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ABSTRACT

New Technique for Imputing Missing Item Responses for an Ordinal Variable: Using 

Tennessee Youth Risk Behavior Survey as an Example

by

Andaleeb A. Ahmed

Surveys ordinarily ask questions in an ordinal scale and often result in missing data. We 

suggest a regression based technique for imputing missing ordinal data. Multilevel 

cumulative logit model was used with an assumption that observed responses of certain 

key variables can serve as covariate in predicting missing item responses of an ordinal 

variable. Individual predicted probabilities at each response level were obtained. Average 

individual predicted probabilities for each response level were used to randomly impute 

the missing responses using a uniform distribution. Finally, likelihood ratio chi square 

statistics was used to compare the imputed and observed distributions. Two other forms 

of multiple imputation algorithms were performed for comparison. Performance of our 

imputation technique was comparable to other 2 established algorithms. Our method 

being simpler does not involve any complex algorithms and with further research can 

potentially be used as an imputation technique for missing ordinal variables.
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CHAPTER 1

INTRODUCTION

Incomplete data are a frustrating problem encountered in observational, 

experimental, and survey research. The best way to handle this problem is to avoid it, but 

no matter how carefully we collect the data, missing data almost always exist. The two 

major problems with missing data are: 1) Biased estimates, 2) Reduction of statistical 

power (inefficient estimates). This problem is even more serious in survey data where 

unit and item nonresponse are frequent. Ordinal variables are commonly used in sample 

surveys and often results in significant item non-response. Especially when we work with 

Human risk behavior surveys (e.g. YRBS, BRFSS, etc.) involving sensitive and 

stigmatizing questions, the extent of non-response can be significant. 

There is often a need to apply a simple and convenient missing data technique 

(MDT) for these types of ordinal variables. In the last 2 decades there has been a lot of 

research on handling missing data. Many new techniques for handling missing data have 

been suggested.  The simplest, oldest, and the most intuitive of them, complete case 

analysis (CC), uses only complete cases for analysis. Traditional ad hoc ways of handling 

missing data are: list-wise deletion, pair-wise deletion, means substitution, hot deck 

imputations, and many others. It has been shown in the literature that these techniques do 

not perform adequately (Graham et al.,1994; Little et al., 1987; and their references). 

Some of the newer techniques like multiple imputation (MI), maximum likelihood 

(ML), and weighting approaches are gaining popularity in recent years. Multiple 

imputation technique (Rubin, 1987), particularly, is gaining popularity in the statistical 

fraternity. Books by Little and Rubin (1987), Schafer (1997), and Allison (2002) prove to 
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be useful resources on multiple imputation and general issues related to missing data. The 

newer techniques mentioned above require certain assumptions like multivariate normal 

distribution etc. Departure from these restrictive assumptions can threaten the validity of 

estimated parameters. Because a dataset can have many types of variables (e.g. Nominal, 

Ordinal, continuous, etc.), uniformly applying a multivariate normal theory (MVN) is 

inappropriate. A number of MI based MDTs are available for continuous variables (e.g. 

regression based techniques, predictive mean matching, propensity score, etc.) but for 

ordinal variables the choices are limited. Two commonly available MI based MDTs for 

discrete variables are: Logistic regression method, and Discriminant function method. 

Both require a monotone missing pattern for application. The distribution of ordinal 

variables can be highly skewed (especially in Human risk behavior studies) and, hence,

analyzing them under MVN assumption is not a good idea (Chen et al., 2005). 
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CHAPTER 2

STUDY PURPOSE

The purpose of this study is to suggest a simple and convenient regression-based 

single imputation technique for imputing missing ordinal data. Our technique is different 

from other log-odds based or proportional-odds based imputation technique because it 

does not involve extensive computing and complicated algorithms. It’s easy to implement 

under a simple assumption. We limit our study to those variables that are either sensitive 

or stigmatizing for the study population, but it can potentially be extended to any type of

ordinal variable. Multilevel cumulative logit model was used with an assumption that 

observed responses of an ordinal variable can serve as covariate in predicting the missing 

item responses of an ordinal variable of similar nature. The detailed methodology and 

application are covered in section 5. Section 3 explains the types of missing data 

mechanisms, while section 4 gives a brief review of some of the commonly available 

techniques for handling missing data. 



12

CHAPTER 3

TYPES OF MISSING DATA MECHANISMS

Many of the new and advanced missing data techniques require certain 

assumptions to be met before they can be used. These assumptions require a thorough 

understanding of the mechanisms behind “missingness”. Based on the work of Rubin 

(1976, 1987), there are three mechanisms by which the data can be missing: 1) MAR 

(missing at random), 2) MCAR (missing completely at random) and, 3) MNAR (missing 

not at random or nonignorable). In MAR mechanism, the data points are missing due to 

another observed characteristic or variable, in other words the missing observation is 

conditional on some other observed variable. For example, suppose we intend to evaluate 

the attitude towards a certain health behavior (Q100) and it is known that gender (Q2) 

affects its response. In this case the missing observations for Q100 are conditional on Q2;

hence, it’s a case of MAR. MCAR is a special case of MAR where missing observations 

are not related to any variable. For example, a computer malfunctions and certain 

observations of a dataset get deleted. In this case the missing observations depend neither 

on their own value nor on some other observed variable. Complete case analysis in a true 

MCAR setting will yield unbiased estimates. Third, and the most problematic type of 

missing data mechanism, is MNAR (missing not at random) or nonignorable 

nonresponse. Here the missing observations are a function of its own values. In other 

words the missingness is conditional on its own values. For instance, abused women may 

be less likely to answer the question on domestic violence and, hence, the missing 

observations here are dependent on the question itself. None of the available missing data 

techniques perform well in case of MNAR. Generally variables involving embarrassing, 
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stigmatizing, and sensitive questions can be assumed to be either missing not at random 

(MNAR) or missing at random (MAR). While MCAR and MAR are generally ignorable, 

data that is MNAR is nonignorable (Rubin, 1976). In case of MNAR, the nonresponders 

differ systematically from responders and, hence, it can lead to serious bias. Any given 

data set can have more than one pattern of missing observations.

Another important distinction to be made while handling missing data in a 

multivariate setting is the pattern of missing data. When there is a stepwise increase in 

missingness, it is known as monotone missing pattern. Consider variables Y1, Y2, ..., Yn (in 

that order) is said to have a monotone missing pattern when the event that a variable Yi is 

missing for a particular individual implies that all subsequent variables Yj, j > i, are 

missing for that individual. This pattern of missingness is very uncommon in real life 

datasets. On the other hand, when partially observed data are nonmonotone, the model for 

missing data points for one variable may take into account the missingness of other 

covariates. An arbitrary pattern of missingness can be either monotone or nonmonotone.
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CHAPTER 4

MISSING DATA TECHNIQUES

Broadly the available missing data techniques fall under one of the five categories 

with some overlap: deletion, Maximum Likelihood approach, Bayesian approach, 

weighting methods, and imputation techniques (single & multiple).

Deletion

 Listwise and pairwise deletion techniques come under this category. Listwise 

deletion (complete case analysis) involves removal of cases with partially observed data-

points. Pairwise deletion (available case analysis) is similar to listwise deletion except 

that it uses all available data for pairwise correlational analysis. It has been repeatedly 

shown in the literature that these techniques generally lead to invalid results. The main 

problem with deletion techniques are: inflation of type II error (reduced statistical 

power), and biased estimates. Unless the mechanism of missingness is MCAR, these ad 

hoc techniques lead to inefficient and biased results. Another ad hoc method for dealing 

with partially observed covariate data is to drop variables based on their degree of 

missingness. However, this method might result in dropping some important explanatory 

variables and hence can lead to model misspecification (Ibrahim et al., 2005). 

Maximum Likelihood Approaches

Likelihood based methods like EM algorithm, (Dempster et al., 1977) structural 

equations, mixed models, etc. have recently been suggested by statisticians. The 

assumption behind maximum likelihood (ML) based methods is MAR and it is ordinarily
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used in logistic and linear regression models. Likelihood function is summarized by 

averaging a predictive distribution of the missing values. Observed data are used to 

estimate the parameters and then the estimated parameters are used to estimate the 

missing values. It assumes that the observed data are a sample drawn from a multivariate 

normal distribution (MVN). 

As mentioned above, this assumption can sometimes be very restrictive. Various 

computational methods like EM (expectation-maximization) algorithms (Dempster et al., 

1977) are needed to maximize the complex likelihood function.  Parameters are estimated 

using full information ML (FIML or simply ML) from available data. Standard errors are 

obtained from an observed or an expected information matrix.  For computational details 

of ML approach to missing data please refer to Little and Rubin, 1987 and Schafer, 1997. 

For an in-depth description of EM algorithm and its application please refer to books by 

Little and Rubin (1987), Shaefer (1997), and McLachlan and Krishnan (1996).

Bayesian Approach

Last decade has seen an increasing use of Bayesian statistics. Basic tenet of 

Bayesian analysis is the establishment of a prior distribution of probabilities for the 

estimation of parameters. Here the missing data points are considered as additional 

parameters to be estimated under the selected prior distribution of the specified model. 

Multiple imputation can in fact be considered as an alternative expression of Bayesian 

analysis.  Under noninformative prior distribution, the MI and ML approaches closely 

approximate. Shafer has described these conditions in his book “Analysis of incomplete 

multivariate data”.
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Weighting Methods

This method of handling missing data is useful in case of Unit nonresponse. The 

observed cases or units are weighted according to their similarity to nonresponders. It 

assumes the absence of unit nonresponse bias, but this assumption requires some 

additional information about nonresponders. These methods lead to decreased sample 

variance but the standard error calculations become difficult (Little & Rubin, 1989).

Imputation

Imputation is a general term used for “filling-in” or replacement of missing data 

with plausible values. Imputation can be either single or multiple. When the missing 

values for a variable are replaced by a single value, it is called single imputation. Mean 

substitution, hot deck imputation, and last observation carried forward, etc. are types of 

single imputation. Mean substitution for a variable involves replacement of missing 

values with the average of its observed values. Hot deck imputation (Ford, 1983; Rizvi, 

1983) is a form of single imputation where the missing values for a particular case or 

respondent is replaced with a value from a similar case or respondent. The US Census 

Bureau uses this method for its recent population survey. Although hot-deck imputation 

replaces missing values with realistic values, there is little theoretical reasoning behind its 

validity.  

Important drawbacks of these single imputation techniques are the 

underestimation of variance and standard error and the assumption of no difference 

between respondents and nonrespondents. Multiple imputation (MI) (Rubin, 1978, 1987),

on the other hand, is a framework under which multiple sets of plausible values are 
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imputed for a given set of missing values. Posterior predictive distribution is used to 

repeatedly draw plausible values and m completed datasets are created. These m multiply 

imputed, complete datasets are individually analyzed and the results from each analysis 

are pooled to compute the final parameter estimates (taking into consideration the within-

imputation and between-imputation variances). Because both sampling and imputation 

uncertainties are incorporated in the pooled analysis, the estimates obtained have better 

theoretical basis. However, the validity of MI depends on method used for generating m 

datasets. MI based techniques requires that the mechanism of missing data is ignorable or 

MAR (Little et al., 1987). 

As mentioned above this assumption is more or less untestable but more variables 

in the imputation model can make this assumption more plausible (Schafer 1997; Van 

Buuren el al., 1999,).  According to Rubin’s recommendation, if imputations are 

performed under a Bayesian framework, the results of MI can be inferred as 

approximately Bayesian. For monotone missing pattern, both parametric (based on 

continuous MVN assumption) and nonparametric methods can be applied. For arbitrary

missing data patterns, the options are quite restrictive. The Markov Chain Monte Carlo 

method (Shafer, 1997) is a well known parametric method for arbitrary missing patterns. 

It can be used to impute all missing values or just enough missing values to transform it 

to a monotone missing pattern. Unless there is a large amount of missingness, 3 to 5 

multiply imputed datasets are sufficient (Rubin, 1987, p 114). 

There are various algorithms of creating multiple imputed datasets like joint 

modeling or the Imputation-Posterior approach (IP) (Shafer, 1997), expectation 

maximization importance sampling (EMis) (King el al., 2001), bootstrapping based EM 
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algorithm (EMB) (Honaker et al., 2006) and fully conditional specification (FCS) (Van 

Buuren et al. 2006) etc. As of now there is no general consensus on an ideal algorithm.
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CHAPTER 5

METHODOLOGY

Data

The data used for this exploratory exercise are from 2005 Tennessee Youth Risk 

Behavior Survey (TYRBS). Youth Risk Behavior Survey (YRBS) is part of the 

epidemiologic surveillance system developed by the Center for Disease Control and 

Prevention to monitor the prevalence of youth behavior that result in the most significant 

effects on health and well being of youths in United States. Six categories of youth risk 

behavior are focused in YRBS. These are the behaviors that results in: unintentional and 

intentional injuries; tobacco use; alcohol and other drug use; sexual behaviors that result 

in HIV infection, other sexually-transmitted diseases (STDs), and unintended 

pregnancies; dietary behaviors; and physical activity (Kolbe, 1990).

The Tennessee State Department of Education conducts TYRBS during odd 

numbered years. YRBS uses a multi stage cluster sample design.  The 2005 TYRBS was 

completed by 1540 students in 45 public high schools in Tennessee during the spring of 

2005 (Tennessee Department of Education). The school response rate was 83%, the 

student response rate was 85%, and the overall response rate was 71%. Students 

completed a self-administered, anonymous, 87-item questionnaire. Survey procedures 

were designed to protect the privacy of students by allowing for anonymous and 

voluntary participation. Local parental permission procedures were followed before 

survey administration. This survey is weighted and the results can be generalized to all 

students in Tennessee public schools in grade 9 – 12. However, this is a proposal on 

statistical methodology and, hence, it is not to be used for inferences where 
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Epidemiology or Health Behavior is concerned. Table 1 shows the pattern of missing data 

in our dataset.

Table 1.

Pattern of missing data. "1" means that the variable is observed in the corresponding 
group and a "0" means that the variable is missing. The table clearly indicates arbitrary 
missing data pattern.

Q44 Q12 Q30 Q59 Q39
1256 1 1 1 1 1 0
26 1 0 1 1 1 1
39 1 1 0 1 1 1
138 1 1 1 1 0 1
8 0 1 1 1 1 1
42 1 1 1 0 1 1
2 1 0 0 1 1 2
4 1 1 0 1 0 2
4 0 1 1 1 0 2
1 1 0 1 0 1 2
8 1 1 0 0 1 2
5 1 1 1 0 0 2
1 0 1 1 0 1 2
1 1 0 0 0 1 3
1 1 1 0 0 0 3
1 0 1 1 0 0 3
1 0 0 0 0 1 4
2 0 1 0 0 0 4
Total 17 31 58 63 155 324
                      

Variables

The main goal of our study was to impute the missing values of a key ordinal 

variable. Five variables were chosen from the 2005 TYRBS dataset, which includes the 

key ordinal variable (Q39), and four ordinal covariates (Q44, Q59, Q12, and Q30). For

the sake of simplicity the sampling design was not taken into account; however, ignoring 

the sampling design can lead to biased estimates. In practice the readers are advised to 

incorporate the sampling design using SAS-callable Survey Data Analysis (SUDAAN) 
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(Shah, Barnwell, & Bieler, 1997), or the latest SURVEYFREQ, SURVEYLOGISTIC, 

and other survey procedures introduced in SAS/STAT 9.1®. The choices of variables 

were based on one factor: sensitive and stigmatizing nature of question. Figures 1, 2, 3, 4, 

and 5 show each variable. Q39 corresponds to the question “During your life, on how 

many days have you had at least one drink of alcohol?” It has 7 ordinal levels 

corresponding to: 0 days, 1 or 2 days, 3 to 9 days, 10 to 19 days, 20 to 39 days, 40 to 99 

days, and 100 or more days. 

Missing 1 2 3 4 5 6 7

q39

0

5

10

15

20

25
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e

rc
e
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t

Figure 1. Distribution of response variable (Q39).

Q44 corresponds to the question “During your life, how many times have you used 

marijuana?” It  has 7 ordinal levels corresponding to: 0 times, 1 or 2 times, 3 to 9 times, 

10 to 19 times, 20 to 39 times, 40 to 99 times, and 100 or more times. 
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Figure 2. Distribution of response variable (Q44).

Q59 corresponds to the question “During your life, with how many people have you had 

sexual intercourse?” It has 7 ordinal levels corresponding to: Never had sex, 1 person, 2 

people, 3 people, 4 people, 5 people, and 6 or more people. 
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Figure 3. Distribution of response variable (Q59)

Q12 corresponds to the question “During the past 30 days, on how many days did you 

carry a weapon such as a gun, knife, or club?” It has 5 ordinal levels corresponding to: 0 

days, 1 day, 2 or 3 days, 4 or 5 days, 6 or more days. 
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Missing 1 2 3 4 5
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Figure 4. Distribution of response variable (Q12)

Q30 corresponds to the question “During the past 30 days, on how many days did you 

smoke cigarettes?” It has 7 ordinal levels corresponding to: 0 days, 1 or 2 days, 3 to 5 

days, 6 to 9 days, 10 to 19 days, 20 to 29 days, and all 30 days.
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Figure 5. Distribution of response variable (Q30)

The percentage of missing data for Q44, Q59, Q12 and, Q30 were 1.2%, 4.2%, 

2.1%, and 3.8% respectively. Because the percentage of missing data for ordinal 

predictors were less than 5%, it can be ignored without introducing serious bias (Roth, 

1994). Our response variable had more than 10% data missing, hence, some form of 

missing data technique was required. Table 2 shows frequencies and percentages of study 

variables.
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Table 2.

Frequencies and Percentages of study variables

Ordinal
 Level

Frequency Percentage
    (%)

   1 373 24.2
   2 215 14.0
   3 244 15.8
   4 146 9.5
   5 159 10.3
   6 114 7.4
   7 134 8.7

    

Q39

Missing 156 10.1
   1 1124 72.9
   2 62 4.0
   3 72 4.7
   4 38 2.5
   5 213 13.8

Q12

Missing 32 2.1
   1 1114 72.3
   2 76 4.9
   3 39 2.5
   4 30 1.9
   5 38 2.5
   6 47 3.0
   7 138 9.0

Q30

Missing 59 3.8
   1 918 59.6
   2 165 10.7
   3 131 8.5
   4 64 4.2
   5 63 4.1
   6 49 3.2
   7 133 8.6

Q44

Missing 18 1.2
   1 715 46.4 
   2 265 17.2
   3 148 9.6
   4 116 7.5
   5 64 4.2
   6 37 2.4
   7 132 8.6

Q59

Missing 64 4.2
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Assumption

MAR assumption was used in this paper. It means that “missingness” of a study 

variable is conditional on variables of similar nature. For the sake of imputation we 

assumed that the missing observations of our key variable (Q39) are conditional on our 

observed covariates (Q44, Q59, Q12, and Q30). These five variables were assumed to be 

sensitive or embarrassing for the high school children in Tennessee.

The main idea of this paper is to impute the missing values of Q39 using a 

cumulative logit model. In order to do this we first dichotomized our ordinal covariates 

(Q44, Q59, Q12, and Q30). For selecting the ideal cutpoints of our ordinal covariates, we 

dichotomized our response variable (Q39) with a never vs. ever routine. Because

dichotomization of ordinal variables leads to loss of information, we dichotomized our 

ordinal predictors based on the principle of maximally selected chi-square statistics. The 

details of which are given in section 5.4. After finding the cutpoints for each of our 

ordinal covariates, we used these dichotomized ordinal predictors along with our seven 

leveled response variable (Q39) in a cumulative logit model routine to build our 

imputation framework.  The details of our method are given in section 5.5. We will call 

this as method A. We also compared method A to two other MI based methods: IP 

(method B) and EMB (method C). The details of method B and C are given in section 5.6 

and 5.7 respectively. 
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Maximally Selected Chi-square Statistics

The cut points for our ordinal predictors were based on maximally selected chi 

square statistics over all possible cutpoints. The likelihood-ratio chi-square statistic (G2)

[Wilks. S. S, 1935] involves the ratios between the observed and expected frequencies. 

The statistic is computed as follows:

G2 =  
i j

2  nij ln (nij/eij) 

Where n = 
i j

 nij   is the overall total, ji.nn . is the product of row total and column 

total and 
n

nn
e ji.

ij
.       

Let X be an ordinal variable with  k  distinct levels. X can be transformed into binary 

variables X(k) for k = 1,…,k-1 as follows

X(k) = 1 if X k ,

X(k) = 2 if X > k,

For example Q44(3) represents the binary variable obtained by dichotomizing Q44 

between ordinal level 3 and 4.

Given below are the G2 values for all possible cutpoints. Tables 3, 4, 5, & 6 represents the 

cross tabulation of each ordinal predictor. The ideal cutpoint for each predictor is 

italicized.
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Table 3. Table 4.
Likelihood Ratio Chi-square Values Likelihood Ratio Chi-square Values
for All Possible Cutpoints for Q44 for All Possible Cutpoints for Q59
                                    

   Q39r     Predictor (Q59)

Predictor                         Likelihood χ2

(G2)
Degrees of 
freedom

Q59 192.4136 6
Q59(1) 179.5074 1
Q59(2) 109.4441 1
Q59(3) 88.0584 1
Q59(4) 67.3443 1
Q59(5) 58.6335 1
Q59(6) 42.6095 1

Table 5. Table 6.
Likelihood Ratio Chi-square Values Likelihood Ratio Chi-square Values
for All Possible Cutpoints for Q12 for All Possible Cutpoints for Q12
                                                                     

       
                         

                                                 
                                    
                                                               

           
In our case we found that the ideal cutpoints for all our ordinal variables were between 

ordinal level 1 and 2. But this may not always be the case, hence, the readers are 

requested to refer to “Intelligent dichotomies” presented by Drane at American Academy 

of Health Behavior, Savannah, GA, 2007. Attention must be paid while selecting the X(k) 

yielding the smallest p- value and declaring k as the ideal cutpoint of X because some 

people may argue that it may lead to inflation of type I error rate as it involves multiple 

   Q39r     Predictor (Q44)

Predictor                                Likelihood χ2

(G2)
Degrees of 
freedom

Q44 300.5039 6
Q44(1) 283.5227 1
Q44(2) 230.7058 1
Q44(3) 150.2163 1
Q44(4) 118.3618 1
Q44(5) 82.3443 1
Q44(6) 52.4395 1

   Q39r     Predictor (Q12)

Predictor                                Likelihood 
χ2 (G2)

Degrees 
of 
freedom

Q12 53.0192 4
Q12(1) 44.3132 1
Q12(2) 29.4213 1
Q12(3) 35.4224 1
Q12(4) 29.6660 1

   Q39r    . Predictor (Q30)

Predictor                                Likelihood 
χ2 

(G2)

Degrees 
of 
freedom

Q30 178.3255 6
Q30(1) 169.8321 1
Q30(2) 149.5152 1
Q30(3) 125.9653 1
Q30(4) 113.0258 1
Q30(5) 88.7663 1
Q30(6) 64.0518 1
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testing of many 2 2 tables (Altman et al, 1994).  Betensky and Rabinowitz (1999) have 

investigated maximally selected χ2 statistics in case of K 2  contingency tables. Koziol 

(1991) and Boulesteic x (2006) have derived the exact distribution of the maximally 

selected χ2 statistics.

Method A

After dichotomizing our ordinal predictors with the routine given in section 5.4, 

we used the observed values of these dichotomized variables in building a multilevel 

cumulative logit model with Q39 as our response variable (the one that needs to be 

imputed). Individual predicted probabilities (IPs) at each response level (RL) were 

obtained for each observation.  These IPs were averaged for each RL and the seven 

average IPs obtained were used in randomly imputing the missing values of Q39 using a 

uniform distribution. Computations in this section were done using SAS® (SAS Institute 

Inc., Cary, NC).

Method B

This method uses the Imputation-Posterior approach given by Schafer. It uses 

Markov Chain Monte Carlo (MCMC) method. The initial parameter estimates are 

obtained by running Expectation-Maximization algorithm (Rubin, 1976) until 

convergence is achieved (maximum iterations =1000). These EM estimates were used as 

starting values, 500 cycle of MCMC full data imputation were performed using a ridge 

prior. Only a single dataset was generated for the purpose of comparison. Please note that 

MCMC method requires a multivariate normal model but our variables were highly 

skewed. If the amount of missing information is not large, the MI based inferences are 
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robust to departure from multivariate normality (Schafer 1997, pp. 147 – 148). There are 

some specialized MCMC based imputation models for discrete variables but we have not 

included them in our study (Schafer, 1997). SAS® Proc MI was used for computation in 

this section.

Method C

A bootstrapping based algorithm (EMB) is used in this method. We chose this 

method because it’s fast and easy to use. Instead of using draws from posterior 

distribution, this method uses sampling with replacement. A fast EM algorithm is run on 

each sample. For each set of estimates, the original sample units are used to impute the 

incomplete observation. Again, only a single dataset was imputed for the purpose of 

comparison. There has been some evidence that EBM works well with discrete variables 

(King et al., 2001). Ameliaview, a standalone, GUI software was used to run the EMB 

algorithm in this section. Figure 6 depicts the density of imputed and observed data using 

EMB algorithm.
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Figure 6. 
Density of imputed and observed data. Imputed values are captured within the bounds of 
observed data but it poorly follows the observed distribution
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CHAPTER 6

RESULTS

The response variable (Q39) was imputed using three methods (method A, B, and 

C). Table 7 shows the frequency and percentages of Q39 after imputation by method A, 

B, and C.

Table 7.

Frequencies and percentages of response variable Q39 after imputation
by method A, B, and C

          Method A           Method B           Method C
Q39 Frequency Percentage Frequency Percentage Frequency Percentage 
1 409 26.6 397 25.8 415 26.9
2 241 15.6 238 15.5 239 15.5
3 276 17.9 288 18.7 270 17.5
4 162 10.5 180 11.7 164 10.6
5 184 11.9 177 11.5 187 12.1
6 127 8.2 122 7.9 122 7.9
7 141 9.1 138 9.0 143 9.3
Total 1540 100 1540 100 1540 100

The distribution of complete cases (CC) for Q39 was compared with the imputed 

distributions from the three methods, using Minimum Discriminant Information statistic 

(MDIS). It is also the likelihood ratio chi square statistics (G2) and is given by the 

formula:

G2 = 

iI

i

i
i p

p
pn log2

7

1



   with degrees of freedom (df) = 6

Here n = Total number of cases, ip is the observed probability of response variable (Q39) 

at ith response level and iIp  is the imputed probability of response variable at ith response 

level where i = 1,…, 7
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G2 obtained from each method is given in table B. Although all three methods performed 

well, our method yielded the least G2 statistics, which indicates that the distribution 

obtained after imputation is highly similar to the distribution of observed cases (CC).

Table 8.
Likelihood ratio chi square statistics for method A, B, and C

Method Likelihood ratio
Chi Square Statistics (df)

Method A 1.09981 (6)
Method B 5.86435 (6)
Method C 2.92884 (6)

df: Degrees of freedom
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CHAPTER 7

DISCUSSION

Missing data are mostly unavoidable and generally occurs for unknown reasons. 

The unknown mechanisms behind “missingness” can only be assumed. These 

assumptions are usually untestable. For meaningful statistical estimation, this assumption 

should closely correspond to the real mechanism behind missing data. Ultimate users of 

dataset usually don’t have the knowledge and expertise to handle missing data, hence, the 

database constructors, who typically know more about the reasons for missingness,

should be responsible for modeling the missing data (Rubin, 1996).

Our method of imputation involves building a cumulative logit model. This is the 

most crucial step in our suggested method. The intention here is neither to build a 

parsimonious model, nor to describe a causal relationship among variables and, hence,

recognition of dependent and independent variables is not important at this stage, 

although an attempt should be made to preserve the effects of interests. The chances of 

meeting the MAR assumption increases as we increase the number of variables. By using 

Q44, Q59, Q12, and Q30 as covariates we don’t necessarily mean that these variables 

have a causal relationship with Q39. We want to emphasize that the idea behind building 

this pre-imputation model is to meet the MAR assumption without significantly distorting 

the effects of interest in post-imputation analysis.

This paper also emphasizes a statistically sound but infrequently used method of 

ideal cut-point selection for ordinal variables. Instead of randomly selecting a cut-point of 

an ordinal variable, we emphasize using the maximally selected chi square statistics. It is 
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well known that dichotomization of variables lead to loss of information. A cut-point 

based on maximal Likelihood-ratio chi-square statistic (G2) will lead to minimal loss of 

information. 

Finally our paper compares the performance of our method of imputation with 

two other well known methods of imputation, namely: 1) Markov-chain, Monte Carlo 

based Imputation-Posterior (IP) algorithm [method B] and 2) Bootstrapping based EMB 

algorithm (method C). Minimum Discriminant Information statistic (MDIS) based 

comparison of these three methods showed that our method performed reasonably well in 

comparison to the other two methods. 

However, there are several limitations in our paper. Firstly, our cumulative logit

model allows imputation of one variable at a time, which can be time-consuming. 

Secondly, if there is significant amount of missingness in the independent variables, our 

model will either be inappropriate or may need some adjustments which again can be 

complicated. Thirdly, performance of our model at larger amounts of missingness (e.g. 

20%, 30%, 50%, etc) has not been tested, hence, further research needs to be done before 

this model can be applicable for general use. One prospective way to do this is to 

simulate various levels of missingness and compare imputed data with complete data.

A subjective tabulation of some of the common missing data techniques (MDT) 

with respect to their ease of use and validity is given in Table 9.

These have been ranked on a scale of 1 to 10 (For “Ease of use”: 1 represents easiest to 

use, and 10 represents most difficult to use and for “Validity of parameter estimates”: 1 

represents most valid estimates, 10 represents least valid estimates).
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Table 9.

Subjective tabulation of some of the common missing data techniques with respect to 
their ease of use and validity

Missing Data Technique. Ease of 
use.

Validity of parameter 
estimates.

Deletion 1 9
Mean Substitution 2 8
Random Imputation from observed data 4 7
Covariate based prediction. 4 4
Drawing missing values from its predictive 
distribution under a specified model

8 3

Multiple Imputation 9 2

In the real world, covariate based prediction of missing values seems to be a good choice 

for end-users using publicly shared datasets with varying degree of computing knowledge 

and statistical expertise. 
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