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ABSTRACT 

 

 

Towards the Design and Syntheses of Novel Triads Comprising Single Robson-Type 

Macrocyclic Dicopper(II) Cores Flanked by Two Terminal Polypyridyl Ruthenium(II) 

Complexes 

 

 

 

 

by 

 

L. Shane Moody 

 

 

 

Progress toward the syntheses of new tetranuclear bimetallic complexes of copper(II) and 

ruthenium(II) was realized.  The designed triads comprise a central binuclear copper(II) 

complex with a tetraiminodiphenolate macrocyclic Robson-type compartmental ligand.  

In the envisioned complexes, the macrocyclic core is further functionalized by attachment 

of two polypyridyl ruthenium(II) complexes.  A novel dibrominated dicopper(II) Robson 

complex was formed by the 2:2:2 condensation reaction of 4-bromo-2,6-diformylphenol 

and 1,3- diaminopropane with cupric chloride.  Similarly, a new dibrominated dizinc(II) 

was synthesized from zinc tetrafluoroborate and the same diamine and dialdehyde.  The 

new dicopper(II) complex did not heterocouple with borylated substrates under explored 

Suzuki reaction conditions.  5-Bromo-2-(methoxymethoxy)benzene-1,3-

dicarboxaldehyde successfully heterocoupled with 4-tert-butylphenylboronic acid under 

Suzuki conditions.  4'-(4-Neopentylglycolatoboronphenyl)-2,2':6',2"-terpyridine also 

coupled with 5-bromo-2-(methoxymethoxy)benzene-1,3-dicarboxaldehyde to give, after 

deprotection, 2,6-diformyl-4-(4-[2,2':6',2''-terpyridin]-4'-ylphenyl)phenol.  This new 

dialdehyde, a precursor to the title complexes, was treated with (4'-(4-methylphenyl)-

2,2':6',2"-terpyridine)RuCl3 under reducing conditions; however, the desired [(4'-(4-

methylphenyl)-2,2':6',2"-terpyridine)Ru(4'-(3,5-diformyl-4-hydroxyphenyl)-2,2':6',2"-

terpyridine)]
2+

 was neither isolated from nor detected in the reaction mixture. 
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CHAPTER 1 

INTRODUCTON 

Supramolecular Chemistry Defined 

 Supramolecular chemistry is a vast and growing cross- and inter-disciplinary area 

of chemistry.  In his Nobel lecture
1
, 1987 laureate Jean-Marie Lehn defined 

supramolecular chemistry "…as 'chemistry beyond the molecule', bearing on the 

organized entities of higher complexity that result from the association of two or more 

chemical species held together by intermolecular forces...".  In their introductory 

textbook on the subject
2
, Jonathan W. Steed and Jerry L. Atwood state that "...'chemistry 

beyond the molecule'…means that the chemist is at liberty to study pretty much any kind 

of interaction he or she pleases-except some covalent ones. The situation is rather 

reminiscent of the hubris of some inorganic chemists in jokingly defining that field as 'the 

chemistry of all of the elements except for some of that of carbon'…". 

Generally, for a species to be considered supramolecular, the molecular 

components that make up the supermolecule must largely retain their individual 

properties, regardless of the mode of connection of those components.  That is to say, the 

components can be covalently connected, as well as hydrogen-, datively-, or otherwise 

bonded, as long as localization of the intrinsic properties of the component molecules is 

not severely compromised.  Should significant delocalization of properties occur, then the 

species is not considered supramolecular but can be best described merely as a large 

molecule.  This distinction is illustrated graphically in Figure 1,
3
 where a complex 

chemical species, A~B, interacts with light or is subjected to redox processes.  In this 

illustration, A and B are subunits of the dyad, and ~ is the bond (covalent or other type of  
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Figure 1.  Schematic Representation of a Complex Chemical Species Illustrating 

Localization (Supramolecular Species) or Delocalization (Large Molecule) of Properties 

Upon Photo- or Electrochemical Input.  Adapted from Balzani et al.
3
 

 

interaction) that holds A and B together.  If absorption of a photon by A~B leads to an 

excited state (and perhaps, ultimately, to charge separation) that is mainly localized on 

either of the subunits, then the chemical species is supramolecular in nature.  If the 

excited state is mainly delocalized over the whole system, then the species must be 

regarded simply as a large molecule.  Similar arguments can be made if the complex 

species is oxidized or reduced.  If the electron or hole is localized on either A or B, the 

species is supramolecular.  If the electron or hole is substantially delocalized over the 

entire complex chemical system, then the species is best described as a large molecule.
4
 

Localized Properties Delocalized Properties 

Complex 
Chemical 
Species 
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Supramolecular chemistry spans many traditional subfields of chemistry.  Some 

areas of study include host–guest chemistry, self-assembly and self-organization, 

molecular sensing and recognition, transport phenomena, anion coordination, materials 

science, catalysis, molecular devices, photochemistry, and energy storage. 

 

Supramolecular Photochemical Devices 

In one sense, a device may be defined as a piece of equipment or a machine 

designed to serve a particular purpose or function.  A machine usually comprises 

interacting components that collectively perform beneficial tasks.  Both macroscopic and 

molecular devices, or machines, are useful for what they do, rather than for what they 

are.  Light induced processes have been among the most widely studied phenomena in 

the area supramolecular device chemistry.  Energy migration, induced charge separation, 

perturbation of polarizabilities, modification of redox potentials, and regulation of 

binding properties are some effects that could potentially be used to do something 

beneficial in devices that comprise photosensitive components.
5
 

An increasingly important research goal is the conversion of light to chemical 

energy.  An enormous number of photochemical molecular devices (PMDs) have been 

shown to collect and store light energy.
6
  Early on, most of these devices were capable of 

storing and delivering only a single photo-excited electron.  One of the ultimate goals in 

this field of study is to design catalytic systems capable of delivering multiple electrons 

to a reactive site, as many of the uphill chemical processes are multielectron processes.
5
  

Figure 2
7
 is a stylized representation of a PMD capable of delivering multiple electrons to 

a substrate in the presence of sacrificial electron donors. 
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Brewer and co-workers were the first to report a supramolecular device having the 

ability to perform this kind of catalysis.
8
  The Ru-Ir-Ru triad shown in Figure 3 could 

 

 

 

 

 

 

 

store two photoexcited electrons in the presence of sacrificial amine donors.  

Photoexcitation of the Ru(II) units followed by double electron transfer to the Ir(III) core 

reduces it to Ir(I). The Ir(I), then, was capable of reducing CO2 to formic acid in presence 

Figure 2.  Schematic of PMD for Photoinduced Electron Collection and Multielectron 

Catalysis.  Adapted from Steed and Atwood.
7
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Figure 3.  First Reported Supramolecular Triad Capable of 

Storing Multiple Photoexcited Electrons. 
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of H
+
.  Recently, other systems have been designed that have been able to store multiple 

photo-excited electrons.
9
 

Robson-Type Complexes 

Many syntheses of homo- and heterobimetallic complexes based on Robson-

type
10

 tetraiminodiphenolate macrocyclic compartmental ligands (Figure 4) have been 

 

 

 

 

 

 

 

 

 

 

 

recently reported.
11

  The dinuclear cores of these complexes are thermodynamically 

stabilized by the macrocyclic effect.
12

  Although there are reported syntheses of the 

metal-free macrocyclic ligands
13

, the complexes are usually formed by the divalent 

metal-templated condensation of an appropriate primary diamine with a 4-substituted-

2,6-diformylphenol.  It is common that diamine residues bear additional donor groups, 

such as carboxylate, amino, pyridyl, or alcohol.  The 4-subtituents of the phenolic 

residues are often alkyl, usually methyl or tert-butyl, although other groups in this 

N

O

N

M

N

O

N

M'

R'R

G'

G n+

Figure 4.  Generalized Representation of Cation of Binuclear 

Metal Complex with Robson-Type Compartmental Ligand.  G 

and G′ are generic diradicals, i.e., the residues of the primary α,ω-

diamines.  R and R′ are the 4-substituents of the phenol residues.  

Charge, n, is the charge on M plus the charge on M' less 2.  
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position are known.  The development of these and related types of compartmental 

macrocyclic ligands and their complexes has been the subject of a recent review.
14

  In 

addition to extensive physiochemical characterization, these types of complexes, along 

with their amino, thiophenolate, or mixed derivatives, have been used to activate small 

molecule substrates towards various transformations
15

 and have served as models of 

active sites of certain metalloenzymes or metalloproteins, showing activity in some 

biologically important reactions, simulating, for example, catalase, catecholase, and 

oxygenase.
16

  Additionally, the complexes have been used in the field of supramolecular 

chemistry, forming ladders, chains, or other polymetallic assemblies,
17 

often by bridging 

the bimetallic centers with neutral or charged donor species, such as bisnitrogen 

heterocycles, carboxylates,
18

 or complex anions.
19

 

Dicopper complexes are among the most widely studied of the compounds of this 

general architectural form.  In fact, the first reported substance
10

 of this description was 

the dicopper(II) complex where G and G' were –(CH2)3– and R and R' were methyl.  

Over 130 complexes of this sort, where M and M' are copper, have been assigned a 

Gmelin registry number.
20

  Many structural variations are possible and many structure–

property relationships have been investigated.  Magneto–structural correlations have been 

evaluated for several di--oxo copper complexes
21

 and their isotropic exchange-coupling 

constants were predicted.  The influence of electron-withdrawing substituents,
22

 attached 

at the 4-position of the phenol residue or attached through the diamine residue or through 

both residues, on exchange coupling has likewise been assessed by study of the magnetic 

and structural properties for several complexes.  Chiral versions of these Robson-type 

dicopper complexes have also been synthesized and have shown utility in enantiosective 
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oxidative coupling reactions
23

 and other asymmetric catalytic processes.
11z

  Several 

mixed-valence copper(II)–copper(I) species were prepared by either chemical
24

 (sodium 

dithionite) or electrochemical reduction of corresponding dicopper(II) complexes.  Some 

dicopper(I) complexes have also been prepared electrochemically.
25

  In this study, the 

Cu
II
Cu

II 
species was reduced to the Cu

II
Cu

I
 and Cu

I
Cu

I
 species in separate one-electron 

processes.  The intramolecular electron transfer rate of the mixed-valence species was 

estimated from electron paramagnetic resonance analysis.
25

  These complexes were also 

studied by X-ray photoelectron spectroscopy.
26

  Fully -conjugated systems, derived 

from rigid aromatic diamines, have also been synthesized.
27

 

In one interesting synthetic variation, a tetranuclear copper complex was formed 

by fusing two dinuclear macrocyclic cores via a 1,2,4,5-tetraaminobenzene bridging 

group.  In another modification, a tetracopper(II) complex was synthesized that 

comprised a Robson-type core bearing two mononuclear copper units that were 

covalently tethered through the diamine residues.
28

  This complex was prepared in order 

to study intramolecular electron transfer as relevant to multicopper oxidase.
11o

  These are 

the only two reported syntheses of dinuclear copper complexes of tetraiminodiphenolate 

macrocyclic compartmental ligands to which other metal complexes are covalently 

linked.
 

 

Polypyridyl Ruthenium(II) Complexes 

Polypyridyl ruthenium(II) complexes have also been extensively investigated.  As 

early as the 1960s, the special properties of Ru(II)-polypyridine complexes began to 

demand attention from the photochemical community.
29

  In contrast to the dinuclear 
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copper complexes, there are a great many reported substances where polypyridyl 

ruthenium complexes are covalently linked to other metal complexes.  The complexes 

have been linked to additional ruthenium complexes or to complexes of other metals.  

These complexes have been widely used in the area of supramolecular chemistry, 

especially supramolecular photochemistry.  Metallosupramolecular polymers, 

dendrimers, and self-assembled macrocycles comprising polypyridine complexes of 

ruthenium have all been reported.
30

  Interest in light-harvesting species, optoelectronics, 

photocatalysis, and charge-separation devices has fueled much of the research in this 

field.
31

  An especially important use of these types of complexes is in the construction of 

supramolecular photo- and electrochemical devices.
5
  Many studies of electron- or energy 

transfer in supramolecular species have been conducted over the last 2 decades and have 

been well-reviewed.
32

  Many of the systems studied comprise polypyridyl metal 

complexes as both the donor and acceptor units such as the dyad shown in Figure 5.
33

   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Energy Level Diagram for Photoinduced Energy and Electron-Transfer 

Processes in a Supramolecular Ru(II)/Os(III) Dyad. 
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In these types of systems, and as illustrated by the specific example in Figure 5, the 

species that undergoes photo-excitation is often a [Ru(bpy)3]
2+

 (bpy = 2,2'-bipyridine) 

moiety and the energy acceptor is often an [Os(bpy)3]
2+

 unit.
4
  The related 1,10-

phenanthroline (phen) complexes are also similarly used.  The use of [Ru(tpy)3]
2+

 and 

[Os(tpy)3]
2+

 units (tpy = 2,2':6',2''-terpyridine) as donors and acceptors, respectively, is 

also well-known.  The terpyridine moeties are frequently further substituted at the 4'-

position.  Additionally, it is quite common to connect either [Ru(bpy)3]
2+

-type (tris(bpy)) 

or [Ru(tpy)2]
2+

-type (bis(tpy) ) ruthenium(II) photosensitizing units to phthalocyanines or 

metallated or non-metallated porphyrins.
34 

Much of the research in this area was rooted in 

gaining a better understanding of natural photosynthetic processes.  The tris(bpy) and 

bis(tpy) ruthenium(II) systems each possess advantages and disadvantages relative to 

each other.  The bipyridine systems have a much longer lived excited state, thus enabling 

the study of energy transfer over long distances.  The terpyridine systems are usually 

considered more desirable from a structural point of view.
5,35 

 

Known Ruthenium/Copper Species 

Several substances have been reported where polypyridyl ruthenium(II) 

complexes are covalently linked to a copper complex.
36

  Particularly interesting were 

systems where 4,5-diamino-1,10-phenanthroline (as the free amine or complexed to 

Ru(bpy)2 or Ru(phen)2) was condensed with 2 equivalents of a salicaldehyde or  a 

picolinate derivative.
37

  In some of these systems, photochemical studies suggested that 

the polypyridyl ruthenium(II) excited state was effectively quenched by intramolecular 

electron- or energy transfer to the copper unit.  Recently, a novel donor–acceptor system 
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was synthesized that comprised a tris(bpy)-type ruthenium(II) complex covalently linked 

to the secondary face of a -cyclodextrin that had its primary face capped with a hydroxo 

bridged dinuclear copper(II) moiety.
38

  The rate of the intramolecular photoinduced 

electron transfer from the excited ruthenium to the copper center was estimated from 

luminescence lifetime studies.  To date, however, there has been no reported synthesis of 

any polypyridyl ruthenium(II) complex being covalently linked to a Robson-type 

dinuclear copper(II) complex. 

 

Project Goal 

In light of the extremely rich photophysical and redox properties of polypyridyl 

ruthenium(II) complexes, especially in regards to electron- or energy transfer; and in light 

of the unique electronic and catalytic behavior of Robson-type dinuclear copper(II) 

complexes, the construction of a polynuclear array that comprises both these moieties is a 

worthwhile synthetic goal.  This work reports on the design and syntheses of these new 

hybrids.  It is expected that combinations of the two types of complexes will exhibit 

interesting photo- and electrochemical properties, possibly allowing the observation of a 

2-electron transfer from ruthenium to copper. 
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CHAPTER 2 

RESULTS AND DISCUSSION 

Design Rationale 

Early on, it was decided that, at least initially, a symmetrical supermolecule 

would be preferred from the standpoint of synthetic simplicity.  With that in mind, two 

basic polynuclear complex architectures were conceptualized, in both of which the 

dicopper macrocycle was the central feature of the array.  The first concept, I, illustrated 

graphically in Figure 6, involves attachment of the polypyridyl ruthenium(II) units at the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cu

O

Cu

O

N N

N N

LLRu RuL L

Ru RuB BCu

O

Cu

O N

N

N

N

R

R

Concept I

Concept II

Figure 6.  Stylized Representation Illustrating Different Modes of Attachment of 

Ruthenium(II) Units to Dicopper(II) Complex.    Ru  's are either [Ru(tpy)2]
2+

-type or 

[Ru(bpy)3]
2+

-type complexes.  L and B are generic linking groups. 
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4-postion of the phenolic residue of the dicopper(II) macrocycle through some generic 

linking group, L.  It was envisaged that L, at least in the first iterations, should possess a 

-system in conjugation with the macrocycle and the polypyridine ligands.  Some 

obvious choices for L would include catenated phenylene or catenated acetylene units.  

L could also comprise conjugated olefin units, certain amide or imide moeties, or L 

could simply be a single covalent bond. 

A second general concept, II, that would meet these specific synthetic goals is 

also shown in Figure 6.  Here, the ruthenium(II) units are linked to the copper complex 

through the diamine residue via a generic bridging ligand, B.  Again, it was expected that 

B should provide a continuous -system that would bridge the copper and ruthenium 

complexes.  An aromatic diamine comprising or conjugated to a polypyridine would be 

suitable.  The ruthenium units in I or II could be based on either substituted bis(tpy) or 

tris(bpy) complexes. 

Of the two basic proposed architectures discussed, most of the initial synthetic 

activity herein reported was directed towards triads of type I where the ruthenium units 

were bis terpyridine complexes. 

 

Plausible Chemistry to Desired Triads  

Known Routes to 4'-Substituted-2,2':6',2''-Terpyridines 

4'-Substituted-2,2':6',2''-terpyridines (or further substituted terpyridines) have 

been accessed by classical methods and by Pd(0) catalyzed cross-coupling reactions, e.g., 

Suzuki-Miyaura, Stille, and Negishi arylations or hetarylations.
 39

  Additionally, cross-
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coupling reactions of halogenated or borylated terpyridines to obtain further substitution 

of the terpyridine moiety are also known.
40

 

 

Known Routes to 4-Substituted-2,6-Diformylphenols 

Syntheses of 4-substituted-2,6-diformylphenols have been realized, among other 

methods, by direct diformylation of the 4-substitutedphenol by the Duff reaction.
41

  These 

compounds have also been synthesized by via di-hydroformylation of the phenolate with 

formaldehyde to the 2,6-dimethanol
42

 followed by oxidation to the dialdehyde.
43

 

 

Known Suzuki Chemistry to Couple Phenols and Formylphenols 

Although Suzuki couplings of 2,6-diformylphenols are not known, there are 

reports of coupling free and protected phenols.  The phenol or protected phenol can be 

either the halogenated
44

 or the borylated
45

 (both boronic acids and boronic esters are 

known) partner.  More closely related to the present study, successful Suzuki couplings 

of both halogen- and boron-substituted salicaldehydes have been reported, as well as 

Miyaura borylations of halogenated salicaldehyde derivatives.
46

  In some cases the 

phenol of the salicaldehyde had been protected. 

 

Possible Routes to the Desired Tetranuclear Bimetallic Complexes 

It was expected that a terpyridine-functionalized diformylphenol should be 

accessible by one of the routes described above.  This terpyridine-functionized 

dialdehyde could then be treated with (tpy)RuCl3 or with (X-tpy)RuCl3 (X-tpy = a 4'-

substituted-2,2':6',2''-terpyridine) to give a ruthenium(II) complex-fuctionalized 
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dialdehyde.  Further reaction with an appropriate diamine in the presence of a cupric salt 

should give the desired type I tetranuclear triad. 

Cross-coupling of bromo-substituted or borylated polypyridine ruthenium(II) 

complexes is well-known.
47

 Cross-coupling a halo- or boron-fuctionalized [Ru(tpy)2]
2+

-

type complex with an appropriately substituted diformylphenol would be another feasible 

synthetic pathway to the ruthenium(II) complex-fuctionalized dialdehyde. 

Additionally, in theory at least, cross-coupling of a preformed dibrominated (or 

diborylated) copper(II) macrocycle with 2 equivalents of a monoborylated (or 

monobrominated) ruthenium(II) complex might be another possible route to the desired 

tetranuclear bimetallic triads.  The Suzuki coupling, however, of copper(II) complexes 

has not been reported. 

 

Specific Synthetic Targets 

The bulk of the synthetic activity presented here was aimed toward type I triads 

where the ruthenium units were [Ru(tpy)2]
2+

-type complexes.  Some progress toward the 

synthesis of type I triads where the ruthenium units were [Ru(bpy)3]
2+

-type complexes 

was also realized.  Additionally, some work was directed toward type II triads. 

All the targeted triads that were pursued in this work are shown in Figure 7.  In 

compounds 1a and 1b, the terminal ligand of both the ruthenium(II) complexes is 4'-(4-

methylphenyl)-2,2':6,2"-terpyridine (CH3--tpy, where  = 1,4-phenylene).  In compound 

2, each terminal tris(bpy)-type ruthenium(II) unit is attached to the dicopper(II) core 

through the 5-position of a bipyidine ligand.  Compounds 3 use 4,5-diamino-1,10-

phenanthroline as the diamine from which the macrocyle is formed and its diimine 
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residues are the bridging ligands that link the dicopper(II) center with the two 

ruthenium(II) centers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7.  Targeted Supramolecular Triads Pursued in the Course of this Work.  

Counteranions and charges on the complexes are omitted to simplify the graphic. 
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Synthetic Strategies Toward Preparation of Triads 1 

Three related approaches to the syntheses of triads [1]
6+

 are outlined in Schemes 

1-3.  The proposed route shown in Scheme 1 (Method A) involved complexation of  
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Scheme 1.  Proposed synthetic route (Method A) to targeted supramolecular 

triads [1]
6+

. Counteranions and charges on the complexes are omitted to 

simplify the graphic. 
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(CH3--tpy)RuCl3 4 to preformed terpypyidine-functionalized diformylphenols 5 to give 

the ruthenium complex-functionalized diformylphenols 6.  The required dialdehydes 5 

could be formed by Pd(0) catalyzed cross-coupling or other reactions. 

The proposed route to [1b]
6+

 outlined in Scheme 2 (Method B) differs from 

Method A in that 4 is first complexed with borylated terpyridine 7 to give borylated 

ruthenium complex 8 (or 9).  Complex 8 (or 9) could then be heterocoupled under Sukuki 

conditions with brominated diformylphenol 10 (or a protected version of 10) to give 6b. 

Another approach to triad [1b]
6+

 is shown in Scheme 3 (Method C).  In this 

proposed pathway, synthesis of [1b]
6+

 depended on successful heterocoupling of 

dibrominated dicopper(II) complex 12 with 2 equiv of borylated ruthenium complex 9. 
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Scheme 3.  Proposed synthetic route (Method C) to targeted supramolecular triad 

[1b]
6+

. Counteranions and charges on the complexes are omitted to simplify the 

graphic. 

 

Pd(PPh3)4, K2CO3, DMF/water, 65 °C, 18 h. 
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Towards Preparation of [1b]
6+

 by Coupling Preformed Ruthenium and Copper 

Complexes (Method C) 

Synthesis of Diformylphenol 10 

Compound 10 was synthesized by a modified Duff reaction closely following 

Lindoy's reported procedure
41

.  In this modification, the normally-used glacial acetic acid 

is replaced with anhydrous trifluoroacetic acid as solvent and proton source.  The 

synthesis of this compound proceeded smoothly in most preparations, although the 

reaction time was increased over that reported in the literature to ensure that all of the 

monoformylated intermediate product was cleanly converted to the desired dialdehyde.  

 

Synthesis and Characterization of Copper Complex 12 

The dibromo-fuctionalized copper complex 12 was obtained as a green powder as 

its dichloride by reaction of 10 with cupric chloride dihydrate and 1,3-diaminopropane in 

methanol.  Being paramagnetic, the complex could not be well characterized by NMR, 

however elemental analysis (% CHN, calculated: C, 34.48; H, 3.16; N, 7.31; found: C, 

34.52; H, 2.83; N, 7.10) was in reasonable agreement with the theoretical expectation. 

The complex was further characterized by mass spectral analysis.  The full scale 

electrospray ionization mass spectrum (ESIMS) of the isolated complex is shown in 

Figure 8.  The expanded region shown in Figure 9 clearly indicates a doubly charged 

species because the C-13 isotope peak appears at m/z 328.4, 0.5 m/z units higher than the 

molecular ion at m/z 327.9.  All singly charged species containing carbon have their C-13 

isotope peak appear 1 m/z unit higher than their molecular ion.  Figure 9 also shows the 
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computer generated theoretical isotope pattern which is essentially identical to that of the 

desired molecular formula.  This is a very definitive isotopic cluster that supports the 
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Figure 8.  Full Scale Positive Ion Electrospray Mass Spectrum of Copper Complex 12.  

Base peak is for doubly charged ion, M
+2

. 

 

Figure 9.  Expanded Positive ion Electrospray Mass Spectrum for Doubly Charged 

Molecular Ion, M
+2

, of Copper Complex 12.  Top trace, theoretical isotope pattern; 

bottom trace, observed isotope pattern. 
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presence of two bromines and two copper atoms in the molecular structure.  Both 

bromine (
79

Br 50.4%, 
81

Br 49.5%) and copper (
63

Cu 69.1%, 
65

Cu 30.9%) have significant 

concentrations of stable isotopes. 

Figure 10 shows an expanded scale mass spectrum for the higher m/z region of 

the spectrum that also supports the proposed structure.  The (M+Cl)
+
 isotope cluster is  a 

singly charged ion in which the doubly charged cation is counterbalanced by the 

   

 

 

 

 

 

 

 

 

 

 

 

chloride anion.  The formate and acetate adducts are due to anion contamination of the 

mass spectrometer source by high levels of buffer routinely used in liquid 

chromatography-mass spectrometry analyses.  The isotopic cluster at m/z 655.9 is an 

artifact of the positive ion electrospray analyses.  Apparently one of the Cu(II) ions in the 

species is being reduced.  This ion disappears when the electrospray needle potential was 

Figure 10.  Expanded Positive Ion Electrospray Mass Spectrum of Copper Complex 12 

Showing Singly Charged Region of Spectrum. 
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Figure 11.  UV-Vis Spectrum of Copper Complex 12.  The solvent was water. 

reduced from 3500 to 2000 V.  Frequently organometallic species can undergo 

electrochemical reactions during electrospray analyses as a function of needle potential. 

The UV-vis spectrum (Figure 11) exhibited bands that would be expected to arise 

from the d↔d transitions.  The positions of these bands were similar to those reported for 

the original 4,4'-dimethyl substituted complex; additionally the molar absorbtivity () at 

the d↔d band maximum was on the same order, i.e., about 90 at 606 nm for the dibromo- 

compared to 80 at 606 nm for the for the original dimethyl-functionalized complex.
10

 

 

 

 

 

 

 

 

 

 

 

Synthesis of Zinc Complex 13 

As a further test of the complexation procedure, the binuclear zinc complex 13 

was similarly formed by reaction of 10 with zinc tetrafluoroborate hydrate and 1,3-

diaminopropane in refluxing methanol.  The diamagnetic complex was obtained as a 

yellow crystalline solid and its 
1
HNMR spectrum (Figure 12) supported the proposed 

macrocyclic structure. 

9.92 × 10
-5

 M 
0

0.05

0.1

0.15

0.2

0.25

500 550 600 650 700 750

2.23 × 10
-3

 M 

d↔d transition 

max = 606 nm 

max = 93 

 



 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attempted Suzuki Coupling of Copper Complex 12 

Before endeavoring to couple copper complex 12 with ruthenium complex 9 (as 

in Scheme 2), Suzuki coupling of 12 with the commercially available 4-tert-

butylphenylboronic acid was attempted under various reaction conditions.  In all these 

cases water was used as the solvent, with or without addition of a cosolvent (acetone or 

DMF).  The reaction temperature ranged from ambient to 65 °C.  No desired 

heterocoupled product was observed by mass spectrometry in any case.  In some of the 

higher temperature cases, the mass spectral analyses suggested that palladium may have 
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Figure 12.  300 MHz 
1
HNMR Spectrum of Zinc Complex 13.  The solvent was 

deuterated acetonitrile. 
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been incorporated into the macrocycle.  In light of these results, no experiments were 

conducted to attempt the cross-coupling of the dicopper(II) complex 12 with 

ruthenium(II) complex 9. 

 

Towards Preparation of [1b]
6+

 by Coupling Preformed Ruthenium Complex 8 with 11 

(Method B) 

Synthesis of and Attempted Suzuki Coupling of Ruthenium Complex 8 

Ruthenium complex 8 was obtained from 4 and 16 (scheme 6) according to the 

literature procedure
47c

 and was purified by column chromatography.  Upon 

chromatography, the neopentyl glycol ester is cleaved and therefore the complex is 

isolated as the boronic acid 9.  However, on a first and single attempt, reaction of 9 

(Scheme 6) with the MOM-protected 2,6-diformyl phenol 11 under Suzuki conditions did 

not yield the desired complex 6b. 

 

Towards Preparation of [1]
6+

 from Preformed Terpyryridine-Functionalized 

Diformylphenols (Method A) 

This preferred synthetic route (Scheme 1) to the desired triads 1a and 1b involved 

first synthesizing terpyridine-functionalized diformylphenols.  Thus, diformylphenols 5a  

and 5b were initial synthetic targets.  It was reasoned that having the preformed 

terpyridine-functionalized diformylphenols as available common intermediates would 

allow access to a number of different triads 1 by changing the terminal terpyridines or the 

diamines.  This semicombinatorial approach would allow evaluation of structure–

property relationships with relative ease.  Of course, if one wished to vary the distance 
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between the ruthenium and copper centers, this would necessitate the synthesis of new 

terpyridine-functionalized diformylphenols 5 with differing numbers of interposed 1,4-

phenylene units.  Hence, the syntheses of dialdehydes 5 were attempted by several routes. 

 

Preparation of Terpyridines Toward the Synthesis of Compound 5a 

The first attempt to synthesize terpyridine-functionalized diformylphenol 5a 

required 4'-(4-hydroxyphenyl)-2,2':6',2"-terpyridine (OH--tpy) 14 as starting material.  

Compound 14, along with several other 4'-substituted-2,2':6',2"-terpyridines, were 

synthesized in modest yield using a modified Kroenkhe synthesis by a slight alteration to 

a reported literature procedure
48

 as shown in Scheme 4.  Conversion of compound 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.  Synthesis of selected terpyridines. 
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to 5a was attempted via various synthetic pathways.  These proposed synthetic routes are 

given in Scheme 5.  Scheme 5 also shows other attempted routes to 5a from terpyridines 

18, 20 and 21 and one path from 4-hydroxybenzaldehyde. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dihydroformylation followed by oxidation to the dialdehyde: 

Direct diformylation by Duff reaction: 

Dilithiation followed by diformylation with DMF: 
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Attempts to Form 5a by Dihydroformylation Followed by Oxidation to the Dialdehyde 

Many syntheses of 4-substituted-2,6- diformylphenols from the corresponding 4-

substituted-2,6-hydroxymethylphenols are known.  These dimethanols can be accessed 

from the 4-substituted phenols.  Often the phenols are substituted at the para position by 

an alkyl group.  There have been a few reports where aryl groups or electron-

withdrawing groups at this position gave successful conversion to the dimethanol.
49

  No 

desired dihydroformylated terpyridine product 22 was obtained after treatment of 14 with 

37 % formaldehyde in aqueous base at 40 to 50 °C or at room temperature after extended 

reaction time (4-20 d).  Terpyridine 14 appeared to exhibit low solubility in the reaction 

medium in this temperature range.  The lack of reaction could also possibly be attributed 

to the electron-withdrawing nature of the terpyridine moiety. 

 

Attempts to Form 5a by Duff Reaction 

Direct diformylation of 14 was attempted using Lindoy's
41

 modified Duff reaction 

in anhydrous trifluoroacetic acid.  In this reaction, the phenolic substrate and 

hexamethylenetetramine (HMTA) are refluxed together for several hours (even up to 4 - 

9 d for aryl substituted phenols
50

) then the formed adduct is decomposed in aqueous acid 

to give the dialdehyde.  Several attempts were made to effect the transformation via the 

Duff reaction, varying the time at reflux from 1 to 7 d.  On every attempt, dark-colored 

mixtures were recovered that gave complex broadened 
1
HNMR spectra.  In some cases 

there were broad peaks in the region where aldehydic protons might be expected (see 

Appendix D).  The inefficiency of this reaction could perhaps also be ascribed to the 

electron-withdrawing nature of the terpyridine, which is likely intensified in acid media. 
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Attempts to Form 5a by Dilithiation Followed by Diformylation with DMF 

Aryl aldehydes are often readily accessible from aryl lithiums.  Synthesis of 5a by 

formation of the requisite dilithiated species at low temperature, followed by reaction 

with dimethylformamide and acidic workup appeared to be a possible route to the desired 

dialdehyde.  Several attempts were made to di-ortho-lithiate compound 14 and the 

methoxy protected derivative 18.  Di-ortho-lithiation of phenols or anisoles is not known, 

but because 14 was in hand and 18 was readily accessible, the experiments were deemed 

worthwhile even without literature precedent.  However, neither 14 nor 18 gave any 

desired 5a after reaction with alkyllithiums at 0 °C or -78 °C after subsequent quenching 

with DMF.  Addition of tetramethylenediamine (TMEDA) did not appear to improve the 

fruitfulness of the reaction.  Formation of the dilithio compounds was also attempted via 

lithium–halogen exchange.  Synthesis of a 2-methoxy-1,3-benzenedicarbaldehyde from 

the corresponding 2,6-dibromoanisole is a known reaction.
51

  Compounds 20 and 21 were 

synthesized and subjected to the usual reaction conditions in attempts to form 5a.  Again, 

adjustment in temperature (0 °C or -78 °C), molar excesses of alkyl lithium reagent (2 to 

5 eq) or use of additives (with or without TMEDA) did not appear to improve the 

reaction very much.  In one attempted preparation, multiple peaks were noted in the 

1
HNMR spectrum (see Appendix D) that might have indicated the presence of formylated 

species. 

 

Attempt to Form 5a From 4-Hydroxybenzaldehyde 

Additionally, an attempt was made to synthesize 5a by reaction of 4-

hydroxybenzaldehyde with formaldehyde in aqueous base at elevated temperature.  In 
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this attempt, the literature conditions
52

 used for the conversion of 4-chlorophenol to the 

2,6-dimethanol were adopted.  It was believed if dimethanol 23 could be successfully 

synthesized, then the terpyridine forming reaction (shown in Scheme 4) should proceed 

readily to give 22, which could in turn be oxidized to 5a.  Under those prescribed reaction 

conditions, however, 4-hydroxybenzaldehyde was recovered in quantity.  The formyl 

group apparently deactivates the phenolate ring against electrophilic attack by 

formaldehyde. 

 

Preparation of Compound 5b and Related Reactions 

Because attempts to synthesize 5a were met with limited success, attention was 

turned to the formation of 5b.  Proposed routes to 5b, illustrated in Scheme 6, depended  
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on successful cross-coupling of borylated terpyridine 7 with 10 or cross-coupling of 15 

(Br--tpy) with 24.  It was desired that that either 10 or 15 could be converted to the 

corresponding boron reagent by the Miyaura reaction.  The strong preference was to form 

the boronic ester 24 (or the corresponding boronic acid) from diformylphenol 10.  This 

would perhaps allow coupling of either halo-substituted terpyridines or halo-substituted 

bipyridines with the borylated dialdehyde. 

 

Borylation of 10 to 24 and Subsequent Attempts to Cross-Couple with 15 

Unfortunately, borylation of 10 did not occur to an appreciable extent when the 

diformylphenol was reacted with bis(neopentyl glycolato)diboron (B2neo2) under 

standard Miyaura conditions (PdCl2(dppf)/KOAc) using dimethyl sulfoxide (DMSO) or 

dioxane as solvent for 18 or 96 hr at 80 °C.  An intermediate reaction time (30 h) using a 

mixture of the solvents gave a small amount (9 % yield) of the desired boronic ester 24 

after chromatographic purification.  The isolated ester, however, on a single attempt, did 

not couple with bromoterpyridine 15 under the "standard" Suzuki conditions (Pd(PPh3)4, 

toluene, ethanol, aq Na2CO3, reflux). 

 

Borylation of 15 to 7 and Subsequent Attempts to Cross-Couple with 10 

Terpyridine 15, on the other hand, was cleanly borylated to boronic ester 7 in 

respectable yield by the method of Aspley and Williams.
47c

  Although unprotected 4-

bromosalicaldehydes are known to cross-couple under Suzuki conditions, reaction of 7 

with 10 under the standard Suzuki conditions described above failed to give the desired 

hetero-coupled product 5b in appreciable yield.  In one attempted coupling, the 
1
HNMR 
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analysis (see Appendix D) of the crude reaction mixture suggested that the desired 

coupled product 5b might be present in as much as 15% yield.  This was indicated by the 

appearance of a new aldehydic proton at 10.24 ppm; the corresponding protons in the 

starting phenol 10 are observed at 10.18 ppm in DMSO-d6.  In many instances, 

halophenols have, however, been protected before submission to Suzuki coupling 

conditions.  In an attempt to improve the efficiency of the coupling, it was decided that it 

would be prudent to introduce a base-stable group to protect the phenol functionality of 

compound 10. 

 

Protection of 10 and Attempts to Cross-Couple with 7 

4-Bromo-2,6-diformylphenol 10 proved quite resistant to the introduction of 

several protecting groups.  Reaction with dihydropyran under conditions reported
53

 to 

convert phenolic substrates possessing aldehyde groups to their tetrahydopyranyl (THP) 

ethers did not give the THP-protected 17.  Treatment of 17 with excess tert-

butyldimethylsilyl chloride (TBDMSCl) did not give its TBDMS ether under a variety of 

reaction conditions.  Remarkably, every attempted reaction to methylate 10 with either 

dimethyl sulfate or methyl iodide gave very poor results.  Several combinations of 

different bases, solvents, and temperature ranges were used in the attempts to form the 

methyl ether of 10. 

Acetate-protected 4-bromophenols have been reported to undergo Suzuki 

couplings using aqueous base with retention of the acetate group.
54

  Acetylation of 10 

with acetyl chloride in dichloromethane was problematic, but the reaction proceeded 

smoothly in essentially quantitative yield using THF as the solvent.  Under the standard 
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Suzuki conditions that were employed (Pd(PPh3)4, toluene, ethanol, aq metal carbonate, 

80 °C), little or no coupling was observed of the acetate-protected 10 with borylated 

terpyridine 7; the acetate group appeared to have been almost completely removed as 

judged by 
1
HNMR analysis of the crude residue obtained. 

Up to this point, the use of the toxic chloromethyl methyl ether (MOMCl) to form 

the methoxymethyl (MOM) ether of 10 had been avoided.  Use of this reagent, however, 

led to the smooth formation of 5-bromo-2-(methoxymethoxy)benzene-1,3-

dicarbaldehyde 11.  In most preparations of 11, the isolated yield was acceptable (ca. 

75%) and was comparable to the yield reported by Ward and co-workers.
55

  These 

workers used the MOM ether to successfully protect 10; it was encouraging that they had 

also ethynylated 11 via the Pd(0) catalyzed Sonagashira reaction in moderate yield.  It 

was believed that the successful Sonagashira coupling might be indicative of successful 

Miyaura borylation of 11 and Suzuki cross-coupling of 11 with bromo-functionalized 

terpyridine 15. 

 

Cross-Coupling of 11 with 4-tert-Butylphenylboronic Acid 

On a first attempt, borylation of 11 did not proceed in appreciable yield using a 

DMSO/dioxane solvent system.  MOM-protected adduct 11, however, was quite 

successfully cross-coupled with 4-tert-butylphenylboronic acid to give diformylphenol 25 

(Scheme 7) under certain conditions.  The successful Suzuki coupling proceeded at 80° C 

and employed a THF/water solvent system.  When the same reaction conditions, i.e., 

THF/water at 80° C, were employed with 10 as the brominated partner, no appreciable 

heterocoupling was observed with 4-tert-butylphenylboronic acid.  When the "standard" 
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reaction conditions, i.e., toluene/ethanol/water at 80° C, were used with 11 as the 

brominated partner, again, no appreciable heterocoupling was observed with 4-tert-

butylphenylboronic acid.  Based solely on these three experiments, it appears that both 

protection of the phenol functionality and solvent system choice are important factors in 

successful Suzuki reactions with this 2,6-diformylphenol substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

Suzuki Coupling of 11 with 7 to Give 5b 

Attempts to cross-couple boronic ester-functionalized terpyridine 7 with either 4-

bromo-2,6-diformylphenol 10 or the MOM-protected version 11 had been largely 

unsuccessful when a toluene/ethanol/water solvent system was employed.  When the 

THF/water solvent system described above was used, terpyidine-functionalized 

dialdehydes were obtained as the major products from the Suzuki reaction of 11 and 7 
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Scheme 7.  Synthesis 4'-tert-butyl-4-hydroxybiphenyl-3,5-dicarbaldehyde 25. 
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(Scheme 8).  The crude reaction mixture could not be separated by chromatographic 

purification using either alumina or silica with various eluent systems; however, analysis 

by 
1
HNMR and ESIMS (see Appendix D) suggested that the crude product, after aqueous 

work-up, comprised largely desired 5b and its MOM-protected adduct as illustrated in 

Scheme 8. 
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Attempted Preparation of Ruthenium Complex 6b from 5b 

The crude 5b obtained above was treated with (CH3--tpy)RuCl3 (4) in the 

presence of N-ethylmorpholine (NEM) in ethanol (reflux, 4h) to obtain a red residue.  

The crude product was subjected to anion exchange conditions with aq NH4PF6.  The 

resulting red residue was analyzed by 
1
HNMR and ESIMS (see Appendix D).  The 

product was an obvious mixture by NMR and appeared, for the most part, to lack the 

expected aromatic aldehyde functionality.  No signal corresponding to the desired 

complex 6b was observed by ESIMS.  It is unclear at this time as to why the attempted 

complexation of crude 5b with (CH3--tpy)RuCl3 proceeded without any identifiable 6b.  

The only readily identified species by ESIMS were [(CH3--tpy)Ru(tpy-Ph)]
2+

 and its 

PF6
-
 adduct along with some apparently oligomeric species that did not contain 

ruthenium.  Ph-tpy 16 was observed as a contaminant in the coupling reaction to form 5b; 

however, the desired diformylated species were by far the major products of that reaction.  

Chakrovorty and co-workers showed that decarbonylation of 2,6-diformyl-4-

methylphenol occurred in the presence of ruthenium(II) to give the ortho-metallated 

phenolate.
56

  They confirmed that the reaction proceeded in near-quantity in the presence 

of a primary amine after briefly heating in ethanol.  Although there was no primary amine 

in the attempted complexation reaction, perhaps the presence of NEM catalyzed the 

decarbonylative metallation by a related route.  Other complexation protocols that do not 

rely on NEM as a reductant, such as the one shown in Schemes 1 and 2 and described 

elsewhere,
47c

 might prove more reliable for the formation of 6b from 5b and 4.  It is also 

possible that the presence of oligomeric species in the ESIMS spectrum might indicate 
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self- or other condensation reactions of diformylphenol 5b, although no reasonable 

structure has yet been postulated; the presumed oligomeric species differ by 74 m/z units. 

 

Towards Preparation of Triads 2 

Synthetic routes to triad 2 are shown in Scheme 9.  In these proposed pathways, 

the synthesis of supramolecular complex 2 depended on either the cross-coupling of 5-

bromo-2,2'-bypiridine 26 with dialdehyde 24 (route A) or cross-coupling of 11 or 25 with 

the unknown boronic acid-functionalized bipyridine 27 (route B) to give the 2,6-

diformylphenol-functionalized bipyidine 28.  Compound 26 was synthesized by the Pd(0) 

catalyzed Stille coupling of 2-tributylstannylpyridine with 2,5-dibromopyridine in 

refluxing xylenes in moderate yield by slight modifications of reported procedures.
57

 

Compound 26 was treated with B2(neo)2 in dioxane in the presence of KOAc and 

PdCl2(dppf) at 80 °C.  After 12 h reaction time and subsequent work-up, the desired 

boronic ester 27 was not readily observed in the reaction mixture.  Analysis by 
1
HNMR 

indicated that the reaction residue appeared to comprise largely unchanged starting 

materials.  

Also, a single attempt to couple 26 and 24 under "standard" Suzuki conditions 

(toluene/ethanol/aq NaCO3, Pd(PPh3)4, 80 °C) did not yield the desired bipyridine-

functionalized diformylphenol 28 in appreciable quantity as evidenced by 
1
HNR analysis 

of the obtained crude reaction product.  It is possible that changing the solvent system 

from toluene/ethanol to THF or some other ether, such as dimethoxyethane, would 

improve the efficiency of this reaction as was found for the terpyridine systems. 
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Towards Preparation of Triads 3 

A proposed route to triads 3 is shown in Scheme 10.  Work towards complexes 3 

was limited.  As noted above, compound 25 was successfully prepared via the Suzuki 

reaction.  1,10-Phenanthroline was oxidized with H2SO4/HNO3/KBr to give 1,10-

phenanthroline-5,6-dione 30 (phendione).  The phendione obtained was further reacted 

with hydroxylamine hydrochloride in ethanol in the presence of sodium carbonate to give 

1,10-phenanthroline-5,6-dioxime 31.  The syntheses of both of these two compounds 

were based on well established procedures and rendered the desired compounds in close 

to the reported yields.
 58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

NN NN

OO

NN

NNOH OH

NN

N N

N N

Ru

NH
2NH

2

NN

NH
2NH

2N

N

N

Ru Cl

Cl

N

H
2
SO

4
/HNO

3 H
2
NOH*HCl

H
2
NNH

2
*H

2
O

OHR

CHO

CHO

KBr

30 31

32

33

or cat.
red'n

CuCl2*2H2O
3a or 3b

10  (R = Br) or 25 (R = 4-tert-butylphenyl)

Scheme 10.  Proposed synthetic route to targeted supramolecular triads [3]
6+

. 

Counteranions and charges on the complexes are omitted to simplify the graphic. 

 

 



 47 

CHAPTER 3 

CONCLUSIONS AND RECOMMENDATIONS 

Significant progress toward the construction of the tetranuclear bimetallic triad 1b 

was realized.  Specifically, a procedure was developed whereby MOM-protected 4-

bromo-2,6-diformylphenol 11 was efficiently and cleanly cross-coupled with 4-tert-

butylphenylboronic acid.  This is the first reported Suzuki coupling of compound 11 to 

give a 4-aryl-2,6-diformylphenol.  Furthermore, 11 was cross-coupled with terpyridine-

functionalized boronic ester 7 to give 5b, a key intermediate in the synthesis of complex 

1b.  This is the first reported synthesis of a terpyridine-functionalized 2,6-

diformylphenol. 

The cross-coupling of 10 with 7 to give terpyridine-functionalized diformylphenol 

5b was an unoptimized reaction.  Some Suzuki couplings are often very sensitive to the 

nature of the solvent, as was demonstrated in the coupling of MOM-protected 4-bromo-

2,6-diformylphenol 11 with 4-tert-butylphenylboronic acid.  Dimethoxyethane (DME) 

has been shown to be among the best solvents for Suzuki reactions where terpyridine 

moieties were the coupling partner(s).
47

  Its use as solvent should be investigated in this 

system. 

Other coupling reactions should also be investigated.  For example the Stille or 

Negishi reactions might prove more robust for substrates of these types. 

It is also recommended that the use of acetylenic linking groups be investigated.  

Literature precedent exists
55

 for the ethynylation of compound 11 via the Sonagashira 

reaction.  There are also many reported references of using acetylenes or catenated 

acetylenes to link polypyridyl moieties to other groups including metal complexes.
59
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CHAPTER 4 

EXPERIMENTAL 

Physical Measurments 

UV-visible absorption spectra were recorded on a Shimadzu UV-2401PC UV- vis 

recording spectrophotometer. 

Analyses for C, H, and N were processed on a ThermoFinnigan FlashEA 1112 

series elemental analyzer. 

1
HNMR spectra were recorded at ambient temperature using a Varian Mercury 

300 MHz spectrometer; chemical shifts were measured relative to the solvent reference 

(dimethyl sulfoxide-d6: 2.49 ppm; chloroform-d: 7.27 ppm; acetonitrile-d3: 1.94 ppm). 

Mass spectral analyses were conducted using positive ion electrospray mass 

spectrometry employing a Waters LCT-TOF (time-of-flight) mass spectrometer.  The 

resolution of the mass spectrometer is approximately 5000 at peak half height.  In the 

case of copper complex 12, the sample was dissolved in water (1 mg in 1.5 mL) and then 

diluted (20 µL of the solution into 1.5 mL of water).  The samples were infused into the 

mass spectrometer with a Hamilton syringe pump at 10 L/minute with a source cone 

voltage of 20 volts.   

The instrument was calibrated with a solution of polypropylene glycol (average 

MW 1000) in a mixture of 50/50 volume/volume water/acetonitrile containing 4 mmolar 

ammonium acetate.  The source cone voltage was set at 50 volts to give a mixture of 

(M+NH)
+
 ions and fragment ions. 
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Materials 

All commercially available materials were used without any further purification 

and were obtained from Aldrich, TCI America, Frontier Scientific, Alfa Aesar, 

Mallinckrodt, VWR, Burdick and Jackson, J.T. Baker, or Eastman Chemical Company.  

Solvents were reagent grade or better.  The dry trifluoroacetic acid (TFA) used in the 

modified Duff reactions was either redistillation, for protein sequencing or 

spectrophotometric grade from Aldrich.  Reagent grade TFA, either from Aldrich or 

Mallinckrodt, did not afford the desired transformation in these reactions, presumably 

due to its higher water content. 

 

Preparations 

Synthesis of Selected Mono-Terpyridine Compounds 

4'-(4-Hydroxyphenyl)-2,2':6',2"-terpyridine (tpy--OH) (14).  2-Acetylpridine (23.23 

g, 192 mmol) was added to a solution of 4-hydroxybenzaldehyde (mmol) in ethanol  (480 

mL).  KOH pellets (14.8 g, 85%, 192 mmol) and conc aq NH3 (280 mL, 28-30%, ca. 240 

mmol) were added to the solution.  After the KOH had dissolved (less than 2 min) the 

reaction vessel was loosely capped and the solution was allowed to stand for 1 week at 

room temperature.  The potassium salt of the desired compound, which precipitated as a 

dark yellow powder, was collected by filtration.  Additional free phenol could be 

obtained as tan flakes by neutralization of the filtrate with HOAc.  (combined yield: 

30%). 
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4'-(4-Bromophenyl)-2,2':6',2"-terpyridine (tpy--Br) (15).  2-Acetylpridine (23.23 g, 

192 mmol) was added to a solution of  4-bromobenzaldehyde ( 96 mmol) in ethanol  (480 

mL).  KOH pellets (14.8 g, 85%, 192 mmol) and conc aq NH3 (280 mL, 28-30%, ca. 240 

mmol) were added to the solution.  After the KOH had dissolved, the reaction vessel was 

loosely capped and the solution was allowed to stand overnight.  The desired compound 

was collected as an off-white powder by filtration.  The powder was washed with cold 

ethanol and air dried (yield: 17.2 g, 46%). 

 

4'-(Phenyl)-2,2':6',2"-terpyridine (tpy-Ph) (16).  2-Acetylpridine (23.23 g, 192 mmol) 

was added to a solution of benzaldehyde ( 96 mmol) in ethanol  (480 mL).  KOH pellets 

(14.8 g, 85%, 192 mmol) and conc aq NH3 (280 mL, 28-30%, ca. 240 mmol) were added 

to the solution.  After the KOH had dissolved, the reaction vessel was loosely capped and 

the solution was allowed to stand overnight.  The desired compound was collected as an 

off-white powder by filtration.  The powder was washed with cold ethanol and air dried 

(yield: 29.7g, 20%). 

 

4'-(4-Methylphenyl)-2,2':6',2"-terpyridine (tpy--CH3) (17).  2-Acetylpridine (23.23 

g, 192 mmol) was added to a solution of  p-tolualdehyde (96 mmol) in ethanol  (480 mL).  

KOH pellets (14.8 g, 85%, 192 mmol) and conc aq NH3 (280 mL, 28-30%, ca. 240 

mmol) were added to the solution.  After the KOH had dissolved, the reaction vessel was 

loosely capped and the solution was allowed to stand overnight.  The desired compound 

was collected as off-white needles by filtration.  The needles were washed with cold 

ethanol and air dried (yield: 9.1 g, 29%). 
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4'-(4-Methoxyphenyl)-2,2':6',2"-terpyridine (tpy--OMe) (18).  2-Acetylpridine 

(23.23 g, 192 mmol) was added to a solution of 4-bromobenzaldehyde (96 mmol) in 

ethanol  (480 mL).  KOH pellets (14.8 g, 85%, 192 mmol) and conc aq NH3 (280 mL, 28-

30%, ca. 240 mmol) were added to the solution.  After the KOH had dissolved, the 

reaction vessel was loosely capped and the solution was allowed to stand overnight.  The 

desired compound was collected as an off-white powder by filtration.  The powder was 

washed with cold ethanol and air dried (yield: 3.9 g, 12%). 

 

4'-(4-Acetamidophenyl)-2,2':6',2"-terpyridine (tpy--NHAc) (19).  2-Acetylpridine 

(23.23 g, 192 mmol) was added to a solution of 4-acetamidobenzaldehyde (96 mmol) in 

ethanol (480 mL).  KOH pellets (14.8 g, 85%, 192 mmol) and conc aq NH3 (280 mL, 28-

30%, ca. 240 mmol) were added to the solution.  After the KOH had dissolved, the 

reaction vessel was loosely capped and the solution was allowed to stand overnight.  The 

desired compound was collected as off-white needles by filtration.  The powder was 

washed with cold ethanol and air dried (yield: 14.1 g, 40%). 

 

4'-(4-Hydroxy-3,5-dibromophenyl)-2,2':6',2"-terpyridine (20)  2-Acetylpridine (23.23 

g, 192 mmol) was added to a hot solution of 4-hydroxy-3,5-dibromobromobenzaldehyde 

(96 mmol) in ethanol  (480 mL).  KOH pellets (14.8 g, 85%, 192 mmol) and conc aq NH3 

(280 mL, 28-30%, ca. 240 mmol) were added to the solution.  
1
H NMR analysis showed 

that the solid that had deposited after 15 h was largely the intermediate aza-chalcone, or 

its potassium salt.  The mixture was heated at reflux for 8 h.  After cooling, the potassium 
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salt of the desired compound was collected by filtration as bright orange flakes (yield: 7.5 

g, 15%). 

 

4'-(4-Methoxy-3,5-dibromophenyl)-2,2':6',2"-terpyridine (21)  The potassium salt of 

4'-(4-Hydroxy-3,5-dibromophenyl)-2,2':6',2"-terpyridine (4.0 g, 7.6 mmol) was slurried 

with K2CO3 in acetone (50 mL) and DMSO (50 mL).  An excess of methyl iodide (6 g) 

was added and the mixture was warmed to ca. 60 °C for 15 min during which time the 

orange color discharged completely and a white microcrystalline precipitate deposited.  

The acetone and excess methyl iodide were removed by rotary evaporation.  The residue 

was diluted with warm water and the product was isolated by filtration and subsequently 

washed with more warm water.  The wet cake was reslurried in boiling acetone.  After 

cooling, the desired compound was collected by filtration as an almost colorless 

microcrystalline powder in near quantitative yield. 

 

Synthesis of Brominated Dialdehydes 

4-Bromo-2,6-diformylphenol (10).  4-Bromophenol (50.8g) and 

hexamethylenetetramine (83.8 g) were added to dry trifluoroacetic acid (TFA, 375 mL).  

The solution was heated at reflux (140 °C external temperature) for 3 d then poured hot 

into 4 N HCl (1200 mL).  After standing 15 h, a bright yellow precipitate separated and 

was removed by filtration.  Recrystallization from ethanol/water gave short pale yellow 

needles (20%).  In most preparations of this compound, the crude product was 

sufficiently pure, as judged by 
1
H NMR, to be used in subsequent reactions.  The isolated 

yield of purified product could be improved from 20% to ca. 60% if purified by 
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chromatography (silica, EtOAc/heptane, gradient 15–40 v %) rather than 

recrystallization.  In some preparations of this compound, unexplainably, a very large 

amount (ca. 60 wt %) of CF3C(O)NHCH2NHC(O)CF3 coprecipitated with the desired 

crude product from acid solution.  In those cases, it was found that the undesirable bis-

amide could not be efficiently removed by chromatography using the EtOAc/heptane 

system, but it was quite insoluble in chloroform and could be removed by simple 

filtration.  The filtrate was then slurried with silica, filtered again, and evaporated to leave 

17 in ca. 43% yield. 

 

5-Bromo-2-(methoxymethoxy)benzene-1,3-dicarbaldehyde  (11).  To a solution of 4-

bromo-2,6-diformylphenol 10 (22 g) in DMF (250 mL) was added anhydrous K2CO3 (64 

g).  The solution was cooled in an ice bath and neat chloromethylmethylether (12 g) was 

added dropwise via syringe.  The mixture was stirred 16 h at RT, then water (300 mL) 

was added.  The resulting precipitate was collected by filtration and washed with water.  

After drying on the filter overnight, TLC analysis (silica, 50/50:EtOAc/heptane) of the 

yellow-beige powder showed that the crude product comprised primarily a single species 

although some baseline impurities were noted.  The starting diformylphenol was absent 

from the crude product.  The powder was dissolved in EtOAc (50 mL) and silica (40 g) 

was added.  The mixture was stirred briefly then diluted with heptane (150 mL).  The 

mixture was poured onto a short plug of silica and eluted with additional EtOAc/heptane 

(600 mL, 1/3:v/v).  The solvent was removed to leave a colorless crystalline residue.  

Analysis by TLC showed the same compound, but without any baseline impurities (yield: 

20 g, 76%). 
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Pd(0) Catalyzed Reactions 

2,6-Diformyl-4-(neopentyl glycolatoboron)phenol (24).  Under a gentle flow of dry 

argon, to a Schlenk flask containing dialdehyde 10 (3.64 mg, 15.9 mmol), bis(neopentyl 

glycolato)diboron (3.77 g,  mmol), KOAc (4.69 g,  mmol), and PdCl2(dppf) (300 mg), 

were added anhydrous deaerated DMSO (80 mL) and anhydrous deaerated dioxane (80 

mL).  Argon was bubbled through the mixture for 40 min at RT.  The flask was heated at 

80 °C under argon for 30 h.  After cooling, the reaction mixture was diluted with toluene 

and washed with water.  The organic extracts were dried over MgSO4 and concentrated 

by rotary evaporation.  The residue was chromatographed over silica (EtOAc/heptane) 

and the desired product was isolated as a pale cream-colored solid (yield; 375 mg, 9%). 

 

4'-(4-Neopentyl glycolatoboronphenyl)-2,2':6',2"-terpyridine (tpy--Bneo) (7). 

Similar to the literature
47c

 procedure: Under a gentle flow of dry nitrogen, a Schlenk flask 

was charged with bis(neopentyl glycolato)diboron (2.85 g, 12.6 mmol), KOAc (3.53 g,  

36 mmol), PdCl2(dppf) (300 mg), terpyridine 9 (4.66 g, 12 mmol), and anhydrous 

deaerated DMSO (120 mL).  Nitrogen was bubbled through the mixture for 40 min at 

RT.  The flask was heated at 80 °C under nitrogen for 10 h.  After cooling, the reaction 

mixture was diluted with toluene (800 mL) and washed with water (4 × 1 L).  The 

organic extracts were dried over MgSO4 and concentrated by rotary evaporation to give 

the product as an off-white solid (yield: 3.4 g, 67%).   

 

4'-tert-butyl-4-hydroxybiphenyl-3,5-dicarbaldehyde (25).  Protected diformylphenol 

11 (819 mg, 3 mmol), 4-tert-butylphenylboronic acid (588 mg, 3.3 mmol), Na2CO3 (1.3 
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g), water (7 mL), THF (80 mL), tetrakis(triphenylphosphine)palladium(0) (90 mg), and 

dichlorobis(triphenylphosphine)palladium(II) (70 mg) were charged to a Schlenk flask.  

Nitrogen gas was bubbled through the reaction mixture for 40 min.  The tube was sealed 

under nitrogen and heated at 80 °C for 12 h.  Analysis by TLC suggested that compound 

11 had been completely consumed.  After cooling, the mixture was diluted with toluene 

and washed repeatedly with water.  The organic extracts were dried over MgSO4 and 

concentrated by rotary evaporation.  The residue was chromatographed over silica 

(EtOAC/heptane).  The desired product was collected as a yellow powder (yield; 439 mg, 

52%).  Mass spectral and 
1
HNMR analysis confirmed the identity of the purified product. 

 

4'-(3,5-Diformyl-4-hydroxyphenyl)-2,2':6',2"-terpyridine and 4'-(3,5-diformyl-4-

(methoxymethoxy)phenyl)-2,2':6',2"-terpyridine  (5b and its methoxymethyl ether).  

Protected diformylphenol 11 (104 mg, 0.38 mmol), terpyridine 7 (160 mg, 0.38 mmol), 

Na2CO3 (162 mg, ), water (0.85 mL),.THF (10 mL), 

tetrakis(triphenylphosphine)palladium(0), (12 mg) and 

dichlorobis(triphenylphosphine)palladium(II) (8 mg) were charged to a Schlenk tube.  

Nitrogen gas was bubbled through the reaction mixture for 40 min.  The tube was sealed 

under nitrogen and heated at 80 °C for 12 h.  Analysis by TLC suggested that compound 

7 had been completely consumed.  After cooling, DMF was added to dissolve the hard 

residue.  The mixture was diluted with toluene and water then neutralized by addition of 

acetic acid and washed repeatedly with water.  The organic extracts were dried over 

MgSO4 and concentrated by rotary evaporation.  Analysis by 
1
HNMR suggested that 

cross-coupling had been successful, but the protecting group had to a large extent been 
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removed.  Mass spectral analysis confirmed that the 5b was the major product of the 

reaction with a minor ion corresponding to its MOM ether (combined crude yield: 155 

mg).  Several other minor ions were observed in the mass spectrum of the crude reaction 

product. 

 

Synthesis of Metal Complexes 

[Ru(CH3--tpy)]Cl3 (4).  Ruthenium(III) chloride hydrate (320 mg, 12.4 mmol) and 4'-

(4-methylphenyl)-2,2':6',2"-terpyridine (17, CH3--tpy, 400 mg, 12.4 mmol) were 

suspended in ethanol (40 mL).  The suspension was heated at reflux for 10 h.  After the 

mixture had cooled to room temperature, the red-brown solid was filtered off, washed 

with cold ethanol, and dried in vacuo (yield: 427 mg, 64%). 

[Ru(CH3--tpy)(B(OH)2--tpy)](PF6)2 (8).  Similar to the literature
47c

 procedure: 

Ru(tpy-- CH3)Cl3 (162 mg, 3.05 × 10
-4

 mol) and AgBF4 (179 mg, 9.16 × 10
-4

 mol) were 

suspended in a mixture of acetone (128 mL) and absolute ethanol (32 mL) and were 

heated at 75 °C for 3 h under nitrogen.  After cooling, the AgCl was removed by filtration 

through Celite.  Ethanol (30 mL) was added and the acetone was removed by evaporation 

without heating.  Ethanol was added to give 100 mL total volume.  Compound 7 (128 

mg, 3.05 × 10
-4

 mol) was added and the flask was covered with aluminum foil.  The 

solution was heated under nitrogen for 3.5 h then concentrated to dryness.  The residue 

was dissolved in a minimum of acetonitrile then added dropwise to a saturated aqueous 

solution of NH4PF6.  The red precipitate was chomatographed over silica as described in 

the literature.
47c

  Note that the ester is cleaved upon chromatography to give the boronic 

acid (yield: 146 mg, 45%). 
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[Cu2(Br-M-Br)(H2O)x]Cl2 (M = 4,4'diradical of the dianion of the Robson 

macrocycle derived from the 2 + 2 condensation of 2,6-diformylphenol with 1,3-

diaminopropane) (12).  Cupric chloride dihydrate (1.11 g, 6.5 mmol) was dissolved in 

methanol (ca. 15 mL) to give a green solution.  1,3-Diaminopropane (0.58 g, 0.65 mL, 

7.8 mmol) was added dropwise via syringe to give an immediate dark blue supernatant 

and heavy light blue precipitate.  4-Bromo-2,6-diformylphenol 10 (1.49 g, 6.5 mmol) was 

dissolved in boiling methanol (ca. 20 ml) then added in small portions to the copper–

diamine complex.  The supernatant turned green, but it was evident that the precipitate 

was still light blue.  More methanol, to give a total volume of ca. 100 mL, was added and 

the mixture was refluxed in air for 16 h.  The reaction mixture was filtered hot, and the 

green powder that was collected was washed with THF (100 mL) then dried in air (yield: 

1.604 g, 64% if dihydrate).  Percent C, H, and N, calculated for the cation: C, 34.48; H, 

3.16; N, 7.31; found: C, 34.52; H, 2.83; N, 7.10. 

[Zn2(Br-M-Br)(H2O)x](BF4)2 (13).  Zinc tetrafluoroborate hydrate (454 mg, 1.91 mmol) 

1,3-diaminopropane (141 mg, 162 L, 1.91 mmol) and compound 10 (437 mg, 1.91 

mmol), were heated at reflux in methanol (ca. 40 mL) for 4 h.  Upon cooling, yellow 

crystals deposited from solution.  The crystals were isolated by suction filtration, and 

were washed with a little cold methanol on the filter (yield: 425 mg, 53 %).  
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APPENDIX A 

1
HNMR Spectra of Selected New Compounds 
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APPENDIX B: 

Sequentially Numbered Chemical Structures of Synthetic Targets and Intermediate 
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APPENDIX C: 

Mechanistic Schemes for Some Name Cross-Coupling Reactions 
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Adapted from: Mundy, B.P.; Ellerd, M.G.; Favaloro, F.G., Jr.  Name Reactions and 

Reagents in Organic Syntheses, Second Edition; John Wiley & Sons: Hoboken, NJ, 2005; 

pp 436,437. 
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Suzuki Coupling (or Suzuki-Miyaura Coupling) 
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Adapted from: Mundy, B.P.; Ellerd, M.G.; Favaloro, F.G., Jr.  Name Reactions and 

Reagents in Organic Syntheses, Second Edition; John Wiley & Sons: Hoboken, NJ, 2005; 

pp 636,637. 
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APPENDIX D: 

Miscellaneous Analytical Data 

Reaction product of 
Compound 14 
subjected to Duff 
reaction conditions. 
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1
HNMR 

Solvent: DMSO-d6 
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Reaction product of 
compound 21 after 
treatment with 

t
BuLi 

followed by DMF quench. 
 

300 MHz 
1
HNMR 

Solvent: DMSO-d6 
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Crude reaction product of attempted Suzuki coupling 
of compounds 10 and 7 using PhMe/ethanol solvent 
system. 
 

300 MHz 
1
HNMR 

Solvent: DMSO-d6 
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Crude reaction product of attempted Suzuki coupling of compounds 11 and 
7 using PhMe/ethanol solvent system. 
 

300 MHz 
1
HNMR 

Solvent: DMSO-d6 
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Crude reaction product of Suzuki coupling of compounds 11 
and 7 using THF solvent system to give compound 5b and 
its MOM-protected adduct 
 
 

300 MHz 
1
HNMR 

Solvent: DMSO-d6 
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Uv-vis chromatograms from electrospray LC-MS showing 

Crude reaction product of Suzuki coupling of compounds 11 and 7 to give 
compound 5b and its MOM-protected adduct 
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Reaction product of Ru(tpy-

-CH3)Cl3 with crude 5b. 
 

300 MHz 
1
HNMR 

Solvent: acetonitrile-d3 
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ESIMS chromatogram of 

reaction product of 

Ru(tpy--CH3)Cl3 

with crude 5b  

PF6
-
 

adduct 
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