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ABSTRACT

Peg Solitaire on Trees with Diameter Four

by

Clayton Walvoort

In a paper by Beeler and Hoilman, the traditional game of peg solitaire is generalized

to graphs in the combinatorial sense. One of the important open problems in this

paper was to classify solvable trees. In this thesis, we will give necessary and suffi-

cient conditions for the solvability for all trees with diameter four. We also give the

maximum number of pegs that can be left on such a graph under the restriction that

we jump whenever possible.
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1 INTRODUCTION

Peg solitaire is a table game which traditionally begins with “pegs” in every space

except for one which is left empty (i.e., a “hole”). If in some row or column two

adjacent pegs are next to a hole (as in Figure 1), then the peg in x can jump over

the peg in y into the hole in z. In [4], peg solitaire is generalized to graphs.

A graph, G = (V,E), is a set of vertices V and a set of edges E. Because of

the restrictions of peg solitaire, we will assume that all graphs are finite undirected

graphs with no loops or multiple edges. In particular, we will always assume that

graphs are connected. If there are pegs in vertices x and y and a hole in z, then we

allow x to jump over y into z, provided that xy, yz ∈ E. We will modify the notation

used in [2] and a jump from x over y into z will be denoted x·
−→

y ·z.

Some basic graph theory definitions will be given. The number of vertices in a

graph G is the order of G. The number of edges is the size of G. If uv is an edge

of G, then u and v are adjacent vertices. The vertex u and the edge uv are said to

be incident with each other. The degree of a vertex in v in G is the number of edges

in G that are incident to v. A vertex of degree one is called a pendant or a leaf.

The largest degree among the vertices of G is called the maximum degree of G and is

1

x y z

2

x y z

3

x y z

Figure 1: A Typical Jump in Peg Solitaire

9



denoted ∆(G).

For two vertices u and v of G, a u-v walk, W , in G is a sequence of vertices in

G, beginning with u and ending at v such that the consecutive vertices in W are

adjacent in G. A walk in a graph G in which no vertex is repeated is called a path.

Two vertices u and v are connected if G contains a u-v path. The graph G itself is

connected if G contains a u-v walk for every two vertices u and v of G.

The distance from a vertex u to a vertex v in a connected graph G is the minimum

of the lengths of u-v paths in G. The eccentricity of a vertex v in a connected graph

G is the distance between v and a vertex farthest from v in G. The diameter of G is

the greatest eccentricity among the vertices of G [10].

For an integer n ≥ 1, the path Pn is a graph of order n and size n − 1 whose

vertices can be labeled v1, . . . , vn and whose edges are vivi+1 for i = 1, . . . , n− 1. For

an integer n ≥ 3, the cycle Cn is a graph of order n and size n whose vertices can be

labeled by v1, . . . , vn and whose edges are v1vn and vivi+1 for i = 1, . . . , n− 1. A tree

is a connected graph that contains no cycles. A complete graph contains all possible

edges such that every two distinct vertices are adjacent.

A graph G is bipartite if V (G) can be partitioned into two sets U and W so that

if uw ∈ E(G), then u ∈ U and w ∈ W . A graph is a complete bipartite graph if V (G)

can be partitioned so that uw is an edge of G if and only if u ∈ U and w ∈ W . The

complete bipartite graph is denoted Ks,t, where |U | = s and |W | = t. The complete

bipartite graph K1,t is called a star (see Figure 2).
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Figure 2: The K1,3

A set of vertices U in a graph G is independent if no two vertices in U are adjacent.

The maximum number of vertices in an independent set of vertices of G is called the

vertex independence number, or more simply, the independence number of G. This is

denoted α(G).

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If

V (H) = V (G), then H is a spanning subgraph of G. A spanning tree of a graph G is

a spanning subgraph of G that is a tree.

The Cartesian product G of two graphs G1 and G2 is commonly denoted by

G1�G2. This has vertex set V (G) = V (G1) × V (G2). Two distinct vertices (u, v)

and (x, y) of G1�G2 are adjacent if either u = x and vy ∈ E(G2) or v = y and

ux ∈ E(G1). A convenient way to draw G1�G2 is to first place a copy of G2 at each

vertex of G1 and then join corresponding vertices of G2 in those copies of G2 placed

at adjacent vertices of G1.

Two graphsG andH are isomorphic if there exists a bijective function φ : V (G) →

V (H) such that two vertices u and v are adjacent in G if and only if φ(u) and φ(v)

are adjacent in H. The function φ is called an isomorphism from G to H. An auto-
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morphism of a graph G is an isomorphism from G to itself. Thus, an automorphism

of G is a permutation of V (G) that preserves adjacency and non-adjacency.

The following definitions are specific to playing peg solitaire on graphs. A terminal

state T ⊂ V is a set of vertices that have pegs at the end of the game. A terminal

state T is associated with starting state S if T can be obtained from S by a series

of jumps. Unless otherwise noted, we will assume that S consists of a single vertex.

A graph G is solvable if there exists some vertex s so that, starting with a hole in

s, there exists an associated terminal state consisting of a single peg. A graph G

is freely solvable if for all vertices s so that, starting with a hole in s, there exists

an associated terminal state consisting of a single peg. It is not always possible to

solve a graph. A graph G is k-solvable if there exists some vertex s so that, starting

with a hole in s, there exists an associated terminal state consisting of k nonadjacent

pegs. In particular, a graph is distance 2-solvable if there exists some vertex s so

that, starting with a hole in s, there exists an associated terminal state consisting of

two pegs that are distance 2 apart. The preceding definitions are from [4]. For more

information on traditional peg solitaire, refer to [2, 8, 9, 12].

In [4, 5], the solvability of several families of graphs was determined. One of the

more important open problems in [4] was to classify the solvability of trees. We note

that any connected graph has a spanning tree [10]. Also, if G is a spanning subgraph

of H and G is k-solvable, then H is at worst k-solvable [4]. Thus, an important

step in determining which graphs are solvable is to determine what trees are solvable.
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However, there exists solvable graphs that do not have a solvable tree as a spanning

subgraph. In this thesis, we seek to expand these results by considering trees of a

fixed diameter. We note that the only tree of diameter one is the P2, which is trivially

freely solvable [4]. The trees of diameter two are precisely the stars with n arms. The

solvability of stars is given in the following proposition.

Proposition 1.1 [4] The star K1,n is (n− 1)-solvable.

The trees of diameter three are precisely the double stars. The double star consists

of two adjacent vertices uℓ and ur. The vertex uℓ is adjacent to L pendant vertices

denoted ℓ1, . . . , ℓL. Similarly, ur is adjacent to R pendant vertices denoted r1, . . . , rR.

Without loss of generality, assume that L ≥ R. The double star with parameters L

and R is denoted DS(L,R) (see Figure 3). The solvability of double stars is given

below.

Figure 3: The Double Star - DS(4, 3).

Proposition 1.2 [5] The double star DS(L,R) is freely solvable iff L = R and R 6= 1;

DS(L,R) is solvable iff L ≤ R + 1; DS(L,R) is distance 2-solvable iff L = R + 2;

DS(L,R) is (L−R)-solvable in all other cases.

13



As shown in Proposition 1.1 and Proposition 1.2, the solvability of trees of di-

ameter three or less has been established. Therefore, the natural next step in this

classification is to determine the solvability of trees of diameter four. We note that

any tree of diameter four can be obtained by appending pendant vertices to the ex-

isting vertices of K1,n. Label the center of the star as x and its arms as y1, . . . , yn.

Suppose that we append c pendant vertices to x, namely x1, . . . , xc. We also append

ai pendant vertices to yi, namely yi,1, . . . , yi,ai for i = 1, . . . , n. We denote the result-

ing graph as K1,n(c; a1, . . . , an). An example is shown in Figure 4. For convenience of

notation, we will denote the set of vertices X = {x1, . . . , xc} and Yi = {yi,1, . . . , yi,ai}

for i = 1, . . . , n. Such sets of vertices will be called clusters and the original vertices of

the K1,n will be called support vertices with N = {yi, . . . , yn}. We will assume, with-

out loss of generality, that a1 ≥ . . . ≥ an ≥ 1 and denote
∑n

i=1
ai = s. This ensures

that each tree of diameter four has a unique parametrization under this notation.

Figure 4: The K1,3(4; 3, 2, 2).
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2 LITERATURE REVIEW

In this chapter, we will give a brief overview of combinatorial games. Then, the

traditional game of Peg Solitaire will be described, as well as several of its variations.

Lastly, some motivation from [2] and [9] will be used to describe methods that will

be helpful in playing the game.

2.1 Combinatorial Games

From [14], the main question is what are combinatorial games? Roughly speaking,

the family of combinatorial games consists of the two-player games with perfect in-

formation (no hidden information as in some card games), no chance moves (no dice),

and outcome restricted to (lose, win), (tie, tie), (draw, draw) for the two players who

move alternately. Tie is an end position such as in tic-tac-toe, where no player wins.

However, a draw is any position from which both players have non-losing moves, but

neither can force a win. Both the easy game of NIM and the seemingly difficult game

of chess are examples of combinatorial games.

Games are intriguing for several reasons. There are applications or connections

to various disciplines, such as logic, graph theory, online algorithms, and biology.

Fraenkel [14] also gives other reasons for why games are intriguing:

Perhaps the urge to play games is rooted in our primal beastly instincts;

the desire to corner, torture, or at least dominate our peers. A common
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expression of these vile cravings is found in the passions roused by local,

national, and international tournaments. An intellectually refined version

of these dark desires, well hidden beneath the facade of scientific research,

is the consuming drive “to beat them all,” to be more clever than the most

clever.... Reaching this goal is particularly satisfying and sweet in the

context of combinatorial games, in view of their inherent high complexity.

(Fraenkel 2)

With a slant towards artificial intelligence, Pearl wrote in [20] that games:

... offer a perfect laboratory for studying complex problem solving method-

ologies.... in areas such as business, government, scientific, legal, and oth-

ers.... Last, but not least, games possess addictive entertaining qualities

of a very general appeal. That helps maintain a steady influx of research

talents into the field and renders games a convenient media for communi-

cating powerful ideas about general methods of strategic planning. (Pearl

221)

Fraenkel classifies games in two ways: playgames and mathgames. Playgames can

be thought of as games that can be bought at the store. Playgames are challeng-

ing enough that people will purchase them and play them (such as peg solitaire).

Mathgames are games that mathematicians study. Mathgames are challenging for

mathematicians or other scientists to play with and ponder about, but not neces-
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sarily to “the man on the street.” Mathgames may take considerable time to solve,

which may be unappealing to non-mathematicians. As more games are studied by

mathematicians, the overlap between playgames and mathgames is growing larger.

As an introduction to combinatorial games, we will first examine the game of

NIM. NIM is an excellent game to start with because it has simple rules, one player

must win, and it is easy to model mathematically. The general game of NIM is played

by two players and consists of at least three piles of stones. The players alternate

turns removing any number of stones from a single pile. The winner is the player

who removes the last remaining stone or stones. Alternate versions of the game can

be played such that the loser is the player who removes the last remaining stone or

stones. The winning strategy, as described in [13], is for one to write the number

of stones in each pile as a binary digit. Then, the place values of the binary digits

are added modulo 2 in each column, producing another binary digit. The digits are

not carried to the next place value. If the sum is zero after player 1 moves, then it

is impossible for player 2 to win with the next move. This is because player 2 must

remove a stone, hence making the sum non-zero. Therefore, the winning strategy is

for the sum of the piles to be zero after every move you make.

In [1], a different game is played on a graph, called Cops and Robbers. This game

involves two players, one being the Cop C and the other being the Robber R. The

game begins by first C and then R occupying distinct vertices of a finite connected

undirected graph G. Then, C and R alternate moving along the edges of G to other

17



vertices. The objective of the game is for C to occupy the same vertex as R, essentially

“catching” R. If C catches R, then C wins. However, if R can prevent C from ever

catching him, then R wins. The family of graphs where C has a winning strategy are

denoted by C. Likewise, R denotes the family of graphs in which R has a winning

strategy. Some families of graphs have been classified. For example, trees are in C,

while cycles and regular non-complete graphs are in R. In [1], many more families of

graphs are classified in great detail.

There are several variations of the game. For example, there can be multiple

cops with a single robber, a single cop with multiple robbers, or multiple cops with

multiple robbers. There are other versions as well. In the active version, the robber

must move whenever it is his turn. In the passive version, the robber may choose

to remain stationary. However, it is assumed the cop always moves in both versions.

In [1], the passive version is considered because it is more realistic. It is also noted

that changing the characteristics of a game, such as the number of cops or robbers,

or from active to passive, can change whether the graph is in C or R.

There are too many combinatorial games to list, but a large compilation of works

can be found in [14]. There are many different types of combinatorial games, which is

why they appeal to so many individuals. As more complex problems are discovered

daily, the number of combinatorial games will continue to grow.

18



2.2 Traditional Peg Solitaire

The origins of peg solitaire are not known for certain. However, John Beasley and

John Maltby have done extensive research trying to determine the genealogy of the

game [2]. The most common legend is that it was created by a French nobleman while

he was incarcerated in the Bastille during the seventeenth century [2]. This legend

would explain one of the game’s less common names, solo noble. However, there is

no hard evidence to support this myth.

Beasley also gives other possible origins of the game in [2] such as American

Indians playing the game with their arrows after returning from a hunt, or that it

was a German nun’s game. Some even suggest the game has roots in China, Chaldaea,

or ancient Rome. However, the earliest known evidence is the engraving Madame la

Princesse de Soubise joüant au jeu de Solitaire by Claude-Auguste Berey, which is

dated 1697. The picture is of Anne de Rohan-Chabot, Princess of Soubise, who is

seated with the game by her side as shown in Figure 5. It is also a legend that the

game was invented by Pelisson, a French mathematician, to entertain Louis XIV [23].

19



Figure 5: Madame la Princesse de Soubise joüant au jeu de Solitaire by Claude-

Auguste Berey, 1697.

The earliest written description of the game is given in a paper by Leibniz in 1710,

which is quoted in [2] as follows:

Not so very long ago there became widespread an excellent kind of game,

called Solitaire, where I play on my own, but as with a friend as witness

and referee to see that I play correctly. A board is filled with stones set in

holes, which are removed in turn, but none (except the first, which may

be chosen for removal at will) can be removed unless you are able to jump

another stone across it into an adjacent empty place, when it is captured

as in Draughts. He who removes all the stones right to the end according
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to this rule, wins; but he who is compelled to leave more than one stone

still on the board, yields the palm. (Beasley xii)

Despite evidence documenting the game to the late 17th century, both Beasley

and Maltby [2] agree that similar games were played much earlier due to the simplicity

of the rules.

There are several variations of boards on which the game can be played. The

most common is called the English board and is shown in Figure 6. The board is

made of wood and has recessed impressions, called holes, which are filled with glass

marbles or small stones, called pegs or “men.” The English board has thirty-three

holes which are arranged symmetrically in the shape of a cross.

Figure 6: The English Board

Another variation of the game is called the European or the Continental board,

as shown in Figure 7. This board is made by adding four additional holes to the

English board, for a total of thirty-seven holes. These additional hole are located at

the “inner corners” of the English board, giving the board a perceived circular shape.

21



This is the board the Princess of Soubise is playing in Berey’s engraving (see Figure

5).

Figure 7: The European Board

There is also the board described by J. C. Wiegleb from [24], which has forty-five

holes and is a larger version of the symmetrical English board. This is illustrated in

Figure 8.

Figure 8: The Wiegleb Board

The asymmetrical English board, Figure 9, was given by George Bell [24] in the
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twentieth century and has thirty-nine holes, with two adjacent sides of the cross being

longer than the other two.

Figure 9: The Asymmetrical English Board

The Diamond board, Figure 10, has forty-one holes and is made by adding four

more holes to the European board, located at the tips of the sides of the original

English board.

Figure 10: The Diamond Board
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There is also the Triangular board, Figure 11, which consists of fifteen holes

arranged in a triangular shape. This board is commonly found on the dining tables

of the restaurant Cracker Barrel and is referred to as the “peg game.” Also, in this

configuration, diagonal jumps are allowed, unlike the previous boards where only

vertical and horizontal moves are allowed.

Figure 11: The Triangular Board

There are obviously many variations of boards on which peg solitaire can be

played. Only a few of the most commonly used boards have been listed above from

[24]. In [2], Beasley goes into great detail on how to solve some of the boards. Beasley

even explores playing the game on a three dimensional board.

Another work that is certainly worth noting is Winning Ways for your Mathemat-

ical Plays, by Berlekamp, Conway, and Guy [9]. This publication deals mainly with

playing the game on traditional boards. In this work, the major idea is the use of

purges to solve the boards instead of using “brute force” methods to play the game.

A package is a collection of vertices which satisfy a specific configuration of pegs

and holes such that a predetermined sequence of jumps will preserve the locations
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of certain pegs and holes and remove the remaining pegs. When a package is used

to remove pegs, it is called a purge. The pegs and holes which are restored to their

original locations are called the catalyst. This idea of purges will prove to be very

useful in this thesis.

From [11], Bruijn explains in detail the relationship of the English board and a

finite field. This paper also gives another variation of the game, demanding that the

remaining peg should end in the hole in the center of the board. They also define

four elements, as well as addition and multiplication operators, such that the pegs

and holes can be thought of as elements of a finite field. The pegs and holes are also

given coordinates in the ordinary Cartesian plane, which is easily done on the English

board. It is also mentions that the shape of the board plays no essential role in the

consideration of each hole’s given coordinates and the game can even be considered

in more than two dimensions. Operations are then performed on the elements which

are analogous to making the moves on the board. The location of the final peg can

be found by this method.

In [17], Hentzel uses the same approach as Bruijn [11], except Hentzel plays the

game on the triangular board. Also, Hentzel has to only define a commutative group

and its addition operator, instead of a finite field with two operations. Hentzel then

defines the parity of the game, which does not change throughout the game. This

is used to classify some games as being not solvable without making any jumps.

However, this does not necessarily classify a game as being solvable. Hentzel’s method
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can be used on any hexagonal type board, or hexagonal array.

In [18], playing the game on the English board is approached from the artificial

intelligence point of view. Variables are assigned to represent the pegs and holes, then

operations are performed to simulate jumps being made and pegs being removed.

Also in [18], the variation of the game known as fool’s solitaire is explored. The

method of finding the optimal number of pegs that can remain at the end of the game

is done by an exhaustive computer search. The downside to this method is that it can

take a very long time to calculate every possible terminal state. One way that was

mentioned to reduce the number of terminal states that need to be checked is by only

checking unique terminal states. Since the board is symmetrical, one terminal state

can be thought of as four terminal states simply by rotating the board. Another way

to ensure that an optimal solution has been found is to seek a terminal state after

performing only one move. If that cannot be done, then attempt finding a terminal

state after performing only two moves, and so on. This variation will also be discussed

in detail in this thesis.

Another interesting variation is noted in [18], called Long-hop solitaire. It is

called a hop when the same peg is moved consecutively, as if playing checkers. This

is another optimization problem by attempting to perform as few hops as possible.
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2.3 Peg Solitaire on Graphs

In [4], Beeler and Hoilman generalize the game to arbitrary boards which are

treated as graphs in the combinatorial sense. This transition from a physical board

to an arbitrarily drawn board now allows us to contemplate the idea of playing all

possible games of peg solitaire. The transition also allows for ‘L’-shaped jumps, which

are not allowed by the traditional rules.

In [4], Beeler and Hoilman give necessary and sufficient conditions for the solv-

ability of several well-known families of graphs. Some of these families include stars,

paths, cycles, complete graphs, and complete bipartite graphs. They also show that

the Cartesian product of two solvable graphs is also solvable. In [5], Beeler and Hoil-

man extend this idea by finding the necessary and sufficient conditions for solvability

of the windmill and double star graphs.

A new way of finding solvable graphs is given by Beeler, Gray, and Hoilman in [3].

This approach begins with a single peg and a single hole. Pegs and holes are then

added in a manner that the game is being played “backwards” in such a way that the

product is guaranteed to be solvable when the game is reversed.

Then, in [7], Beeler and Rodriguez explore the variation of the game in which the

player wants to leave the maximum number of pegs that can remain at the end of the

game, under the restriction that a jump is made whenever possible. This variation is

called fool’s solitaire and begins to answer an open problem in [4]. In [7], Beeler and

Rodriguez find an upper bound for the fool’s solitaire number of a graph. However,
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they only conjecture a lower bound. Another key idea presented in [7] is the dual of

a configuration. The dual of a configuration is obtained by reversing the roles of pegs

and holes in a configuration. The dual of a configuration will be very important in

this thesis. Therefore, a more proper definition will be given.

The dual of a peg configuration T , denoted T ′, is the state resulting from reversing

the roles of pegs and holes [7]. The relationship between the dual of a configuration

and whether it is a valid terminal state is given below.

Proposition 2.1 [4, 7] Suppose that S is a starting state of G with associated ter-

minal state T . Let S ′ and T ′ be the duals of S and T , respectively. It follows that T ′

is a starting state of G with associated terminal state S ′.

This is only a small sample of the works that have been done pertaining to peg

solitaire. Many of the publications primarily deal the traditional boards, as Beeler

and Hoilman only began work on arbitrary boards in 2010. However, as research

continues into arbitrary boards, more will be known about the solvability of these

graphs. In the future, it may be known what percentage of graphs are solvable and

equivalently, what percentage are not solvable.
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3 THE (n, t)-STARS

Before considering the most general case, we first restrict our attention to several

special cases. The star K1,3 is sometimes referred to as a claw [10] and is also a

complete bipartite graph. The claw is commonly represented as shown in Figure 2.

Since n = 3 with the claw, the claw is at best 2-solvable by Proposition 1.1. The

n-claw graph is defined to be a graph that contains n claws that all share a common

vertex as shown in Figure 12. This graph is isomorphic to K1,n(0; 2, . . . , 2).

Figure 12: The 4-claw Graph

Proposition 3.1 The n-claw graph is (n+ 1)-solvable.

Proof. For the n-claw to be solved, the leaves, yi,j , must be removed. Notice that for

yi,j to be removed, the move yi,j·
−→

yi ·x must be made. This removes yi from the game.

Every support vertex can remove only one leaf. However, there are s = 2n leaves and

n of them will be eliminated by a support vertex. Since the final jump will put a peg

in x, there will be 2n − n + 1 pegs left and no moves are available. Therefore, the

n-claw graph is (n+ 1)-solvable.
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To show sufficiency, begin with the initial hole in x and move yi,1·
−→

yi ·x, yi+1·
−→

x ·yi,

yn−i+1,1·
−→

yn−i+1·x, and yi·
−→

x ·yi+1 for 1 ≤ i ≤ z =
⌈

n−2

2

⌉

. If n is odd, there is only one

cluster, Yz+1, that has pegs in both leaves and a peg in its support vertex. So make

the final move yz+1,1·
−→

yz+1·x. These moves will remove one peg from every cluster,

as well as remove the pegs from every anchor. Since there is a peg remaining in x

and one in each cluster, the n-claw is (n + 1)-solvable when n is odd and the initial

hole in x. If n is even, there will be two clusters that have pegs in both leaves

and a peg in the respective support vertices, the clusters Yz+1 and Yz+2. Now move

yz+1,1·
−→

yz+1·x, yz+2·
−→

x ·yz+1, and yz+1,2·
−→

yz+1·x. This results in all pegs being removed

from the cluster Yz+1, but two pegs being in the cluster Yz+2, as well as removing the

remaining support vertices. Since there is a peg in x, the n-claw is also (n+1)-solvable

when n is even and the initial hole in x.

Now begin with the initial hole in Yi, say y1,1. Notice that moving y1,2·
−→

y1 ·y1,1

yields the same configuration as if the initial hole where in x and making the first

move as described above. Therefore, make the move x·
−→

y1 ·y1,1 instead. Notice that

this removes a peg from a support vertex and adds a peg to a leaf. Since pegs in

support vertices are used to remove the pegs in the leaves, making this move is the

exact opposite of what we are trying to accomplish and will result in leaving additional

pegs when there are no moves possible. Hence, the previous move y1,2·
−→

y1 ·y1,1, must

be made. Therefore, the n-claw is (n+ 1)-solvable when the initial hole in Y .

Suppose the initial hole is in N , say y1. The move y2·
−→

x ·y1 is forced, up to
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automorphism on the vertices. This produces the same configuration as if the initial

hole is in Y and the move x·
−→

y1 ·y1,1 was made. As described above, this is not

beneficial. Hence, there will be at least n + 1 pegs remaining when no more moves

are available. Therefore, the n-claw is (n+ 1)-solvable.

We will now generalize Proposition 3.1 to graphs with more pendant edges. First,

define the t-star to be the graph consisting of t leaves joined to a center vertex , as

defined in [19]. Notice the t-star notation is simply referring to stars with t arms, also

denoted K1,t. Therefore, the claw in Figure 2 is also known as a 3-star. Now we will

define the (n, t)-star to be a collection of n t-stars that share one common vertex as

shown in Figure 13. Note that the (n, t)-star is isomorphic to K1,n(0; t− 1, . . . , t− 1).

Figure 13: The (3, 4)-star Graph

Proposition 3.2 The (n, t)-star graph is (nt− 2n+ 1)-solvable.

Proof. Using the same techniques used in Proposition 3.1, at most n leaves can be

removed. Since s = n(t− 1), there will be n(t− 1)− n+ 1 pegs left when no further

moves can be made. Hence, the (n, t)-star graph is (nt− 2n+ 1)-solvable.

31



Notice that the same techniques used in Proposition 3.1 can be used to show

sufficiency as well. However, there will now be t− 2 pegs remaining in every cluster,

as well as a peg in x. Hence, n(t− 2) + 1 pegs will remain when no more moves are

available. Therefore, the (n, t)-star graph is at best (nt− 2n+ 1)-solvable.

Notice that we can derive Proposition 3.1 from Proposition 3.2 by letting t = 3.

Let us now consider (n, t)-stars when t = 2, as shown in Figure 14. These graphs

are also known as subdivided star graphs [10]. We will refer to the combination of a

support vertex and a single pendant as a leg. Using Proposition 3.2, when t = 2, the

(n, 2)-star graph should be solvable.

Figure 14: The (4, 2)-star graph.

Proposition 3.3 The (n, 2)-star is solvable if and only if the initial hole is in the

center vertex and n 6= 2. Otherwise, the (n, 2)-star is distance 2-solvable.

Proof. To show it is necessary that the initial hole must be in the center vertex for

the (n, 2)-star to be solvable, first assume the initial hole is not in the center vertex.

Suppose the initial hole is in a support vertex, say y1. Up to automorphism on
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the vertices, the moves y2·
−→

x ·y1 and y1,1·
−→

y1 ·x are forced, which clears the first leg.

By ignoring the empty leg, we now have an (n− 1, 2)-star with the initial hole in y2.

Since we began the game with the initial hole in a support vertex, it is not beneficial

to jump into a support vertex that has an empty leaf. Doing so creates two leaves

that have empty support vertices, which is not the objective. Therefore, the legs are

removed one at a time until the (2, 2)-star remains. Since the (2, 2)-star is isomorphic

to the P5, the (n, 2)-star with the initial hole in a support vertex is distance 2-solvable

by [4].

Now suppose the initial hole is in y1,1. The moves x·
−→

y1 ·y1,1 and y2,1·
−→

y2 ·x are forced

by symmetry and clears the second leg. By ignoring the empty leg, this is identical

to placing the initial hole in y1, which is distance 2-solvable by above.

For sufficiency, let the initial hole be in x. Up to automorphism, the moves

yn,1·
−→

yn ·x, yn−1·
−→

x ·yn, and y1,1·
−→

y1 ·x are forced. Let n ≥ 4. If n is even, then let

n = 2k, k ∈ N. Similarly, if n is odd, then let n = 2k + 1. Now, for ℓ = 1, . . . , k − 1,

move y2ℓ·
−→

x ·y1, y2ℓ+1,1·
−→

y2ℓ+1·x, y1·
−→

x ·y2ℓ, and y2ℓ,1·
−→

y2ℓ·x. Next, if n = 2k, then moving

yn−2·
−→

x ·yn−1, yn−1,1·
−→

yn−1·x, yn·
−→

x ·yn−2, and yn−2,1·
−→

yn−2·x places the final peg in x.

However, if n = 2k + 1, then moving yn·
−→

x ·yn−1 and yn−1,1·
−→

yn−1·x positions the final

peg in x.

If n = 3, then make the first set of moves and the last set of moves since it is

not necessary to remove pairs of legs. This results with the final peg in x. If n = 2,

then the (n, 2)-star is isomorphic to P5, which is distance 2-solvable [4]. However, if

33



n = 1, then the (n, 2)-star is isomorphic to P3, which is solvable with the initial hole

in x or y1,1 [4]. However, by automorphism, x ∼= y1,1 for this arrangement, so it can

be assumed that the initial hole is always in x.

Also, note that the final peg of a solvable (n, 2)-star is always in x. Taking note

of where the final peg is located, as well as the initial hole, will prove to be useful

later in this paper.
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4 PACKAGES AND PURGES

In an effort to streamline the next result, we will now define four useful packages

along with the associated purges.

The wishbone(X) package will consist of a K1,2(1; 1, 1) with a hole in x1. The

wishbone(X) purge will be y1·
−→

x ·x1, y2,1·
−→

y2 ·x, x1·
−→

x ·y1, and y1,1·
−→

y1 ·x. This results

in the removal of pegs from y1, y1,1, y2, and y2,1. The catalyst is x and x1. The

wishbone(X) purge is shown in Figure 15.

1 2 3 4 5

Figure 15: The Wishbone(X) Purge

We will also define the wishbone(x) package, with the hole in x. The associated

purge will be y2,1·
−→

y2 ·x, x1·
−→

x ·y2, y1,1·
−→

y1 ·x, and y2·
−→

x ·x1. Again, this removes y1, y1,1,

y2, and y2,1, while the catalyst is x and x1. The wishbone(x) purge is shown in Figure

16. Note that the wishbone(X) and wishbone(x) purge both remove two legs. Also

notice that the letter in parenthesis denotes the location of the hole in the catalyst.
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1 2 3 4 5

Figure 16: The Wishbone(x) Purge

The trident(X) package will consist of a K1,3(1; 1, 1, 1) with a hole in x1. The

trident(X) purge will be y3·
−→

x ·x1, y2,1·
−→

y2 ·x, y1·
−→

x ·y3, y3,1·
−→

y3 ·x, x1·
−→

x ·y1, and y1,1·
−→

y1 ·x.

The result is the removal of pegs from y1, y1,1, y2, y2,1, y3, and y3,1, while x and x1

are the catalyst. The trident(X) purge is shown in Figure 17.

1 2 3 4 5 6 7

Figure 17: The Trident(X) Purge

We will also define the trident(x) package, with the hole in x. The associated

purge will be y3,1·
−→

y3 ·x, x1·
−→

x ·y3, y2,1·
−→

y2 ·x, y3·
−→

x ·y2, y1,1·
−→

y1 ·x, and y2·
−→

x ·x1. Again,

this removes y1, y1,1, y2, y2,1, y3, and y3,1, while the catalyst is x and x1. The

trident(x) purge is shown in Figure 18. Note that the trident(X) and trident(x)

purge both remove three legs.
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1 2 3 4 5 6 7

Figure 18: The Trident(x) Purge

The spider(x) package will consist of a K1,3(2; 1, 1, 1) with the hole in x. The

spider(x) purge will be y1,1·
−→

y1 ·x, x1·
−→

x ·y1, y2,2·
−→

y2 ·x, x·
−→

y1 ·y1,1, y3,1·
−→

y3 ·x, and x2·
−→

x ·y1.

The results is the removal of pegs from x1, x2, y2, y2,1, y3, and y3,1, while x, y1 and

y1,1 are the catalyst. The spider(x) purge is shown in Figure 19.

1 2 3 4 5 6 7

Figure 19: The Spider(x) Purge

Define the spider(N) package, with a hole in y1. The associated purge will be

x1·
−→

x ·y1, y1,1·
−→

y1 ·x, x2·
−→

x ·y1, y2,1·
−→

y2 ·x, x·
−→

y1 ·y1,1, and y3,1·
−→

y3 ·x. Again, this removes

x1, x2, y2, y2,1, y3, and y3,1, while x, y1 and y1,1 are the catalyst. The spider(N) purge

is shown in Figure 20.
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1 2 3 4 5 6 7

Figure 20: The Spider(N) Purge

We will also define the spider(Y ) package, with the hole in y1,1. The associated

purge will be x·
−→

y1 ·y1,1, y2,1·
−→

y2 ·x, x1·
−→

x ·y1, y1,1·
−→

y1 ·x, x2·
−→

x ·y1, and y3,1·
−→

y3 ·x. Again,

this removes x1, x2, y2, y2,1, y3, and y3,1, while x, y1 and y1,1 are the catalyst. The

spider(Y ) purge is shown in Figure 21. Note that the spider(x), spider(N), and

spider(Y ) purges remove two pegs from X and remove both of the pegs from two

legs.

1 2 3 4 5 6 7

Figure 21: The Spider(Y ) Purge

We will also borrow the 2-purge from [9]. This is a K1,1(1; 1) where y1,1 and x1 are

removed while x and y1 are the catalyst. Notice that the 2-purge is the motivation

behind solving double stars. Therefore, we will refer to this as the double star purge.

The double star purge is shown in Figure 22. It will be useful to define a notation

for a repeated 2-purge among automorphic vertices. Denote the double star purge as
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DS(A,B, d), where A is the cluster with a peg in its support vertex, B is the cluster

with a hole in its support vertex and d is the number of pegs to be removed from

each cluster.

1 2 3

Figure 22: The Double Star Purge

39



5 GENERALIZATION

We will now proceed with our main result. Namely, we will provide the necessary

and sufficient conditions for the solvability of all trees of diameter four. The strat-

egy for solving K1,n(c; a1, . . . , an) will be to begin by performing double star purges.

Therefore, we introduce a new parameter, k = c − s + n, where s =
∑n

i=1
ai. This

gives the number of pegs remaining in X after ai − 1 pegs have been removed from

Yi for 1 ≤ i ≤ n using double star purges. We begin with the case where at least one

of the ai ≥ 2.

Theorem 5.1 The conditions for solvability of K1,n(c; a1, ..., an) where a1 ≥ 2 are as

follows:

(i) The graph K1,n(c; a1, . . . , an) is solvable iff 0 ≤ k ≤ n+ 1.

(ii) The graph K1,n(c; a1, . . . , an) is freely solvable iff 1 ≤ k ≤ n.

(iii) The graph K1,n(c; a1, . . . , an) is distance 2-solvable iff k ∈ {−1, n+ 2}.

(iv) The graph K1,n(c; a1, . . . , an) is (1− k)-solvable if k ≤ −1. The graph

K1,n(c; a1, . . . , an) is (k − n)-solvable if k ≥ n+ 2.

Proof. To show necessity, let k < 0. In this case, c − s + n < 0. It is necessary

to remove all pegs in Yi. To remove a peg from Yi, there must first be a peg in yi.

The only moves that accomplish this are xp·
−→

x ·yi and yj·
−→

x ·yi for 1 ≤ p ≤ c and
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j 6= i. Therefore, the double star purges DS(Yi, X, d) and DS(Yi, N, d) are necessary

to remove pegs in Yi. Notice this is analogous to K1,1(s;n + c), but s ≥ n + c + 1.

Therefore, the initial hole must be in yi [4]. However, all of the elements of N are in

the other side of the double star. Thus, this is not solvable. Since the double star

purges are necessary and the initial hole is in N , at least s− n− c pegs will remain

in Yi after the double star purges [4]. Also, there was a peg in x at the beginning of

the game and there will be a peg in x when the last move of the final double star

purge is made. Therefore, this peg must be added as well, meaning there will be at

least s − n − c + 1 = 1 − k, pegs remaining when k < 0. Thus the graph is at best

(1− k)-solvable.

Now let k ≥ n + 2 which implies s ≤ c− 2. Similar to above, DS(X, Yi, d) is the

only way to remove pegs from X. Thus, we leave at least c− s = k − n pegs. Hence

the graph is at best (k − n)-solvable.

To show sufficiency, we simply give an algorithm to solve K1,n(c; a1, . . . , an) for

0 ≤ k ≤ n+1. We begin with the hole in x and perform DS(Yn−i+1, X, an−i+1−1) for

i = 1, ..., n. Without loss of generality, the last peg in Yi is in yi,1. This will remove

s− n pegs from X.

If k = 0 and n = 2, then begin by performing one less double star purge such that

the “extra pegs” are in y1,2 and xc. Now move y2,1·
−→

y2 ·x, xc·
−→

x ·y2, y1,2·
−→

y1 ·x, y2·
−→

x ·y1,

and y1,1·
−→

y1 ·x to solve with the final peg in x. If k = 0 and n ≥ 3, then eliminate the

remaining legs by using a combination of wishbone and trident purges with x and y1
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as the catalyst. Finally, move y1,1·
−→

y1 ·x to solve. It will later be shown that the case

where k = 0 is not freely solvable.

If k = 1 and n = 2 or n = 3, then double star purges will reduce the graph to

K1,2(1; 2, 1) or K1,3(1; 2, 1, 1), respectively, with holes in x and y1,2. If n ≥ 4, then use

wishbone and trident purges to reduce the graph to K1,2(1; 2, 1) with holes in x and

y1,2. It can be checked using [6] that both configurations can be solved with the final

peg located in any vertex. Ergo, K1,n(c; a1, . . . , an) is freely solvable when k = 1 by

Proposition 2.1.

If 2 ≤ k ≤ n − 1 and k is odd, then perform the double star purges as above.

Next, perform the spider(x) purge k−1

2
times using x, y1 and y1,1 as the catalyst. The

graph has been reduced to the case of k = 1 with holes in x and y1,2. As shown

above, the final peg can now be located anywhere. Hence, the graph is freely solvable

by Proposition 2.1. If k is even, then begin the game with the initial hole in y1, and

make the move xc·
−→

x ·y1. Ignoring xc reduces this to the case when k is odd, with the

initial hole in x. Thus K1,n(c; a1, . . . , an) is freely solvable when 2 ≤ k ≤ n− 1.

If k = n, then instead begin with the initial hole in y1. Move xc·
−→

x ·y1 and ignore

xc. This reduces to the case of k = n − 1 with the initial hole in x, which can have

the final peg in any location. Thus K1,n(c; a1, . . . , an) is freely solvable when k = n.

If k = n + 1, then instead begin with the initial hole in y1 and move xc·
−→

x ·y1.

Ignoring the hole in xc, this reduces this to the case when k = n and the initial hole

is in x, which we know to be solvable. It will later be shown that the case where
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k = n+ 1 is not freely solvable.

Throughout the proof, it has been shown that the conditions given for

K1,n(c; a1, . . . , an) to be freely solvable are sufficient. We now show that these con-

ditions are necessary. For K1,n(c; a1, . . . , an) and k = 0, consider K1,2(1; 2, 1), which

is not solvable if the initial hole is in X or N . If k = n + 1, consider K1,2(4; 2, 1),

which is not solvable if the initial hole is in x or Yi. These can be verified using an

exhaustive computer search [6]. We will now show that any K1,n(c; a1, . . . , an) where

a1 ≥ 2 and k = 0 or k = n+ 1 reduces to K1,2(1; 2, 1) or K1,2(4; 2, 1), respectively.

Note that when a double star purge is performed, k is not changed. This is

because a peg is taken from each of X and Yi, thus reducing c and s by one. So we

can append one “extra” vertex to X and one “extra” vertex to one Yi and k will not

change. Also, DS(Y1, X, 1) will remove the recently added pegs. Ignoring these now

empty vertices will result in obtaining the original K1,n(c; a1, . . . , an). The double

star purges are necessary, as shown earlier. Thus, as many as desired of these “extra”

vertices can be added in pairs and the new tree will reduce to the original. We can

append the set of vertices {xc+1, yn+1, yn+1,1, yn+1,2} without changing k. Further,

yn+1,1·
−→

yn+1·x, xc·
−→

x ·yn+1, yn+1,2·
−→

yn+1·x, and xc+1·
−→

x ·xc will remove the newly added

vertices. This sequence of moves is analogous to a double star purge, which we have

argued is necessary. By using combinations of these two “addition” methods, any

diameter four tree with k = 0 or k = n+ 1 can be constructed from K1,2(1; 2, 1) and

K1,2(4; 2, 1), respectively. Therefore, all such trees must reduce to either K1,2(1; 2, 1)
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and K1,2(4; 2, 1), which are not freely solvable.

If the above algorithm is used on a diameter four tree with k ≥ n + 2, then the

remaining k−n pegs will be in X. In particular, if k = n+2, then this results in two

pegs that are distance 2 apart. Hence, K1,n(c; a1, . . . , an) is distance 2-solvable when

k = n+ 2.

If k ≤ −1, then a different technique is required. Again, we begin with the

hole in x and use the double star purges as described above. After the purges are

performed, there are no pegs in X, there are s − c pegs left in the Yi, and n pegs

remaining in the support vertices. We now remove the remaining support vertices

using a combination of wishbone and trident purges with x and y1 as the catalyst.

This removes an additional 2n − 2 pegs. After the final move of y1,1·
−→

y1 ·x, there are

s − c + n − 1 − (2n − 2) = 1 − k pegs remaining. Further, we have −k pegs in Yi

and one peg in x. In particular, if k = −1, then we have two pegs that are distance

2 apart. Hence, K1,n(c; a1, . . . , an) is distance 2-solvable when k = −1.

We now deal with the case when all of the ai = 1. We note that in this case,

k = c ≥ 0. For this reason, we give our conditions in terms of c.

Theorem 5.2 The conditions for solvability of K1,n(c; 1, ..., 1) are as follows:

(i) The graph K1,2t(c; 1, . . . , 1) is solvable iff 0 ≤ c ≤ 2t and (t, c) 6= (1, 0). The

graph K1,2t+1(c; 1, . . . , 1) is solvable iff 0 ≤ c ≤ 2t+ 2.

(ii) The graph K1,n(c; 1, . . . , 1) is freely solvable iff 1 ≤ c ≤ n− 1.
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(iii) The graph K1,2t(c; 1, . . . , 1) is distance 2-solvable iff c = 2t+1 or (t, c) = (1, 0).

The graph K1,2t+1(c; 1, . . . , 1) is distance 2-solvable iff c = 2t+ 3.

(iv) The graph K1,2t(c; 1, . . . , 1) is (c − 2t + 1)-solvable if c ≥ 2t + 1. The graph

K1,2t+1(c; 1, . . . , 1) is (c− 2t− 1)-solvable if c ≥ 2t+ 3.

Proof. Using the argument from Theorem 5.1, K1,n(c; 1, ..., 1) is at best (c − n)-

solvable when c ≥ n + 2. If n = 2 and c = 0, then the graph is the path on five

vertices, which is distance 2-solvable [4]. The additional necessary conditions will be

discussed later.

If c = 0 and n ≥ 3, then begin with the initial hole in x. Remove n − 1 legs

using a combination of wishbone and trident purges, as in Theorem 5.1. Finally, use

y1,1·
−→

y1 ·x to solve the graph.

If 1 ≤ c ≤ n − 1 and c is odd, then start with the initial hole in x. Perform

c−1

2
spider(x) purges, then use wishbone and trident purges to reduce the graph to

K1,2(1; 1, 1) or K1,3(1; 1, 1, 1) with the hole in x. It can be checked using [6] that

K1,2(1; 1, 1) and K1,3(1; 1, 1, 1) with the hole in x can have the final peg located

anywhere except x. Thus, K1,n(c; 1, . . . , 1) is freely solvable when 1 ≤ c ≤ n− 1 and

c is odd by Proposition 2.1.

If 1 ≤ c ≤ n− 1 and c is even, then start with the initial hole in y1, and make the

move xc·
−→

x ·y1. Ignoring xc reduces this to the case when c is odd with the initial hole

in x. We have shown this case can have the final peg anywhere except x. If the initial
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hole is in x, then use spider(x) purges to reduce to the case where c = 0. Therefore,

K1,n(c; 1, . . . , 1) is freely solvable when 1 ≤ c ≤ n− 1 and c is even.

If c = n, then let the initial hole be in y1 and use the spider(N) purge
⌈

c
2

⌉

− 1

times. Ignoring the vertices cleared by the spider(N) purges reduces this to K1,1(1; 1)

or K1,2(2; 1, 1), depending on whether n is odd or even, respectively. Note that both

K1,1(1; 1) and K1,2(2; 1, 1) have the hole in y1. For K1,1(1; 1), move x1·
−→

x ·y1 and

y1,1·
−→

y1 ·x to solve. For K1,2(2; 1, 1), move y2·
−→

x ·y1, y1,1·
−→

y1 ·x, x2·
−→

x ·y2, y2,1·
−→

y2 ·x, and

x1·
−→

x ·y1 to solve.

If c = n + 1 and n is odd, then start with the initial hole in y1 and perform the

spider(N) purge n−1

2
times. This reduces to K1,1(2; 1) with the hole in y1, which is

a solvable double star with the final peg in y1. However, when n is even, spider(N)

purges will reduce the game down toK1,2(3; 1, 1), which is distance 2-solvable. We will

show thatK1,2t(2t+1; 1, ..., 1) will reduce toK1,2(3; 1, 1) because spider(N) purges are

necessary. Begin with the initial hole in y2t. If we make the initial jump y1·
−→

x ·y2t, then

y2t,1·
−→

y2t·x is forced. If we think of y2t ∈ X, then this is essentiallyK1,2t−1(2t+1; 1, ..., 1)

with a hole in y1, which is unsolvable. Thus, up to automorphism, the first two

moves are x1·
−→

x ·y1 followed by y1,1·
−→

y1 ·x. As before, the move y2·
−→

x ·y1 will lead to an

unsolvable graph. Therefore, x2·
−→

x ·y1 and y2,1·
−→

y2 ·x are forced. Again, y1·
−→

x ·y2 will

lead to an unsolvable graph. Thus x·
−→

y1 ·y1,1 and y3,1·
−→

y3 ·x are forced. This concludes

the exact moves of the spider(N) purge. Since the spider purges are necessary, if the

initial hole is not in y1, then the graph will reduce to a case that is not solvable by a
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similar argument.

It has been shown that the conditions provided for K1,2t(c; 1, . . . , 1) and

K1,2t+1(c; 1, . . . , 1) to be freely solvable are sufficient. We now show that these condi-

tions are necessary. For K1,n(c; 1, . . . , 1) with c = 0, assume the initial hole is in y1.

Up to automorphism, the moves y2·
−→

x ·y1 and y1,1·
−→

y1 ·x are forced, which clears the

first leg. Therefore, the legs must be removed one at a time until the path on five

vertices remains, which is distance 2-solvable [4].

If n = 2t and c = n, then we have shown that spider(N) or spider(x) purges are

necessary. Hence, up to automorphism, the initial hole must be in y1, x, or X to be

solvable. If n = 2t+1 and c = n+1, then spider(N) purges are necessary. Therefore,

up to automorphism on the vertices, the initial hole must be in y1 or X.

Consider K1,2t+1(c; 1, ..., 1), where c ≥ 2t+3. If the hole is in y1, then t spider(N)

purges reduce the graph to K1,1(c − 2t; 1) with the hole in y1. After the moves

xc−2t·
−→

x ·y1, y1,1·
−→

y1 ·x, and xc−2t−1·
−→

x ·y1, there are c− 2t− 2 pegs in X and 1 peg in

y1. In particular, if c = 2t+ 3, then the graph is distance 2-solvable.

Similarly, for K1,2t(c; 1, ..., 1), where c ≥ 2t + 1, the t − 1 spider(N) purges will

reduce the graph to K1,2(c − 2t + 2; 1, 1) with a hole in y1. After making the jumps

xc−2t+2·
−→

x ·y1, y2,1·
−→

y2 ·x, xc−2t+1·
−→

x ·y2, y1,1·
−→

y1 ·x, and y2·
−→

x ·xc−2t+1, there are c−2t+1
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pegs in X. In particular, if c = 2t+ 1, then the graph is distance 2-solvable.

Knowing the necessary and sufficient conditions for the solvability of diameter

four trees also leads to the following result that applies to all trees.

Theorem 5.3 Let T be a tree with maximum degree ∆(T ), n(T ) vertices, and c leaves

adjacent to the vertex of maximum degree. If ∆(T ) ≥ n(T ) − c + 1, then T is not

solvable.

Proof. As shown in [4, 5], the above bound holds for trees of diameter three or less.

Hence, we may assume that T is a tree with a diameter of at least four. Choose x to

be a vertex of maximum degree. Denote the cluster of pendants adjacent to x as X

such that |X| = c. In order for T to be solvable, every peg must be removed from X.

Therefore, the upper bound for solvability of diameter four trees, k ≤ n + 1, which

implies c ≤ s+1, can be used to determine when T is not solvable. If c > s+1, then

c is too large and thus the terminal state will have multiple pegs remaining in X.

In a tree of diameter four, there are s + n vertices remaining when x and X are

excluded. In the general case, there are n(T ) − c − 1 vertices remaining. Since T is

being treated as a diameter four tree, s + n = n(T ) − c − 1. The upper bound for

diameter four trees can be now be manipulated to become s+ 1 = n(T )− c− n.

Also, n = ∆(T ) − c. Thus, s + 1 = n(T ) − ∆(T ). Hence, if c > s + 1, then

c > n(T ) − ∆(T ). This implies ∆(T ) > n(T ) − c. Therefore, ∆(T ) ≥ n(T ) − c + 1
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implies that T is not solvable.

Notice that there are solvable trees with ∆(T ) = n(T ) − c. One example is

DS(c+ 1, c). Therefore, the above bound is sharp.

Using this new bound, we can now find the minimum number of trees with order

n(T ) that are not solvable. Using the On-Line Encyclopedia of Integer Sequences

[21], Table 1 gives the number of non-isomorphic trees with order n(T ) ≤ 12. Table 1

also gives the number of trees with n(T ) ≤ 12 that are not solvable just by analyzing

the largest degree vertex of a tree. Note that this is may not be the total number of

trees that are not solvable for a given n(T ).

n(T ) # of trees # not solvable %
1 1 0 0
2 1 0 0
3 1 0 0
4 2 1 50
5 3 1 33.33
6 6 2 33.33
7 11 2 18.18
8 23 4 17.39
9 47 5 10.64
10 106 9 8.49
11 235 11 4.68
12 551 21 3.81

Table 1: Data for trees with order n(T ) ≤ 12.

Notice that the percentage of trees that can be classified as being not solvable by

Theorem 5.3 decreases as n(T ) grows larger. Hence, an assumption could be that

a greater percentage of trees are solvable as n(T ) increases. This evidence would
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help support a conjecture made by Beeler, Gray, and Hoilman in [3]. The conjecture

states, for n ≥ 9, at least half of all non-isomorphic trees of order n are solvable.

Another interesting pattern was found while interpreting the data. Table 2 gives

the number of trees with order n(T ) that have maximum degree ∆(T ).

H
H
H
H
H

H
H
H
H

H
H
H

∆(T )

n(T )
1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 3 5 10 17 36 65 134
4 1 1 3 7 17 38 93 220
5 1 1 3 7 19 45 118
6 1 1 3 7 19 47
7 1 1 3 7 19
8 1 1 3 7
9 1 1 3
10 1 1
11 1

Table 2: Number of trees with order n(T ) that have maximum degree ∆(T ).

The pattern along the main diagonal simply shows that there is only one star, K1,n

with n vertices. However, other patterns develop for larger n. Notice the bottom

four entries in the last five columns are 7, 3, 1, 1 when read from top to bottom.

It also appears that 19 joins this pattern as well, beginning with n(T ) = 10. It

seems that when first number above the repeating sequence increases by two, the

resulting number becomes part of the repeating sequence. Searching [21] results in

three sequences, [22, 16, 15], all containing the sequence 1, 1, 3, 7, 19, 47. However,
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all three differ have different elements appearing next. Analyzing trees with order

n(T ) = 13, will either narrow the list down to one sequence, or eliminate all three.

Also, if some pattern can be found which identifies how many trees with maximum

degree ∆(T ) have a specific number of pendants c, Table 1 can be extended without

the need for examining each tree individually.
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6 FOOL’S SOLITAIRE

Fool’s solitaire is a variation of peg solitaire where the goal is to have the maximum

number of pegs possible remaining at the end of the game under the caveat that the

player jumps whenever possible. The fool’s solitaire number of a graph G, denoted

Fs(G), is the cardinality of the largest terminal state T that is associated with a

starting state consisting of a single hole. Similarly, a terminal state T is a fool’s

solitaire solution if the cardinality of T is equal to Fs(G) [7]. The fool’s solitaire

number for stars is Fs(K1,n) = n [7] and double stars is Fs(K1,1(c; a1)) = c+ a1 [5].

In [7], it is conjectured that for all connected graphs G, Fs(G) ≥ α(G)− 1. How-

ever, it can be checked using [6] that K1,3(0; 2, 2, 2) violates this conjecture, because

Fs(K1,3(0; 2, 2, 2)) = 5 = α(K1,3(0; 2, 2, 2)) − 2. This example is far from unique. In

fact, the diameter four trees provide an infinite class of counterexamples to the above

conjecture. For this reason, we are motivated to find Fs(K1,n(c; a1, . . . , an)).

We begin with some observations about the maximum independent set A for

G = K1,n(c; a1, . . . , an). First note that A will contain each of the Yi where ai ≥ 2. If

c = 0, then x ∈ A. If c = 1, then either x or x1 will be in A. In this case, we choose

that x1 ∈ A for the purpose of the fool’s solitaire problem. If c ≥ 2, then X ⊂ A. If

ai = 1 and c = 0, then yi,1 ∈ A, but yi /∈ A. However, if ai = 1 and c ≥ 1, then we

have a choice whether to include yi,1 or yi into A. In any case, α(G) = s+ c+1 when

c = 0 and α(G) = s+ c when c ≥ 1. These cases will be instrumental in proving the
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following theorem.

Theorem 6.1 Consider the diameter four tree G = K1,n(c; a1, . . . , an), where ai ≥ 2

for 1 ≤ i ≤ n− ℓ and ai = 1 for n− ℓ+ 1 ≤ i ≤ n.

(i) If c = 0 and ℓ = 0, then Fs(G) = s+ c−
⌊

n
3

⌋

.

(ii) If c ≥ 1 and ℓ = 0, then Fs(G) = s+ c−
⌊

n+1

3

⌋

.

(iii) If ℓ ≥ 1, then Fs(G) = s+ c−
⌊

n−2m+1

3

⌋

, where m = min{ℓ,
⌊

n
2

⌋

}.

Proof. First, consider the case where c = 0 and ℓ = 0. As noted above, the

maximum independent set is T = Y1 ∪ · · · ∪ Yn ∪ {x}. The dual of this configuration

is T ′ = {y1, ..., yn}. This has n ≥ 2 pegs, none of which are adjacent. Hence, we

can not obtain the upper bound of α(G) = s + c pegs. Thus, some pegs must be

removed from the maximum independent set to obtain the fool’s solitaire solution.

Equivalently, some pegs must be added to the dual of the maximum independent set

in order to obtain a solvable configuration. We will determine the minimum number

of pegs that need to be added to the dual.

Up to automorphism, there are two places where we can add a peg to the dual,

namely to x or to one of the Yi. If we add a peg to x, then we can remove one peg

from N with the move x·
−→

y1 ·y1,1. Hence, this will not solve the dual. Adding an

additional peg to Y2 will remove an additional three pegs from N using the moves

y2,1·
−→

y2 ·x, y3·
−→

x ·y1, y1,1·
−→

y1 ·x, and x·
−→

y4 ·y4,1. However, if a peg is added to Y1 rather
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than x, then we can remove two pegs using the moves y1,1·
−→

y1 ·x and x·
−→

y2 ·y2,1. Adding

an additional peg to Y3 will remove an additional three pegs using a similar sequence

as above. Thus, it is more efficient to add a peg to one of the Yi than it is to add a

peg to x. Similarly, adding two or more pegs to a single Yi is not advantageous, as

this would deny us to ability to jump its corresponding support vertex.

Thus, if n = 3t+ r, where t, r ∈ Z and 0 ≤ r ≤ 2, then we must add at least t+1

pegs to the dual. Equivalently, the fool’s solitaire number is at most s+ c− t, where

t =
⌊

n
3

⌋

. To show equality, it is sufficient to provide the dual of the fool’s solitaire

solution and the sequence of moves that will reduce this to a single peg. We claim that

T ′ = {y1, ..., yn, y1,1, y3i,1 : i ≤ t}. Begin with the moves y1,1·
−→

y1 ·x and x·
−→

y2 ·y2,1. For

i = 1, ..., t − 1, make the sequence of jumps y3i,1·
−→

y3i·x, y3i+1·
−→

x ·y3i−1, y3i−1,1·
−→

y3i−1·x,

and x·
−→

y3i+2·y3i+2,1. If r = 0, then we replace x·
−→

y3t−1·y3t−1,1 with y3t−1·
−→

x ·y3t−2 and

make the additional jumps y3t,1·
−→

y3t·x and y3t−2·
−→

x ·y3t. If r = 1, then we make the

additional jumps y3t,1·
−→

y3t·x, y3t+1·
−→

x ·y3t−1, and y3t−1,1·
−→

y3t−1·x. If r = 2, then we make

the additional jumps y3t,1·
−→

y3t·x, y3t+1·
−→

x ·y3t−1, y3t−1,1·
−→

y3t−1·x, and x·
−→

y3t+2·y3t+2,1. Thus,

Fs(G) = s+ c− t, where t =
⌊

n
3

⌋

.

By a similar argument, if c ≥ 1 and ℓ = 0, then T ′ = {y1, ..., yn, x, y3i−1,1 : i ≤ t}.

If n ≡ 2 (mod 3), then we also include yn,1. In any case, we begin by making the

jump x·
−→

y1 ·y1,1. The current configuration of pegs is the same as in the previous case

after the first two moves had been made. It follows that Fs(K1,n(c; a1, ..., an)) =

s+ c−
⌊

n+1

3

⌋

, where c ≥ 1.
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We now consider the case where ℓ ≥ 1. If c = 0, then the maximum independent

set is Y1 ∪ · · · ∪ Yn ∪ {x}. As before, the dual of this configuration has no adjacent

pegs. Hence, it is necessary to add at least one peg to the dual. We claim that

adding x to the dual is the best choice. The reason is that we want to replace yi

with yi,1 in the dual for all i ≥ m = min{ℓ, ⌊n
2
⌋}. If x is in the fool’s solitaire

solution, then this is not possible because the fool’s solitaire solution must be an

independent set. Further, this will allow us to “exchange” pegs in Yi with pegs in

N , where i ≥ n −m. Since x will be in the dual of our fool’s solitaire solution, the

method described here will also work when c ≥ 1. Thus, in both cases we claim that

T ′ = {y1, ..., yn−m, yn−m+1,1, ..., yn,1, x, ym+3i−1,1 : i = 1, ..., ⌊n−2m
3

⌋}. If n − 2m > 0

and n − 2m ≡ 2 (mod 3), then we also include yn−m,1 in the dual. We remove pegs

from the dual using the moves yi·
−→

x ·yn−m+i and yn−m+i,1·
−→

yn−m+i·x for i = 1, ...,m.

Note that this is the same as the initial configuration in the case where c ≥ 1 and

ℓ = 1. Thus, Fs(G) = s+ c− ⌊n−2m+1

3
⌋.
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7 OPEN PROBLEMS

We end our discussion by giving several open problems as a basis for future re-

search.

What are the conditions for the solvability of trees with diameter five? Once the

conditions for trees with diameter five are found, can we use the known conditions

for trees with diameter less than six to predict conditions for trees of diameter six?

What percentage of trees are not solvable by Theorem 5.3? Can Theorem 5.3

be generalized to describe all graphs? Are there conditions on the degrees of the

neighbors of the largest degree vertex that will provide better bounds for the non-

solvability of a tree?

What other graphs have Fs(G) < α(G)− 1? How far can Fs(G) differ from α(G)?
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APPENDIX

Tables

1 2 3 4 Final Peg
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y2,1·
−→

y2 ·x y1·
−→

x ·x1 x1

y2,1·
−→

y2 ·x y1,1·
−→

y1 ·y1,2 x1·
−→

x ·y1 y1,2·
−→

y1 ·x x
y2,1·

−→

y2 ·x x1·
−→

x ·y2 y1,1·
−→

y1 ·x y2·
−→

x ·y1 y1
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y2,1·
−→

y2 ·x y1·
−→

x ·y2 y2
y2,1·

−→

y2 ·x y1,1·
−→

y1 ·y1,2 x1·
−→

x ·y1 y1,2·
−→

y1 ·y1,1 y1,1
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y2,1·
−→

y2 ·x x·
−→

y1 ·y1,2 y1,2
y2,1·

−→

y2 ·x x1·
−→

x ·y2 y1,1·
−→

y1 ·x x·
−→

y2 ·y2,1 y2,1

Table 3: Terminal states of K1,2(1; 2, 1) with S = {x, y1,2}.

1 2 3 4 5 6 Final Peg
y3,1·

−→

y3 ·x y1·
−→

x ·y3 y2,1·
−→

y2 ·x x1·
−→

x ·y1 y1,1·
−→

y1 ·x y3·
−→

x ·x1 x1

y2,1·
−→

y2 ·x y1,1·
−→

y1 ·y1,2 x1·
−→

x ·y2 y3,1·
−→

y3 ·x y2·
−→

x ·y1 y1,2·
−→

y1 ·x x
y3,1·

−→

y3 ·x y1·
−→

x ·y3 y2,1·
−→

y2 ·x x1·
−→

x ·y1 y1,1·
−→

y1 ·x y3·
−→

x ·y1 y1
y3,1·

−→

y3 ·x y1·
−→

x ·y3 y2,1·
−→

y2 ·x x1·
−→

x ·y1 y1,1·
−→

y1 ·x y3·
−→

x ·y2 y2
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y2,1·
−→

y2 ·x y1·
−→

x ·y2 y3,1·
−→

y3 ·x y2·
−→

x ·y3 y3
y2,1·

−→

y2 ·x y1,1·
−→

y1 ·y1,2 x1·
−→

x ·y2 y3,1·
−→

y3 ·x y2·
−→

x ·y1 y1,2·
−→

y1 ·y1,1 y1,1
y2,1·

−→

y2 ·x x1·
−→

x ·y2 y1,1·
−→

y1 ·x y2·
−→

x ·y1 y3,1·
−→

y3 ·x x·
−→

y1 ·y1,2 y1,2
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y2,1·
−→

y2 ·x y1·
−→

x ·y2 y3,1·
−→

y3 ·x x·
−→

y2 ·y2,1 y2,1
y3,1·

−→

y3 ·x y1·
−→

x ·y3 y2,1·
−→

y2 ·x x1·
−→

x ·y1 y1,1·
−→

y1 ·x x·
−→

y3 ·y3,1 y3,1

Table 4: Terminal states of K1,3(1; 2, 1, 1) with S = {x, y1,2}.

1 2 3 4 Final Peg
y2,1·

−→

y2 ·x x1·
−→

x ·y2 y1,1·
−→

y1 ·x y2·
−→

x ·x1 x1

y2,1·
−→

y2 ·x x1·
−→

x ·y2 y1,1·
−→

y1 ·x y2·
−→

x ·y1 y1
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y2,1·
−→

y2 ·x y1·
−→

x ·y2 y2
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y2,1·
−→

y2 ·x x·
−→

y1 ·y1,1 y1,1
y2,1·

−→

y2 ·x x1·
−→

x ·y2 y1,1·
−→

y1 ·x x·
−→

y2 ·y2,1 y2,1

Table 5: Terminal states of K1,2(1; 1, 1) with S = {x}.
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1 2 3 4 5 6 Final Peg
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y3,1·
−→

y3 ·x y1·
−→

x ·y3 y2,1·
−→

y2 ·x y3·
−→

x ·x1 x1

y1,1·
−→

y1 ·x x1·
−→

x ·y1 y3,1·
−→

y3 ·x y1·
−→

x ·x1 y2,1·
−→

y2 ·x x1·
−→

x ·y1 y1
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y3,1·
−→

y3 ·x y1·
−→

x ·x1 y2,1·
−→

y2 ·x x1·
−→

x ·y2 y2
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y3,1·
−→

y3 ·x y1·
−→

x ·x1 y2,1·
−→

y2 ·x x1·
−→

x ·y3 y3
y1,1·

−→

y1 ·x y3·
−→

x ·y1 y2,1·
−→

y2 ·x x1·
−→

x ·y3 y3,1·
−→

y3 ·x x·
−→

y1 ·y1,1 y1,1
y2,1·

−→

y2 ·x y1·
−→

x ·y2 y3,1·
−→

y3 ·x x1·
−→

x ·y1 y1,1·
−→

y1 ·x x·
−→

y2 ·y2,1 y2,1
y1,1·

−→

y1 ·x x1·
−→

x ·y1 y3,1·
−→

y3 ·x y1·
−→

x ·y3 y2,1·
−→

y2 ·x x·
−→

y3 ·y3,1 y3,1

Table 6: Terminal states of K1,3(1; 1, 1, 1) with S = {x}.
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