particularly focused this study on deciphering functions of the Prelamin A isoform, 

we narrowed the results of the motif analysis to concentrate on the section of the protein 

that differs among the isoforms, the C-terminus (PreAct).  The posttranslational 

modifications result in the cleavage processing of the 664 amino acid residue length 

protein to terminate at the site of Zmpste24 cleavage. The tyrosine residue at amino 

acid position 646 becomes the C-terminus postcleavage.  As the peptide sequence 

actually differentiating PreA from wtLA consists of residues 647-664, we decided to 

include a longer c-terminal section in our analysis, beginning with residue 598 (Figure 

29).  Extending the analysis to include residues 598-646 allows interrogation of any 

binding sites that might overlap into the sequence 5’-to the Zmpste24 truncation site.  

Also, as residue 608 is the site introducing the causative cryptic splicing-variant that 

encodes Progerin, including the additional sequence allows for some comparison of 

functionality to Progerin.  Thus, we reasoned, interrogating residues within the 598-664 

residue C-terminal fragment could help differentiate PreA isoform function from Progerin 

function.  We refer to this fragment herein as “the C-terminal 66 fragment.”  Table 4 

contains results of the Serine/Threonine kinase substrate analysis for the C-terminal 66 

fragment, while a full length survey is included as Appendix C. 

 



147 
 

 

Figure 29.  Lamin A C-terminal 66 Amino Acid Fragment Considered In Motif Analysis. 
Red text (Q/VG) indicates the G608G HGPS mutation site resulting in removal of amino 
acids 607-656 from the resulting protein (Progerin); the RSY/LLG sequence  is 
recognized by Zmpste24 in normal Lamin A posttranslational maturation, which cleaves 
the protein between the Y/L residues at amino acid positions 646-647, to yield “mature” 
Lamin A; the C/SIM residues form the CaaX-box, which undergoes the initial cleavage 
(–aaXing), to remove the SIM residues 662-664 in the normal maturation process, 
following farnesylation of the C residue. 
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Table 4.  Prelamin A C-terminus Serine/Threonine Kinase Substrate Motif Analysis  

 

Table X Page 1 of 2.  Prelamin A C-terminus Serine/Threonine Kinase 

Substrate Motif Analysis 

Amino 

Acid 

Residue # 

AMINO 

ACID 

SEQUENCE 

SUBSTRATE MOTIF 
KINASE FOR THE INDICATED 

SUBSTRATE MOTIF 

Motif # 

(of 363)
1 

598 - 603 ASASGS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1  313 

599 - 601 SAS pSX[E/pS*/pT*] Casein Kinase II  314 

599 - 603 SASGS pSXXX[pS/pT] MAPKAPK2 kinase 315 

599 - 603 SASGS pSXXXpS* GSK3 kinase 316 

611 - 616 ISSGSS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1  317 

612 - 615 SSGS [pS/pT]XX[S/T] Casein Kinase I 318 

612 - 615 SSGS pSXX[E/pS*/pT*]
2
 Casein Kinase II 319 

612 - 615 SSGS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II 320 

612 - 616 SSGSS pSXXX[pS/pT] MAPKAPK2 kinase 321 

612 - 616 SSGSS pSXXXpS* GSK3 kinase 322 

613 - 615 SGS pSX[E/pS*/pT*] Casein Kinase II 323 

615 - 620 SSASSV [pS/pT]XXX[S/T][M/L/V/I/F] Casein Kinase I 324 

616 - 618 SAS pSX[E/pS*/pT*] Casein Kinase II 325 

616 - 619 SASS [pS/pT]XX[S/T] Casein Kinase I 326 

616 - 619 SASS pSXX[E/pS*/pT*] Casein Kinase II 327 

616 - 619 SASS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II 328 

618 - 623 SSVTVT X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 329 

619 - 621 SVT pSX[E/pS*/pT*] Casein Kinase II 330 

627 - 632 RSVGGS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1  337 

628 - 632 SVGGS pSXXX[pS/pT] MAPKAPK2 kinase 338 

628 - 632 SVGGS pSXXXpS* GSK3 kinase 339 

632 - 637 SGGGSF [pS/pT]XXX[S/T][M/L/V/I/F] Casein Kinase I 340 

635 - 641 GSFGDNL XpSXXDXX Pyruvate dehydrogenase kinase 341 

636 - 639 SFGD pSXX[E/D] Casein kinase II  342 

636 - 639 SFGD [pS/pT]XX[E/D] Casein Kinase II 343 

636 - 639 SFGD [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II 344 

636 - 639 SFGD [pS/pT]XX[E/D] Casein Kinase II 345 

643 - 646 TRSY [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II 346 

 
 

Table continues on next page… 
1
 Consecutive order of the indicated motif among the 363 Serine/Threonine Kinase Substrate sites 

identified within the full-length Prelamin A protein sequence. 
2
 *=This phosphorylation modification “primes” the site, and must occur prior to the substrate recognition 

and subsequent phosphorylation of other residues within the motif. 
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Table 4 (continued)

 

 

Phosphorylation of the PreA C-Terminus 

 Using the PhosphoSite database117-119, we located curated data documenting 

functional effects of phosphorylation of the indicated LA residues (Figure 27).  In 

addition, a large scale phosphoproteomics study found most of the same sites as HPRD 

and Phospho.ELM, plus 2 additional sites (Thr623 and Ser625), that were found to be 

phosphorylated, as well.  Interestingly, this study reports LA to be 1 of 27 proteins in the 

Amino 

Acid 

Residue # 

AMINO 

ACID 

SEQUENCE 

SUBSTRATE MOTIF 
KINASE FOR THE INDICATED 

SUBSTRATE MOTIF 

Motif # 

(of 363) 

650 - 653 NSSP XXpSP GSK-3, ERK1, ERK2, CDK5 347 

650 - 655 NSSPRT X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 348 

651 - 653 SSP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 349 

651 - 655 SSPRT pSXXX[pS/pT] MAPKAPK2 kinase 350 

652 - 653 SP pSP ERK1, ERK2 Kinase 351 

652 - 654 SPR [pS/pT]P[R/K] Growth associated histone HI 

kinase 

352 

652 - 654 SPR [pS/pT]X[R/K] PKA kinase  353 

652 - 654 SPR [pS/pT]X[R/K] PKC kinase 354 

652 - 655 SPRT [pS/pT]XX[S/T] Casein Kinase I 355 

652 - 655 SPRT pSXX[E/pS*/pT*] Casein Kinase II 356 

654 - 657 RTQS RXXpS Calmodulin-dependent protein 

kinase II 

357 

654 - 657 RTQS RXXpS PKA kinase  358 

654 - 657 RTQS RXX[pS/pT] Calmodulin-dependent protein 

kinase II 

359 

654 - 657 RTQS [R/K]XX[pS/pT] PKC kinase  360 

655 - 658 TQSP XXpSP GSK-3, ERK1, ERK2, CDK5  361 

656 - 658 QSP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5  362 

657 - 658 SP pSP ERK1, ERK2 Kinase  363 

 

Table X Page 2 of 2 (continued from previous page).   
 

* 

*Site also predicted by ELM as ProDK (proline directed kinase) substrate 

* 
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N-terminal Phosphorylation Sites Rod 
Domain 

Ig Fold and Flanking Residues C-terminal Phosphorylation Sites 

T3; S5; S12;S17; S18; T19; S22; T24; 

S51; T64; S66; T81;  S94; S107;  T199; 

S212; S277; S301; S303; S326; S390; 

S392; T394; S395; S398; S403; S404; 

S406 

S407; T409; S414; T416; S423; T424; 

S426; S428; S429; S431; S458; S463; 

T480; S502; T505; T510; S525; S533; 

T548 

S613; S615; S616; S618; S619; 623; 625; 

S628; S632; S636; S651; S652; S657 

 

Noted as highly phosphorylated in mitosis 

Figure 30. Phosphorylation Sites on Lamin A Protein (Compilation Graphic) with  
Functional Indications.  Phosphorylation Sites on Lamin A protein, indicated by the 
curated Phosphosite database.  Some cellular functions documented to be affected by 
the phosphorylation modifications are indicated.  Also, one of the studies referenced by 
Phosphosite indicates LA is extensively hyperphosphorylated during mitosis, these 
sites are circled/highlighted in blue.  This figure is adapted from a Phosphosite graphic, 
using additional data from Olsen, et al., Science Signaling, 2010. 

global proteomic analysis that demonstrate a “high level of phosphorylation site 

occupancy” during mitosis242.  Sites indicated to have a high level of phosphorylation 

during mitosis are highlighted on the Figure 27 graphic.   

 

 

 

 

 
 
 
 
 
 
 

 Our own experiments to investigate PreA-tail phosphorylation involved Edman 

Degradation-based radioisotope-labeled (32P) amino acid residue sequencing of the C-

terminal fragment of PreA.  In the Edman Degradation method of peptide mapping, 

peptides are incubated with the radiolabeled phosphorus, then the N-terminal residues 
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are “released” from the peptide one-by-one by as the free amino group reacts with 

phenylisothiocyanate, and can be identified using mass spectrometry on their 

phenylthiohydantoin derivatives245.  As for our purposes, when the sequence and length 

of a peptide are known, the assay can be used to detect which residues have the 

radioactively-labeled phosphorus attached to them, indicating that residue was 

phosphorylated.  

Figure 31.  Radiolabeled Phosphorylation Peptide Mapping of the Lamin A C-Terminus. 
Phospho-mapping of the C-terminal LA peptide fragments by Edman Degradation of 
[32]P-labeled wild type Lamin A (PreA, Panel A, left) and Progerin (Panel A, Right) C-
terminal peptides involve separation of residues by HTLE and detection by 
phosphorimaging.  The cyclical release of individual N-terminal amino acids of the 
peptide reveals a radioactive signal with the first [32]P-labeled residue (phosphorylated) 
to be released from the peptide. Signal is cumulative when additional phosphorylated 
residues “cycle off” (release, with each cycle) in subsequent reaction cycles. Panel B 
graphic combines the Panel A Progerin Degradation, with an additional reaction using a 
shorter terminal peptide, as the reaction in Panel A was exhausted with the 4 terminal 
residues unmapped. 
 
 
 The peptide mapping in Figure 31 demonstrates the induced GFP -wtLA (which 

accumulates primarily as FC-PreA) is phosphorylated on Ser-657.  The GFP-Progerin 

 

541 RKLVRSVTVV EDDEDEDGDD LLHHHHGSHC SSSGDPAEYN LRSRTVLCGT CGQPADKASA    

601 SGSGAQ^VGGP ISSGSSASSV TVTRSYRSVG GSGGGSFGDN LVTRSY^LLGNSSPRTQSPQN 

661 CSIM

Lamin A C-terminus: TQSPQNCSIM

Progerin C-terminus: ASASGSGAQSPQNCSIM
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C-terminus demonstrates substantial phosphorylation of Ser-601 but only a minimal 

level of Ser-657 phosphorylation.  The phosphorylation of LA Ser-657 is described in 

only one report, a study a by Lee et al.246, investigating mechanisms of Epstein Barr 

Virus (EBV) nuclear egress.  During viral nuclear egress, the lamina is depolymerized, 

apparently through an ability of viral kinases to mimic host endogenous kinases and 

hijack of phosphosites of proteins, such as LA.  The study reports EBV- and herpes 

virus-mediated depolymerization of LA during nuclear egress of the virion particles, and 

detection of phosphorylation on Ser-19, Ser-22, Ser-390, Ser-392, Ser-652, and Ser-

657 of the depolymerized LA246.  HPRD reports the 657 residue to be part of a kinase 

substrate site for GSK3, ERK1/2, Protein Kinase A or C (PKA/C), and/or CamK2 

kinases.  While we have been unable to find a study in the current scientific literature 

demonstrating detection of Ser-601 phosphorylation, HPRD reports the site to be a 

substrate domain for CK2.  Future studies might evaluate for functional effect of this 

modification and determine if it also exists in wtLA/PreA, as well, or whether the altered 

sequence context of Progerin differently affects this site.  

 

Phosphorylation-Dependent Protein Binding Motifs in PreA C-Terminus 

 We continued the database analysis to evaluate protein binding sites that contain 

phospho-sites and demonstrate phosphorylation-mediated control of the binding.   

Although 13 Tyrosine kinase substrate motifs were identified, only one of these occur 

within the C-terminal 66 fragment: a JAK2 kinase substrate motif (pYXX[L/I/V] involving 

residues 626-629 (YSRV).  There were no Tyrosine phospho-dependent protein binding 

domain sites reported within the fragment, but the sequence does contain11 binding 
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sites that require Ser/Thr- kinase phosphorylation, as shown in Table 5 (there are 39, 

total, indicated in the full PreA sequence, shown in Appendix D).  

 

 
 

 
 

 
 

 

 
 

Table 5. Serine/Threonine Kinase-Dependent Protein Domain Binding Motifs within the 
Prelamin A C-Terminal Fragment 
 

 
 

 Three different phosphorylation-dependent binding motifs were identified by 

PhosphoMotif Finder, within the C-terminal 66 fragment.  First, there is a series of 4 

Mediator of DNA Damage Checkpoints 1 protein (Mdc1)/Polo-like Kinase 1 (Plk1) 

shared binding sites, of which the first 3 are retained following Zmpste24 proteolysis of 

the PreA protein to form LA in the normal maturation processing.  The second motif is 

the 14-3-3 binding motif, which occurs only once in the fragment, and is lost with 

Table X. Serine/Threonine Kinase-Dependent Protein Domain Binding Motifs within 
Prelamin A C-terminal Fragment 

Amino 

Acid 

Residue # 

AMINO 

ACID 

SEQUENCE 

DOMAIN BINDING MOTIF BINDING MOTIF DESCRIPTION 
Motif # 

(of 39)
1 

612 - 614 SSG S[pS/pT]X MDC1 BRCT domain binding motif  29  

612 - 614 SSG S[pS/pT]X Plk1 PBD domain binding motif  30  

615 - 617 SSA S[pS/pT]X MDC1 BRCT domain binding motif  31  

615 - 617 SSA S[pS/pT]X Plk1 PBD domain binding motif  32  

618 - 620 SSV S[pS/pT]X MDC1 BRCT domain binding motif  33  

618 - 620 SSV S[pS/pT]X Plk1 PBD domain binding motif  34  

651 - 653 SSP S[pS/pT]X MDC1 BRCT domain binding motif  35  

651 - 653 SSP S[pS/pT]X Plk1 PBD domain binding motif  36  

652 - 653 SP [pS/pT]P WW domain binding motif  37  

654 - 657 RTQS RXXpS 14-3-3 domain binding motif  38  

657 - 658 SP [pS/pT]P WW domain binding motif  39  

 
 
 

1
 Consecutive order of the indicated motif among the 39 Serine/Threonine Kinase-Dependent protein domain 

binding motif sites identified within the full-length Prelamin A protein sequence. 
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Zmpste24 cleavage.  The third motif is the WW domain-binding site, found in 2 positions 

that are removed in the normal maturation processing of LA.  Notably, all of these 

binding sites are deleted from del50/Progerin except the most 3’ WW domain-binding 

site at amino acid sequence position 657-658 (graphic representation in Figure 32).   
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Figure 32.  Arrangement of Phosphorylation-Dependent Protein Motif Binding Sites in 
the PreA C-Terminal 66 Residue Fragment.  
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Cross-Reference of Kinase Substrate Sites and  
Kinase-Dependent Protein Motif Binding Sites 

 
 The cell cycle-related periodicity of the kinases controlling the phosphorylation-

dependent binding for the sites is an important consideration to indicate possible clues 

as to cell cycle progression-related timing of activation of these binding sites.  For 

instance, determining conditions during which the kinases GSK3, ERK1/2, CDK4/5, and 

possibly CK1/2, act on LA could provide potential information regarding the sites in LA 

that are substrate-candidates for those particular kinases (Ser19-20 and Ser22-23), in 

addition to the CDK1-phosphorylation activity toward Ser22 described previously.247  

Similarly, Ser390-391 and 392-393 are possible substrates for ERK1/2, CK1/2, 

MAPKAPK2 (Rsk90), or DNAPK (DNA dependent Protein Kinase), and Ser652-53 and 

Ser657-58 are potential substrates for ERK1/2, MAPKAPK2, Growth assoc H1 Kinase, 

PKA/C, CK1/2;  CamK2, or GSK3.  Figure 33 provides a graphic representation of the 

PreA C-terminal 66 amino acid fragment kinase substrate motifs as well as the 

phosphorylation-dependent binding sites.   
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Figure 33.  Combined Graphic of Kinase Substrate Motifs/Protein Motif Binding Sites 
in PreA C-Terminus. Graphic Representation of Kinase Substrate Sites & 
Phosphorylation-Dependent Binding Sites in PreA C-terminal 66-Amino Acid Fragment. 

 

Cross-Reference of Genes/Proteins with Altered Expression vs. Motif Analysis Findings 

 The 14-3-3 “adapter protein” has already been discussed as an important 

regulator of cell cycle, as it has demonstrated altered expression with L647R PreA 

expression, on the qPCR and antibody arrays and has been previously annotated as a 

Lamin A-interacting protein172.  The Polo-like Kinase 1 was included in the antibody 

array and demonstrates a 0.35-fold downregulation of protein expression in cells 

induced to express L647R PreA.  This kinase shares a phosphorylation-dependent 
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binding site motif with Mdc1.  In addition to ATM, ATR, and Chk1/2, 2 of the most critical 

DNA damage response proteins are Plk1 and Mdc1.  Mdc1 is a key regulator involved 

in several cellular pathways including apoptosis induction, G2/M, and intra-S-phase cell 

cycle arrest248,249.  Mdc1 acts not only as a mediator of DNA damage checkpoints but 

also as a mediator of DNA damage repair250.  Studies suggest ATM is actually a 

downstream target of Mdc1251,252, wherein Mdc1-mediated activation of ATM induces 

phosphorylation/ activation of Chk2, which in turn interacts with Mdc1 and relocalizes to 

the DNA damage sites, suggesting a critical role for Mdc1 in the Chk2-mediated DNA 

damage response248,253.  Active Chk2 is responsible for the inhibitory phosphorylation of 

Cdc25C at Ser216, leading to a Cdk2-mediated G2/M arrest (we report Cdc25C Ser216 

phosphorylation downregulation, with L647R PreA expression), and Chk2 also 

promotes apoptosis by phosphorylation of p53 on Ser20 (also downregulated with 

L647R PreA).  Mdc1-ATM-activated Chk2 also negatively regulates Plk1, blocking its 

ability to promote entry to mitosis, and upregulation of Mdc1 leads to downregulated 

expression and activity of Plk1, along with accumulation of cells in S-phase or arrested 

at the G2/M transition254,255.  Mdc1 is required for assembly of the Mre11-Rad9-Nbs1 

(MRN) DNA damage repair complex with ɣH2AX256 and is required for retaining p53-

binding protein 1(53BP1) at sites of DNA damage256,257.  Thus, the major factors of DNA 

damage response and repair are unable to complex and execute repair without Mdc1. 

WW Domain Proteins (Pin1)  

 The 2 WW domain binding motifs residing in the C-terminal 66 fragment are 

separated by the single 14-3-3 protein binding motif (Figure 32, Table 5).  In fact, the 2 

WW domain binding sites each overlap one of the other binding motifs, one with a slight 
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overlap of the last Mdc1/Plk1 binding site in the sequence, and the other WW domain-

binding site slightly overlaps the most c-terminal 14-3-3 site.  WW domains consist of 

approximately 35-40 amino acids and contain 2 Tryptophan residues (hence the 

moniker “WW” domain), with β-sheets formed around the aromatic Tryptophans.   

Binding motifs for WW domains require proline residues.   As for binding partners 

targeted to the WW domain binding motifs, HPRD identified 53 mammalian proteins 

with WW domains, 17 of which are nuclear120.  ProSite, a bioinformatics tool curated by 

the UniProt Consortium: European Bioinformatics Institute (EMBL-EBI), Swiss Institute 

of Bioinformatics (SIB) and the US’s Protein Information Resource (PIR), produced a list 

of 24 human nuclear compartment proteins containing WW domains258,259 (Appendix E).  

Included among these nuclear WW domain-containing proteins are several 

transcriptional regulators and accessory proteins, others that participate in scaffolding of 

receptor signaling complexes, ubiquitin ligase proteins (including 2 that are specific to 

regulation of SMADs), an oxidoreductase involved in apoptosis, Dystrophin (the protein 

mutated in Duchenne and Becker Muscular Dystrophy), Utrophin (involved in 

cytoskeletal anchoring), Mlh3 (a mismatch DNA-repair protein), and the peptidyl prolyl 

cis-/trans- isomerase (PPIase) Pin1.  While several of these are relevant in terms of 

specific cell cycle and homeostasis functions, Pin 1 has demonstrated many essential 

functions in cell cycle control260 and interacts with number of cell cycle regulatory 

proteins (including  Akt261,262, p27263,264, FoxOs264,265, p53266,267, Plk1268, Cdc25269,270, 

RNA Polymerase II271, and Smads272), see Figure 34. 
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Figure 34.  Pin1 Targets and Molecular Mechanisms.  This graphic depicts the variety 
among Pin1 targets, as well as among the several mechanistic activities of Pin1273.  
 

 Importantly, there are 4 different classes of WW domains, differentiated by ligand 

specificity.  The binding motif repeated in the PreA sequence consists of a phospho-

Serine-Proline pairing that fits the Type IV WW Domain classification, for which Pin1 

appears to be unique among human nuclear proteins274.  Therefore, considering the 

complexity of pathways regulated by Pin1, and the equally complex effects of L647R 

PreA expression upon cells (as indicated by the number of gene products 

demonstrating altered expression), as well as the unique motif specifications and 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology, Lu and Zhou (2007) 
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nuclear compartment localization, Pin1 was the most attractive of the candidate proteins 

for further investigation.  Furthermore, during the course of our study, Milbradt et al. 

published a study in which they present a fascinating and elegant analysis of a Human 

Cytomegalovirus (HCMV) mechanism of nuclear egress.  HCMV directs viral kinase 

activity toward Lamin A to induce binding of Pin1 and subsequent localized 

depolarization of the nuclear lamina, similar to the depolarization involved in cytokinesis, 

which appears to be dependent upon Pin1 isomerization of the Lamin A proteins. This 

group used a similar bioinformatics analysis (using the ELM database, only, however) to 

determine Pin1 as a candidate for binding Lamin A275.  They cite a previous report 

regarding HCMV viral kinase mimicry of Cdk1 in Ser22 phosphorylation of Lamin A and 

subsequent nuclear membrane disruption247, which directed their attentions toward the 

N-terminus of the Lamin A protein.  Interestingly, Milbradt et al. arrived at the same 

conclusions as have we regarding a likely fit with Pin1 for the Type IV classification of 

the WW domain-binding motif in Lamin A, and the results of their work confirm Pin1 

binding to Lamin A275.  Therefore, we focused our attention regarding the WW-domain-

binding motifs in the PreA C-terminus upon Pin1 and refer to the relevant motifs as 

“Pin1binding motifs.”  We find 2 individual sites and 3 sets of 2 adjacent WW/Pin1-

binding sites in the sequence of LA, and interestingly, the 3 2-site sets are Ser-19/20, 

Ser-390/392, and Ser-652/657—the same sites identified in the Lee group study of 

EBV-mediated depolymerization of LA, which supports the Milbradt work in further 

implicating Pin1-mediated depolymerization of LA as a mechanism for viral nuclear 

egress. 
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Coimmunoprecipitation of Pin1 with L647R PreA 

 Binding of Pin1 by accumulated PreA could represent an extremely important 

layer of cell cycle control.  Pin1 is sometimes described as a “mitotic rotamase,” as most 

of its regulatory action promotes mitotic progression276.  In the investigation of a Pin1-

PreA-mediated role in cell cycle regulation, we first asked the question whether Pin1 

can bind to accumulated PreA protein in vitro, as the Milbradt group had shown for 

mature LA275.  Immunoblotting, in Figure 35, depicts the increasing level of co-

immunoprecipitated Pin1 protein detected in relation to increasing levels of accumulated 

uncleavable PreA.  

 

Figure 35.  Co-Immunoprecipation of Pin1 Protein with EGFP-L647R PreA.  Lysates 
were prepared from RheoSwitch L647R-PreA cells prior to induction (0 hours), and after 
24, 48, 72 hour timepoints following induction with 500 nM GenoStat.  Whole cell 
lysates were quantitated and 200 µg total protein used for each immunoprecipitation, 50 
µg was reserved for whole cell lysate (WCL) loading.  Anti-GFP antibody was used to 
precipitate expressed EGFP-L647R protein.  Equal volumes of denatured precipitated 
protein solution and corresponding WCLs were separated by SDS-PAGE, then blotted 
using anti-Pin1 antibody.  “No 1o” lane sample= Co-IP control (pooled lysate processed 
as Co-IP without addition of anti-GFP antibody; Anti-tubulin loading control); MWM = 
molecular weight marker. Immunoglobulins from the IP are evident on the Co-IP blot. 
 
 

 

Ig Bands 
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 These co-immunoprecipitation studies demonstrate Pin1 complexing with full-

length, uncleavable EGFP-fused PreA (in the form of the accumulated EGFP-fused 

L647R PreA), from induced cells of our RheoSwitch L647R PreA cell line.  Pin1 is 

reported to have some increased expression stimulated by increased growth factors but 

a relatively steady expression level in proliferative cells. Pin1 does show increased 

nuclear localization upon increasing levels of activation dependent on the availability of 

phosphorylated substrates.  Pin1 expression is hardly detectable in cells that are not 

proliferating and is upregulated in many cancers[as reviewed in 273 ].  In Figure 35, the WCLs 

for uninduced cells and for L647R PreA-accumulating cells over the 72-hour time 

course demonstrate approximately even levels of Pin1 total protein in the cells.  As 

L647R PreA accumulated over the 72 hours, though, an increasing amount of Pin1 is 

evident in the protein complex precipitated by the GFP antibody.  Although specific 

binding to PreA cannot be concluded from this experiment, association of Pin1 and 

EGFP-PreA in complexes is indicated.  Given that the overall cellular level of Pin1 

expression demonstrated very little to no change over the 72-hour course of L647R 

PreA accumulation, we next asked if the increased concentration of Pin1 in complex 

with the accumulating EGFP-L647R PreA was representative of an increase in nuclear 

compartment subcellular localization of Pin1.   To investigate, we performed 

immunofluorescent imaging, using an antibody to Pin1 protein, on L647R PreA-

expressing cells and uninduced L674R cells.  This analysis reveals the subcellular 

distribution of Pin1 in these cells, Figure 36.    
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Figure 36.  Immunostaining of Pin1 Protein in L647R PreA-Expressing Cells.   Pin1 
subcellular localization was detected by indirect immunofluorescence, using an antibody 
to Pin1.  Fluorescence pattern is demonstrated for Uninduced (DMSO-treated) cells of 
the L647R PreA Rheoswitch model in the left panel.   The cells shown in the right panel 
were L647R PreA-expressing Rheoswitch 3T3 Cells, Induced 48 hours (500 nM 
GenoStat).  

 

 The distribution of Pin1 in uninduced cells appears to be primarily nuclear, but 

with staining evident throughout the cytoplasm.  After 48 hours of L647R expression, 

many cells exhibit a strongly increased pattern of Pin1 nuclear localization.   

 Taken together, these results indicate induction of L647R PreA-expression has 

little effect on the cellular expression level of Pin1. However, the nuclear localization is 

significantly enhanced, and the increased nuclear localization correlates with the 

increased level of Pin1 detected in complex with GFP-L647R PreA.   We suspect Pin1 

complex formation with L647R PreA could represent a functional scaffolding of Pin1 

upon the lamina for stabilizing and organizing its interactions, or alternatively, that PreA 

sequesters Pin1 protein.  PreA-mediated Pin1 sequestration could have substantial 
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effects on cell cycle regulation.  Future work will investigate for differential effects on 

Pin1 expression and localization related to expression of different LA isoforms, whether 

the Pin1-binding is influenced by mutations in the WW/Pin1-binding sites on Lamin A, 

and whether the PreA C-terminal tail region has specific importance in that binding 

schema.  Although it is shown LA binds Pin1275, because increased expression and 

accumulation of LA protein occurs in the form of PreA, “increased sequestration” related 

to increased LA expression would be, in actuality, most likely associated with the 

accumulated PreA protein isoform.  Inhibition or deletion of PIN1 leads to mitotic entry, 

chromatin condensation and mitotic catastrophe 277,278 [and reviewed in 273 ].   Considered 

along with the facts (1) progerin and PreA both accumulate with cellular passaging as 

well as in HGPS, and (2) highly passaged cells and HGPS cells demonstrate aberrant  

mitosis, the ability of different LA isoforms to associate with Pin1, and the potential 

effects of such associations, could be an important topic to follow up. 

 

Pin1 Target Expression in L647R PreA Expressing Cells: (FoxOs/p27Kip1) 

 In response to low energy or lack of growth factors, as from mitogen deprivation 

or treatment with cAMP, inhibition of cell proliferation partially depends on a decrease in 

cyclin D1 or an increase in p27Kip1 279-282.  Cyclin D1 in complex with CDK4 or CDK6 

promotes proliferation by phosphorylating pRb, releasing its repressive binding to E2F 

transcription factors and thus inducing genes involved in DNA replication283.  The 

PI3K/PKB/Akt pathway regulates cyclin D1 levels posttranscriptionally by targeting it for 

degradation284, at the translational level involving p70S6 kinase285,286 as well as 

transcriptionally via regulation of forkhead box O (FoxO) transcription factors287,288.  The 
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FoxO family of transcription factors, include FoxO1, FoxO3, and FoxO4, which 

demonstrate some differences of expression in various tissue types but seem to exhibit 

significant overlap in function, and FoxO6, whose expression appears to be restricted to 

the brain289.  The different FoxO family members share a common DNA-binding site, 

regulate overlapping sets of target genes290, and participate in diverse processes 

including cell proliferation, apoptosis, stress resistance, differentiation, and 

metabolism291.  Consistent with their participation in a broad spectrum of processes, the 

FoxO proteins are regulated by a variety of mechanisms, including phosphorylation, 

acetylation, ubiquitination, and methylation 291,292.  These modifications alter FoxO 

intracellular localization, turnover, transactivation activity, and transcriptional 

specificity293.  The capacity to undergo such a variety of modifications under context-

specific situations, in addition to their ability to associate with many different cofactor 

complexes to regulate context-dependent programs of gene expression294,  make the 

FoxOs highly versatile in gene regulation.  Depending on their status of modification and 

selection of binding partners, they can act as direct or indirect transcriptional activators 

or repressors295.  E2F1 induces FoxO1 and FoxO3 transcription296, and FoxO3 

expression induces a feedback transcriptional upregulation of itself, as well as 

FoxO1297.     

 In the absence of growth factors, active FoxOs reside in the nucleus and up-

regulate genes that inhibit the cell cycle (p27Kip1 and p21WAF1), promote apoptosis (Fas 

ligand, Bim, and TRAIL), and decrease oxidative stress (superoxide dismutase and 

catalase).  A number of genes are also repressed by activated FoxOs, including Cyclin 

D isoforms298.  Our antibody array data suggest L647R PreA may act to stabilize 
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FoxOs, for example, we see a significant downregulation of D-type cyclin proteins, and 

a slight upregulation of FoxO1 protein expression (Table 5).  While FoxO3a expression 

levels were not significantly impacted by L647R PreA expression, this assay does not 

take into account subcellular localization of the proteins and, therefore, cannot be taken 

as a direct indication of FoxO3a activity.  The antibody array did detect upregulation of 

FoxO1, transcription of which is mediated by FoxO3, and we consider the observed 

FoxO1 upregulation to be one likely indicator of FoxO3a activation and stabilization 

even though detected expression level of FoxO3a is not upregulated.  In addition, we 

consider posttranslational FoxO modifications and examine known FoxO targets for 

indication of FoxO activation.  We note levels of expression of FoxO4 and FoxO6 

proteins were not measured. FoxO targets, p27KIP1 and p21WAF1 offer a confusing 

picture in our expression studies, as their expression at the transcript level after 24 

hours of L647R PreA induction, detected by the qPCR array, indicate upregulation 

(approximately 26.7-fold upregulation of p27Kip1 and more than 2.6-fold upregulation of 

p21WAF1), whereas the antibody array did not detect an altered regulation of either CKI 

at the protein level after 72 hours of induction.  As phenotypic evidence, from observing 

signs of induced cell cycle arrest, seems to argue favorably for the likelihood of 

increased p27Kip1 and/or p21WAF1 activity, we chose to continue investigating these, in 

part by continuing our focus on FoxO regulation.  

 Activity of FoxOs in transcriptional regulation is first dependent on localization to 

the nucleus.   A number of mechanisms exist to exclude from the nucleus and thus 

inactivate FoxOs, such as phosphorylation by several kinases—including the 

phosphatidyl-inosititol-3-OH kinase (PI3K) pathway activated kinase PKB/Akt299,300, the 



168 
 

serum- and glucocorticoid-inducible kinase (SGK)301, casein kinase I (CK1)302, IKKβ303, 

and the mitogen-activated protein kinases ERK and p38298,304,305.  Phosphorylation by 

these kinases induces FoxO interaction with 14-3-3, which reportedly masks the FoxO 

nuclear localization signal (NLS)238,306,307  or enhances binding affinity for nuclear export 

molecules302, wihich shuttles FoxO to the cytoplasm.  On the other hand, FoxO 

phosphorylation at some sites can lead to its activation. Two examples are: 

phosphorylation by c-Jun N-terminal kinase (JNK) kinases upon cell stress activates 

FoxOs308 and Cdk1 phosphorylation activates FoxO transcription by preventing Akt 

phosphorylation and consequent 14-3-3 binding-induced nuclear exclusion309.  

Phosphorylation can also induce the proteosomal degradation of FoxO factors.  Erk-

mediated FoxO phosphorylation results in FoxO polyubiquitination, carried out by 

MDM2, the same E3 ligase as is implicated in p53 regulation.  As it does for p53, this 

polyubiquitination results in proteosomal degradation of the FoxO protein304.  Another 

affect of phosphorylation could be positive or negative regulation of FoxO ability to bind 

to DNA290.  The 4 FoxO phosphorylation sites assayed by the antibody array are Akt 

sites, and the profile of these indicate a significant decrease in phosphorylation status 

when L647R PreA is expressed.  The hypophosphorylated status of FoxO transcription 

factors in L647R PreA-expressing cells indicates a substantial stabilization of nuclear 

FoxO proteins.  The phosphorylation sites assayed and found to have decreased Akt 

phosphorylation include sites common to FoxO1, FoxO3, and FoxO4, these are Ser-

256, Ser-319, Thr-24/32, and Ser-322/325 (Table 5).  Also, on our antibody array, 

expression of Akt, itself, is downregulated by expression of L647R PreA and 

demonstrates significant hypophosphorylation on the sites most commonly associated 
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with Akt activation (Table 5)239,310.  FoxO transcriptional activity is further regulated by 

acetylation in the nucleus290.  Interaction with the transcriptional coactivator p300 has 

been demonstrated to negatively regulate FoxO transcriptional activity311 in part by 

enhancing Akt-mediated phosphorylation and subsequent translocation to the 

cytoplasm312 as well as by decreasing its ability to bind and act on target DNA313.  Our 

antibody array demonstrates a marked decrease of p300 expression as an effect of 

L647R PreA expression (-1.34-fold, Table 5), logically making it less available to act on 

FoxO proteins, with effects possibly demonstrated by the obvious lack of enhanced Akt 

phosphorylation of the FoxOs as well as indications of FoxO regulation of several 

targets.   

 Another mode of FoxO regulation, ubiquitination, can have different effects on 

FoxO stability:  monoubiquitination can occur in response to oxidative stress and result 

in increased nuclear localization and stabilization of FoxOs, while polyubiquitination 

leads to proteasomal degradation264,314-316.  Pin1 inhibits ubiquitination of FoxOs, and 

while this can lead to decreased degradation, it also inhibits the nuclear translocation, 

and has been demonstrated to inhibit p27 Kip1 transcription mediated by FoxOs264.  As 

we have demonstrated an increased accumulation of Pin1 in complex with L647R PreA 

in induced cells, we sought to determine if this accumulation had an effect on FoxO 

localization and FoxO-mediated p27 Kip1 expression in L647R PreA expressing cells.  

 

Nuclear Localization of FoxO3a and p27 Kip1 with L647R PreA Expression 

 Immunofluorescence imaging (Figure 37) reveals an increased level of FoxO3a 

localization in the L647R PreA expressing nuclei as compared to the uninduced control. 
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Figure 37.  Immunstaining of FoxO3a Protein in EGFP-L647R PreA-Expressing 
Cells and Colocalization with GFP.  Immunofluorescence microscopy detected FoxO3a 
antibody (top panels, red), and Anti-GFP antibody (middle panels, green), in uninduced 
(DMSO-treated) Rheoswitch L647R PreA cells (left panels) and the L647R-expressing 
cells (right panels).  Induced cells were incubated 48 hours with 500 nM GenoStat.  
 

 The staining with anti-FoxO3a antibody, in Figure 37, demonstrates diffuse 

expression throughout the uninduced cells, while the cells induced to express L647R 

PreA for 48 hours demonstrate a marked increase in expression of nuclear FoxO3a.  

Anti-GFP demonstrates GFP-tagged L647R PreA in the nuclei of the induced cells, 

which is absent from uninduced cells.  Colocalization of L647R PreA and FoxO3a 

proteins is seen in the nuclei of induced cells.  Correspondingly, the L647R PreA-

induced cells demonstrated increased p27Kip1 expression and nuclear translocation 
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compared to the uninduced cells.  Immunoblotting of equal concentrations of whole cell 

lysate and corresponding separated cellular compartment fractions (Figure 38) 

demonstrates the altered expression of FoxO3a and p27Kip1 in induced L647R PreA-

expressing cells versus uninduced control cells.   

 

 

Figure 38.  Increased Expression and Nuclear Translocation of FoxO3a and p27Kip1  
with L647R PreA Expression.  Immunoblotting of equal concentrations of total protein 
[50 µg] from whole cell lysates (W) cytoplasmic (C) and nuclear (N) fractions with anti-
FoxO3a (Panel A, right) and anti-p27Kip1 (Panel B, right) in Uninduced and Induced 
cells. Densitometry of pixilation of blots, left panels, provides semiquantitative 
comparison using arbitrary units.  MW= Molecular Weight marker.  
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 The immunblotting of the whole cell lysates of cells induced 48 hours to express 

L647R PreA, in Figure 38, demonstrates a small increase in total FoxO3a expression in 

the induced cells, while comparison of the cytoplasmic and nuclear fractions reveal a 

significant increase in nuclear translocation of expressed FoxO3a in induced cells, 

compared to the uninduced cells.  The whole cell lysates demonstrate a marked 

increase in p27 Kip1 expression in the induced cells expressing L647R PreA compared to 

the uninduced cells, while the proportion of p27 Kip1 in the cytoplasm of L647R PreA-

expressing was not significantly different from uninduced cells. The nuclear fractions, 

however, demonstrate the dramatic increase in expression seen in the L647R-

expressing induced cells is almost exclusively confined to the nuclei of those cells.

 These data demonstrate that L647R PreA expression enhances FoxO3a 

expression and increases the nuclear translocation of the protein, thus indicating a 

higher level of FoxO3a activation[as reviewed in 295].  The accompanying enhanced 

expression level and nuclear translocation of the CKI, p27Kip1, a FoxO target for 

transcriptional activation, offers support for an L647R PreA-induced effect on FoxO 

activation and suggests a potential mechanism of PreA-mediated cell cycle arrest. 

 

Pin1 Inhibition Mimics L647R PreA Effect on FoxOs and p27Kip1 in Uninduced Cells 

 Given that Pin1 functions to suppress FoxO proteins, one might expect the 

increased presence of PreA-complexed-Pin1 protein in these nuclei to correlate to 

decreased FoxO activity.  On the contrary, taken together, these data suggest Pin1-

mediated suppression of FoxO nuclear translocation is inhibited in L647R PreA cells.  

To test this, we examined the effects of treatment with Juglone, a Pin1 inhibitor, on 
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FoxO nuclear translocation (Figure 39), and on p27Kip1 expression and localization 

(Figure 40), in these cells. 

 

Figure 39.  Pin1 Inhibition by Juglone Treatment Mimics L647R PreA Effects in  
Uninduced Cells, Leads to FoxO3a Nuclear Localization.  Juglone treatment leads to 
Pin1 inhibition and FoxO3a nuclear localization in uninduced cells, while prominent 
nuclear localization of FoxO3a in L647R PreA cells remains unaltered.  Immunoblotting 
of equal concentrations of total protein [50 µg] from whole cell lysates (W), cytoplasmic 
(C) and nuclear (N) fractions, with anti-FoxO3a antibody after 72 hour Juglone 
treatment (at concentrations of [5 µM] and [15 µM], with “0” µM representing no Juglone 
treatment) of uninduced cells (upper blot), and L647R PreA-expressing induced cells.  
Densitometry of pixilation of blots, left panels, provides semiquantitative comparison 
using arbitrary units.  MW=Molecular Weight marker.  
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Figure 40.  Pin1 Inhibition By Juglone Treatment Mimics L647R PreA Effects in  
Uninduced Cells, Results in Increased P27kip1 Expression and Nuclear Localization.  
Pin1 inhibition by Juglone treatment results in an increased expression level of p27Kip1 
in uninduced cells, with the majority of the protein demonstrating nuclear localization.  
Meanwhile, the upregulated p27Kip1 in L647R PreA-expressing induced cells is not 
significantly altered.  Immunoblotting of equal concentrations of total protein [50 µg] 
from whole cell lysates (W), cytoplasmic (C) and nuclear (N) fractions, with anti-FoxO3a 
antibody after 72 hour Juglone treatment (at concentrations of [5 µM] and [15 µM], with 
“0” µM representing no Juglone treatment) of uninduced cells (upper blot), and L647R 
PreA-expressing induced cells.  Densitometry of pixilation of blots, panels left, provides 
semiquantitative comparison using arbitrary units. MW=Molecular Weight marker.  
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little significant change is induced by Pin1 inhibition in these cells.  A small p27Kip1 

expression increase is detected in the cytoplasmic fraction, with an unexplainable 

downshift in the intensity of the band representing the p27Kip1 expression in the nuclear 

fraction of cells treated with 5 µM Juglone.  This fluctuation is not present in the cells 

treated with the 15 µM Juglone, rather, a level consistent with that in induced cells in the 

absence of Juglone treatment is seen, representing an almost total nuclear localization 

of p27Kip1 expression in these cells.   

 Taken together, the data from analyses of FoxO3a and p27Kip1 expression and 

subcellular localization in uninduced cells and induced cells expressing L647R PreA 

indicate a positive effect of PreA on FoxO3a and p27Kip1 expression and activity in 

arresting the cell cycle progression.  Furthermore, the data also suggest a similar effect 

on FoxO3a and p27Kip1 expression and activity can be achieved in uninduced cells by 

inhibiting Pin1.  In the context of the demonstrated increase in Pin1 complexing with 

accumulating L647R PreA without a change in the Pin1 expression levels or subcellular 

localization, these findings appear to indicate accumulating levels of PreA likely function 

to sequester, and thus inhibit, Pin1 in the nucleus. 

 

Pin1 Overexpression Reverses L647R PreA Effect on FoxOs & p27 Kip1 

 If Pin1 inhibition is occurring with L647R PreA expression, with the consequent  

increased nuclear expression of FoxO3a and p27 Kip1, we reasoned that overexpressing 

Pin1 protein in those same L647R PreA-expressing cells should reverse the observed 

effect.  To test this, we cotransfected cells from the Rheoswitch L647R PreA cell line 

with a GST-Pin1 fusion protein-expressing plasmid.  
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Figure 41.  Overexpression of GST-Pin1 in Induced L647R PreA-Expressing Cells 
Reverses L647R PreA-Mediated Nuclear Localization of FoxO3.  Cells were transfected 
with 0, 5, and 15 µg of GST-Pin1 plasmid DNA.  Cells were then induced with 1 µM 
GenoStat and incubated 48 h, prior to collection and preparation of cell fractions.  Cell 
fractions (C=Cytoplasmic, N=Nuclear, W=Whole Cell Lysate) and WCLs were 
immunoblotted with GFP and FoxO3 antibodies.  Presence or absence of the GFP-PreA 
band indicate integrity of Nuclear, or Cytoplasmic fractions, respectively. 
 

 In Figure 41, a significant reversal of FoxO3a nuclear expression is 

demonstrated, in the induced L647R PreA-expressing cells, in a GST-Pin1-dosage-

dependent manner.  The higher level of Pin1 expression results in a more dramatic 

export of FoxO3a protein from the nucleus.  The level of protein exported is indicated by 

the enrichment of the cytoplasmic fraction, with a proportionate depletion of the protein 

from the nucleus.  The functional consequences of FoxO3a inhibition are indicated by 

effects on p27 Kip1 expression (Figure 42). 
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Figure 42.  Diminished p27Kip1 Expression is Evident upon Overexpression of GST-Pin1.  
Cells from the Rheoswitch L647R PreA-expressing 3T3 cell line were transfected with 
varying concentrations of GST-Pin1 expression plasmid (in µg, X-axis).   Cells were 
then induced with 1 µM GenoStat and incubated 48 hours, prior to collection and 
preparation of cell fractions.  Nuclear fractions were subjected to immunoblot using an 
antibody to Pin1, to detect GST-Pin1, an Anti-p27 Kip1 antibody detected p27 Kip1 protein 
present in the nuclei, and Anti-Histone protein (H2A, nuclear) serves as a loading 
control. 
 
 
Senescence Develops in L647R PreA-Expressing Cells 

 Taken together, the results of the array studies indicate L647R PreA expression 

alters gene expression to induce conditions of cell cycle arrest.  Supporting this 

regulatory effect, proliferation and cell cycle distribution analyses reflect decreased 

levels of proliferation in these cells.  Furthermore, increased nuclear localization of 

FoxO and the cell cycle arrest-inducing p27Kip1 in L647R PreA-expressing cells is 

consistent with induction of a program of cellular quiescence.  However, as PreA 

expression is related to both quiescence and senescence conditions, and several of the 

gene expression patterns are implicated in either condition, we sought to evaluate if the 

arresting conditions are indicative of quiescence or senescence.  In order to assay the 



178 
 

cells for senescence activity, we performed a β-galactosidase staining assay (Figure 

43).  

 
Figure 43.  Senescence Assay of L647R PreA-Expressing Cells (β-galactosidase 
Assay).  Senescence develops in L647R PreA-expressing cells with successive cell 
divisions, as indicated by this β-galactosidase staining assay.  L647R PreA Rheoswitch 
cells, induced for expression (500nM GenoStat, red bars) or Uninduced (DMSO-
Vehicle, blue bars) were split every other day in 1:3 ratio. At the indicated passage 
number, 104 cells were plated onto 1.8 cm2 chambered cover glass and incubated for 
16h. Senescence was then measured with a β-galactosidase staining kit. A) Overlay of 
DIC and bright field images of a representative 40x field at passage 14. B) Percentage 
of cells positive for β-galactosidase by manual count under microscope.  
 
 
 The β-galactosidase assay detects hydrolase enzyme activity at a pH of 6, which 

is found only in senescent cells, not in quiescent, presenescent, or immortal cells317.  

The results of this assay indicate accumulation of PreA protein induces senescence, 

although only after several successive passages have occurred.  
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Results Summary 

 Through multiple assays of cell cycle related gene expression in cells expressing 

L647R PreA, we have demonstrated a significant impact on the cell cycle gene 

expression profile in those cells as compared to control cells not expressing the PreA.  

At the protein level, as well, significant changes were demonstrated in the expression 

levels and/or the phosphorylation modifications of components of cell cycle regulation in 

cells induced to express the L647R PreA.  The overall expression pattern is indicative of 

a negative regulation of cell cycle progression by accumulated PreA.  Analysis of the 

peptide sequence differentiating PreA from LA, the C-terminal fragment, reveals 

potential interacting partners that could mediate cell cycle effects related to expression 

of PreA.  Our studies of such a potential interaction partner, Pin1, demonstrate 

compelling evidence for a PreA-mediated sequestration of Pin1 to have a major impact 

on cell cycle regulation. 
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CHAPTER 4 

DISCUSSION 

Cell Cycle-Related Expression of PreA 

PreA Expression is Cell Cycle Stage-Specific, Related to Arrest 

 A reason for the existence of a precursor protein for Lamin A does has not been 

readily apparent.  Lamin B remains associated with the nuclear membrane even 

through mitosis and offers a redundancy in much of the structural function of A type 

lamins, and it does not have an immature isoform.  Also, existence of the Lamin C 

splicing variant provides an additional level of redundancy in structural function in a 

protein form that is not obligatorily bound tightly to the nuclear membrane.  Thus, even 

without expression of PreA or LA proteins, lamin filaments are available at the nuclear 

envelope as well as throughout the nucleoplasm in the form of B-type lamins and Lamin 

C, respectively.  The maturation processing of PreA to form Lamin A is executed in a 

quick and efficient manner, and as cells progress through mitosis, mature LA is 

phosphorylated, disassembled, and then reassembled in daughter cells, in an 

apparently conservative process13,32,33,97,98.  Consequently, with a continuous production 

rate and no obvious harmful effects from an “excess” of mature, normal LA, it seems 

unlikely that there is such a great need for holding a reserve of this intermediate 

filament protein in an “inactive” progenitor state, yet the energy-expending processing 

pathway is highly conserved in vertebrates[as reviewed in 88].  The cell cycle dependent 

pattern of PreA accumulation must surely offer insight to the purpose for the precursor 

protein.  It seems likely that a threshold level of expression of PreA is integral to a 
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program of initiation of exit from the cell cycle.  Whether the accumulation of the PreA 

has a direct effect on the cells’ exit from the cell cycle has yet to be determined. 

Accumulated PreA is Related to Decreased Zmpste24 Activity 

  While FTI treated cells demonstrate marked PreA accumulation and are 

rendered quiescent, other normally prenylated proteins are also affected by the 

inhibition of farnesyl transferase.  However, it is clear in untreated cells, that the 

accumulation of PreA prior to or during periods of cell cycle arrest occurs despite an 

intact program of normal posttranslational modifiers, up to the point in the processing 

pathway at which the protein would normally undergo proteolytic cleavage by 

Zmpste24.  The logical conclusions would be that PreA accumulation must depend 

upon some direct modification that hinders access of Zmpste24 to the cleavage site or a 

modification to Zmpste24 resulting in the inhibition of proteolytic activity.  Observance of 

a sharp decrease in Zmpste24 activity level much earlier than a demonstrable decrease 

in the level of expression of mRNA transcript or protein would seem to suggest 

Zmpste24 is regulated posttranslationally, likely by phosphorylation.  Furthermore, when 

observing culture behavior of cells transiently transfected with a Zmpste24 expression 

construct, we found the overexpressing cells appear to proliferate at a rapid rate 

compared to cultured cells not expressing the recombinant protease, and we have 

demonstrated the overexpression of Zmpste24 leads to an apparent bypass of entry to 

quiescence when exposed to conditions that would normally cause cells to enter 

“resting phase.”  While ongoing studies are exploring the specifics of Zmpste24 

expression and cell cycle, as they relate to effects of preventing PreA accumulation, our 
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current studies have focused in the other direction, with overexpression of PreA to 

investigate cell cycle related effects. 

 

Overexpression Of PreA Inhibits Cell Cycle Progression 

 We have demonstrated that, despite availability of growth factors and prevention 

of cell-cell contact, L647R PreA-expressing cells demonstrate a decreased S-phase 

population compared to passage-matched cells not induced to express the mutant 

lamin, with a tendency to accumulate in G0/G1-phase.  Induced cells containing the 

EGFP-only expression construct do not exhibit the impaired proliferation effects of 

L647R PreA.  Furthermore, when these cells are arrested by serum-deprivation or 

contact-inhibition, those induced to express L647R PreA demonstrate an impaired 

ability to re-enter the cell cycle once the arresting agent is removed (serum-return, or 

trypsinization and replating at lowered density), compared to uninduced cells or those 

induced to express EGFP only.  We conclude, therefore, PreA expression is a cause, 

rather than an effect, of cell cycle arrest, and its cell cycle-related expression (by 

accumulation due to lack of maturation processing) is a likely mechanism used by 

proliferating cells to coordinate the processes of exiting from the cell cycle.  

Motif Analysis Suggests Potential Modes of PreA Interaction with Cell Cycle Regulators 

  As we considered PreA as a protein isoform with activities that might differ from 

other isoforms, we determined a critical step in the investigation would be analysis of 

the sequence of the portion of the isoform that differentiates it from the other isoforms, 

the C-terminus.  As our study was focused, specifically, upon a cell cycle-related role—

a process so heavily controlled by differential phosphorylation of proteins, and a 
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process that has already been demonstrated to modify LA in a cell cycle-dependent 

manner—we elected to investigate the C-terminus in terms of relationships that might 

be influenced by phosphorylation.  We considered, in the analysis, the c-terminal 66 

amino acid residues in the sequence in order to encompass motifs that also differentiate 

the delta50/Progerin isoform from normal, mature LA.  The substantial number of 

phosphorylation motifs within the C-terminal sequence of PreA present a large project 

for further research: considering the different kinases involved, the implications of the 

cellular contexts during which those particular kinases are active and under which 

conditions these act upon the C-terminus as a substrate (or even if they can actually be 

demonstrated to do so), and if effects upon the lamin protein can be detected as a result 

of these potential modifications.  Such an investigation is far beyond the scope of this 

study, however, although it is noteworthy that the C-terminus, as the differentiating 

sequence between the LA isoforms is rich with sites for potential activity. 

  We also examined the C-terminus for phosphorylation-dependent binding motifs, 

as this more directly addresses the pertinent question that led us to analyze the 

sequence:  What molecules might directly interact with the PreA C-terminus, in a cell 

cycle-dependent fashion, that could regulate gene expression changes to affect cell 

cycle regulation?  Our analysis produced 3 primary motifs in the C-terminus for 

consideration, a binding site for the cell cycle regulatory adapter protein,14-3-3, four 

binding sites that could be occupied either by the kinase Plk1 (which, interestingly, was 

not identified among the kinases for which this site could be a substrate ) or the by the 

DNA damage repair complex-assembly-required and checkpoint-mediating protein, 

MDC1, and finally, 2 WW-domain-binding motifs.  We have described our evaluation of 
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WW domain-containing proteins, and our arrival at Pin1 as the likely candidate as a 

Type IV WW domain-containing protein with nuclear activity.   

  Pin1 as a Lamin-Binding Protein.  The serendipitous timing of the publication by 

Milbradt and associates of their study on mechanisms of viral egress in CMV-infection, 

and their work revealing Pin1-mediated isomerization of Lamin A in this capacity, of 

their study on mechanisms of viral egress in CMV-infection, and their work revealing 

Pin1-mediated isomerization of Lamin A in this capacity275, reinforced our hypothesis 

that Pin1 binds LA in a phosphorylation-dependent manner.   In fact, as the early stages 

of the work of this group, in characterizing Pin1 as a Lamin A-binding protein, closely 

paralleled the work we had done on the characterization. Their progress then surpassed 

ours when they analyzed crystal structures and demonstrated the binding.  Therefore, 

we determined this work to preclude any need, on our behalf, to investigate further in 

considering WW-domain-containing proteins that might interact with LA.  We therefore 

refer to the WW domain-binding motifs in LA as “Pin1-binding motifs.”   

 The Pin1protein has 2 domains connected by a flexible linker, with the WW 

domain located N-terminal to the catalytic PPIase domain.  Interestingly, both domains 

recognize the phosphorylated Serine-Proline residue of the Type IV WW domain 

binding motif.318,319  While some proteins have demonstrated PPIase-independent 

effects from binding of the WW domain alone, the binding of both is required for high 

affinity Pin1 binding and execution of the rotamase/PPIase cis/trans isomerization 

effect, which essentially “twists” the substrate protein to introduce conformational 

changes that result in altered protein function, localization, or stability320,321.  In order to 

bind both domains simultaneously, 2 (or more) WW domain binding motifs, situated 
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closely within the binding peptide sequence, are required322,323[Reviewed in273,324 ].  The 

grouping of the WW domain binding sites at 3 sites within Lamin A appear to have fit the 

pattern required for dual WW domain-binding and isomerization by Pin1, at the N-

terminus: sites 19-20/22-23.  This site was determined by the Milbradt group to bind 

Pin1 HCMV viral kinase mediated-Pin1 isomerization of Lamin A in nuclear egress of 

the virus275.  Binding sites in the approximate center of the protein sequence are sites 

390-391/392-393, and in the C-terminus of the full length PreA sequence: at sites 652-

653/657-658.  As noted, each of the 3 sets of 2 adjacent binding sites were referenced 

as phosphorylated during viral manipulation of LA polymerization for viral nuclear 

egress246, the mechanism of which Milbradt et al. attribute to Pin1-mediated binding and 

action on LA.  The del50/Progerin truncated mutant protein does retain the final WW 

domain-binding site (residues 657-658).  However, functionality would be questionable 

for that site in the mutant protein, considering the apparent requirement for two closely 

situated binding sites to accommodate Pin1 binding and isomerization activity, if that 

phenomenon, indeed, is shown to be an operative mechanism in PreA metabolism or 

function.  The other 2 WW domain/Pin1 binding sites found within the LA sequence (at 

amino acid residues 3-4, and 507-508) occur singly and thus would not meet the 

criterion of likely sites at which Pin1 isomerization could occur, although the ability to 

bind Pin1 is not precluded at those sites by the lack of another, closely situated, Pin1 

site.   While binding sites for MDC1/Plk1, 14-3-3, and WW domains occur scattered 

periodically throughout the full Prelamin A length, the clustering and overlap of these 

sites within the C-terminus presents a pattern not found elsewhere in the sequence, and 

this unique arrangement could have significant impact on protein interactions.  Possibly, 
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Pin1 isomerization of sites overlapping an Mdc1 and 14-3-3 binding motif could affect 

some regulation of these sites as well as polymerization or other characteristics of the 

actual lamin filaments themselves.  Therefore, we suggest the potential functional 

implications of the particular arrangement of the phosphorylation-dependent binding 

motifs in the PreA C-terminus warrants further investigation.  Importantly, sequestration 

of transcription factors by components of the nuclear envelope has been demonstrated 

as a mechanism of controlling gene expression325.  PreA, specifically, has been shown 

participate in such a regulatory role by sequestering SREBP1326.  Likewise, a PreA-

related sequestration of Pin1 could have a substantial effect on gene expression levels 

affecting cell cycle progression, potentially such as the effects demonstrated in the gene 

expression analyses in L647R PreA expressing cells.   

 One caveat to the correlation of our work with that of Milbradt and coworkers, is 

that the other group focused their attentions on Pin1 binding to LA that was 

phosphorylated on Ser22, yet they found Lamin C to interact with Pin 1 with a very low 

affinity compared to Lamin A275.  As LA and Lamin C both contain Ser22, we suggest 

the discrepancy in the binding affinities between Lamins A and C could suggest a 

potential importance of the C-terminus in the high-affinity binding demonstrated by 

Lamin A.  However, while they used recombinant proteins Lamin A and Lamin C to 

clearly demonstrate Pin1 binding differences between those 2 isoforms275, the Lamin 

A/C antibody used is directed to an epitope common to Lamin C, LA, and PreA 

isoforms, and thus, PreA might have been indistinguishable from mature LA as the 

moiety they describe to possess high Pin1 binding affinity.  We suggest this is a 

possibility worth consideration and further evaluation.  Nonetheless, we suggest Pin1 as 
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a primary mediator in PreA regulation of the cell cycle, as Pin1 has been described to 

directly bind LA in a phosphorylation dependent manner, it has binding sites in the PreA 

C-terminus, and it has been implicated in the control of a multitude of cell cycle 

regulators. 

 

PreA Expression Alters the Cellular Gene Expression Profile 

 

Investigation of Gene Expression Effects Using Uncleavable PreA Expression Construct  

 To determine effects of accumulation of PreA protein, we transiently transfected 

NIH 3T3 cells with a pEGFP-C3 expression vector containing the Lamin A cDNA, which 

had been subjected to site-directed mutagenesis of the Lysine 647 residue, converting it 

to Arginine.  This mutation disrupts the recognition/cleavage site for the Zmpste24-

mediated second proteolytic maturation processing step.  The resulting EGFP-tagged 

uncleavable PreA protein, L647R-PreA, undergoes irreversible farnesylation and 

carboxymethylation modifications.  A GeneChip Whole Transcript Mouse Exon Gene 

Array (Affymetrix, Santa Clara, CA) was performed on RNA from NIH3T3 cells 

transiently transfected (48 hours) with the construct, along with RNA from a parallel 

control of NIH 3T3 cells transfected with the empty pEGFP-C3 expression vector.  

Subsequently, we created a set of stable lines harboring inducible constructs for 

expression of L647R PreA, del50 LA, and wtLA, each tagged N-terminally with EGFP.  

An additional control line expressing EGFP only was also created.  We then began 

gene expression array analysis on these cell lines using cell cycle gene pathway-

specific RT-qPCR analysis.  Due, however, to unresolved normalization of gene 
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expression levels between the uninduced cell lines, most likely owing to the discordant 

number of culture passages to which each cell line had been subjected at the time of 

analysis, we elected to focus on the L647R PreA-expressing cell line only for these 

studies.  Future studies should involve careful passage-matching of the cell lines used 

for comparison of gene expression profiles.  Additionally, to eliminate the variable of 

slight clonal differences in gene expression, systematic comparisons should be 

performed on a number of reference genes to generate a reliable algorithm to more 

succinctly normalize comparative analysis of genes of interest between the cell lines.   

 Gene expression analyses of the cells induced to express L647R PreA, 

compared to uninduced cells, were conducted by comparing the levels of transcript 

expression of cell cycle-specific genes, using RT-qPCR array methodology.  

Additionally, using an array comprising a panel of 82 different antibodies specific to cell 

cycle regulatory proteins, expression at the protein level (including status of 

phosphorylation modifications) was measured and compared between L647R PreA-

expressing induced cells and uninduced cells.  These analyses revealed altered 

expression of various genes when L647R PreA is expressed.  The whole genome 

microarray indicates L647R PreA affects a range of cellular functions but especially cell 

cycle control and several pathways with functions that overlap cell cycle control.  The 

cell cycle pathway specific analyses of transcript and protein levels confirm altered 

expression of numerous cell cycle regulators upon L647R PreA accumulation.  These 

regulators are members of several different regulatory pathways and point to a role for 

PreA in the coordination of the pathways that control the cell cycle. 
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 Among the key pathways affected by L647R PreA are the AHR pathway, the RB-

E2F pathway, and the p53 pathway.  Overlapping with these, L647R PreA effects were 

noted for p300-CyclinE  and FoxO-p27Kip1 regulation.  Acting as a potential common 

thread in modulating some, if not all, of the observed effects of PreA expression on the 

cell cycle, is the Pin1 prolyl isomerase.  A Pin1-PreA interaction could ultimately prove 

to be a keystone relationship in control of cell cycle. 

Cell Cycle-Control-Related Pathways Demonstrating  
Effects from L647R PreA Expression 

 
Aryl Hydrocarbon Receptor (AHR) Pathway Regulation   

 Of the several pathways indicated by microarray analysis and Ingenuity 

Pathways™ Analysis, the AHR pathway is, surprisingly, indicated to be the most 

significantly regulated, when L647R PreA is expressed in 3T3 cells.  The AHR is a 

member of the bHLH (basic Helix–Loop–Helix)- PAS (Per-ARNT-Sim) family of 

transcriptional regulators that control a variety of developmental and physiological 

events, including neurogenesis, formation of secretory ducts, circadian rhythms, 

response to hypoxia, hormone receptor function, and toxin metabolism, the latter being, 

perhaps, the best known role for AHR134.  Known as the Dioxin receptor, AHR is the 

mediator for most toxic responses to Polycyclic Aromatic Hydrocarbons  (PAH), Dioxins 

(such as TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)), and Polychlorinated Biphenyls.  

In addition to the toxic chemicals known to be AHR ligands, other ligands include dietary 

compounds, natural and synthetic flavonoids, and pharmaceuticals135.  Upon activation 

by ligand binding, the AHR translocates to the nucleus, and dimerizes with another 

basic helix-loop-helix protein, ARNT, also known as Hypoxia Inducible Factor β (HIF1- 

β), which,  in complex with HIF1-α, has its own transcriptional activity independent of 
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AHR in response to hypoxia and, perhaps, some normoxic conditions327.  The activated 

AHR/ARNT heterodimer complex interacts with AH-responsive elements and activates 

the expression of AHR target genes328.  AHR binding results in recruiting of CBP/p300, 

a Histone Acetyltransferase (HAT) Complex coactivator and facilitates binding of the 

transcription factor SP1, resulting in enhanced expression from the target gene329, as in 

case of the Cytochrome P450 xenobiotic metabolism genes330.  AHR can affect cellular 

signaling through interactions with various other regulatory and signaling proteins, 

including chaperone and immunophilin-like proteins (such as heat shock proteins), the 

Aryl Hydrocarbon Receptor-Interacting Protein (AIP), as well as protein kinases and 

phosphatases (including  tyrosine kinases, Casein Kinase-2 (CK2), Protein Kinase-C 

(PKC)).  In addition, AHR is also known to interact with cell cycle-relevant signaling 

pathways that are mediated by hormone receptors (including Estrogen Receptor), 

Hypoxia, NF-KappaB (Nuclear Factor-Kappa-B) and Rb (Retinoblastoma) protein134,135 

and SUMO1-modification331,332.  AHR association with coactivators can lead to histone 

acetylation, Pol II (RNA Polymerase-II) recruitment and subsequent gene transcription, 

or, in contrast, activation of the AHR results in transcriptional inhibition of some target 

genes, such as those encoding the Immunoglobulin heavy-chain and Estrogen-inducible 

p27Kip1.  Inhibitors of PKC and Tyrosine Kinase block the induction of AHR target genes, 

indicating a likelihood they are also involved in AHR signal transduction333,334.  AHR also 

interacts with NF-KappaB signaling pathways. Direct interactions between AHR and 

RelA (a NF-KappaB subunit) induce transactivation of c-Myc protein135,335,336.  

Functional cross talk between AHR and NF-KappaB occurs through interactions with 

common coactivators SRC1 and p300/CBP. AHR and NF-KappaB RelA form an 
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inactive complex, thereby causing mutual repression.  The association between the 

AHR and RelA provides a physical basis for the functional antagonism337.  AHR may 

also be involved in cell-cycle regulation through growth factor signaling, cell-cycle 

arrest, and apoptosis134,337,338.  In fact, Puga and coworkers presented a comprehensive 

review of AHR roles in cell cycle339 in which they discuss a wide range of AHR-ligand 

activation induced cell cycle perturbations, including G0/G1 and G2/M arrest, 

diminished capacity for DNA replication, and inhibition of cell proliferation.  AHR-

mediated functions are often accomplished in the absence of an exogenous ligand, but 

the underlying molecular mechanisms governing these processes are poorly 

understood, partly because no endogenous ligands have been definitively identified.  

More than a decade of research points to a role for the AHR in cell cycle control, yet the 

precise mechanism remains ill-defined.  Reports suggest that in the absence of an 

exogenous ligand, the AHR promotes progression through the cell cycle[reviewed in 340].  In 

contrast, evidence spanning more than 20 years has shown that TCDD, the prototypical 

AHR ligand, can inhibit cell proliferation339.  Marlowe and associates show that the 

repressor activity of the AHR is fully independent of its transcriptional activity, not 

requiring its transactivation or DNA binding domains or interaction with ARNT, 

delineating a dual activity of AHR in mediating promotion or inhibition of cell 

proliferation, dependent upon the cellular environment or ligand exposure341.   AHR is 

shown to contribute to p300-mediated induction of DNA synthesis during S-phase342, 

and in fact was shown to competitively displace p300 from E2F-dependent 

promoters341,343.  Studies also found AHR contributes to the inhibition of cell cycle 

progression by directly interacting with the RB/E2F complex to block its phosphorylation 
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in G1136,137.  This interaction constitutes a major G1 checkpoint in cells exposed to AHR 

ligands138.   AHR and RB have demonstrated a synergistic relationship to reinforce the 

repression of E2F-dependent gene expression, thus slowing down the progression of 

cells from G1 into S-phase137.  In addition, AHR is recruited to RB-regulated promoters, 

where it functions as a corepressor for RB.  Through the formation of specific protein-

protein interactions and the exclusion of coactivator proteins from RB-regulated 

promoters, the interaction with AHR results in repression of transcription of RB target 

genes such as CDK2 and cyclin A to cause cell cycle arrest341,344,345.  It is suggested the 

AHR tandem effects of RB-corepression and blocking of recruitment of p300 to E2F-

regulated genes are interrelated and that inhibition of p300 binding is one of the 

molecular events responsible for the persistence of active gene repression by AHR-RB 

complexes341.  Pin1 is reported to bind, and potentially stabilize p300 expression, as 

well as increase its affinity for binding its targets346.  In this way, sequestration of Pin1, 

rendering it unavailable to act on p300, presents a potential mechanism by which 

L647R PreA could contribute to AHR-RB-mediated gene repression.   As RB regulation 

by Lamin A is well-documented102,347,  the indication of highly significant regulation of 

this pathway in our microarray analysis of cells exogenously expressing L647R PreA 

could represent an important mechanism, heretofore apparently unexplored, by which 

PreA protein accumulation drives cells toward cell cycle arrest. 

 

RB-E2F Pathway Regulation 

 Three pRB family members, termed pocket proteins, are expressed in 

mammalian cells:  pRB/p105 (herein, “pRB” will refer to the protein, “RB” to the gene), 
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pRbl1/p107, and pRbl2/p130 (proteins referred to herein as “p107” and “p130,” 

respectively, and “p107 gene,” or “p130 gene,” respectively, for reference to the genes).  

In their hypophosphorylated state, these proteins bind to members of the E2F-family of 

transcriptional regulators and inhibit transcription.  This inhibition is relieved when the 

pocket proteins are released from E2F complexes following their phosphorylation by 

cyclin/CDK activity348, freeing the E2F proteins to influence the transcription of genes 

whose protein products are necessary for cell cycle progression. The phosphorylation 

status of each of the RB- family members varies throughout the cell cycle. Several 

cyclin dependent kinases are implicated in this process349.  As their functions and 

structures differ, members of the E2F- and RB-families exhibit differential interactions 

with each other in a temporally regulated manner through the cell cycle. E2Fs 1-3 are 

transcriptional activators and interact only with pRB350.  E2F4 and -5 are transcriptional 

repressors and preferentially bind p130 and p107351.  The p130/E2F4 complex is 

thought to possess the primary function of helping maintain a state of transcriptional 

silence352,353 and is the complex most abundant in quiescent cells, although p107/ E2F4 

and pRB/E2F4 complexes also accumulate in G1 phase353.  As the cells start to re-enter 

the cell cycle, in early G1, E2F4 is still found primarily in association with p130, but p130 

is replaced in mid to late G1 by p107, and then by pRB in late G1 and S phases353-356.  

p130 also regulates the expression of the RB and p107 genes, which contain E2F sites 

in their promoters357,358.  In addition, while both p130 and p107 are bound to a number 

of promoters in asynchronously growing cells, only p130 is recruited to promoters in 

quiescent or serum-restimulated human cells.  Repression of promoters in quiescent 

cells has been shown to be specifically associated with recruitment of E2F4 and p130 
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as well as with histone hypoacetylation359.  While 9 members of the E2F family have 

been identified (including 2 isoforms of E2F-3), only E2Fs1-5 interact with the pocket 

proteins[reviewed in 360].  E2Fs 6-8, the functions of which are somewhat less well 

characterized than the other 6 family members, lack the N-terminal sequences of 

E2Fs1–3 as well as the C-terminal domain common to all the other E2F proteins361-365. 

They do not have activation domains or pocket protein interaction domains and, thus, 

exhibit RB-independent transcriptional-repression activity364-367.  E2F6, specifically, has 

been shown to interact with Polycomb proteins to repress transcription363.  E2F1 has 

well documented target genes that are proapoptotic, such as Caspase 3, 7, 9 and 

Apaf1368.  Furthermore, E2F1 directly induces expression of p19ARF (for which 

expression of the transcript was upregulated after 48 hours of L647R PreA expression, 

according to our initial microarray data but is not assayed at the protein level after 72 

hours of L647R expression).  p19ARF, in turn, activates p53 by binding and inhibiting 

MDM2 function369.  Implications of that relationship are further explored in the p53 

pathway discussion section.   

 In additional paradox to the well-known growth-promoting function of E2F1, its 

expression is suggested to be counterbalanced by multiple self-imposed safeguard 

mechanisms, one of which is activation of the promoter of the cyclin dependent kinase 

inhibitor (CKI) p27 Kip1 gene, for which E2F1 expression has actually been shown to be 

necessary for maintaining basal level p27 expression370.  In this negative feedback 

mechanism, expression of p27 Kip1 cooperates with pRb to suppress E2F1 activity, and 

this association of p27 Kip1 with pRb has demonstrated ability to activate cellular 

senescence371.  Interestingly, E2F1 protein levels are reduced in a dosage-dependent 
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manner with expression of p130, which, as mentioned, is a transcriptional target of 

E2F1.  The resulting E2F1 reduction leads to inhibition of cyclin A expression and 

subsequent reduction in cyclin A-associated kinase activity.  Furthermore, induction of 

p130 expression has also been shown to lead to a substantial induction in the protein 

levels of p27Kip1, 372-374.  To further complicate this E2F1-negative feedback process, 

because p27Kip1 levels are mainly regulated by ubiquitin-mediated proteasomal 

degradation that is targeted by cyclin E-Cdk2 phosphorylation of p27Kip1 on Thr-

187375,376, p130-mediated inhibition of cyclin E-associated kinase activity may induce 

p27Kip1 levels by decreasing or inhibiting targeted proteolysis of p27, extending the 

feedback loop by stabilizing p27Kip1 at expression levels that can propagate further 

inhibition of CDK activity.  In that loop, p130 and other RB-family members are 

protected from the inactivation-inducing phosphorylation of CDKs377.  p27Kip1 is 

discussed again in the FoxO discussion section, involving its FOXO-mediated 

transcription. 

 While our data from the RT-qPCR array indicate significant mRNA expression 

level upregulation of the pRB-interacting, transcription-activating E2Fs1-3, as well as 

the repressor E2F4, after 24 hours of L647R PreA expression, E2Fs 5-8 were not 

included in the RT-qPCR assay.  Consistent with the increased E2F-1-3 transcript 

expression, several targets do exhibit increased expression, such as cell cycle 

regulating genes cyclin A, CDK2, the RB and p107 genes, as well as E2F2 and E2F3 

(which are E2F targets, themselves), the DNA replication associated Mcm2 gene, and 

the DNA repair and checkpoint control regulating genes, PCNA,  Rad51, Msh2, Chk1, 

and MAD2L153.  
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 E2Fs are regulated not only at the level of transcription, but also significantly by 

posttranslational modifications, subcellular localization, association of cofactors, and 

degradation378,379.  Our protein microarray results do not indicate significant changes in 

the levels of expressed E2Fs after 72 hours of induced L647R PreA expression, except 

in the case of E2F-6, which demonstrates downregulated levels with L647R PreA 

expression.  Interestingly, though E2F-6 is a transcriptional repressor, repressing the 

E2F-mediated transcription of genes responsible for the G1/S transition, it is expressed 

only during S-phase, and exogenous expression of E2F-6 has been shown to result in 

accumulation of cells in S-phase367.  Repression of the G1/S transition-inducing genes 

by E2F-6 could, therefore, potentially have a role in maintaining a unidirectional 

progression forward of the cell cycle.  Nonetheless, the decreased level of expression 

represented by our antibody array could be a reflection of the proportional decrease in 

the number of cells in S-phase among the cells expressing L647R PreA as compared to 

control cells that were not induced to express the mutant lamin protein.  Likewise, the 

measured levels of pRB expression do not indicate differences between cells 

expressing L647R PreA compared to uninduced cells on the antibody array.  However, 

phosphorylation of pRB Ser-795 is indicated to be significantly downregulated with 

L647R PreA expression.  Phosphorylation of the Ser-795 residue is mediated by CDK4 

and requires the activity of MEK-ERK pathway.  Moreover, this phosphorylation is 

functionally significant in that it occurs rapidly and directly correlates with dissociation of 

E2F-1 from pRB and initiation of E2F-mediated transcription380.  Therefore, 

hypophophosphorylation of this site is consistent with RB-mediated transcriptional 

repression in the L647R PreA-expressing cells.  It has been suggested that Pin1 binds 
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pRB to stabilize its hyperphosphorylated, inactive conformation, thus inhibiting RB-

mediated transcriptional repression and cell cycle arrest381.  In addition to the potential 

role of Pin1 inhibition in promoting AHR-RB-mediated transcriptional repression, 

preventing a direct Pin1 conformational inhibitory regulation of pRB presents another 

mechanism in which PreA sequestration of Pin1 could contribute to cell cycle arrest.  

Unfortunately, the antibody array does not feature p107 or p130 to confirm results of the 

qPCR array, which indicated increased mRNA transcript levels for those 2 RB family 

members, and the qPCR array did not assay for the RB transcript.  Considering our 

data in the context of RB-E2F-related transcriptional control of the cell cycle, the results 

suggest L647R PreA protein expression has significant effects on this pathway, which is 

not completely surprising, given several studies have previously revealed a role for A-

type lamins in stabilization and regulation of the pRB protein102,347.  Taken together, 

data from the qPCR array and the antibody array strongly suggest the PreA isoform has 

a role of its own, which appears to be separate from that of mature LA, in regulating 

expression and interactions of members of the RB-family of pocket proteins with E2F 

transcriptional regulators in a program regulating cell cycle control.  

 

p300 and Cyclin E Pathway 

 Pin1 has been shown to facilitate p300 binding to its targets346.  Given the Pin1 

propensity to stabilize many of its binding partners, it could raise the question of 

whether PreA sequestration of Pin1 could contribute to destabilization and our observed 

decrease in the expression level of p300 protein in PreA-expressing cells (decreased 

nearly 2-fold, according to antibody-detection in our protein microarray).  p300, 
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described as both a transcription cofactor and a HAT,  is considered to be a master 

regulatory protein and molecular switch, integrating transcriptional control of cell cycle 

progression, DNA repair382, and tumorigenesis[reviewed in 228,234,383-385] and may be 

required to maintain tissue homeostasis386.  It is required for cell and tissue function 

during embryonic development, cell differentiation in vitro233, and in fact, even a 25% 

decrease in p300/CBP proteins is detrimental for normal development234,235,  while p300 

nullizygous (p300_/_) embryos die between days 9 and 11.5[reviewed in 385].  p300 is 

targeted by viral oncoproteins, mutated in certain forms of cancer, and phosphorylated 

in a cell cycle-dependent manner[reviewed in 228].  In addition, p300 interacts with numerous 

transcription factors including p53, E2F, micropthalmia transcription factor (MITF), and 

RB387.  p300 can stimulate either transactivation or repressor functions of several 

different transcription factors, suggesting that the interacting proteins, promoter, and 

cellular context are critical determinants of p300 function[reviewed in385,388].  A reduction in 

p300 levels results in an apparently directly proportionate level of transcriptional 

repression,  from competition between transcription factors for limited amounts p300 in 

the nucleus385, and has direct negative effects on cellular proliferation, as it does for 

development234,235.  The involvement of p300 in maintaining the proliferative state of 

cells is supported by studies using p300-deficient fibroblasts, including fibroblasts from 

p300-nullizygous animals, which show slow proliferation and rapid replicative 

senescence in culture235,389. 

 Importantly, p300 binds integrally to the cyclin E-CDK2 complex390, of which it 

controls the activity, and has been determined to be required for the G1-S transition, 

with a decrease in cyclin E-CDK2 activity directly resulting in inhibition of the G1- to S-
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phase transition389.  Cyclin E, in its complex with CDK2, controls 3 major S-phase 

events: DNA replication, centrosome duplication, and histone gene expression[reviewed in 

391].  Overexpression of cyclin E promotes S-phase entry increases the frequency of 

centrosome duplication and genetic instability391 and induces escape from Ras-induced 

senescence in mouse embryonic fibroblasts392.  p300 is a critical regulator of cyclin E 

transcription in vivo, and p300 depletion directly results in cyclin E down-regulation, 

causing growth arrest and expression of a senescent-like phenotype393.  Access to DNA 

by transcriptional regulatory proteins is determined by chromatin organization, which 

regulates activation or repression of transcription.  Chromatin structure is primarily 

controlled by ATP-dependent reorganization of nucleosomal positioning and 

posttranslational modifications to the histone tails by acetylases or deacetylases, which 

introduce localized perturbations to the chromatin, either allowing or preventing the 

binding of transcriptional machinery394.  Loss of acetylation may shift the balance toward 

repressive heterochromatin, causing silencing of genes associated with cell cycle 

progression.  Errors in the maintenance of repressive heterochromatin domains have 

been proposed to accumulate during the proliferative life span of normal human cells, 

ultimately triggering a senescence checkpoint and leading to irreversible cell cycle 

exit.395  It has been suggested, a progressive decline in HAT levels (such as with 

decreased levels of p300), with further cell divisions, leads to increased  HDAC activity 

and chromatin modifications that cause altered gene regulation and permanent 

relocation of genes into the heterochromatin compartment, thereby triggering a 

senescence checkpoint that ultimately results in activation of cellular senescence393. 
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 Our antibody array study indicates expression of L647R PreA results in significantly 

decreased protein levels of both p300 and Cyclin E protein levels compared to the 

uninduced control.  These findings strongly suggest a role for PreA in induction of cell 

cycle arrest and inhibition of cellular proliferation.  The association of Cyclin E down-

regulation by reduced p300 levels with senescence, and the fact cells expressing 

L647R PreA demonstrate that particular expression pattern is a potential indicator that 

PreA protein accumulation has a role in senescence induction.  Recruitment of p300 

and HDACs to promoters may be a cyclic event in proliferating cells, while a decrease in 

p300 levels favors recruitment of other repressor proteins396-399 to cyclin E and other cell 

cycle-regulatory gene promoters393.  We reason, therefore, that a transiently cyclic 

pattern of p300-cyclin E repression might be related to the equally transient 

accumulation of PreA protein in cycling cells, resulting in quiescence, while it is 

conceivable that sustained accumulation of the protein could result in senescence, 

potentially implicating PreA in regulation of cell fate. 

FoxO Pathway 

 A decreased expression level of p300 represents another potential means of 

PreA-mediated positive regulation of FoxOs.  As p300 acetylation of FoxO inhibits its 

ability to bind DNA, FoxO transcriptional activity is ablated by p300 expression313.  

Therefore, the observed significant decrease in p300 expression in L647R PreA-

expressing cells is consistent with FoxO activation.  Likewise, as modulation of the 

subcellular localization is the primary means by which FoxOs are regulated,  Akt 

downregulation is a highly positive indicator of FoxO activity.  Because Akt is the major 

inducing kinase of FoxO phosphorylation-dependent, 14-3-3-mediated export from the 
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nucleus, the downregulation of expression and activity-inducing phosphorylation of Akt 

that we observe in our protein microarray is consistent with nuclear localization and an 

active status of FoxO transcriptional regulation.  Importantly, Pin1 has been shown to be 

a primary mediator of Akt stability.  Inhibition of Pin1 results in destabilization and 

proteasomal degradation of Akt.  Our proposed mechanism of accumulated PreA 

binding, and thus sequestering, Pin1, should be able to induce the observed 

downregulation in Akt.  A downstream effect would be stable FoxO nuclear localization 

and active transcription of targets such as p27, such as we see in the immunoblots and 

immunfluorescence imaging of the L647R PreA expressing cells.  Interestingly, while we 

show that Juglone treatment increased nuclear translocation of FoxO3a and p27KIP in 

uninduced cells, the already increased nuclear pool of FoxO3a and p27Kip1 proteins 

were not significantly altered in L647R PreA expressing cells.  This suggests expression 

of PreA inhibits Pin1 negative effects upon FoxO3a nuclear translocation and 

consequent p27Kip1 expression, with at least as much effectiveness as treatment with a 

chemical Pin1 inhibitor.   Also, Pin1 inhibition does not decrease the nuclear 

translocation of FoxO3a, nor p27Kip1 expression in L647R PreA cells, thus confirming 

the increased Pin1 in complex with PreA does not have a negative regulatory effect on 

FoxO3a or p27Kip1 expression.  These data, taken together, suggest a heretofore 

undescribed mechanism of PreA cell cycle regulation through sequestration of Pin1, 

thus limiting its nuclear availability and preventing its binding to targets.  This 

mechanism could have many consequences for cell cycle regulation, considering the 

plethora of cell cycle targets of Pin1 activity. 
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 In line with their ability to block cell growth and to induce senescence or 

apoptosis, FoxO genes act as tumor suppressors. Deletion of all FoxO1, FoxO3, and 

FoxO4 alleles in adult mice induces a cancer prone condition characterized by 

hemangiomas and thymic lymphomas400.  In human cancers, several chromosomal 

translocations disrupt FoxO genes, producing hybrid proteins in which the forkhead 

DNA-binding domain and the Akt phosphorylation sites are lost401, and in fact, much of 

the oncogenic activity of the Ras-Erk pathway depends on inactivation of FoxO 

transcription factors400.  It has been suggested that nuclear FoxO and Myc might 

compete for the promoter site of the p27Kip1 gene, where, in character with its 

oncogenesis-promoting functions, Myc acts in direct opposition to the function of FoxO 

transcriptional activation of p27Kip1, acting rather to repress transcription of p27Kip1 402.  

In addition, Oncogene-Induced Senescence (OIS), as from BRAF, for example, is 

mediated by JNK phosphorylation of FoxOs but does not activate p27Kip1 or p16ARF1.  

Rather, JNK-mediated FoxO phosphorylation specifically induces p21WAF1 expression to 

induce senescence.  PKB/Akt phosphorylation FoxO sites are not affected by JNK-

mediated OIS FoxO activation, and ERK phosphorylation does not play a role in this 

FoxO activation403.  Importantly, although a mechanism of tumor suppression, it is 

argued that induction of cellular senescence is also causative to organismal aging404,405.  

FoxO response to OIS may therefore represent a trade-off between tumor suppression 

and lifespan.  

 Cellular signaling induced by growth factors is propagated, at least in part, by 

Reactive Oxygen Species (ROS), which are thereby necessary to regulate a variety of 

cellular processes including proliferation406,407.  However, accumulation of ROS above a 
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certain threshold level causes damage to the cellular interior, referred to as oxidative 

stress.  Toxic levels of ROS can induce cellular senescence408, so they are also 

considered to accelerate aging and age-related pathologies409,410.  In response to 

accumulation of ROS, a poorly understood induction of senescence occurs.  FoxOs are 

known to be mediators of oxidative stress repression308,  increasing resistance to 

oxidative stress through transcription of such enzymes as MnSOD310 and Catalase411, 

through a negative feedback loop, which appears to ultimately result in senescence 

whenever high levels of ROS are encountered, likely as a measure to avoid cell death, 

or ensuing tumorigenesis caused by ROS-induced DNA damage.  Paradoxically, 

increased FoxO activity is associated with longevity in model organisms412 and 

humans413, but at the same time, in managing response to ROS accumulation, FoxOs 

are responsible for inducing senescence, lending credit to the hypothesis that excessive 

ROS accelerate aging.  It is interesting that both lack of growth factor signaling and 

increased OIS/ROS result in FoxO activation.  However, there is a cost differential to 

the organism between the 2 programs in which the absence of growth factor signaling 

can impose a reversible FoxO-p27kip1-mediated G1 cell cycle arrest and/or quiescence, 

which may, perhaps, be used for cellular maintenance and to repair cellular damage310, 

wherein FoxO proteins may positively affect lifespan with little cost to the organism.  In 

contrast, FoxOs’ response to OIS and ROS, while protecting against immediate cell 

death or tumorigenesis, does so at a significant cost to the organism, as this service is 

accomplished through induction of senescence—thus defining a limited lifespan.  These 

concepts underline the pivotal role that FoxOs play in minimizing the damage of ROS 

from normal cellular signaling and in neutralizing intercepted oncogenic signaling, as 
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well mediating the aging that results from overexposure to ROS or OIS.  Thus, while our 

current study does not assay the sites of JNK-mediated phosphorylation on FoxOs and 

does not test effects of oxidative stress or OIS upon cells expressing L647R PreA 

compared to controls, as FoxOs are regulated by ROS and oncogenic signaling, in 

addition to signals related to growth factors and cell metabolism, and play a role in both 

tumor suppression and aging, regulation of these effects provide an important paradigm 

to understanding the relationships between aging and disease such as cancer.  Our 

study does, however, demonstrate a capacity for FoxO regulation by PreA, with the 

strong indication of a PreA-mediated role for regulation of Pin1 in that mechanism.   As 

PreA has been demonstrated to accumulate with progressive aging and in 

senescence35,43,66,74,146, and A-type lamins have been associated with cell cycle 

regulation102,103,347, while both FoxO and Pin1 dysregulation have been implicated in cell 

cycle dysfunction and numerous cancers (FoxOs and cancer review414, Pin1 and cancer 

review415 ), we suggest this PreA-Pin1-FoxO regulatory relationship warrants further 

investigation in the roles of tumor suppression and senescence induction, and thus, on 

the role of these relationships in cancer and in aging.   

p53 Pathway 

 The pocket proteins can induce expression of both p21Waf1 and p27Kip1 and are 

essential for both quiescence and senescence416.  p53, on the other hand, has been 

thought to play a key role primarily in senescence, mainly by inducing p21Waf1, which 

permanently blocks cell cycle progression417.  The p53 pathway was indicated by our 

genomic expression microarray pathway analysis to be highly affected by PreA L647R 

expression.  This pathway controls the expression of hundreds of genes in response to 
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signaling stimuli from sources of genotoxic insult, as well as from sources of 

nongenotoxic metabolic stresses and is the subject of many reviews[217,418-424 and a multitude 

of others].  The activity of p53 has been shown to be essential to arrest the cell cycle in 

response to irradiation or DNA-damaging chemical agents (examples of genotoxic 

stressors)170,425, as well as in response to virus infection-related interferon production, 

and cytokine signaling in metabolic stresses such as hypoxia (nongenotoxic 

stressors)426.   As a consequence of its large number of downstream effectors, activated 

p53 can elicit a number of responses, including activation of several kinase-mediated 

signaling pathways or transcriptional induction or repression of several hundred genes.  

Results of this signaling are either arrest of cell cycle progression in late G1-, S-, or G2-

phases or the induction of apoptosis.  Many p53-downstream effectors function in a 

feedback mechanism with p53, signaling in cooperation to promote cell and tissue 

homeostasis by directing many repair processes, including transient inhibition of nucleic 

acid synthesis, DNA repair, control of the cell division cycle, elimination of damaged 

proteins, autophagy, ATP generation via oxidative phosphorylation, affecting function of 

the mitochondria, and directing programmed cell death426. 

 The binding to DNA for transcriptional regulation by p53 involves alteration of the 

protein conformation and occurs in a DNA sequence-specific manner. Mutations in p53, 

or in the target genes, that alter the binding specificity or the ability to achieve proper 

conformation result in suppression of p53 function and are associated with the loss of 

genomic stability found in a wide range of human cancers418,427,428.  In fact, studies have 

shown that more than 50% of human cancers involve mutations that dysregulate 

p53420,429.  Regulation of p53 is accomplished by posttranslational modifications, 
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including phosphorylation, acetylation, methylation, and ubiquitination, as well as by 

interactions with other factor molecules that enhance or diminish activity by altering p53 

binding to partner molecules, determining its cellular localization, or affecting its rate of 

degradation[426,430,431, and as reviewed in 217,418-420].  Stabilization of p53 is primarily controlled 

by Mdm2432-435.  These proteins act as E3-ubiquitin ligases, binding to and targeting p53 

for degradation by the 26S proteasome.  Mdm2, a ring-finger protein, is generally 

considered to be the major regulator of p53 in response to genotoxic stress436 and is 

amplified in several types of cancers437.  Mdm2-binding simultaneously conceals the 

p53 transcription activation domain and facilitates p53 export out of the nucleus into the 

cytoplasm, in addition to its targeting the p53 protein for degradation438.  Interestingly, 

expression of Mdm2 is transcriptionally activated by p53 in a negative feedback loop 

that controls the level, extent, and duration of p53 protein activation439.  Upon stress 

signaling, p53 phosphorylation promotes the dissociation of MDM2 from the MDM2/p53 

complex, allowing activation of a stable p53424,425,427,440.  Our data show the transcript 

expression of Mdm2 is upregulated after 24 hours of induced expression of L647R 

PreA, but the cells demonstrate no significant changes in the protein expression level of 

Mdm2 after  72 hours of expressing L647R PreA. Importantly, though, the Ser-166 

residue of Mdm2 protein in the L647R PreA-expressing cells is hypo-phosphorylated.  

Phosphorylation of Mdm2 at Ser-166 is accomplished by Akt following growth factor 

stimulation, and results in increased half-life of Mdm2 protein, enhanced Mdm2-

mediated p53 degradation, and nuclear translocation that allows it to inhibit p-53-

mediated transcription.  Additionally, the p53-inducible phosphatase Wip1/Ppm1d is 

able to dephosphorylate Mdm2, thereby inactivating its repressive and degradation-
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targeting effects on p53.  The transcript level of Wip1 in the L647R PreA expressing 

cells, by RT-qPCR assay, was found to be upregulated, but Wip1 is not assayed by the 

antibody array.  In contrast, Akt is not assayed on the RT-qPCR array.  The antibody 

array, however, demonstrates a significant downregulation of Akt protein expression in 

L647R PreA-expressing cells.  Additionally, the phosphorylation profile of Akt in L647R 

PreA-expressing cells indicates it is considerably hypoactive.  As for p53, itself, the 

transcript shows a very modest upregulation after 24 hours of L647R PreA expression, 

and actually a slight downregulation at the protein level, after 72 hours of induced 

L647R PreA expression, with a phosphorylation profile consistent with response to 

oxidative damage, microtubule disruption, or replicative senescence. 

 

p53 and mTOR Pathway 

 The paradigm for the p53 pathway has recently shifted.  For many years, p53 

was considered, primarily, as the driver of a program of apoptosis, and after several 

years of work it has been proven to have an equally significant role in cell cycle arrest, 

most recently, extraordinary revelations have been made about p53 roles in the 

decision between the pathways quiescence441 or senescence[as reviewed in 418,421,424,427].  

Notably, p27Kip1 is the primary CKI involved in inducing quiescence and is not a target of 

p53442, and thus p53 is considered dispensable in quiescence induction, although, it has 

also been shown that p53-activation of p21Waf1 can trigger pRB-mediated quiescence, 

possibly by triggering p27Kip1 expression443.  The recent work of Leontieva, Demidenko, 

Blagosklonny, and colleagues, have challenged the long-held notion that p53 is 

primarily an inducer of senescence but propose, rather, that p53 is actually a 
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suppressor of the senescent phenotype444.  Additionally, several groups have 

contributed to the realization that the mammalian Target of Rapamycin (mTOR) 

signaling pathway and the p53 pathway converge to determine cellular quiescence 

versus senescence445-449.  In fact, p53 has been demonstrated to inhibit mTOR445,447,450.  

mTOR is a PI3Kinase-like-kinase (PIKK) family kinase, and the mTOR pathway 

mediates protein synthesis as part of cellular growth when adequate nutrients, energy, 

and mitogens are supplied in the cell[as reviewed in 445 ].  PI3K-activated Akt activates 

mTOR, when cellular conditions are favorable, while PTEN, AMPK, and TSC1/2 inhibit 

the pathway when conditions are not favorable, as in serum-starvation or high-density 

contact, in cell culture.  The p53-inhibition of mTOR occurs via p53 activation of 

AMPK445.  In the crosstalk between these pathways, activated p53 activates AMPK, 

which inhibits Akt, and thus mTOR, and p53 is able to induce quiescence.  In conditions 

where the mTOR pathway is active, p53 activates a senescence response to stress 

signaling.  Furthermore, weak induction of p53 is unable to inhibit the mTOR pathway, 

and thus weakly increased p53 expression is associated with irreversible induction of 

senescence.  Paradoxically, high levels of p53 expression/activation, such as would 

occur acutely in response to a DNA-damaging event, potently inhibit mTOR signaling, 

initiating quiescence, conceivably to allow the cell to execute repair processes451-455.  If 

cellular stressors such as hypoxia or DNA damage occur during the conditions in which 

mTOR is inhibited, p53 would not induce senescence but, rather, would continue to 

participate in mediating the mTOR inhibition and maintenance of quiescence.  If p53 

signaling is resolved prior to restimulation of mTOR, then the cells re-enter the cell 

cycle.  However, if serum is returned while p53 signaling is still increased, and high 
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levels of mitogen-signaling overrides the p53-AMPK inhibition of mTOR, senescence 

will be induced. 

 If one considers the cell cycle related expression pattern we have described for 

PreA, it is seen in conditions of serum starvation or high-density plating, where 

quiescence is induced (wherein, mTOR would be inhibited), but it is also expressed in 

replicative senescence (wherein, plating conditions could be spacious and plenty of 

serum provided in the medium, and mTOR would not be inhibited), according to this 

work and that of others35, 121,122.  This phenomenon is inconsistent with our theory that 

PreA-mediated inhibition of Akt and the mTOR pathway could play a role in the recently 

described function of the p53-mTOR pathway in selecting for quiescence in conditions 

inhibiting the mTOR pathway444,451,452,455.   In that model, senescence activation occurs 

only in conditions of p53 activation without mTOR inhibition.  Therefore, in the normal 

physiological circumstances of its accumulation, PreA would likely participate in the 

mTOR-inhibited induction of quiescence, where p53 induction would be related to the 

cellular stressors of the conditions of starvation or crowding.  The cells are able to re-

enter the cell cycle upon mitogen restimulation or replating, as this simultaneously 

relieves the p53-inducing stress and releases inhibition of mTOR.  As we are 

expressing PreA exogenously in the cells of our current study, in conditions of plentiful 

mitogens and low- to medium-plating densities, it seems that mTOR inhibition should 

not be in effect, and yet, we see the downregulated Akt that must indicate mTOR 

repression, as would the increased transcription of the Camk2s and Sestrin 2 that we 

see in these cells.  We also see the nuclear localization of FoxOs and p27Kip1 that would 
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indicate quiescence, and the p300 and Cyclin E downregulation that signify either 

quiescence or senescence.   

 In the absence of serum starvation or contact-inhibition induced stress, we also 

do not see strong activation of p53.  Our observed low p53 expression level in the cells 

expressing L647R PreA, seems congruent with a the noted senescence induction by 

continued low-level p53 expression, or with a p53-independent mode of quiescence 

initiation, and is consistent with previous findings related to a relative lack of p53 

induction by PreA103.  We presume the low p53 levels observed are because the cells 

are not being serum starved, crowded, or treated with stressing agents in order to 

induce the PreA accumulation.  However, the phosphorylation signature (indicative of 

hypoxic stress, microtubule dysfunction, or replicative senescence), and the fact that 

PreA is found in senescent cells as well, leads us to the question of how cells are able 

to enter senescence despite accumulation of PreA, when PreA accumulation apparently 

downregulates Akt and would presumably lead to mTOR inhibition?  

 A possible answer for this question comes in the form of Pin1.  Pin1 

phosphorylation-dependent binding to p53 is required for the DNA damage-induced 

response of p53.  The specific sites reportedly requiring phosphorylation to bind Pin1 

are Ser-33, Thr-81, and Ser-315 (notably, Ser-33 and Thr-81 are somewhat 

hypophosphorylated, with L647R PreA expression, while Ser-315 phosphorylation is 

upregulated)267,456.     We hypothesize PreA accumulation, in the absence of mitogen 

deprivation or cell crowding, would not typically be present at the initiation of DNA 

damage signaling related to substantial genotoxic insult to the cell, or at the induction of 

telomere-uncapping-mediated DNA damage signaling as cells reach the replicative limit.  
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Therefore, our proposed PreA-Pin1 sequestration-related inhibition of Akt and the 

mTOR pathway would not be in effect at the initiation of that mode of p53-activation.  

Also, Pin1 sequestration by PreA would not be a factor, and thus Pin1 could freely 

interact with p53 to promote its DNA damage response cell cycle arrest activities.  On 

the other hand, it has been recently demonstrated that Pin1 must be inhibited to allow 

induction of replicative senescence457.   It is possible, then, that PreA-mediated Pin1 

inhibition could be the key to directing cells with p53 activated by shortened telomeres 

to senescence.   Future studies will demonstrate if PreA accumulation occurs 

subsequent to p53-mediated cell cycle arrest in cells that enter senescence due to DNA 

damage signaling, including that which occurs from uncapped telomeres as the 

replicative limit is reached.  Successive passaging of cells expressing L647R PreA 

results in progressive PreA accumulation to levels that have been shown to 

demonstrate perturbations of cell cycle function, defective mitosis, altered chromatin 

organization, and telomere stability.  For this reason, we suggest use of this exogenous 

PreA-expressing model could make it difficult to determine if normal pathways leading 

to senescence involve PreA accumulation after p53-activation has already occurred.  

Activation of p53 by telomere-uncapping-induced DNA damage signaling could induce 

senescence directly, before the effects of PreA-mediated mTOR-inhibition-related 

quiescence induction could occur.  However, the effects of DNA damage signaling upon 

the proposed PreA-Pin1 sequestration must be evaluated.  Given the overlap of putative 

Pin1- and MDC1-binding sites in the PreA c-terminal tail, the possibility exists for DNA 

damage signaling to alter the ability of accumulated PreA to bind Pin1.  Such 

interference could neutralize the proposed sequestration effect and consequences such 
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as Akt-mTOR inhibition.  This latter phenomenon could reconcile the contradictions of 

PreA-mediated inhibition of Akt/mTOR (and implied p53-mediated direction to a 

quiescent state), and the known expression of PreA in replicatively senescent cells.  

The ability of L647R PreA-expressing cells to enter senescence after successive 

passaging, as demonstrated in the β-galactosidase assay for the L647R PreA-

expressing cells, could be attributed to the ability of “prolonged” cell cycle 

arrest/quiescence to convert to senescence.  Some researchers have demonstrated 

depletion of mTOR pathway inhibitors, such as TSC2, can allow reactivation of the 

mTOR pathway despite continued stress conditions. This reactivation initiates 

conversion of prolonged quiescence into senescence.455  Perhaps a conversion to 

replicative senescence is allowed after p53-mediated quiescence is induced in 

response to telomere-uncapping DNA damage signaling, once PreA accumulation 

occurs to a level at which it is able to adequately sequester and inhibit Pin1.  Future 

work should examine this relationship in the absence of exogenously expressed PreA, 

in the context of DNA damage induction in young, proliferating cells, in highly passaged 

cells, and in disease cells such as RD, HGPS, and WS (typical/ atypical).  The diagram 

in Figure 44 represents the mTOR signaling pathway and proposed regulatory effects of 

PreA expression and sequestration of Pin1. 
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Figure 44.  Discussion Graphic:  mTOR Pathway and Proposed Pathway Inhibitory 
Effects of PreA Expression and Putative Pin1 Sequestration. 
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Conclusions 

 Cellular senescence is considered to be a tumor-suppressive mechanism and to 

contribute to cellular aging.  Senescent cells exhibit multiple changes in gene 

expression of cell cycle-regulatory and stress response genes as well as matrix-

remodeling proteins458, involving some combination of up-regulation of one or more of 

the CKIs p16INK4a, p21Waf-1 and p27Kip1, down-regulation of cyclin E, down-regulation of 

CDK4 and CDK2 activities, and hypophosphorylation of the RB protein[reviewed in459 ].  Our 

data suggest that PreA complexes with Pin1 in a matter such that Pin1 is rendered 

largely inactive.  We hypothesize PreA-mediated Pin1 inhibition could have dramatic 

effects on a broad range of cell cycle regulators, and thus, it could be a central 

mechanism in determining lifespan and healthspan of organisms ranging from fruit flies, 

to mice, to humans.  High order changes in chromatin structure may be involved in the 

generation of the senescence, considering the complexity of the phenotype.  The 

senescence induced prematurely in HGPS cells58 and the altered chromatin 

organization460 could be related, at least in part, to the phenomenon of PreA 

accumulation reported in HGPS cells.  In fact, Pin1 has been reported to control the 

ability of cells to condense and organize chromatin461 462, to control major channels of 

transcription271,463,464, and to mediate protein translation, most likely due at least in part 

to its control of the mTOR pathway261.  Key factors in support of suggesting the PreA-

mediated Pin1 sequestration/inhibition would have major cell cycle and cell fate-

decision impact include the Akt regulatory function of Pin1 and our observed 

downregulation of Akt expression and activity levels.  Modulation of FoxO-p27Kip1 

expression and the mTOR pathway are among Akt-related mechanisms of cell cycle 
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and cell fate determination, and together with the direct effects of Pin1 on critical 

regulators including pRB, p53, p300, Cyclin D, and Cyclin E, it is clear that control of 

Pin1 function is a fundamental cell cycle and cell fate-controlling mechanism. 

Successive passaging of cells expressing PreA result in its progressive accumulation to 

levels that demonstrate cell cycle perturbation, and senescence ensues.  Researchers 

have previously demonstrated overexpression of PreA results in rapid progression to 

senescence with telomeres that are shortened to critical levels that induce DNA damage 

signaling43,66,69,71,99,121.  A primary pathology of HGPS is early, or premature, 

senescence (some researchers refer to “early” senescence as entry to senescence with 

long telomeres that would appear capable of many further divisions, while “premature” 

senescence refers to an accelerated progression toward the normal replicative limit of 

cells).  Examples of stimuli to enter early senescence would be OIS, ROS, or other 

signaling factors that communicate high levels of stress or risk to the cell.  On the other 

hand, the normal process of aging and repeated cellular replication is the most common 

example of entering senescence due to shortened telomeres.  It has been 

demonstrated that the rate of alternative splicing increases with aging, and potentially 

as a result, progerin accumulation increases with age-related cell passaging75,92.  

Furthermore, progerin has been shown to elicit recruitment of PreA expression65,71,208, 

and it is interesting to consider the potential role of exponential effects of Pin1-related 

alternative splicing, progerin accumulation and further PreA accumulation, possibly 

leading to acceleration of telomere erosion via effects of Pin1-sequestration on TRF1, 

ultimately controlling the rate of the cell’s progression to its fate of replicative 

senescence.    
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 The findings of this project suggest many interesting, and potentially highly 

impactful, avenues of research that could be followed.  Among the most interesting are 

those involving the tantalizing clues to help us understand our own mortality.  

Modulation of quiescence and senescence is critical to maintain genomic integrity, to 

allow cells to grow, repair, and organize between cell cycles, or to navigate checkpoints 

to assure fidelity of genomic replication, and to avoid the need for cells to undergo 

apoptosis with each insult to its systems, or decide to initiate apoptosis when sacrifice of 

the cell is beneficial to the organism.  A PreA-specific role in organizing the interactions 

between several important cell cycle regulatory pathways, including  those we have 

described, place a potentially tremendous importance on the PreA isoform in the 

functions of LA as a master regulator of cellular proliferation, genomic integrity, lifespan, 

disease, and aging. 
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 APPENDICES 

Appendix A.  Full SABiosciences RT-qPCR Gene List/Array Data 

Appendix 1 Full SABioscences RTqPCR Gene List/Results (Page 1 of 4) 

2

0.05

Position Symbol

Fold 

Regulation Status p-value Unigene Refseq Gene Name

RT2 

Catalog

A01 Abl1 1.324 OKAY 0.04650 Mm.1318 NM_009594
AI325092/Abl/E430008G22Rik/

MGC117749/c-Abl PPM03439B

A02 Ak1 7.917 OKAY 0.00729 Mm.480325 NM_021515 Ak-1/B430205N08Rik PPM27482E

A03 Apbb1 40.928 A 0.02435 Mm.38469 NM_009685 Fe65/Rir PPM28549A

A04 Atm 4.033 OKAY 0.00036 Mm.5088 NM_007499 AI256621/C030026E19Rik PPM03454B

A05 Brca1 19.360 OKAY 0.00109 Mm.244975 NM_009764 - PPM03442A

A06 Brca2 14.107 OKAY 0.00032 Mm.236256 NM_009765
AI256696/AW045498/Fancd1/R

AB163 PPM03704E

A07 Camk2a 13.817 A 0.00348 Mm.131530 NM_177407 CaMKII/R74975/mKIAA0968 PPM31219A

A08 Camk2b 15.190 A 0.00010 Mm.439733 NM_007595 Camk2d/MGC90738 PPM04592A

A09 Casp3 4.537 OKAY 0.00706 Mm.34405 NM_009810

A830040C14Rik/AC-

3/Apopain/CC3/CPP32/Caspas

e-3/Lice/Yama/mldy PPM02922E

A10 Ccna1 6.226 A 0.04367 Mm.4815 NM_007628 MGC159139 PPM03258B

A11 Ccna2 4.464 OKAY 0.00007 Mm.4189 NM_009828
AA408589/Ccn-

1/Ccn1/Ccna/CycA2/Cyca PPM02913C

A12 Ccnb1 1.989 OKAY 0.00734 Mm.260114 NM_172301

Ccnb1-rs1/Ccnb1-

rs13/CycB1/Cycb-4/Cycb-

5/Cycb1-

rs1/MGC18763/MGC90915 PPM02894E

B01 Ccnb2 -2.097 OKAY 0.03536 Mm.22592 NM_007630 CycB2 PPM03259E

B02 Ccnc 10.045 OKAY 0.00249 Mm.278584 NM_016746 AI451004/AU020987/CG1C PPM02905B

B03 Ccnd1 5.836 OKAY 0.00365 Mm.273049 NM_007631
AI327039/Cyl-1/PRAD1/bcl-

1/cD1 PPM02903E

B04 Ccne1 18.443 OKAY 0.00277 Mm.16110 NM_007633 AW538188/CycE1 PPM02891B

B05 Ccnf 1.106 OKAY 0.32047 Mm.77695 NM_007634 CycF/Fbxo1 PPM03260B

B06 Cdc25a 1.083 OKAY 0.24310 Mm.307103 NM_007658 D9Ertd393e PPM03246E

B07 Cdk2 2.107 OKAY 0.00062 Mm.111326 NM_016756 A630093N05Rik PPM02902E

B08 Cdk4 37.315 OKAY 0.00103 Mm.6839 NM_009870 Crk3 PPM02911C

B09 Cdk5rap1 8.990 OKAY 0.00064 Mm.289427 NM_025876 2310066P17Rik PPM37671E

B10 Cdkn1a 6.313 OKAY 0.00194 Mm.195663 NM_007669

CAP20/CDKI/CIP1/Cdkn1/P21/

SDI1/Waf1/mda6/p21Cip1/p21

WAF PPM02901A

B11 Cdkn1b 23.237 OKAY 0.00010 Mm.2958 NM_009875
AA408329/AI843786/Kip1/p27/

p27Kip1 PPM02909B

B12 Cdkn2a -2.471 C 0.00095 Mm.4733 NM_009877

ARF-INK4a/Arf/INK4a-

ARF/Ink4a/Arf/MTS1/Pctr1/p16/

p16(INK4a)/p16INK4a/p19<AR

F>/p19ARF PPM02906E

C01 Chek1 22.136 OKAY 0.00070 Mm.16753 NM_007691 C85740/Chk1/rad27 PPM03253A

PCR Array Catalog:

Uninduced L647R (Not Induced "NI"DMSO-treated) Rheoswitch 3T3 cells

Arrays included in Test Group: 

Arrays included in Control Group: 

Fold Difference Cutoff:

24 hr/500 nM Induced L647R PreA-expressing Rheoswitch 3T3 cells

p-value Cutoff:

Test Group:

Control Group:

PAMM-020 (Mouse Cell Cyle)

L647R PLATE1, L647R PLATE2, L647R PLATE3

L647R NI-PLATE1, L647R NI-PLATE2, L647R NI-PLATE3
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Position Symbol

Fold 

Regulation Statusp-value Unigene Refseq Gene Name

RT2 

Catalog

C02 Cks1b 1.638 OKAY 0.32036 Mm.3049 NM_016904

2410005G18Rik/2610005D0

3Rik/AA407784/Cks1/sid133

4 PPM03255B

C03 Ddit3 4.579 OKAY 0.00076 Mm.110220 NM_007837

CHOP-

10/CHOP10/chop/gadd153 PPM03736A

C04 Dnajc2 -1.564 OKAY 0.01399 Mm.266312 NM_009584 AU020218/MIDA1/Zrf1/Zrf2 PPM36067E

C05 Dst 25.369 OKAY <0.00001 Mm.478284 NM_134448

2310001O04Rik/A830042E1

9Rik/AW554249/BP230/BPA

G1-

n/Bpag/Bpag1/Macf2/ah/athet

oid/dt/mKIAA0728/nmf203/n

mf339 PPM05185F

C06 E2f1 6.357 OKAY 0.00158 Mm.18036 NM_007891 E2F-1/KIAA4009/mKIAA4009 PPM02892E

C07 E2f2 3.494 OKAY 0.23644 Mm.307932 NM_177733 9230110J10/E130207A07 PPM03463A

C08 E2f3 2.825 OKAY 0.00083 Mm.268356 NM_010093 E2F3b/E2f3a/mKIAA0075 PPM03263B

C09 E2f4 9.613 OKAY 0.00157 Mm.34554 NM_148952 2010111M04Rik/AI427446 PPM03464A

C10 Gadd45a -1.158 OKAY 0.35949 Mm.72235 NM_007836 AA545191/Ddit1/GADD45 PPM02927B

C11 Gpr132 -1.916 OKAY 0.00644 Mm.20455 NM_019925 G2a PPM04846E

C12 Hus1 3.754 OKAY 0.00366 Mm.42201 NM_008316 mHus1 PPM03266B

D01 Inha 7.021 OKAY 0.00137 Mm.1100 NM_010564 AW555078 PPM04412E

D02 Itgb1 9.613 OKAY 0.00003 Mm.263396 NM_010578

4633401G24Rik/AA409975/A

A960159/CD29/ENSMUSG00

000051907/Fnrb/Gm9863/gpI

Ia PPM03668B

D03 Macf1 9.770 OKAY 0.00121 Mm.402299 NM_001199136

ABP620/Acf7/Aclp7/MACF/R7

4989/mACF7/mKIAA0465 PPM24961A

D04 Mad2l1 2.704 OKAY 0.00231 Mm.485053 NM_019499

AA673185/MAD2/MGC11376

3 PPM03267A

D05 Mcm2 17.651 OKAY 0.00351 Mm.16711 NM_008564

AA959861/AW476101/BM28/

CDCL1/Mcmd2/mKIAA0030 PPM03268B

D06 Mcm3 -1.264 OKAY 0.06021 Mm.4502 NM_008563

AL033361/C80350/Mcmd/P1/

p1.m PPM03269E

D07 Mcm4 1.380 OKAY 0.03367 Mm.1500 NM_008565

19G/AI325074/AU045576/Cd

c21/KIAA4003/Mcmd4/mKIAA

4003/mcdc21 PPM03270A

D08 Mdm2 2.097 OKAY 0.00418 Mm.22670 NM_010786

1700007J15Rik/AA415488/M

dm-2 PPM02929B

D09 Mki67 1.279 OKAY 0.00944 Mm.4078 NM_001081117D630048A14Rik/Ki-67/Ki67 PPM03457A

D10 Mre11a 6.269 OKAY 0.00068 Mm.149071 NM_018736 Mre11/Mre11b PPM03445B

D11 Msh2 -1.044 OKAY 0.30323 Mm.4619 NM_008628 AI788990 PPM04993E

D12 Mtbp 17.529 OKAY 0.00147 Mm.390829 NM_134092 AI429604/MDM2BP PPM05073B

E01 Myb -2.471 C 0.00095 Mm.52109 NM_010848

AI550390/M16449/MGC1853

1/c-myb PPM05270C

E02 Nek2 15.581 OKAY 0.00051 Mm.33773 NM_010892 AA617254/C77054 PPM28098A

E03 Nfatc1 5.534 OKAY 0.00079 Mm.329560 NM_016791

2210017P03Rik/AI449492/AV

076380/NF-

ATc/NFAT2/NFATc/Nfatcb PPM04560F

E04 Notch2 10.691 OKAY 0.00009 Mm.254017 NM_010928 AI853703/N2 PPM05137B

E05 Npm2 16.545 A 0.00051 Mm.347749 NM_181345 MGC123506/MGC123507 PPM41992B

E06 Pcna -1.352 OKAY 0.06326 Mm.7141 NM_011045 - PPM03456E

E07 Pes1 -1.191 OKAY 0.03433 Mm.28659 NM_022889 - PPM27335E

E08 Pkd1 4.590 OKAY 0.00007 Mm.290442 NM_013630

FLJ00285/MGC118471/PC1/

mFLJ00285 PPM37759E

E09 Pmp22 -1.838 OKAY 0.01359 Mm.1237 NM_008885

22kDa/Gas-

3/HNPP/Tr/trembler PPM05053E

E10 Ppm1d 4.302 OKAY 0.00394 Mm.45609 NM_016910 AV338790/Wip1 PPM04992A

E11 Ppp2r3a 20.464 A 0.00137 Mm.271249 NM_001161362

3222402P14Rik/A730042E0

7/MGC29057 PPM36321E

E12 Ppp3ca 2.838 OKAY 0.02059 Mm.331389 NM_008913

2900074D19Rik/AI841391/A

W413465/CN/Caln/Calna/Cn

A/MGC106804 PPM05007B

F01 Prm1 2.660 B 0.59979 Mm.42733 NM_013637 Prm-1 PPM28989D

F02 Rad17 1.137 OKAY 0.26549 Mm.248489 NM_011233 9430035O09Rik/MmRad24 PPM03276E
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Fold 

Regulation Status p-value Unigene Refseq Gene Name

RT2 

Catalog

F03 Rad21 2.381 OKAY 0.00060 Mm.182628 NM_009009
MGC150311/MGC150312/SCC

1/mKIAA0078 PPM32537B

F04 Rad51 -1.539 OKAY 0.53383 Mm.471596 NM_011234 AV304093/Rad51a/Reca PPM03278B

F05 Rad9 5.420 OKAY 0.00248 Mm.277629 NM_011237 Rad9a PPM03279E

F06 Ran -1.894 OKAY 0.00684 Mm.297440 NM_009391 - PPM05257E

F07 Rbl1 11.458 OKAY 0.00075 Mm.244671 NM_011249 AW547426/PRB1/p107 PPM02898B

F08 Rbl2 2.517 OKAY 0.01196 Mm.235580 NM_011250 Rb2/p130 PPM02896B

F09 Sesn2 5.496 OKAY 0.00070 Mm.23608 NM_144907 HI95/MGC11758/SEST2/Ses2 PPM26463A

F10 Sfn 25.252 A 0.00053 Mm.44482 NM_018754 Er/Mme1/Ywhas PPM03467A

F11 Shc1 5.959 OKAY 0.00036 Mm.86595 NM_011368 Shc/ShcA/p66/p66shc PPM04024B

F12 Skp2 3.968 OKAY 0.00511 Mm.35584 NM_013787
FBXL1/MGC102075/MGC1166

68 PPM02915B

G01 Slfn1 1.851 B 0.38371 Mm.10948 NM_011407 AV316259 PPM25636A

G02 Smc1a 19.540 OKAY 0.00074 Mm.482095 NM_019710

5830426I24Rik/KIAA0178/SMC-

1A/Sb1.8/Smc1/Smc1alpha/Sm

c1l1/Smcb/mKIAA0178 PPM26876A

G03 Stag1 2.359 OKAY 0.00140 Mm.42135 NM_009282 AU045003/SA-1/Scc3 PPM28956E

G04 Sumo1 1.008 OKAY 0.89002 Mm.362118 NM_009460

GMP1/MGC103203/PIC1/SENT

RIN/SMT3/SMT3H3/SMTP3/SU

MO-1/Smt3C/Ubl1 PPM03281E

G05 Taf10 2.540 OKAY 0.00455 Mm.285771 NM_020024
30kDa/AU041226/TAFII30/Taf2

h PPM37466A

G06 Terf1 3.360 OKAY 0.00019 Mm.4306 NM_009352 Pin2/Trbf1/Trf1 PPM04758A

G07 Tfdp1 2.806 OKAY 0.00137 Mm.925 NM_009361 Dp1/Drtf1 PPM03468E

G08 Psmg2 3.007 OKAY 0.00115 Mm.150701 NM_134138
1700017I17Rik/AW545363/Cla

st3/Tnfsf5ip1 PPM31670A

G09 Trp53 2.806 OKAY 0.00060 Mm.222 NM_011640 Tp53/bbl/bfy/bhy/p44/p53 PPM02931B

G10 Trp63 1.321 B 0.87605 Mm.20894 NM_011641
AI462811/Ket/MGC115972/P51

/P63/P63/P73l/Tp63/Trp53rp1 PPM03458A

G11 Tsg101 1.247 OKAY 0.10884 Mm.241334 NM_021884 AI255943/CC2 PPM34493F

G12 Wee1 24.905 OKAY 0.00016 Mm.287173 NM_009516 Wee1A PPM04998E

H01 Gusb 1.908 OKAY 0.02722 Mm.3317 NM_010368
AI747421/Gur/Gus/Gus-r/Gus-

s/Gus-t/Gus-u/Gut/asd/g PPM05490B

H02 Hprt -1.034 OKAY 0.59453 Mm.299381 NM_013556
C81579/HPGRT/Hprt1/MGC10

3149 PPM03559E

H03 Hsp90ab1 1.034 OKAY 0.55713 Mm.2180 NM_008302

90kDa/AL022974/C81438/Hsp8

4/Hsp84-

1/Hsp90/Hspcb/MGC115780 PPM04803E

H04 Gapdh 17.570 OKAY 0.00004 Mm.343110 NM_008084

Gapd/MGC102544/MGC10254

6/MGC103190/MGC103191/M

GC105239 PPM02946E

H05 Actb 14.843 OKAY 0.00183 Mm.328431 NM_007393
Actx/E430023M04Rik/beta-

actin PPM02945A

H06 MGDC -2.471 C 0.00095 N/A SA_00106 MIGX1B

H07 RTC -2.925 OKAY 0.08167 N/A SA_00104 RTC

H08 RTC -3.099 OKAY 0.08341 N/A SA_00104 RTC

H09 RTC -2.832 OKAY 0.15561 N/A SA_00104 RTC

H10 PPC -2.618 OKAY 0.00107 N/A SA_00103 PPC

H11 PPC -2.540 OKAY 0.00068 N/A SA_00103 PPC

Appendix 1 Page 3 of 4

Set as reference (“housekeeping”) gene 
p-value >0.05, not considered as highly statistically relevant for the purposes of this 
study. 
 
 

 

 

         

Less than 2-fold expression change, not considered as highly statistically relevant 

for the purposes of this study. 

RT-qPCR assay specific controls, data are relatively meaningless on this 

“expression fold change” scale, controls met comparison standards in relevant 

statistical evaluations.                                           Continued next page 
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Comments:   

      A: This gene’s average threshold cycle is relatively high (> 30) in either the control or the test sample, and 
is reasonably low in the other sample (< 30). 

These data mean that the gene’s expression is relatively low in one sample and reasonably detected in 
the other sample suggesting that the actual fold-change value is at least as large as the calculated and 
reported fold-change result. 
This fold-change result may also have greater variations if p value > 0.05; therefore, it is important to 
have a sufficient number of biological replicates to validate the result for this gene. 

B: This gene’s average threshold cycle is relatively high (> 30), meaning that its relative expression level 
is low, in both control and test samples, and the p-value for the fold-change is either unavailable or 
relatively high (p > 0.05). 
This fold-change result may also have greater variations; therefore, it is important to have a sufficient 
number of biological replicates to validate the result for this gene. 

C: This gene’s average threshold cycle is either not determined or greater than the defined cut-off value 
(default 35), in both samples meaning that its expression was undetected, making this fold-change result 
erroneous and un-interpretable. 

Fold Change & Fold Regulation:  
    Fold-Change (2^(- Delta Delta Ct)) is the normalized gene expression (2^(- Delta Ct)) in the Test Sample 

divided the normalized gene expression (2^(- Delta Ct)) in the Control Sample. 

Fold-Regulation represents fold-change results in a biologically meaningful way. Fold-change values 
greater than one indicate a positive- or an up-regulation, and the fold-regulation is equal to the fold-
change. 
Fold-change values less than one indicate a negative or down-regulation, and the fold-regulation is the 
negative inverse of the fold-change. 

p-value:   

      The p values are calculated based on a Student’s t-test of the replicate 2^(- Delta Ct) values for each 
gene in the control group and treatment groups, and p values less than 0.05 are indicated in red. 
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Appendix B. Volcano Plot of RT-qPCR Data (Corresponding to Genes in Appendix A) 
 

 
  

Log 2 (Fold Change of L647R PreA Induced/ Uninduced (Control))

L647R PreA Induced vs. Uninduced (Control)
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Appendix C. Supplemental Motif Analysis Data 
HPRD Survey of Kinase Substrate Sites in Lamin A Peptide Sequence 

 

 
                                                               

# 

Position 
in 

Query 
Protein 

Sequence in 
Query 

Protein 

Corresponding Motif 
Described in the Literature 

(Phosphorylated Residues In Red) 
Features of Motif Described in the Literature 

1 2 - 4 ETP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 substrate motif 

2 2 - 5 ETPS [E/D]XX[pS/pT] Casein Kinase I substrate motif 

3 2 - 6 ETPSQ [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

4 4 - 6 PSQ XpSQ DNA dependent Protein kinase substrate motif 

5 4 - 6 PSQ P[pS/pT]X DNA dependent Protein kinase substrate motif 

6 4 - 9 PSQRRA X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

7 5 - 6 SQ pSQ ATM kinase substrate motif 

8 5 - 7 SQR [pS/pT]X[R/K] PKA kinase substrate motif 

9 5 - 7 SQR [pS/pT]X[R/K] PKC kinase substrate motif 

10 7 - 10 RRAT RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

11 7 - 10 RRAT [R/K]XX[pS/pT] PKC kinase substrate motif 

12 7 - 10 RRAT [R/K][R/K]X[pS/pT] PKA kinase substrate motif 

13 7 - 10 RRAT [R/K][R/X]X[pS/pT] PAK2 kinase substrate motif 

14 8 - 10 RAT [R/K]X[pS/pT] PKA kinase substrate motif 

15 8 - 10 RAT [R/K]X[pS/pT] PKC kinase substrate motif 

16 11 - 16 RSGAQA X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

17 17 - 19 SST pSX[E/pS*/pT*] Casein Kinase II substrate motif 

18 17 - 22 SSTPLS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

19 18 - 20 STP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 substrate motif 

20 18 - 22 STPLS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

21 18 - 22 STPLS pSXXXpS* GSK3 kinase substrate motif 

22 19 - 22 TPLS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

23 19 - 22 TPLS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

24 20 - 23 PLSP PXpSP GSK-3, ERK1, ERK2, CDK5 substrate motif 

25 20 - 23 PLSP XXpSP GSK-3, ERK1, ERK2, CDK5 substrate motif 

26 20 - 23 PLSP PX[pS/pT]P ERK1, ERK2 Kinase substrate motif 

27 20 - 25 PLSPTR PL[pS/pT]PX[R/K/H] CDK4 kinase substrate motif 

28 21 - 23 LSP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 substrate motif 

29 22 - 23 SP pSP ERK1, ERK2 Kinase substrate motif 

30 22 - 24 SPT pSX[E/pS*/pT*] Casein Kinase II substrate motif 

31 22 - 25 SPTR [pS/pT]PX[R/K] CDK1, 2, 4, 6 kinase substrate motif 

32 22 - 25 SPTR [pS/pT]PX[R/K] Growth associated histone HI kinase substrate motif 

33 22 - 25 SPTR [pS/pT]PX[R/K] Cdc2 kinase substrate motif 

34 

22 - 26 SPTRI pSPX[R/K]X CDK kinase substrate motif 
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Appendix C (Continued) 

# 

Position 
in 

Query 
Protein 

Sequence in 
Query 

Protein 

Corresponding Motif 
Described in the Literature 

(Phosphorylated Residues in Red) 
Features of Motif Described in the Literature 

35 23 - 25 PTR P[pS/pT]X DNA dependent Protein kinase substrate motif 

36 24 - 27 TRIT [pS/pT]XX[S/T] Casein Kinase I substrate motif 

37 25 - 27 RIT [R/K]X[pS/pT] PKA kinase substrate motif 

38 25 - 27 RIT [R/K]X[pS/pT] PKC kinase substrate motif 

39 46 - 51 IDRVRS [M/I/L/V]X[R/K]XX[pS/pT] Chk1 kinase substrate motif 

40 46 - 51 IDRVRS [M/I/L/V/F/Y]XRXX[pS/pT] 
Calmodulin-dependent protein kinase IV substrate 

motif 

41 46 - 52 IDRVRSL [M/I/L/V/F/Y]XRXX[pS/pT][M/I/L/V/F/Y] 
Calmodulin-dependent protein kinase II alpha 

substrate motif 

42 46 - 53 IDRVRSLE [M/V/L/I/F]X[R/K]XX[pS/pT]XX Calmodulin-dependent protein kinase II substrate motif 

43 48 - 51 RVRS RXXpS Calmodulin-dependent protein kinase II substrate motif 

44 48 - 51 RVRS RXXpS PKA kinase substrate motif 

45 48 - 51 RVRS RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

46 48 - 51 RVRS [R/K]XX[pS/pT] PKC kinase substrate motif 

47 51 - 53 SLE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

48 51 - 54 SLET [pS/pT]XX[S/T] Casein Kinase I substrate motif 

49 51 - 54 SLET pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

50 52 - 55 LETE XX[pS/pT]E G protein-coupled receptor kinase 1 substrate motif 

51 53 - 57 ETENA [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

52 61 - 70 LRITESEEVV 
[M/V/L/I/F][R/K/H]XXX[pS/pT]XXX[M/V

/L/I/F] 
AMP-activated protein kinase substrate motif 

53 62 - 64 RIT [R/K]X[pS/pT] PKA kinase substrate motif 

54 62 - 64 RIT [R/K]X[pS/pT] PKC kinase substrate motif 

55 62 - 65 RITE XX[pS/pT]E G protein-coupled receptor kinase 1 substrate motif 

56 64 - 67 TESE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

57 64 - 67 TESE [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

58 64 - 67 TESE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

59 65 - 69 ESEEV [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

60 66 - 68 SEE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

61 68 - 71 EVVS [E/D]XX[pS/pT] Casein Kinase I substrate motif 

62 70 - 75 VSREVS [M/I/L/V]X[R/K]XX[pS/pT] Chk1 kinase substrate motif 

63 70 - 75 VSREVS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

64 70 - 75 VSREVS [M/I/L/V/F/Y]XRXX[pS/pT] 
Calmodulin-dependent protein kinase IV substrate 

motif 

65 70 - 77 VSREVSGI [M/V/L/I/F]X[R/K]XX[pS/pT]XX Calmodulin-dependent protein kinase II substrate motif 

66 71 - 73 SRE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

67 71 - 75 SREVS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

68 71 - 75 SREVS pSXXXpS* GSK3 kinase substrate motif 

69 72 - 75 REVS RXXpS Calmodulin-dependent protein kinase II substrate motif 

70 72 - 75 REVS RXXpS PKA kinase substrate motif 

71 72 - 75 REVS RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

72 72 - 75 REVS [R/K]XX[pS/pT] PKC kinase substrate motif 
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Appendix C (Continued) 
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in 
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Corresponding Motif 

Described in the Literature 
(Phosphorylated Residues in Red) 

 
Features of Motif Described in the Literature 

73 72 - 75 REVS R[K/E/R]XpS PKC epsilon kinase substrate motif 

74 89 - 91 RKT [R/K]X[pS/pT] PKA kinase substrate motif 

75 89 - 91 RKT [R/K]X[pS/pT] PKC kinase substrate motif 

76 90 - 94 KTLDS KXXX[pS/pT] PKA kinase substrate motif 

77 91 - 94 TLDS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

78 91 - 94 TLDS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

79 93 - 97 DSVAK [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

80 117 - 121 KARNT KXXX[pS/pT] PKA kinase substrate motif 

81 119 - 121 RNT [R/K]X[pS/pT] PKA kinase substrate motif 

82 119 - 121 RNT [R/K]X[pS/pT] PKC kinase substrate motif 

83 119 - 123 RNTKK [R/K]X[pS/pT]X[R/K] PKC kinase substrate motif 

84 121 - 123 TKK [pS/pT]X[R/K] PKA kinase substrate motif 

85 121 - 123 TKK [pS/pT]X[R/K] PKC kinase substrate motif 

86 121 - 124 TKKE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

87 121 - 124 TKKE [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

88 121 - 124 TKKE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

89 142 - 147 NSKEAA X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

90 143 - 145 SKE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

91 148 - 153 LSTALS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

92 149 - 153 STALS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

93 149 - 153 STALS pSXXXpS* GSK3 kinase substrate motif 

94 150 - 153 TALS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

95 150 - 153 TALS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

96 151 - 154 ALSE XX[pS/pT]E G protein-coupled receptor kinase 1 substrate motif 

97 153 - 155 SEK [pS/pT]X[R/K] PKA kinase substrate motif 

98 153 - 155 SEK [pS/pT]X[R/K] PKC kinase substrate motif 

99 153 - 158 SEKRTL [pS/pT]XXX[S/T][M/L/V/I/F] Casein Kinase I substrate motif 

100 154 - 157 EKRT [E/D]XX[pS/pT] Casein Kinase I substrate motif 

101 155 - 157 KRT [R/K]X[pS/pT] PKA kinase substrate motif 

102 155 - 157 KRT [R/K]X[pS/pT] PKC kinase substrate motif 

103 196 - 199 RLQT RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

104 196 - 199 RLQT [R/K]XX[pS/pT] PKC kinase substrate motif 

105 196 - 201 RLQTMK [R/K]XX[pS/pT]X[R/K] PKC kinase substrate motif 

106 199 - 201 TMK [pS/pT]X[R/K] PKA kinase substrate motif 

107 199 - 201 TMK [pS/pT]X[R/K] PKC kinase substrate motif 

108 199 - 202 TMKE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

109 199 - 202 TMKE [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

110 199 - 202 TMKE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

111 208 - 212 KNIYS KXXX[pS/pT] PKA kinase substrate motif 

112 210 - 213 IYSE XX[pS/pT]E G protein-coupled receptor kinase 1 substrate motif 
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113 212 - 214 SEE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

114 216 - 218 RET [R/K]X[pS/pT] PKA kinase substrate motif 

115 216 - 218 RET [R/K]X[pS/pT] PKC kinase substrate motif 

116 216 - 220 RETKR [R/K]X[pS/pT]X[R/K] PKC kinase substrate motif 

117 217 - 221 ETKRR [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

118 218 - 220 TKR [pS/pT]X[R/K] PKA kinase substrate motif 

119 218 - 220 TKR [pS/pT]X[R/K] PKC kinase substrate motif 

120 221 - 224 RHET RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

121 221 - 224 RHET [R/K]XX[pS/pT] PKC kinase substrate motif 

122 223 - 227 ETRLV [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

123 236 - 239 EFES [E/D]XX[pS/pT] Casein Kinase I substrate motif 

124 238 - 242 ESRLA [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

125 263 - 268 LEKTYS [M/I/L/V]X[R/K]XX[pS/pT] Chk1 kinase substrate motif 

126 263 - 270 LEKTYSAK [M/V/L/I/F]X[R/K]XX[pS/pT]XX Calmodulin-dependent protein kinase II substrate motif 

127 265 - 268 KTYS KXX[pS/pT] PKA kinase substrate motif 

128 265 - 268 KTYS [R/K]XX[pS/pT] PKC kinase substrate motif 

129 265 - 270 KTYSAK [R/K]XX[pS/pT]X[R/K] PKC kinase substrate motif 

130 268 - 270 SAK [pS/pT]X[R/K] PKA kinase substrate motif 

131 268 - 270 SAK [pS/pT]X[R/K] PKC kinase substrate motif 

132 275 - 277 RQS RXpS PKA kinase substrate motif 

133 275 - 277 RQS [R/K]X[pS/pT] PKA kinase substrate motif 

134 275 - 277 RQS [R/K]X[pS/pT] PKC kinase substrate motif 

135 277 - 279 SAE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

136 279 - 282 ERNS [E/D]XX[pS/pT] Casein Kinase I substrate motif 

137 280 - 282 RNS RXpS PKA kinase substrate motif 

138 280 - 282 RNS [R/K]X[pS/pT] PKA kinase substrate motif 

139 280 - 282 RNS [R/K]X[pS/pT] PKC kinase substrate motif 

140 296 - 301 RIRIDS RXRXX[pS/pT] Akt kinase substrate motif 

141 296 - 301 RIRIDS [R/K]XRXXpS MAPKAPK1 kinase substrate motif 

 
296 - 302 RIRIDSL [R/K]XRXX[pS/pT][M/L/V/I] p70 Ribosomal S6 kinase substrate motif 

 
296 - 302 RIRIDSL RXRXX[pS/pT][F/L] Akt kinase substrate motif 

 
298 - 301 RIDS RXXpS Calmodulin-dependent protein kinase II substrate motif 

 
298 - 301 RIDS RXXpS PKA kinase substrate motif 

 
298 - 301 RIDS RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

145 298 - 301 RIDS [R/K]XX[pS/pT] PKC kinase substrate motif 

146 300 - 303 DSLS [E/D]XX[pS/pT] Casein Kinase I substrate motif 

147 300 - 304 DSLSA [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

148 301 - 303 SLS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

149 302 - 307 LSAQLS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 
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150 303 - 307 SAQLS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

151 303 - 307 SAQLS pSXXXpS* GSK3 kinase substrate motif 

152 306 - 308 LSQ XpSQ DNA dependent Protein kinase substrate motif 

153 307 - 308 SQ pSQ ATM kinase substrate motif 

154 325 - 329 DSLAR [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

155 329 - 334 RERDTS RXRXX[pS/pT] Akt kinase substrate motif 

156 329 - 334 RERDTS [R/K]XRXXpS MAPKAPK1 kinase substrate motif 

157 330 - 333 ERDT [E/D]XX[pS/pT] Casein Kinase I substrate motif 

158 330 - 337 ERDTSRRL XRXX[pS/pT]XRX PKC kinase substrate motif 

159 331 - 333 RDT [R/K]X[pS/pT] PKA kinase substrate motif 

160 331 - 333 RDT [R/K]X[pS/pT] PKC kinase substrate motif 

161 331 - 334 RDTS RXXpS Calmodulin-dependent protein kinase II substrate motif 

162 331 - 334 RDTS RXXpS PKA kinase substrate motif 

163 331 - 334 RDTS RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

164 331 - 334 RDTS [R/K]XX[pS/pT] PKC kinase substrate motif 

165 331 - 335 RDTSR [R/K]X[pS/pT]X[R/K] PKC kinase substrate motif 

 
331 - 336 RDTSRR [R/K]XX[pS/pT]X[R/K] PKC kinase substrate motif 

 
332 - 336 DTSRR [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

169 333 - 335 TSR [pS/pT]X[R/K] PKA kinase substrate motif 

# 333 - 335 TSR [pS/pT]X[R/K] PKC kinase substrate motif 

170 388 - 390 RLS RXpS PKA kinase substrate motif 

171 388 - 390 RLS [R/K]X[pS/pT] PKA kinase substrate motif 

172 388 - 390 RLS [R/K]X[pS/pT] PKC kinase substrate motif 

173 388 - 391 RLSP XXpSP GSK-3, ERK1, ERK2, CDK5 substrate motif 

174 389 - 391 LSP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 substrate motif 

175 389 - 394 LSPSPT X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

176 390 - 391 SP pSP ERK1, ERK2 Kinase substrate motif 

177 390 - 392 SPS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

178 390 - 394 SPSPT pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

179 390 - 394 SPSPT pSPXX[pS*/pT*] Casein Kinase I substrate motif 

180 391 - 393 PSP P[pS/pT]X DNA dependent Protein kinase substrate motif 

181 392 - 393 SP pSP ERK1, ERK2 Kinase substrate motif 

182 392 - 395 SPTS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

183 392 - 395 SPTS pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

184 392 - 395 SPTS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

185 394 - 396 TSQ XpSQ DNA dependent Protein kinase substrate motif 

186 395 - 396 SQ pSQ ATM kinase substrate motif 

187 395 - 397 SQR [pS/pT]X[R/K] PKA kinase substrate motif 

188 395 - 397 SQR [pS/pT]X[R/K] PKC kinase substrate motif 

189 397 - 402 RSRGRA X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 
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190 399 - 404 RGRASS RXRXX[pS/pT] Akt kinase substrate motif 

191 399 - 404 RGRASS [R/K]XRXXpS MAPKAPK1 kinase substrate motif 

192 401 - 403 RAS RXpS PKA kinase substrate motif 

194 401 - 403 RAS [R/K]X[pS/pT] PKA kinase substrate motif 

 
401 - 403 RAS [R/K]X[pS/pT] PKC kinase substrate motif 

195 401 - 404 RASS RXXpS Calmodulin-dependent protein kinase II substrate motif 

196 401 - 404 RASS RXXpS PKA kinase substrate motif 

197 401 - 404 RASS RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

198 401 - 404 RASS [R/K]XX[pS/pT] PKC kinase substrate motif 

199 403 - 406 SSHS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

200 403 - 406 SSHS pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

201 403 - 406 SSHS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

202 403 - 407 SSHSS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

203 403 - 407 SSHSS pSXXXpS* GSK3 kinase substrate motif 

204 404 - 406 SHS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

205 406 - 408 SSQ XpSQ DNA dependent Protein kinase substrate motif 

206 407 - 408 SQ pSQ ATM kinase substrate motif 

207 407 - 409 SQT pSX[E/pS*/pT*] Casein Kinase II substrate motif 

208 414 - 416 SVT pSX[E/pS*/pT*] Casein Kinase II substrate motif 

209 416 - 418 TKK [pS/pT]X[R/K] PKA kinase substrate motif 

210 416 - 418 TKK [pS/pT]X[R/K] PKC kinase substrate motif 

211 420 - 423 KLES KXX[pS/pT] PKA kinase substrate motif 

212 420 - 423 KLES [R/K]XX[pS/pT] PKC kinase substrate motif 

213 420 - 424 KLEST KXXX[pS/pT] PKA kinase substrate motif 

215 422 - 426 ESTES [E/D][pS/pT]XXX b-Adrenergic Receptor kinase substrate motif 

216 423 - 425 STE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

217 423 - 426 STES [pS/pT]XX[S/T] Casein Kinase I substrate motif 

219 423 - 426 STES pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

 
423 - 426 STES [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

220 423 - 428 STESRS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

221 425 - 428 ESRS [E/D]XX[pS/pT] Casein Kinase I substrate motif 

222 426 - 428 SRS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

223 427 - 429 RSS RXpS PKA kinase substrate motif 

224 427 - 429 RSS [R/K]X[pS/pT] PKA kinase substrate motif 

225 427 - 429 RSS [R/K]X[pS/pT] PKC kinase substrate motif 

226 428 - 431 SSFS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

227 428 - 431 SSFS pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

228 428 - 431 SSFS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

229 429 - 431 SFS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

230 430 - 432 FSQ XpSQ DNA dependent Protein kinase substrate motif 
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231 431 - 432 SQ pSQ ATM kinase substrate motif 

232 435 - 437 RTS RXpS PKA kinase substrate motif 

233 435 - 437 RTS [R/K]X[pS/pT] PKA kinase substrate motif 

234 435 - 437 RTS [R/K]X[pS/pT] PKC kinase substrate motif 

235 435 - 439 RTSGR [R/K]X[pS/pT]X[R/K] PKC kinase substrate motif 

236 436 - 441 TSGRVA X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

237 437 - 439 SGR [pS/pT]X[R/K] PKA kinase substrate motif 

238 437 - 439 SGR [pS/pT]X[R/K] PKC kinase substrate motif 

239 453 - 458 RLRNKS RXRXX[pS/pT] Akt kinase substrate motif 

240 453 - 458 RLRNKS [R/K]XRXXpS MAPKAPK1 kinase substrate motif 

241 455 - 458 RNKS RXXpS Calmodulin-dependent protein kinase II substrate motif 

242 455 - 458 RNKS RXXpS PKA kinase substrate motif 

244 455 - 458 RNKS RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

 
455 - 458 RNKS [R/K]XX[pS/pT] PKC kinase substrate motif 

245 457 - 463 KSNEDQS XpSXXDXX Pyruvate dehydrogenase kinase substrate motif 

246 458 - 460 SNE pSX[E/pS*/pT*] Casein Kinase II substrate motif 

247 458 - 461 SNED pSXX[E/D] Casein kinase II substrate motif 

248 458 - 461 SNED [pS/pT]XX[E/D] Casein Kinase II substrate motif 

249 458 - 461 SNED [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

250 458 - 461 SNED [pS/pT]XX[E/D] Casein Kinase II substrate motif 

251 460 - 463 EDQS [E/D]XX[pS/pT] Casein Kinase I substrate motif 

252 479 - 484 LTYRFP X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

253 480 - 482 TYR [pS/pT]X[R/K] PKA kinase substrate motif 

254 480 - 482 TYR [pS/pT]X[R/K] PKC kinase substrate motif 

255 486 - 488 KFT [R/K]X[pS/pT] PKA kinase substrate motif 

256 486 - 488 KFT [R/K]X[pS/pT] PKC kinase substrate motif 

257 486 - 490 KFTLK [R/K]X[pS/pT]X[R/K] PKC kinase substrate motif 

258 488 - 490 TLK [pS/pT]X[R/K] PKA kinase substrate motif 

259 488 - 490 TLK [pS/pT]X[R/K] PKC kinase substrate motif 

260 495 - 500 VTIWAA X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

261 504 - 509 ATHSPP X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

262 505 - 508 THSP XXpSP GSK-3, ERK1, ERK2, CDK5 substrate motif 

263 506 - 508 HSP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 substrate motif 

264 507 - 508 SP pSP ERK1, ERK2 Kinase substrate motif 

265 507 - 510 SPPT [pS/pT]XX[S/T] Casein Kinase I substrate motif 

266 507 - 510 SPPT pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

267 509 - 511 PTD P[pS/pT]X DNA dependent Protein kinase substrate motif 

269 515 - 519 KAQNT KXXX[pS/pT] PKA kinase substrate motif 

 
524 - 529 NSLRTA X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

270 525 - 527 SLR [pS/pT]X[R/K] PKA kinase substrate motif 
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(Phosphorylated Residues in Red) 

 
Features of Motif Described in the Literature 

271 525 - 527 SLR [pS/pT]X[R/K] PKC kinase substrate motif 

272 525 - 528 SLRT [pS/pT]XX[S/T] Casein Kinase I substrate motif 

273 525 - 528 SLRT pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

274 526 - 528 LRT LRpT LKB1 Kinase substrate motif 

275 533 - 536 STGE pSXX[E/D] Casein kinase II substrate motif 

276 533 - 536 STGE pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

277 533 - 536 STGE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

278 533 - 536 STGE [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

279 533 - 536 STGE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

280 542 - 546 KLVRS KXXX[pS/pT] PKA kinase substrate motif 

281 543 - 548 LVRSVT [M/I/L/V]X[R/K]XX[pS/pT] Chk1 kinase substrate motif 

282 543 - 548 LVRSVT [M/I/L/V/F/Y]XRXX[pS/pT] 
Calmodulin-dependent protein kinase IV substrate 

motif 

283 543 - 549 LVRSVTV 
[M/I/L/V/F/Y]XRXX[pS/pT][M/I/L/V/F/

Y] 
Calmodulin-dependent protein kinase II alpha 

substrate motif 

284 543 - 550 LVRSVTVV [M/V/L/I/F]X[R/K]XX[pS/pT]XX Calmodulin-dependent protein kinase II substrate motif 

285 545 - 548 RSVT RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

286 545 - 548 RSVT [R/K]XX[pS/pT] PKC kinase substrate motif 

287 546 - 548 SVT pSX[E/pS*/pT*] Casein Kinase II substrate motif 

288 548 - 551 TVVE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

289 548 - 551 TVVE [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

290 548 - 551 TVVE [pS/pT]XX[E/D] Casein Kinase II substrate motif 

291 567 - 572 GSHCSS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

292 568 - 571 SHCS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

294 568 - 571 SHCS pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

 
568 - 571 SHCS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

295 568 - 572 SHCSS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

296 568 - 572 SHCSS pSXXXpS* GSK3 kinase substrate motif 

297 571 - 573 SSS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

298 571 - 577 SSSGDPA XpSXXDXX Pyruvate dehydrogenase kinase substrate motif 

299 572 - 575 SSGD pSXX[E/D] Casein kinase II substrate motif 

300 572 - 575 SSGD [pS/pT]XX[E/D] Casein Kinase II substrate motif 

301 572 - 575 SSGD [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

302 572 - 575 SSGD [pS/pT]XX[E/D] Casein Kinase II substrate motif 

303 582 - 585 RSRT RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

304 582 - 585 RSRT [R/K]XX[pS/pT] PKC kinase substrate motif 

305 583 - 585 SRT pSX[E/pS*/pT*] Casein Kinase II substrate motif 

306 589 - 594 GTCGQP X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

307 596 - 599 DKAS [E/D]XX[pS/pT] Casein Kinase I substrate motif 

308 597 - 599 KAS [R/K]X[pS/pT] PKA kinase substrate motif 
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in 
Query 
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in 
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Described in the Literature 
(Phosphorylated Residues in Red) 

 
Features of Motif Described in the Literature 

309 597 - 599 KAS [R/K]X[pS/pT] PKC kinase substrate motif 

310 597 - 601 KASAS KXXX[pS/pT] PKA kinase substrate motif 

311 598 - 603 ASASGS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

312 599 - 601 SAS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

313 599 - 603 SASGS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

314 599 - 603 SASGS pSXXXpS* GSK3 kinase substrate motif 

315 611 - 616 ISSGSS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

316 612 - 615 SSGS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

317 612 - 615 SSGS pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

319 612 - 615 SSGS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

 
612 - 616 SSGSS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

320 612 - 616 SSGSS pSXXXpS* GSK3 kinase substrate motif 

321 613 - 615 SGS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

322 615 - 620 SSASSV [pS/pT]XXX[S/T][M/L/V/I/F] Casein Kinase I substrate motif 

323 616 - 618 SAS pSX[E/pS*/pT*] Casein Kinase II substrate motif 

324 616 - 619 SASS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

325 616 - 619 SASS pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

326 616 - 619 SASS [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

327 618 - 623 SSVTVT X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

328 619 - 621 SVT pSX[E/pS*/pT*] Casein Kinase II substrate motif 

329 619 - 623 SVTVT pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

330 623 - 626 TRSY [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

331 625 - 627 SYR [pS/pT]X[R/K] PKA kinase substrate motif 

332 625 - 627 SYR [pS/pT]X[R/K] PKC kinase substrate motif 

333 625 - 628 SYRS [pS/pT]XX[S/T] Casein Kinase I substrate motif 

334 625 - 628 SYRS pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

335 627 - 632 RSVGGS X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

336 628 - 632 SVGGS pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 

337 628 - 632 SVGGS pSXXXpS* GSK3 kinase substrate motif 

338 632 - 637 SGGGSF [pS/pT]XXX[S/T][M/L/V/I/F] Casein Kinase I substrate motif 

339 635 - 641 GSFGDNL XpSXXDXX Pyruvate dehydrogenase kinase substrate motif 

340 636 - 639 SFGD pSXX[E/D] Casein kinase II substrate motif 

341 636 - 639 SFGD [pS/pT]XX[E/D] Casein Kinase II substrate motif 

342 636 - 639 SFGD [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

344 636 - 639 SFGD [pS/pT]XX[E/D] Casein Kinase II substrate motif 

 
643 - 646 TRSY [pS/pT]XX[E/D/pS*/pY*] Casein Kinase II substrate motif 

345 650 - 653 NSSP XXpSP GSK-3, ERK1, ERK2, CDK5 substrate motif 

346 650 - 655 NSSPRT X[pS/pT]XXX[A/P/S/T] G protein-coupled receptor kinase 1 substrate motif 

347 651 - 653 SSP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 substrate motif 

348 651 - 655 SSPRT pSXXX[pS/pT] MAPKAPK2 kinase substrate motif 
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349 652 - 653 SP pSP ERK1, ERK2 Kinase substrate motif 

350 652 - 654 SPR [pS/pT]P[R/K] Growth associated histone HI kinase substrate motif 

351 652 - 654 SPR [pS/pT]X[R/K] PKA kinase substrate motif 

352 652 - 654 SPR [pS/pT]X[R/K] PKC kinase substrate motif 

353 652 - 655 SPRT [pS/pT]XX[S/T] Casein Kinase I substrate motif 

354 652 - 655 SPRT pSXX[E/pS*/pT*] Casein Kinase II substrate motif 

355 654 - 657 RTQS RXXpS Calmodulin-dependent protein kinase II substrate motif 

356 654 - 657 RTQS RXXpS PKA kinase substrate motif 

357 654 - 657 RTQS RXX[pS/pT] Calmodulin-dependent protein kinase II substrate motif 

358 654 - 657 RTQS [R/K]XX[pS/pT] PKC kinase substrate motif 

359 655 - 658 TQSP XXpSP GSK-3, ERK1, ERK2, CDK5 substrate motif 

360 656 - 658 QSP X[pS/pT]P GSK-3, ERK1, ERK2, CDK5 substrate motif 

361 657 - 658 SP pSP ERK1, ERK2 Kinase substrate motif 
  

Absent in mature LA; Absent in del50/Progerin (in addition to all sequence absent from LA, 

except residues 657-661, which are absent from mature LA but present in del50/Progerin) 
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  Position in 
Query 

Protein 

Sequence in 
Query 

Protein 

Corresponding Motif 
Described in the Literature 

(Phosphorylated Residues in 
Red) 

Features of Motif Described in the 
Literature 

 1  3 - 4 TP [pS/pT]P WW domain binding motif 

 2  17 - 19 SST S[pS/pT]X MDC1 BRCT domain binding motif 

 3  17 - 19 SST S[pS/pT]X Plk1 PBD domain binding motif 

 4  19 - 20 TP [pS/pT]P WW domain binding motif 

 5  22 - 23 SP [pS/pT]P WW domain binding motif 

 6  48 - 51 RVRS RXXpS 14-3-3 domain binding motif 

 7  72 - 75 REVS RXXpS 14-3-3 domain binding motif 

 8  149 - 151 STA S[pS/pT]X MDC1 BRCT domain binding motif 

 9  149 - 151 STA S[pS/pT]X Plk1 PBD domain binding motif 

 10  298 - 301 RIDS RXXpS 14-3-3 domain binding motif 

 11  331 - 334 RDTS RXXpS 14-3-3 domain binding motif 

 12  390 - 391 SP [pS/pT]P WW domain binding motif 

 13  392 - 393 SP [pS/pT]P WW domain binding motif 

 14  401 - 404 RASS RXXpS 14-3-3 domain binding motif 

 15  403 - 405 SSH S[pS/pT]X MDC1 BRCT domain binding motif 

 16  403 - 405 SSH S[pS/pT]X Plk1 PBD domain binding motif 

 17  406 - 408 SSQ S[pS/pT]X MDC1 BRCT domain binding motif 

 18  406 - 408 SSQ S[pS/pT]X Plk1 PBD domain binding motif 

 19  423 - 425 STE S[pS/pT]X MDC1 BRCT domain binding motif 

 20  423 - 425 STE S[pS/pT]X Plk1 PBD domain binding motif 

 21  428 - 430 SSF S[pS/pT]X MDC1 BRCT domain binding motif 

 22  428 - 430 SSF S[pS/pT]X Plk1 PBD domain binding motif 

 23  455 - 458 RNKS RXXpS 14-3-3 domain binding motif 

 24  507 - 508 SP [pS/pT]P WW domain binding motif 

 25  533 - 535 STG S[pS/pT]X MDC1 BRCT domain binding motif 

 26  533 - 535 STG S[pS/pT]X Plk1 PBD domain binding motif 

 27  571 - 573 SSS S[pS/pT]X MDC1 BRCT domain binding motif 

 28  571 - 573 SSS S[pS/pT]X Plk1 PBD domain binding motif 

 29  612 - 614 SSG S[pS/pT]X MDC1 BRCT domain binding motif 

 30  612 - 614 SSG S[pS/pT]X Plk1 PBD domain binding motif 

 31  615 - 617 SSA S[pS/pT]X MDC1 BRCT domain binding motif 

 32  615 - 617 SSA S[pS/pT]X Plk1 PBD domain binding motif 

 33  618 - 620 SSV S[pS/pT]X MDC1 BRCT domain binding motif 

 34  618 - 620 SSV S[pS/pT]X Plk1 PBD domain binding motif 

  
35  

 
651 - 653 

 
SSP 

 
S[pS/pT]X 

 
MDC1 BRCT domain binding motif 

 36  651 - 653 SSP S[pS/pT]X Plk1 PBD domain binding motif 

 37  652 - 653 SP [pS/pT]P WW domain binding motif 

 38  654 - 657 RTQS 
 

14-3-3 domain binding motif 

 39  657 - 658 SP [pS/pT]P WW domain binding motif 

Absent in mature LA; Absent in del50/Progerin (in addition to all sequence absent from LA, 

except residues 657-661, which are absent from mature LA but present in del50/Progerin) 

Appendix D.  Supplemental Motif Analysis Data:  HPRD Survey of Kinase-Dependent Protein 
Motif-Binding Sites in Lamin A Peptide Sequence 
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1 

 
 
Name  : WW domain containing protein, 45KD  

 
 
Molecule Function : Transcription regulator activity 

 
Number of Interactions : 3 

2 Name  : NEDD4  Molecule Function : Ubiquitin-specific protease activity 

 
Number of Interactions : 37 

 
 
 
3 

 
 
 
Name  : Amyloid beta A4 precursor protein binding, 
family B, member 1  

 
 
 
Molecule Function : Receptor signaling complex scaffold 
activity 

 
Number of Interactions : 16 

4 Name  : Amyloid beta (A4) precursor protein 
binding family B member 3                                                                                                   
Number of Interactions : 3  

Molecule Function : Receptor signaling complex scaffold 
activity         

 

5 Name  : Pin1  Molecule Function : Isomerase activity 

 
Number of Interactions : 55 
 

Appendix E.  WW Domain-Containing Nuclear Proteins (HPRD) 
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6 

 
 
 
Name  : WW domain containing oxidoreductase  

             
 
 
Molecule Function : Oxidoreductase activity 

 
Number of Interactions : 7 

7 Name  : Polyglutamine binding protein 1  Molecule Function : Transcription regulator activity 

 
Number of Interactions : 12 

8 Name  : Transcription elongation regulator 1  Molecule Function : Transcription factor activity 

 
Number of Interactions : 25 

9 Name  : FNBP4  Molecule Function : Molecular function unknown

 

 
Number of Interactions : 6 

10 Name  : MAGI-3  Molecule Function : Molecular function unknown 

 
Number of Interactions : 12 
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11 

 
 
Name  : Smad ubiquitination regulatory factor 2  

 
 
Molecule Function : Ubiquitin-specific protease activity 

 
Number of Interactions : 66 

12 Name  : SMAD specific E3 ubiquitin protein ligase 
1  

Molecule Function : Ubiquitin-specific protease activity 

 
Number of Interactions : 76 

13 Name  : DNA mismatch repair protein Mlh3  Molecule Function : Protein binding   

 

 
Number of Interactions : 3 

14 Name  : Utrophin  Molecule Function : Cytoskeletal anchoring activity 

 
Number of Interactions : 14 

15 Name  : WW domain containing protein 1  Molecule Function : Ubiquitin-specific protease activity 

 
Number of Interactions : 20 
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16 

 
Name  : PEPP2  

 
Molecule Function : Receptor signaling complex scaffold 
activity 

 
Number of Interactions : 2 

 
 
 
 
 
 
 
 
 
17 

 
 
 
 
 
 
 
 
 
Name  : DiGeorge syndrome critical region gene 8  

 
 
 
 
 
 
 
 
 
Molecule Function : Molecular function unknown 

 
Number of Interactions : 1 
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