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ABSTRACT

Decompositions of Mixed Graphs with Partial Orientations of the P4

by

Adam Meadows

A decomposition D of a graph H by a graph G is a partition of the edge set of H such

that the subgraph induced by the edges in each part of the partition is isomorphic

to G. A mixed graph on V vertices is an ordered pair (V, C), where V is a set of

vertices, |V | = v, and C is a set of ordered and unordered pairs, denoted (x, y) and

[x, y] respectively, of elements of V [8]. An ordered pair (x, y) ∈ C is called an arc

of (V, C) and an unordered pair [x, y] ∈ C is called an edge of graph (V, C). A path

on n vertices is denoted as Pn. A partial orientation on G is obtained by replacing

each edge [x, y] ∈ E(G) with either (x, y), (y, x), or [x, y] in such a way that there

are twice as many arcs as edges. The complete mixed graph on v vertices, denoted

Mv, is the mixed graph (V, C) where for every pair of distinct vertices v1, v2 ∈ V , we

have {(v1, v2), (v2, v1), [v1, v2]} ⊂ C . The goal of this thesis is to establish necessary

and sufficient conditions for decomposition of Mv by all possible partial orientations

of P4.
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1 INTRODUCTION

1.1 Basic Graph Theory Definitions

A graph G consists of a vertex set V (G), an edge set E(G), and a relation that

associates the edges with vertices. If a vertex is associated with an edge, it is an

endpoint of that edge. A vertex v is incident to an edge e if v is an endpoint of e.

An arc, a = (x, y), is considered to be a directed edge from x to y. For a vertex v

in a graph G, the degree of v denoted degG(v) is the number of edges of G incident

with v. For a vertex v in graph G, the out degree denoted od(v) of v is the number

of vertices of G to which v is adjacent, while the in degree of G denoted id(v) of v is

the number of vertices of G from which v is adjacent. We will assume that all graphs

are simple, i.e., there are no loops (edges whose endpoints are equal) and no multiple

edges [25]. All graphs presented here are finite unless otherwise noted. Examples are

given in Figure 1.

Figure 1: Simple Graph with No Arcs, with Arcs, and with Arcs and Edges.

The order of G, denoted n(G) = |V (G)|, is the number of vertices in G. The size

of G, denoted e(G) = |E(G)|, is the number of edges in G. The maximum degree

of G, denoted ∆(G) = max{degG(v)}, is the largest number of edges incident to a

vertex v in G. The minimum degree of G, denoted as δ(G) = min{degG(v)}, is the

smallest number of edges incident to a vertex v in G [25].
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A path on n vertices is denoted Pn. The cycle on n vertices is denoted Cn. A

bipartite graph is a graph whose vertices can be divided into two disjoint sets V1 and

V2 such that every edge connects a vertex in V1 to one in V2; that is, V1 and V2 are

independent sets. Equivalently, a bipartite graph is a graph that does not contain any

cycles of odd length. A complete bipartite graph G : (V1 ∪ V2, E) is a bipartite graph

such that v1v2 ∈ E(G) if and only if v1 ∈ V1 and v2 ∈ V2. The complete bipartite graph

with partitions |V1| = m and |V2| = n is denoted Km,n. The wheel graph, denoted Wn,

is a graph with n+1 vertices, formed by connecting a single vertex to all the vertices

of an n− cycle. The complete graph is a simple graph in which every pair of distinct

vertices is connected by an edge. The complete graph on n vertices is denoted by Kn

[8]. Examples of these graphs are given in Figure 2.

P6 C6 K6

K2,4 K1,5 W5

Figure 2: Special Graphs on Six Vertices

A directed graph or digraph, denoted D, consists of a vertex set V (D), and a set

of arcs A(D). If a directed path leads from x to y, then y is said to be a successor of

x and reachable from x, and x is said to be a predecessor of y. An arc, a = (x, y), is

considered to be directed from x to y. The arc (y, x) is the arc (x, y) inverted.

9



A mixed graph on V vertices is an ordered pair (V, C), where V is a set of vertices,

|V | = v, and C is a set of ordered and unordered pairs, denoted (x, y) and [x, y]

respectively, of elements of V [8]. An ordered pair (x, y) ∈ C is called an arc of (V, C)

and an unordered pair [x, y] ∈ C is called an edge of graph (V, C). Figure 3 illustrates

a mixed graph on four vertices.

Figure 3: Mixed Complete Graph on Four Vertices, M4

An isomorphism between two graphs G and H is a bijection f : V (G) → V (H)

such that xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). Two graphs are isomorphic if

such a bijections exists.

1.2 Decompositions

A decomposition D of a digraph H is a partition of the arc set of H. The graph

H is called the host graph for the decomposition. For each P of the partition, the

subgraph of H induced by P is called a block of the partition. We will be concerned

with the case that all blocks are isomorphic to a single block prototype G. In this

case we say that D is a G-decomposition of H and that G is a divisor of H. This

10



situation is denoted G|H. Analogous definitions exist for decompositions of directed

and mixed graphs. Figure 4 illustrates a P3-decomposition of Q3.

6 7

4 5

2 3

0 1

H

Figure 4: A P3-Decomposition of H

If G is a simple graph then the mixed graph M(G) has V (M(G)) = V (G), and

C = {(x, y), [x, y], [y, x]} ⊆ C if and only if xy ∈ E(G). For convenience, M(Kn) =

Mn. Figure 5 illustrates a graph and its associated mixed graph.

C4 M(C4)

Figure 5: C4 and M(C4)

A partial orientation of G is obtained by replacing each edge [x, y] ∈ E(G) with

either (x, y), (y, x), or [x, y]. We restrict this to partial orientations in which there are

twice as many arcs as edges. Since the mixed complete graph has twice as many arcs

as edges, e(G) ≡ 0 (mod 3). The converse of a directed (mixed) graph G, denoted

Gc, is obtained from G by reversing the orientation on all arcs, i.e., (x, y) ∈ Gc if and

only if (y, x) ∈ G.
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The goal of this thesis is to establish necessary and sufficient conditions for the

decomposition of Mv by all possible partial orientations of P4.

P 1
4 P 2

4 P 3
4 P 4

4

P 5
4

P 6
4

P 7
4

Figure 6: Partial Orientations of P4

To aid in this, we give the following proposition.

Proposition 1.1 i. If G|H and H|K, then G|K.

ii. G|H if and only if Gc|Hc.

iii. G|H if and only if M(G)|M(H).

Proof.

i. Suppose G|H and H|K. If G|H, then there is a decomposition D1 of a graph

H into copies of G. Similarly, since H|K, there exists a decomposition D2 of

K into copies of H. For each H-block in D2, we replace it with edge disjoint

copies of G via D1. This gives the required G-decomposition of K.

ii. Suppose G|H. If G|H, then there is a decomposition D of a digraph H is a

partition of the arc set of H. Then take any G-block B such that (x, y) ∈ B.

Note that (x, y) ∈ A(H). Then for each (x, y) ∈ A(H), there exists and Gc-block

Bc such that (y, x) ∈ A(Bc). Hence, this gives the required Gc-decomposition

12



of Hc. Conversely, if Gc|Hc then there is a decomposition D of a graph Hc into

copies of Gc. Then for each (x, y) ∈ A(H), there exists and Gc-block, Bc, such

that (y, x) ∈ A(Bc). Since (x, y) ∈ A(H), there exists a G-block B such that

(x, y) ∈ A(B). This gives the required G-decomposition of H.

iii. If G|H, then there is a decomposition D of a graph H into copies of G. Then

for each xy ∈ E(H), there exists a G-block B such that xy ∈ B. For every

{(x, y), (y, x), [x, y]} ⊂ C(M(H)),

there exists M(G)-block B such that {(x, y), (y, x), [x, y]} ∈ C(B). This means

we have a D of a graph M(H) into copies of M(G). This then gives the

required M(G)-decomposition of M(H). Conversely, if M(G)|M(H) then there

is a decomposition D of a graph M(H) into copies of M(G). For every

{(x, y), (y, x), [x, y]} ⊂ C(M(H)),

there exists M(G)-block B such that {(x, y), (y, x), [x, y]} ∈ M(H). Hence for

each xy ∈ E(M(H)) there exists a M(G)-block B such that; xy ∈ B. This

means we have a decomposition D of a graph H into copies of G. Hence this

gives the required G-decomposition of H.

1.3 Algebra

The constructions that we will use to prove the sufficient conditions for our results

will often be algebraic in nature. To facilitate this we give relevant definitions and

13



results from algebra.

Let a, d be integers. If d divides a, then there exists c ∈ Z such that cd = a, and

this situation is denoted d|a. If there is no such c, we say that d does not divide a,

and this situation is denoted d - a. Let S ⊆ Z+. Then the greatest common divisor

of S, denoted gcd(S), is the largest d ∈ Z+ such that d|a for all a ∈ S [2, 10, 13].

Define Z∗

n = {x ∈ Zn : 0 < x ≤ n/2}. Define |x|n = min{|x|, |n − x|}. Let

n ∈ Z+ and S ⊆ Z∗

n be given. The circulant graph Cn(S) is the undirected graph

with vertex set V = Zn and edge set: E = {xy : x, y ∈ Zn and |x − y|n ∈ S}[3].

Figure 7 illustrates an example of a circulant graph.

0 1

2

34

5

Figure 7: Circulant - C6(1, 2)

Let Zn = {0, ..., n − 1}. If a ∈ Zn and gcd(a, n) = 1, then for every x ∈ Zn there

exists a y ∈ Zn such that ya = x. Hence a generates Zn. In general, if gcd(a, n) = d,

then a will generate d disjoint cycles, each of length n/d.

Two integers v and a are said to be congruent modulo n, if their difference a− b is

an integer multiple of n. An equivalent definition is that both numbers have the same

remainder when divided by n. If this is the case, it is expressed as v ≡ a (mod n).

14



2 REVIEW OF LITERATURE

This chapter introduces the motivation behind the study of triple systems and

mixed triple systems.

2.1 Triple Systems

Our problem originates from the study of triple systems. This originated with

Kirkman’s schoolgirl problem. Kirkman’s schoolgirl problem is a problem in com-

binatorics solved by Thomas Kirkman in 1847 as Query VI in “The Lady’s and

Gentleman’s Diary”[17].

The problem states: “Fifteen young ladies in a school walk out three abreast for

seven days in succession: it is required to arrange them daily so that no two shall

walk twice abreast.”

The problem can be generalized to n girls, where n is an odd multiple of three.

The n girls need to be walking in triplets for (n − 1)/2 days, with the requirement

that no pair of girls walk in the same row twice. A complete solution to the general

case was given by D. K. Ray-Chaudhuri and R. M. Wilson in 1969 [23].

We can show that Kirkman’s Schoolgirl problem is equivalent to the decomposition

of K15 into copies of K3. Let the fifteen girls be represented by the vertices of K15.

As any two girls can walk in a row, there is an edge between any two vertices. The

“three abreast rows” mean K3-blocks. Further, “no two shall walk abreast” means

that the edges of these triangles are disjoint [17]. The solution to this generalization

is a Steiner Triple System: S(2, 3, 6t + 3) with parallelism (that is, one in which each

15



of the 6t + 3 elements occurs exactly once in each block of 3 − element sets). A

solution to Kirkman’s Schoolgirl Problem is given in Table 1.

Table 1: A solution to Kirkman’s schoolgirl problem
Sun Mon Tue Wed Thur Fri Sat
1,6,11 1,2,5 2,3,6 5,6,9 3,5,11 5,7,13 11,13,4
2,7,12 3,4,7 4,5,8 7,8,11 4,6,12 6,8,14 12,14,5
3,8,13 8,9,12 9,10,13 12,13,1 7,9,15 9,11,2 12,2,8
4,9,14 10,11,14 11,12,15 14,15,3 8,10,01 10,12,3 1,3,9
5,10,15 13,15,6 14,1,7 2,4,10 13,14,2 15,1,4 6,7,10

Next, this problem was worked on by Jacob Steiner[24], who was unaware at

the time of the earlier work by Kirkman. In combinatorial mathematics, a Steiner

system is a type of block design. A Steiner system with parameters l, m, n, written

STS(l, m, n), is an n-element set S together with a set of m − element subsets of S

(called blocks) with the property that each l − element subset of S is contained in

exactly one block. A Steiner system with parameters `, m, n is often called simply

STS(`, m, n). An STS(2, 3, n) is called a Steiner triple system, and its blocks are

called triples. The number of triples is n(n − 1)/6.

A Steiner triple system of order v, STS(v), is a decomposition of the complete

graph on v vertices, Kv, into 3 − cycles.

Steiner proved that v ≡ 1, 3 (mod 6) is necessary[24] and Reiss[21] showed that

this was also sufficient. Reiss and Steiner were both unaware that the problem had

been posed and solved by Kirkman in 1847 [17].

A Mendelsohn triple system, denoted MTS(v), is a decomposition of Dv into

16



copies of A, where A is the directed graph with V (Dv) = {a, b, c},

A(A) = {(a, b), (b, c), (c, a)}

. This graph is also called a 3 − circuit. A Mendelsohn triple system of order v is

equivalent to an A-decomposition of Dv and exists if and only if v ≡ 0, 1 (mod 3), v 6=

6.

Directed triple system denoted DTS(v) is decomposition of Dv into copies of B

where V (B) = {a, b, c}, A(B) = {(a, b), (c, b), (c, a)}. A Directed triple system of

order v is equivalent to an B-decomposition of Dv and exists if and only if v ≡ 0, 1

(mod 3). A Directed Triple System exists if and only if v = 0, 1 (mod 3) [8]. Figure

8 illustrates an example of these graphs.

Triple systems were further expanded in Hartman and Mendelsohn’s “Last of the

Triple systems”. Figure 9 illustrates the thirteen connected digraphs on three vertices

by Hartman and Mendelsohn.

A B
Figure 8: Mendelsohn and Directed Triple System

Inspired by Hartman and Mendelsohn, Robert Gardner [8] gave necessary and

sufficient conditions for the existence of new triple systems which are given by pre-

senting decompositions of the complete mixed graph into partial orientations of K3.

We will denote Ti by the ordered triple (a, b, c)i. Figure 10 gives examples of these

17



Figure 9: Digraphs From The “Last of the Triple Systems”

graphs. This is decomposition is called a Ti- triple system of order v where i = 1, 2

or 3 [8]. The necessary and sufficient conditions are stated in Proposition 2.1.

Proposition 2.1 [8]

i. A T1-triple system of order v exists if and only if v ≡ 1 (mod 2).

ii. A T2-triple system of order v exists if and only if v ≡ 1 (mod 2).

iii. A T3-triple system of order v exists if and only if v ≡ 1 (mod 2), v /∈ {3, 5}.

A decomposition of Mv into copies of Ti is a Ti Mixed Triple System of order

v [8].

T1 T2 T3

Figure 10: Mixed Triple Systems

18



2.2 Ringel’s Conjecture

It has be conjectured by Ringel that any tree T size m will decompose K2m+1[?].

Ringel’s Conjecture was the primary motivation for Rosa to introduce valuations.

Alexander Rosa developed several valuations on graphs. The most influential are

β - valuations [22]. These valuations were popularized by Golomb under the name

graceful labelings [9].

A graceful labeling of a graph with n vertices and e edges is a labeling of its vertices

with distinct integers between 0 and e inclusive, such that each edge is uniquely

identified by the positive, or absolute difference, between its endpoints. A graceful

labeling will induce a cyclic decomposition of the complete graph [9]. Figure 11

illustrates a graph with a graceful labeling.

13 12 11 4 3

0
7

2

10 9 8 1 6 5

Figure 11: A Gracefully Labeled Graph

An outline of results for graceful labelings and related labelings are given in Gal-

lian’s [7] “Dynamic Survey of Graph Labeling. ” This is summarized in Proposition

2.2.

Proposition 2.2 The following graphs are known to have a graceful labeling:

(i) Trees with at most four endpoints [15, 16, 22, 26].

19



(ii) Trees in which, at any two vertices u and v, there is a Pk with u and v as its

endpoints, where k ≤ 5 [14, 26].

(iii) Trees of order at most 27 [1].

(iv) Complete bipartite graphs [9, 22].

(v) Cycles of length n where n ≡ 0 (mod 4) or n ≡ 3 (mod 4) [18].

(vi) Wn (i.e., Wheel Graphs) [6][5].

(vii) The n-dimensional hypercube, Qn [19, 20].

Proposition 2.3 [3] If n ≥ 2q + 1, then a graceful graph of size q will decompose

Cn(1, ..., q).

We will use these results for our constructions in the next chapter.
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3 RESULTS

In this chapter we will give necessary and sufficient conditions for the decomposi-

tion of Mv using all possible partial orientations of the P4.

b

a

c

d

b

a

c

d

b

a

c

d

b

a

c

d

P 1
4 P 2

4 P 3
4 P 4

4

b

a

c

d

b

a

c

d

b

a

c

d

P 5
4 P 6

4 P 7
4

Figure 12: Labeled Partial Orientations of P4

As P 5
4

is the converse of P 1
4
, P 6

4
is the converse of P 2

4
, and P 7

4
is the converse of

P 3
4 , we only need to find necessary and sufficient conditions of partial orientations of

P 1
4 , P 2

4 , P 3
4 , P 4

4 by Proposition 1.1. Our notation will be as follows:

i. [a, b, c, d]1 denotes a P 1
4 -block with {(b, a), (c, b), [c, d]}.

ii. [a, b, c, d]2 denotes a P 2
4
-block with {(b, a), (b, c), [c, d]}.

iii. [a, b, c, d]3 denotes a P 3
4 -block with {(b, a), (c, d), [b, c]}.

iv. [a, b, c, d]4 denotes a P 4
4 -block with {(b, a), (d, c), [b, c]}.

Theorem 3.1 i. There exists a P 1
4
-decomposition of M(Cn) if and only if n ≥ 4

and n ≡ 0 (mod 2).

ii. There exists a P 2
4 -decomposition of M(Cn) if and only if n ≥ 4.

iii. There exists a P 3
4 -decomposition of M(Cn) if and only if n ≥ 4.
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iv. There exists a P 4
4 -decomposition of M(Cn) if and only if n ≥ 4 and n ≡ 0

(mod 4).

Proof. Note n ≥ 4 is necessary in all cases [4].

i. Take the set of blocks [2i, 2i + 1, 2i + 2, 2i + 3]1 and [2i, 2i − 1, 2i − 2, 2i − 3]1

i = 0, 1, 2, ..., n − 1. This will give P 1
4 -decomposition for M(Cn), n ≥ 4 and

n ≡ 0 (mod 4). Suppose n is odd and there exists a P 1
4 -decomposition of

C2n+1. Without loss of generality, suppose we start with the block [0, 1, 2, 3]1.

We then need the block [2, 3, 4, 5]1 which is forced. Since the arc (2, 3) cannot be

in another block, we must use the set of blocks of form [2i, 2i+1, 2i+2, 2i+3]1 .

However, this gives a contradiction since i = n and as [0, 1, 2, 3]1 and [2n, 0, 1, 2]1

share the arc (1, 2). Thus, there exists a P 1
4
-decomposition of M(Cn) if and only

if n ≥ 4 and n ≡ 0 (mod 2).

ii. Take the set of blocks [i, i + 1, i + 2, i + 3]2 where i = 0, 1, 2, ..., n− 1. This will

yield the P 2
4 -decomposition of M(Cn), for n ≥ 4.

iii. Take the set of blocks [i, i + 1, i + 2, i + 3]3 where i = 0, 1, 2, ..., n− 1. This will

yield the P 3
4 -decomposition of M(Cn), for n ≥ 4.

iv. Without loss of generality take the blocks [0, 1, 2, 3]4 and [4, 3, 2, 1]4. This forces

the set of blocks [5, 4, 3, 2]4 and [3, 4, 5, 6]4. These in turn force the set of blocks

[4i, 4i+1, 4i+2, 4i+3]4, [4i+4, 4i+3, 4i+2, 4i+1]4 , [4i+5, 4i+4, 4i+3, 4i+2]4 ,

and [4i + 3, 4i + 4, 4i + 5, 4i + 6]4. Thus, if n ≡ 0 (mod 4) this gives the

required P 1
4
-decomposition for Cn, where n = 4t, i = 1, ..., t and n ≥ 4. If
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n ≡ 1 (mod 4), n = 4t + 1, we notice that the set of blocks [0, 1, 2, 3]4 and

[n− 2, n− 1, 0, 1]4 share the arc (0, 1). If n ≡ 2 (mod 4) we will have the set of

blocks [0, 1, 2, 3]4, [n−3, n−2, n−1, 0]4, and [n−1, n−2, n−3, n−4]4. Now we

are missing the directed arcs (1, 2), (0, n − 1), (n− 2, n − 1) and the undirected

edges [0, 1], [n− 1, 0]. This then forces the block [n− 2, n− 1, 0, 1]4, but the arc

(0, 1) is shared. When n ≡ 3 (mod 4), 4i + 3 = n and i = (n− 3)/4 we remove

the block [0, 1, 2, 3]4. Now we have the set of blocks [4, 3, 2, 1]4, [2, 1, 0, n − 1]4

which share the arc (2, 1). Thus, there exists a P 4
4
-decomposition of Cn if and

only if n ≡ 0 (mod 4), n ≥ 4.

Theorem 3.2 i. There exists a P 1
4
-decomposition of M(Wn) if and only if n ≥ 3.

ii. There does not exist a P 2
4
-decomposition of M(Wn) for any n.

iii. There exists a P 3
4 -decomposition of M(Wn) if and only if n ≥ 3.

iv. There exists a P 4
4 -decomposition of M(Wn) if and only if n ≥ 3.

Proof. Note that n ≥ 3 is necessary in all cases [4]. Also note that c denotes the

center of the wheel and the vertices of n-cycle are denoted by elements of Zn.

i. Take the set of blocks [i, i+1, c, i+2]1 and [c, i+2, i+1, i]1 for i = 0, 1, 2..., n−1.

This will yield a P 1
4
-decomposition of M(Wn).

ii. Note that P 2
4 has only one vertex with positive out degree and this vertex “b′′

has out degree two, and the vertices on the cycle of Wn have odd out degree. It
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follows that a necessary condition to the existence of a P 2
4 -decomposition of H

is for every vertex in H to have an even out degree. Hence there does not exist

a P 2
4 -decomposition of M(Wn).

iii. Take the set of blocks [i, i+1, i+2, c]3 and [i, c, i+1, i+2]3 for i = 0, 1, 2..., n−1.

This will yield the P 3
4
-decomposition of M(Wn) for n ≥ 3.

iv. Take the set of blocks [c, i+2, i+1, i]4 and [i, c, i+1, i+2]4 for i = 0, 1, 2..., n−1.

This will yield the P 4
4 -decomposition of M(Wn) for n ≥ 3.

Theorem 3.3 i. There exists a P 1
4 -decomposition of M(Cn(1, 2)) if and only if

n ≥ 4.

ii. There exists a P 2
4
-decomposition of M(Cn(1, 2)) if and only if n ≥ 5.

iii. There exists a P 3
4 -decomposition of M(Cn(1, 2)) if and only if n ≥ 4.

iv. There exists a P 4
4 -decomposition of M(Cn(1, 2)) if and only if n ≥ 4.

Proof. Note that in all cases C4(1, 2) is isomorphic to W3. Hence a decomposition of

C4(1, 2) exists in all cases except for P 2
4 . Further, for n ≥ 4 is necessary in all cases

[4]. As such, it suffices to give constructions for n ≥ 5.

i. Take the set of blocks [i + 2, i + 3, i + 1, i]1 and [i + 1, i + 3, i + 2, i]1, i =

0, 1, 2, ..., n− 1. This will give the P 1
4
-decomposition of M(Cn(1, 2)).

ii. Take the set of blocks [i + 1, i, i + 2, i + 3]2 and [i, i + 2, i + 1, i + 3]2, i =

0, 1, 2, ..., n− 1. This will give the P 2
4 -decomposition of M(Cn(1, 2)).
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iii. Take the set of blocks [i + 3, i + 1, i + 2, i]3 and [i + 4, i + 3, i + 2, i]3, i =

0, 1, 2, ..., n− 1. This will give the P 3
4 -decomposition of M(Cn(1, 2)).

iv. Take the blocks [i, i+2, i+3, i+1]4 and [i+2, i+3, i+1, i]4, i = 0, 1, 2, ..., n−1.

This will give the P 4
4 -decomposition of M(Cn(1, 2)).

Theorem 3.4 i. There exists a P 1
4
-decomposition of M(Cn(1, 2, 3)) if and only if

n ≥ 6.

ii. There exists a P 2
4 -decomposition of M(Cn(1, 2, 3)) if and only if n ≥ 7.

iii. There exists a P 3
4 -decomposition of M(Cn(1, 2, 3)) if and only if n ≥ 6.

iv. There exists a P 4
4 -decomposition of M(Cn(1, 2, 3)) if and only if n ≥ 6.

Proof. Note that n ≥ 6 is necessary in all cases [4].

i. Take the set of blocks [i + 2, i + 3, i + 1, i]1 and [i + 3, i + 5, i + 2, i]1, and

[i + 1, i + 4, i + 3, i]1, i = 0, 1, 2, ..., n − 1. This will give the P 1
4 -decomposition

of M(Cn(1, 2, 3)).

ii. Note that when n = 6 we have C6(1, 2, 3) is isomorphic to K6. Note that

every vertex in C6(1, 2) has five out degree arcs, this leaves only one vertex

with a positive degree namely “b” which gives a contradiction by an in degree

out degree argument from previous work. Hence a necessary condition for all

vertices to have an even out degree. In all other cases, take the set of blocks
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[i+6, i+3, i+1, i]2, [i+6, i+5, i+2, i]2, and [i+6, i+4, i+3, i]2, i = 0, 1, 2, ..., n−1

for n ≥ 7. This will give the P 2
4 -decomposition of M(Cn(1, 2, 3)).

iii. Take the set of blocks [i, i + 2, i + 1, i + 3]3, [i, i + 3, i + 1, i + 4]3, and [i +

2, i + 3, i, i + 1]3, i = 0, 1, 2, ..., n − 1. This will give the P 3
4 -decomposition of

M(Cn(1, 2, 3)).

iv. Take the blocks [i+1, i+3, i+2, i]4, [i+2, i+5, i+3, i]4, and [i+3, i+4, i+1, i]4,

i = 0, 1, 2, ..., n − 1. This will give the P 4
4
-decomposition of M(Cn(1, 2, 3)).

Theorem 3.5 There exists a P i
4-decomposition for M(Cn(1, 2, 3, 4)) for every n ≥ 9.

Proof. Note P i
4|M(C4) by Theorem 3.1, further C4 is graceful [22]. Thus by [3] we

have a C4-decomposition of Cn(1, 2, 3, 4)) for every n ≥ 9. Thus, by Proposition 1.1

there is a P i
4
-decomposition of M(Cn(1, 2, 3, 4) for n ≥ 9.

Lemma 3.6 Let K = {Wp : n ≥ 5, p = 0, p ≥ 3}. Then there exists a K-

decomposition of K(3k + 4p + 1, k), for all k.

Proof. Treat k vertices as fixed points. The center of the wheel requires k pairs

differences from Z2k+4p+1. Z2k+4p+1 has differences {1, 2, ..., 2p, 2p+1, ..., 2p+k}. Use

differences 2p + 1, ..., 2p + k to generate wheels. This leaves C2k+4p+1(1, ..., 2p). Note

Wp has a graceful labeling [5] and e(Wp) = 2p, a graceful graph size q will decompose

Cn(1, ..., q), where n ≥ 2q + 1 [3].
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Theorem 3.7 There exists P 1
4 -decomposition of Mv for every v ≥ 4.

Proof. Note that v ≥ 4 is necessary. Let v ≡ 0 (mod 4). Then v = 4p + 4. Use a

single vertex as a single fixed point and we have M(K(4p+3, 1)). Use 2p+1 differences

to generate the outside cycle of the wheel. We know that Wp|C4p+3(1, ..., 2p) for p = 0,

p ≥ 3. Thus, we must decompose the remaining cases p = 1 and p = 2. For p = 1, we

have M(C7(1, 2)) which by Theorem 3.3 can be decomposed by P 1
4
. When p = 2, we

have M(C11(1, 2, 3, 4)) which by Theorem 3.5 M(C11(1, 2, 3, 4)) can be decomposed

by P 1
4
.

Next, let v ≡ 1 (mod 4), say v = 4p + 1. Note that K4p+1 is isomorphic to

C4p+1(1, ..., 2p). Since Wp|C4p+1(1, ..., 2p) for p = 0 and p ≥ 3, we are left with p = 1

and p = 2. When p = 1, we have M(C5(1, 2)) which can be decomposed by P 1
4

by Theorem 3.3. For p = 2, we have M(C9(1, 2, 3, 4)) has a P 1
4 -decomposition by

Theorem 3.5.

For v = 6, take the blocks [2j + 2, 2j + 1, 2j, 2j + 3]1, [i + 2, i + 4, i + 1, i]1,

[i + 3, i + 1, i + 2, i]1, i = 0, 1, ..., n − 1 and j = 0, 1, 2. This we will give the P 1
4 -

decomposition for M6. For v = 7, we have K7 = C7(1, 2, 3) which by Theorem 3.4

can be decomposed by P 1
4 .

Next, let v ≡ 2 (mod 4), v = 4p + 22. Treat seven vertices as fixed points. We

know Wp|C4p+15(1, ..., 2p), p = 0, p ≥ 3. This leaves the remaining cases p = 1

and p = 2. When p = 1, we have C19(1, 2) which can be decomposed by Theorem

3.3. For p = 2, we have M(C23(1, 2, 3, 4)) and by Theorem 3.5, M(C23(1, 2, 3, 4))

can be decomposed by P 1
4
. Now we are left with v = 6, 10, 14, 18. By above there

is a decomposition for v = 6. When v = 10, K10 = W9 ∪ C9(1, 2, 3). By Theorem
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3.2 and Theorem 3.4, we can decompose M(W9) and M(C9(1, 2, 3)) respectively.

Hence there is a P 1
4 -decomposition for M10. When v = 14, we have K14 = W13 ∪

C13(1, 2) ∪ C13(3, 4, 5). Then take the set of blocks [i + 4, i + 7, i + 3, i]1, [i + 2, i +

7, i+4, i]1, and [i+7, i, i+6, i+1]1, i = 0, 1, 2, ..., n−1 yields required decomposition

of C13(3, 4, 5). By Theorem 3.2 and Theorem 3.3, we can decompose M(W13) and

M(C13(1, 2)). Hence, there is a P 1
4
-decomposition of M14. When v = 18, we have

K18 = W17 ∪ C17(1, 2, 3, 4) ∪ C17(5, 6, 7). We know by Theorem 3.2 and Theorem

3.5, we can decompose M(W17) and M(C17(1, 2, 3, 4)). Taking the set of blocks

[i+6, i+11, i+5, i]1, [i+7, i+13, i+6, i]1, and [i+5, i+12, i+7, i]1, i = 0, 1, 2, ..., n−1

which will give the P 1
4 -decomposition of M(C17(5, 6, 7)).

Finally, let v ≡ 3 (mod 4), say v = 4p+19. Treat six vertices as fixed points which

leaves 4p + 13. We know Wp|C4p+13(1, ..., 2p) when p = 0, p ≥ 3. When p = 1, we

have M(C23(1, 2)) which can be decomposed by Theorem 3.3. When p = 2, we have

M(C27(1, 2, 3, 4)) and by Theorem 3.5, M(C27(1, 2, 3, 4)) has a P 1
4 -decomposition.

We are now left with p = 7, 11, 15. From previous work, we know the decomposition

exists when v = 7. When v = 11, we have K11 = C11(1, 2, 3) ∪ C11(4, 5). The set of

blocks [i + 5, i + 9, i + 4, i]1 and [i + 4, i + 9, i + 5, i]1, i = 0, 1, 2, ..., n − 1 will yield

decomposition of C11(4, 5). By Theorem 3.2 and Theorem 3.4 we can decompose

M(W13) and C13(1, 2). Hence there exists a P 1
4 -decomposition of M11. When v = 15,

we have K15 = C15(1, 2, 3, 4) ∪ C15(5, 6, 7). By Theorem 3.5, we can decompose

M(C15(1, 2, 3, 4)). Take the set of blocks [i+6, i+11, i+5, i]1, [i+7, i+13, i+6, i]1, and

[i+5, i+12, i+7, i]1, i = 0, 1, 2, ..., n−1 will yield P 1
4
-decomposition of M(C15(5, 6, 7)).
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Theorem 3.8 There exists P 2
4 -decomposition of Mv if and only if v ≡ 1 (mod 2),

v ≥ 5.

Proof. If v ≡ 0 (mod 2), then the directed part of P 2
4

will not decompose Dv.

If v ≤ 3, there will not be enough vertices [11]. It is known that Cn|Kv [12]. If

v = 2n + 1. Thus, M(Cn)|M(Kv) and by transitivity, P 2
4 |Mv when v ≥ 9, v ≡ 1

(mod 2). Thus, the only cases needed to be considered are and v = 5, 7. When v = 5

we will have K5 = C5 ∪ C5. When v = 7, we will have K7 = C7 ∪ C7 ∪ C7.

Theorem 3.9 There exists a P 3
4
-decomposition of Mv for every v ≥ 4.

Proof. Note that v ≥ 4 is necessary. Let v ≡ 0 (mod 4). Then v = 4p + 4. Use a

single vertex as a single fixed point and we have M(K(4p+3, 1)). Use the differences

2p + 1 to generate the outside cycle of the wheel. We know that Wp|C4p+3(1, ..., 2p)

for p = 0, p ≥ 3. Thus, we must decompose the remaining cases p = 1 and p = 2.

For p = 1, we have M(C7(1, 2)) which by Theorem 3.3 can be decomposed by P 3
4 .

When p = 2, we have M(C11(1, 2, 3, 4)) which by Theorem 3.5 C11(1, 2, 3, 4) can be

decomposed by P 3
4
.

Next, let v ≡ 1 (mod 4), say v = 4p + 1. Note that K4p+1 is isomorphic to

C4p+1(1, ..., 2p). Since Wp|C4p+1(1, ..., 2p) for p = 0 and p ≥ 3, we are left with p = 1

and p = 2. When p = 1, we have M(C5(1, 2)) which can be decomposed by P 3
4

by Theorem 3.3. For p = 2, we have M(C9(1, 2, 3, 4)) has a P 3
4
-decomposition by

Theorem 3.5.

For v = 6, take the blocks [2j + 2, 2j + 1, 2j, 2j + 3]3, [i + 2, i + 4, i + 1, i]3,

[i + 3, i + 1, i + 2, i]3, i = 0, 1, ..., n − 1 and j = 0, 1, 2. This we will give the P 3
4 -
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decomposition for M6. For v = 7, we have K7 = C7(1, 2, 3) which by Theorem 3.4

can be decomposed by P 3
4 .

Next, let v ≡ 2 (mod 4), v = 4p + 22. Treat seven vertices as fixed points. We

know Wp|C4p+15(1, ..., 2p), p = 0, p ≥ 3. This leaves the remaining cases p = 1 and p =

2. When p = 1, we have C19(1, 2) which can be decomposed by Theorem 3.3. For p =

2, we have C23(1, 2, 3, 4) and by Theorem 3.5, M(C23(1, 2, 3, 4)) can be decomposed

by P 3
4
. Now we are left with v = 6, 10, 14, 18. By above there is a decomposition

for v = 6. When v = 10, K10 = W9 ∪ C9(1, 2, 3). By Theorem 3.2 and Theorem

3.4, we can decompose M(W9) and M(C9(1, 2, 3)) respectively. Hence there is a P 3
4
-

decomposition for M10. When v = 14, we have K14 = W13 ∪ C13(1, 2) ∪ C13(3, 4, 5).

Taking the set of blocks [i+3, i+7, i+4, i]3, [i+4, i+9, i+5, i]3, and [i+5, i+8, i+3, i]3,

i = 0, 1, 2, ..., n− 1 yields required decomposition of M(C13(3, 4, 5)). By Theorem 3.2

and Theorem 3.3, we can decompose M(W13) and M(C13(1, 2)). Hence we get the P 3
4 -

decomposition for M14. When v = 18, we have K18 = W17∪C17(1, 2, 3, 4)∪C17(5, 6, 7).

We know by Theorem 3.2 and Theorem 3.5, M(W17), and M(C17(1, 2, 3, 4)) can be

decomposed by P 3
4 . Take the set of blocks [i+6, i+11, i+5, i]3, [i+7, i+13, i+6, i]3, and

[i+5, i+12, i+7, i]3, i = 0, 1, 2, ..., n−1 we have the P 3
4 -decomposition M(C17(5, 6, 7)).

Finally, let v ≡ 3 (mod 4), say v = 4p + 19. Treat six vertices as fixed points and

leaves 4p + 13. We know Wp|C4p+13(1, ..., 2p) when p = 0, p ≥ 3. When p = 1, we

have M(C23(1, 2)) which can be decomposed by Theorem 3.3. When p = 2, we have

M(C27(1, 2, 3, 4)) and by Theorem 3.5, M(C27(1, 2, 3, 4)) has a P 3
4
-decomposition. We

are now left with p = 7, 11, 15. From previous work, we know the decomposition exists

when v = 7. When v = 11, we have K11 = C11(1, 2, 3) ∪ C11(4, 5). The set of blocks
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[i, i + 5, i + 1, i + 6]3, and [i + 1, i + 5, i, i + 4]3, i = 0, 1, 2, ..., n − 1 will yield the

P 3
4 -decomposition for M11. When v = 15, we have K15 = C15(1, 2, 3, 4) ∪ C15(5, 6, 7).

By Theorem 3.5, we can decompose M(C15(1, 2, 3, 4)) for P 3
4 . The set of blocks

[i + 6, i + 11, i + 5, i]3, [i + 7, i + 13, i + 6, i]3, and [i + 5, i + 12, i + 7, i]3 will yield the

P 3
4 -decomposition of M(C15(5, 6, 7)).

Theorem 3.10 There exists a P 4
4
-decomposition of Mv for every v ≥ 4.

Proof. Note that v ≥ 4 is necessary. Let v ≡ 0 (mod 4). Then v = 4p + 4. Use a

single vertex as a single fixed point and we have M(K(4p+3, 1)). Use 2p+1 differences

to generate the outside cycle of the wheel. We know that Wp|C4p+3(1, ..., 2p) for p = 0,

p ≥ 3. Thus, we must decompose the remaining cases p = 1 and p = 2. For p = 1, we

have M(C7(1, 2)) which by Theorem 3.3 can be decomposed by P 4
4 . When p = 2, we

have M(C11(1, 2, 3, 4)) which by Theorem 3.5 M(C11(1, 2, 3, 4)) can be decomposed

by P 4
4 .

Next, let v ≡ 1 (mod 4), say v = 4p + 1. Note that K4p+1 is isomorphic to

C4p+1(1, ..., 2p). Since Wp|C4p+1(1, ..., 2p) for p = 0 and p ≥ 3, we are left with p = 1

and p = 2. When p = 1, we have M(C5(1, 2)) which can be decomposed by P 4
4

by Theorem 3.3. For p = 2, we have M(C9(1, 2, 3, 4)) has a P 4
4
-decomposition by

Theorem 3.5.

For v = 6, take the blocks [2j + 2, 2j + 1, 2j, 2j + 3]4, [i + 2, i + 4, i + 1, i]4,

[i + 3, i + 1, i + 2, i]4, i = 0, 1, ..., n − 1 and j = 0, 1, 2. This we will give the P 4
4
-

decomposition for M6. For v = 7, we have K7 = C7(1, 2, 3) which by Theorem 3.4

can be decomposed by P 4
4 .

31



Next, let v ≡ 2 (mod 4), v = 4p + 22. Treat seven vertices as fixed points. We

know Wp|C4p+15(1, ..., 2p), p = 0, p ≥ 3. This leaves the remaining cases p = 1 and

p = 2. When p = 1, we have C19(1, 2) which can be decomposed by Theorem 3.3.

For p = 2, we have M(C23(1, 2, 3, 4)) and by Theorem 3.5, M(C23(1, 2, 3, 4)) can be

decomposed by P 4
4 . Now we are left with v = 6, 10, 14, 18. By above there is a

decomposition for v = 6. When v = 10, K10 = W9 ∪ C9(1, 2, 3). By Theorem 3.2

and Theorem 3.4, we can decompose M(W9) and M(C9(1, 2, 3)) respectively. Hence

there is a P 4
4
-decomposition for M10. When v = 14, we have K14 = W13 ∪C13(1, 2) ∪

C13(3, 4, 5). Taking the set of blocks [i + 3, i + 7, i + 4, i]4, [i + 4, i + 9, i + 5, i]4, and

[i + 5, i + 8, i + 3, i]4, i = 0, 1, 2, ..., n− 1 yields required decomposition of C13(3, 4, 5).

By Theorem 3.2 and Theorem 3.3, we can decompose M(W13) and M(C13(1, 2)).

Hence there is a P 4
4 -decomposition of M14. When v = 18, we have K18 = W17 ∪

C17(1, 2, 3, 4) ∪ C17(5, 6, 7). We know by Theorem 3.2 and Theorem 3.5, how to

decompose M(W17) and M(C17(1, 2, 3, 4)). Take the set of blocks [i+6, i+11, i+5, i]4,

[i + 7, i + 13, i + 6, i]4, and [i + 5, i + 12, i + 7, i]4, i = 0, 1, 2, ..., n − 1 will yield the

P 4
4 -decomposition of M(C17(5, 6, 7)).

Finally, let v ≡ 3 (mod 4), say v = 4p + 19. Treat six vertices as fixed points and

leaves 4p + 13. We know Wp|C4p+13(1, ..., 2p) when p = 0, p ≥ 3. When p = 1, we

have M(C23(1, 2)) which can be decomposed by Theorem 3.3. When p = 2, we have

C27(1, 2, 3, 4) and by Theorem 3.5, M(C27(1, 2, 3, 4)) has a P 4
4
-decomposition. We are

now left with p = 7, 11, 15. From previous work, we know the decomposition exists

when v = 7. When v = 11, we have K11 = C11(1, 2, 3) ∪ C11(4, 5). The set of blocks

[i, i+5, i+1, i+6]4, [i+1, i+5, i, i+4]4, i = 0, 1, 2, ..., n−1 yields a P 4
4
-decomposition
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of M(C11(4, 5)). When v = 15 we can decompose C15(1, 2, 3, 4) by Theorem 3.5. Take

the set of blocks [i+6, i+11, i+5, i]4, [i+7, i+13, i+6, i]4, and [i+5, i+12, i+7, i]4,

i = 0, 1, 2, ..., n − 1 will yield P 4
4 -decomposition of M(15(5, 6, 7)).

Theorem 3.11 There exists a P 5
4
-decomposition of Mv for every v ≥ 4.

Proof. As P 5
4

is the converse of P 1
4

and by Proposition 1.1 the same proof follows

from Theorem 3.7.

Theorem 3.12 There exists a P 6
4 -decomposition of Mv for every v ≥ 4.

Proof. As P 6
4 is the converse of P 6

4 and by Proposition 1.1 the same proof follows

from Theorem 3.9.

Theorem 3.13 There exists a P 7
4 -decomposition of Mv for every v ≥ 4.

Proof. As P 7
4 is the converse of P 3

4 and by Proposition 1.1 the same proof follows

from Theorem 3.10.
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4 CONCLUSION

Figure 13: Future Graphs to Consider

Within this paper, we have established the necessary and sufficient conditions

for decompositions of Mv and other mixed graphs using partial orientations of P4.

There are still several related problems using the partial orientations of the P4. One

open problem to look at packings and coverings. A packing is a set of {G1, ..., Gk}-

blocks where Gi ⊂ V (H), ∪i=1E(Gi) ⊂ E(H), and E(Gi) ∩ E(Gj) = ∅. The leave

is L = E(H)\ ∪i=1 E(Gi). A maximal packing of simple graph H with isomorphic

copies of graph G is a set {G1, G2, ..., Gn} where Gi
∼= G and V (Gi) ⊂ V (H) for all

i, j, E(Gi) ∩ E(Gi) = ∅.

A minimal covering of simple graph H with isomorphic copies of graph G is a

set {G1, G2, ..., Gn} where Gi
∼= G and V (Gi) ⊂ V (H), for every i, H ⊆ ∪n

i=1
Gi is

minimal. The graph P is called the padding of the covering.

Another open relation problem is looking at λMn-designs. A λMn-design is defined

as a partition of the edges of λMn into subgraphs called G-blocks each of which is

isomorphic to G where G = (V (G), E(G)). An open problem to consider is taking
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the partial orientations of C6, corona graphs, and the graphs in Figure 13. Also there

is hybrid decompositions where there are two or more prototypes G1 and G2. Let

K = {G1, ..., Gk}. There is a K-decomposition of H in there are ni copies of Gi.

Finally, an open problem to consider is looking at partial orientations of the graphs

in Figure 13.
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