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ABSTRACT

Extremal Results for Peg Solitaire on Graphs

by

Aaron D. Gray

In a 2011 paper by Beeler and Hoilman, the game of peg solitaire is generalized to

arbitrary boards. These boards are treated as graphs in the combinatorial sense. An

open problem from that paper is to determine the minimum number of edges necessary

for a graph with a fixed number of vertices to be solvable. This thesis provides new

bounds on this number. It also provides necessary and sufficient conditions for two

families of graphs to be solvable, along with criticality results, and the maximum

number of pegs that can be left in each of the two graph families.
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Auguste Berey, 1697 [14] . . . . . . . . . . . . . . . . . . . . . . . . . 22

18 The English peg solitaire board . . . . . . . . . . . . . . . . . . . . . 23

19 The European peg solitaire board . . . . . . . . . . . . . . . . . . . . 23

20 The 15 hole triangular peg solitaire board . . . . . . . . . . . . . . . 24

21 The Icosian Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9



22 The domination of a chess board by 5 queens [21] . . . . . . . . . . . 27

23 The double star K2(5, 3) before and after DS(X1, X2, 3) . . . . . . . . 32

24 The hairy complete graph K3(5, 3, 2) . . . . . . . . . . . . . . . . . . 35

25 The hairy complete graph K3(5, 3, 2) before and after HC(x1, 3, 2) . . 36

26 The hairy complete bipartite graph K3,4(3, 1, 1; 2, 1, 1, 0) . . . . . . . 41

27 The solvability of all graphs with four vertices or less [5] . . . . . . . 51

28 The chorded five cycle C(5, 2) . . . . . . . . . . . . . . . . . . . . . . 51

29 The solvability of graphs with five vertices [5] . . . . . . . . . . . . . 51

30 Graphs with six vertices that are not freely solvable [5] . . . . . . . . 52

31 Graphs with seven vertices that are not freely solvable [5] . . . . . . . 53

32 All freely solvable trees with order 10 or less [6] . . . . . . . . . . . . 54

33 The cycle with a subdivided chord CSC(6, 2) . . . . . . . . . . . . . 56

34 The hairy complete graph K5(5, 0, 0, 0, 0) . . . . . . . . . . . . . . . . 59

35 The hairy complete bipartite graph K2,2(2, 0; 0, ..., 0) . . . . . . . . . 64

36 The hairy complete bipartite graph K2,4(2, 0; 0, 0, 0, 0) . . . . . . . . . 64

10



1 INTRODUCTION

1.1 Background

Peg solitaire is a one-player table game with its earliest recorded use in the late

17th century. The game is played on a board with a set number of holes. Pegs are

placed in every hole but one. A peg is removed by jumping over it with an adjacent

peg into an adjacent hole, as in Figure 1. This jump is similar to a jump in the game

of checkers or draughts. The game ends when no further moves are possible. If only

one peg remains on the board, then the board is considered solved and the game is

won. Some game boards use stones or marbles and indentations instead of pegs and

holes. In addition, a variation of the game requires the placement of the final peg

in the central hole. Alternate names for peg solitaire include Solitaire, Solo Noble,

Hi-Q, and Brainvita.

1

x y z

2

x y z

3

x y z

Figure 1: A typical jump in peg solitaire

In a 2011 paper, Beeler and Hoilman [8] generalize peg solitaire to arbitrary

boards. These boards are treated as graphs in the combinatorial sense. In [8], Beeler

and Hoilman also present an important open problem considering the set of connected

graphs on n vertices and k edges, which they denote Gn,k. Given a fixed n, the prob-

lem is to determine the minimum k such that all graphs in Gn,k are solvable. In

this thesis, we consider the equivalent problem of determining the maximum k such
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that there is at least one unsolvable graph in Gn,k. We provide a lower bound for

this k and examine two graph families in which a single edge addition changes the

solvability of the resulting graph. We establish necessary and sufficient conditions on

the solvability of these graph families. We also determine the maximum number of

pegs that can be left on these graph families with the restriction that a jump is made

whenever possible.

1.2 Graph Theory Terminology

We now present several graph theory definitions. A graph, G = (V,E), is a set of

vertices V and a set of edges E. Figure 2 shows an example of a graph. A graph H

is a subgraph of a graph G if V (H) ⊂ V (G) and E(H) ⊂ E(G). If V (H) = V (G),

then H is a spanning subgraph of G. A graph H is a vertex-induced subgraph of G if

for any two vertices u and v ∈ H , uv ∈ E(H) if and only if uv ∈ E(G). If graph G

does not contain a subgraph H , then G is H-free.

Figure 2: An example of a graph

The order of a graph is the cardinality of its vertex set. The size of a graph is the

cardinality of its edge set. Two vertices, u and v, are adjacent if the edge uv is in the

edge set of the graph. If uv is in the edge set, then v is incident to uv. A loop is an

edge that is incident with only one vertex. The degree of a vertex v, denoted deg(v),
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is the number of edges incident to v. A pendant is a vertex with degree one.

A new graph H can be constructed from another graph G by adding vertices

h1, ..., hn to V (G) and constructing edges incident with each hi and a single vertex

u in G. Thus each hi is a pendant in H . We refer to this act as appending vertices.

We refer to the pendants as a cluster. We refer to u as the cluster’s support vertex.

Figure 3 shows an example of appending vertices to a graph. When an edge is added

between two nonadjacent vertices, u and v, in G, we denote the resulting graph by

G + uv. An edge uv in graph G is subdivided if it is replaced with the new vertex w

and the edges uw and wv. Figure 4 shows an example of subdividing an edge in a

graph.

G: H :

Figure 3: An example of appending vertices to graph G to form a new graph H

G: H :

Figure 4: An example of subdividing an edge in graph G to form a new graph H

For an integer n ≥ 1, the path is the graph with order n and size n − 1 whose

vertices may be labeled v1, ..., vn and whose edges are vivi+1 for i = 1, ..., n− 1. This
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graph is denoted Pn. Figure 5 shows an example of the path. The terminal vertices

of a path are the pendant vertices. If two vertices u and v are terminal vertices of a

path subgraph, then the path subgraph is referred to as a u− v path. Two vertices, u

and v, in a graph G are connected if G has a u−v path. A graph G is itself connected

if G contains a u − v path for every two vertices, u and v, in G. Figure 6 shows

an example of a connected graph. The distance between two vertices, u and v, in a

connected graph G is the minimum length of the all u− v paths in G.

Figure 5: The path P5

Figure 6: A connected graph

For an integer n ≥ 3, the cycle is the graph with order and size n whose vertices

may be labeled v1, ..., vn and whose edges are v1vn and vivi+1 for i = 1, ..., n−1. This

graph is denoted Cn. Figure 7 shows an example of the cycle. A chord of a cycle Cn is

an edge incident with two vertices of Cn that are not adjacent in Cn. If G has a cycle

as a spanning subgraph, then G is hamiltonian. A tree is a connected graph with no

cycle subgraphs. The empty graph contains no edges. The complete graph contains

all possible edges such that every two distinct vertices are adjacent. This graph is

denoted Kn. Its vertex set is denoted {x1, ..., xn}. Figure 8 shows an example of the

14



complete graph.

Figure 7: The cycle C5

Figure 8: The complete graph K5

A graph G is bipartite if V (G) can be partitioned into two sets X and Y so that if

uw ∈ E(G), then u ∈ X and w ∈ Y . We refer to |X| and |Y | as vertex classes. The

complete bipartite graph can be partitioned so that uw ∈ E(G) if and only if u ∈ X

and w ∈ Y . We denote the complete bipartite graph by Ks,t, where s = |X| and

t = |Y |. Figure 9 shows an example of the complete bipartite graph. These notions

may be extended to k-partite graphs and k-partite complete graphs.

The star K1,t is a complete bipartite graph with s = 1. Figure 10 shows an

example of the star. The double star K2(a1, a2) is formed by appending a1 pendants

to one vertex of K2 and appending a2 pendants to the second vertex of K2. Without

loss of generality, we assume that a1 ≥ a2. Figure 11 shows an example of the double

star.

15



Figure 9: The complete bipartite graph K3,4

Figure 10: The star K1,3

Figure 11: The double star K2(5, 3)

For a graphX and a graph Y with x1, ..., x|V (X)| ∈ V (X) and y1, ..., y|V (Y )| ∈ V (Y ),

the Cartesian product G = X�Y is the graph with V (G) = V (X) × V (Y ). Two

vertices (x1, x2) and (y1, y2) of G are adjacent if and only if either x1 = y1 and

x2y2 ∈ E(X) or x2 = y2 and x1y1 ∈ E(Y ). An example of a Cartesian product

appears in Figure 12. The mesh is the Cartesian product Pn�Pm. The hypercube,

denoted Qn, is the Cartesian product P2� · · ·�P2
︸ ︷︷ ︸

n times

.
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P2: P3: P2�P3:

Figure 12: The Cartesian product P2�P3

An independent set of vertices contains no adjacent vertices. The independence

number of a graph G, denoted α(G), is the maximum number of vertices in an in-

dependent set of G. A dominating set of a graph G is a subset D ⊂ V such that

every vertex not in D is adjacent to some vertex in D. The domination number of G,

denoted γ(G) is the minimum cardinality of all dominating sets of G.

Two graphs G and H are isomorphic, denoted G ∼= H , if there exists a bijection

φ : V (G) → V (H) such that two vertices u and v are adjacent in G if and only if

φ(u) and φ(v) are adjacent in H . The bijection φ is an isomorphism from G to H .

An automorphism of a graph G is an isomorphism from G to itself.

A bound is considered sharp if there exists a graph for which equality holds. Thus

the bound may not be constrained further without excluding the aforementioned

graph.

1.3 Peg Solitaire on Graphs Terminology

We now present several definitions specific to peg solitaire on graphs. Because

of the restrictions of peg solitaire, we assume that all graphs are finite, undirected,

connected graphs with no loops or multiple edges. If in a graph G, there are pegs in

vertices x and y and a hole in vertex z, then the peg in x may jump over the peg in

17



y into the hole in z provided that xy and yz are edges in G. The peg in y is then

removed (see Figure 1). We denote this jump with x·
−→

y ·z. Since the notions of rows

and columns are not defined in graphs, ‘L’-shaped jumps are allowed.

Generally, the game begins with a starting state S ⊂ V , which is a set of vertices

with holes. The game ends with a terminal state T ⊂ V , which is a set of vertices

with pegs. A terminal state T is associated with a stating state S if T can be obtained

from S by a series of jumps. Unless otherwise noted, we assume that S consists of a

single vertex.

If a graph G has a starting state consisting of a single hole that is associated

with a terminal state consisting of a single peg, then G is solvable. If G is solvable

regardless of the placement of the intial hole, then G is freely solvable. It may not be

possible to achieve a terminal state consisting of a single peg. If, beginning with a

single hole, the minimum number of pegs in any associated terminal state consists of

k vertices, then G is k-solvable. In particular, if the final two pegs are distance two

apart, then G is distance 2-solvable. Figure 13 shows an example of a solvable (but

not freely solvable) graph, Figure 14 shows an example of a freely solvable graph, and

Figure 15 shows an example of a distance 2-solvable graph.

Figure 13: An example of a solvable (not freely solvable) graph
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Figure 14: An example of a freely solvable graph

Figure 15: An example of a distance 2-solvable graph
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2 LITERATURE REVIEW

In this section, we provide a survey of literature related to the traditional game of

peg solitaire, extremal graph theory, combinatorial games, and other research on peg

solitaire. We also provide an overview of the literature that explores peg solitaire on

graphs under the paradigm of this thesis.

2.1 Traditional Peg Solitaire

A description of peg solitaire, including the board, rules, and problems appears in

the August 1697 edition of the French literary magazine Mercure Galant [1]. Figure

16 shows a scan of the first pages of this article. Peg solitaire’s rich history also

includes its play in the court of King Louis XIV of France. Claude Auguste Berey’s

1697 engraving, Madame la Princesse de Soubise joüant au jeu de Solitaire depicts

the Princess of Soubise playing the game [14]. Figure 17 shows this engraving and

the peg solitaire board depicted in it. To date, these are the earliest known records of

the game [3, 4]. In 1710, mathematician Gottfried Wilhelm von Leibniz described the

game in Miscellanea Berolinensia, as well as a variation in which the game is played

in reverse with the following (quoted and translated in [4]):

Not so very long ago there became widespread an excellent kind of game,

called Solitaire, where I play on my own, but as with a friend as witness

and referee to see that I play correctly. A board is filled with stones set in
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holes, which are removed in turn, but none (except the first, which may

be chosen for removal at will) can be removed unless you are able to jump

another stone across it into an adjacent empty place, when it is captured as

in Draughts. He who removes all the stones right to the end according to

this rule, wins; but he who is compelled to leave more than one stone still

on the board, yields the palm. This game can more elegantly be played

backwards, after one stone has been put at will on an empty board, by

placing the rest with it, but the same rule being observed for the addition

of stones as was stated just above for their removal. Thus we can either fill

the board, or, what would be more clever, shape a predetermined figure

from the stones...(Beasley xii)

Figure 16: Scan of Mercure Galant peg solitaire article, August 1697 [1]
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Figure 17: Madame la Princesse de Soubise joüant au jeu de Solitaire by Claude-

Auguste Berey, 1697 [14]

There are numerous variations of the peg solitaire board. The English board (also

known as the standard board) is cross-shaped and has 33 holes. The European board

(also known as the French or continental board) has an additional hole in each of

the English board’s four inside corners. Another example of the game is the 15 hole

triangular board variation found in some wooden game sets and on the tables at

Cracker BarrelR© Old Country Store restaurants. Figure 18 shows the layout of the

English board, Figure 19 shows the layout of the European board, and Figure 20

shows the layout of the 15 hole triangular board. In each figure, the white vertex

denotes the usual location of the initial hole.

22



Figure 18: The English peg solitaire board

Figure 19: The European peg solitaire board

Berlekamp, Conway, and Guy [15] explore a helpful device for the elimination of

pegs. They define a package as a known configuration of pegs that may eliminated

with a predetermined series of jumps. The elimination of these pegs is called a purge.

A purge acts as a type of “shortcut” that can be used to efficiently progress the game.

Beasley [4] and Berlekamp, Conway, and Guy [15] share details of the traditional

game’s rich history and solution techniques. The 15 hole variation is explored in

depth by Bell [13].
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Figure 20: The 15 hole triangular peg solitaire board

Bruijn [23] explores the link between the English variation of peg solitaire and the

finite field. In this work, pegs and holes are considered elements of the finite field

with addition and multiplication operations. Hentzel [34] explores this concept on

the triangular board using an abelian group under addition. In [37], peg solitaire is

utilized in the context of artificial intelligence.

2.2 Extremal Graph Theory

Extremal graph theory is a branch of graph theory that investigates maximal

or minimal graphs that maintain specific qualities. For example, all graphs with n

vertices and n edges contain a cycle subgraph. Thus, trees are extremal or edge critical

graphs that do not contain a cycle subgraph since any single edge addition would

create a cycle subgraph. Extremal results are studied in the context of many graph

theory topics. Such topics include order, size, connectivity, diameter, hamiltonicity,

and domination. Dirac’s Theorem and Turán’s Theorem are two famous extremal

graph theory results [21].
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Theorem 2.1 (Turán’s Theorem [21]) Let G be Kr+1-free. Then the size of G is at

most (r−1)n2

2r
.

Theorem 2.2 (Dirac’s Theorem [21]) If G is a graph of order n ≥ 3 such that

deg(v) ≥ n
2
for each vertex v of G, then G is hamiltonian.

According to [16], Turán initiated extremal graph theory as a subject in its own

right, but the majority of the development of the field is credited to Paul Erdös

because of his multitude of lectures, publications, and proposed problems on the

subject. An extremal result from Erdös and Stone [25] appears below.

Theorem 2.3 (Erdös-Stone Theorem [25]) For every r ∈ N and every ǫ > 0, if n

is sufficiently large and m ≥ tr(n) + ǫn2, where tr(n) denotes the maximal size of a

r-partite graph of order n, then every graph G with order n and size m contains a

complete (r + 1)-partite graph with arbitrarily large vertex classes.

For more information on extremal graph theory, see Bollobás’ book on the subject

[16].

2.3 Games and Graphs

Numerous other extensions of combinatorial games to graph theory have proven

to be valuable resources in areas beyond game or graph theory. We now survey a few

examples.
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In 1856, William Rowan Hamilton invented the Icosian Game [21]. The Icosian

Game is a one-player board game in which a dodecahedron appears on the game

board. A hole is in each vertex of the dodecahedron. The player uses pegs marked

with letters to find a cycle within the dodecahedron that includes every hole on the

board. The problem posed by the game led to the study of hamiltonicity in graphs

[21]. The layout of the Icosian Game appears in Figure 21.

Figure 21: The Icosian Game

According to [21], the study of domination on graphs has its roots in the game

of chess. In chess, a queen can move vertically, horizontally, or diagonally over any

number of unoccupied spaces. In 1862, Carl Friedrich de Jaenisch investigated the

minimum number of queens necessary for every space on an 8× 8 chess board to be

either occupied by a queen or reached by a queen in a single move. This number is

5. Likewise, the graph analog of possible moves by a queen on a chess board is called

the queen’s graph, and the domination number of the queen’s graph on 64 vertices is

5. Figure 22 shows how 5 queens may dominate an 8× 8 chess board.
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Figure 22: The domination of a chess board by 5 queens [21]

A number of other studies have continued the practice of extending games to

graphs. In the two player game Cops and Robbers, one player is designated as the

cop, C, and another is designated as the robber R. Each player occupies a distinct

vertex on a graph G, then C and R alternate moves along the edges of G. If C

occupies the same vertex as R, then C “captures” R, and C wins. Otherwise, R

wins. The game’s play on graphs is introduced independently by Nowakowski and

Winkler [40] and Quilliot’s Ph.D. dissertation [42]. Several families of graphs in which

C or R has a winning strategy are characterized in [2] and [40].

In addition, many variations of Cops and Robbers have been studied, including

those in which the robber may elect to not move during a turn [2] or in which the

robber may move over a number of unoccupied vertices in a single turn [28]. Addi-

tional variations involve games in which the robber is only visible to the cop after

a specific number of moves [20] or games with a single cop that can set up “road

blocks” to cause the robber to lose a number of turns [35]. For more information on
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the game, as well as its many variations, see Bonato and Nowakowski’s book on the

subject [17].

In Nim, two players take turns removing stones from at least three piles. During a

turn, a player may take any number of stones from only a single pile. The player that

removes the last stone or stones wins. In alternate versions, the loser is the player

that removes the last stone or stones. The game is given its name and first studied

in Bouton’s turn of the twentieth century paper [18]. The game is discussed and the

winning strategy is described in [26]. In [29] and [30], Nim is played on a graph with

weights placed on each edge. Players subtract from these weights as they move along

edges. Once the entire weight of an edge is removed, players may no longer move

along it. The player that cannot make any additional moves is the loser. Nim on

graphs is also studied in [19] and [26].

In Sim, two players take turns adding colored edges to an empty graph of order

6. Each player has a different color. The player that constructs a triangle in his or

her color is the loser. Using Ramsey theory, a tie is impossible. The game is first

created and named by Simmons in [43]. The game is analyzed by [24], and Mead,

Rosa, and Huang [39] show that the second player has a winning strategy. In [44], the

game is discussed and a variation on 18 vertices in which each player avoids creating

a K4 is studied. Note that the game of Sim may be played on graphs of other orders

with other complete graphs as long as Ramsey theory is used to choose an order that

prevents a tie.
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In Pebbling, pebbles are placed on vertices of a graph. In a pebbling step, two

pebbles are removed from a single vertex, and then one of the removed pegs is placed

on an adjacent vertex. The other peg is discarded. The point of the game is to

determine if it is possible to get a pebble to a specific vertex through a series of

pebbling steps. Chung [22] first introduces the game in the literature and discusses

its play on the hypercube. The pebbling numbers of odd cycles and squares of paths

are found in [41]. In [36], notable pebbling results are surveyed and new variations

are introduced.

Helleloid, et al. [33] establish graph pegging numbers and provide them for several

classes of graphs. The pegging number of a graph is the minimum number of pegs k

such that for every distribution of k pegs on the graph, any vertex of the graph can

be reached by a sequence of jumps.

2.4 Peg Solitaire on Graphs

In [8], Beeler and Hoilman first generalize peg solitaire on graphs under the

paradigm we use in this thesis. They establish the solvability of numerous fami-

lies of graphs, including the path, the cycle, the complete graph, and the complete

bipartite graph. The following results from [8] prove useful.

Theorem 2.4 [8]

(i) The path Pn is freely solvable iff n = 2; Pn is solvable iff n is even or n = 3; Pn

is distance 2-solvable in all other cases.
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(ii) The cycle Cn is freely solvable iff n is even or n = 3; Cn is distance 2-solvable

in all other cases.

(iii) For n ≥ 2, the complete graph Kn is freely solvable.

(iv) The complete bipartite graph K1,n is (n − 1)-solvable; The complete bipartite

graph Kn,m is freely solvable for n,m ≥ 2.

Remark 2.5 [8] For k ≥ 2, P2k is solvable with the initial hole in 1 and the final peg

in (2k − 2). For k ≥ 2, P2k+1 is distance 2-solvable with the initial hole in 1 and the

final two pegs in (2k − 2) and (2k).

Observation 2.6 [8] If a graph G is k-solvable with the initial hole in s and a jump

is possible, then there is a first jump; say s”·
−→

s′ ·s. Hence, if there are holes in s” and

s′ and pegs elsewhere, then G can be k-solved from this configuration.

We also provide the following proposition from [8].

Proposition 2.7 [8] If G is a k-solvable spanning subgraph of H, then H is (at

worst) k-solvable.

Because the contrapositive of this proposition is useful in our results, we list it

below.

Proposition 2.8 [8] Suppose that H is a k-solvable graph and G is a spanning sub-

graph of H, then G is (at best) k-solvable.
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The following theorem allows the completion of the game in reverse by exchanging

the roles of pegs and holes. Beeler and Rodriguez [11] define the dual of a configuration

of pegs on a graph as the arrangement of pegs when the roles of pegs and holes are

reversed.

Theorem 2.9 [8] Suppose that S is a starting state of G with associated terminal

state T . Let S ′ and T ′ be the duals of S and T , respectively. It follows that T ′ is a

starting state of G with associated terminal state S ′.

In [9], peg solitaire on the windmill and the double star is examined. The following

results are established for the double star.

Theorem 2.10 [9] The double star K2(a1, a2) is: (i) freely solvable if and only if

a1 = a2 and a2 6= 1 (ii) solvable if and only if a1 ≤ a2 + 1 (iii) distance 2-solvable if

and only if a1 = a2 + 2 (iv) (a1 − a2)-solvable if a1 ≥ a2 + 3.

While not explicitly stated in [9], a proof in that paper extends the notion of a

purge to peg solitaire on graphs. In particular, it extends a purge to graphs that have

a double star vertex-induced subgraph. We explicitly define this purge in the next

paragraph.

Suppose that the graph G has a double star vertex-induced subgraph, where x1

is a support vertex with a peg, X1 is the cluster at x1, x2 is the support vertex with

a hole, and X2 is the cluster at x2. The sequence of moves that removes c pegs from
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x1 x2 x1 x2

Figure 23: The double star K2(5, 3) before and after DS(X1, X2, 3)

each cluster is called a double star purge, denoted DS(X1, X2, c). Further, each step

in this purge, in which one peg is used to eliminate another peg for a net loss of 2

pegs, is called an exchange. An example of a double star purge is given in Figure 23.

We note that this purge extends to any graph with a double star subgraph, not just

those with a vertex-induced subgraph.

In [7], Beeler, Gray, and Hoilman discuss ways of constructing solvable graphs

from the ground up. In [5], Beeler and Gray provide the solvability of all graphs with

seven or fewer vertices. In [12], Beeler and Walvoort establish the solvability of trees

with diameter four with the following results.

Theorem 2.11 [12] For the graph G = K1,n(c; a1, ..., an), where a1 ≥ 2, a1 ≥ · · · ≥

an ≥ 1, and k = c− s+ n, with s =
∑n

i=1 ai:

(i) The graph G is solvable iff 0 ≤ k ≤ n+ 1;

(ii) The graph G is freely solvable iff 1 ≤ k ≤ n;

(iii) The graph G is distance 2-solvable iff k ∈ {−1, n+ 2};

(iv) The graph G is (1 − k)-solvable if k ≤ −1; The graph G is (k − n)-solvable if

k ≥ n+ 2.
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Theorem 2.12 [12]

The conditions for solvability of K1,n(c; 1, ..., 1) are as follows:

(i) The graph K1,2t(c; 1, . . . , 1) is solvable iff 0 ≤ c ≤ 2t and (t, c) 6= (1, 0). The

graph K1,2t+1(c; 1, . . . , 1) is solvable iff 0 ≤ c ≤ 2t+ 2.

(ii) The graph K1,n(c; 1, . . . , 1) is freely solvable iff 1 ≤ c ≤ n− 1.

(iii) The graph K1,2t(c; 1, . . . , 1) is distance 2-solvable iff c = 2t+1 or (t, c) = (1, 0).

The graph K1,2t+1(c; 1, . . . , 1) is distance 2-solvable iff c = 2t+ 3.

(iv) The graph K1,2t(c; 1, . . . , 1) is (c − 2t + 1)-solvable if c ≥ 2t + 1. The graph

K1,2t+1(c; 1, . . . , 1) is (c− 2t− 1)-solvable if c ≥ 2t+ 3.

In [6], Beeler and Gray present families of graphs that are freely solvable, including

the mesh.

In the peg solitaire variation fool’s solitaire, the objective of the game is to leave

as many pegs on the board as possible, with the caveat that a jump must be made

whenever possible. In [11], Beeler and Rodriguez examine the maximum number of

pegs in a terminal state with no adjacent pegs. This set of pegs in graph G is referred

to as the fool’s solitaire solution of G. The cardinality of the fool’s solitaire solution

of G is referred to as the fool’s solitaire number of G and denoted Fs(G). Loeb and

Wise [38] explore fool’s solitaire on graph products. The following results from [11]

prove useful.

33



Corollary 2.13 [11] On a graph G, there exists some vertex s ∈ V (G) such that,

when S = {s}, there exists some series of jumps that will yield T as a terminal state

if and only if the dual T ′ of T is solvable to 1 peg.

The following theorem establishes an upper bound for the fool’s solitaire number.

Theorem 2.14 [11] For any graph G, Fs(G) ≤ α(G), where α(G) is the indepen-

dence number of G.

The following result provides the fool’s solitaire number for the complete bipartite

graph. Trivially, Fs(Kn) = 1.

Theorem 2.15 [11] For n,m ≥ 2, Fs(Kn,m) = n− 1.

An extensive bibliography of combinatorial games, both on graphs and otherwise,

is provided by [27].
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3 TWO GRAPH FAMILIES

3.1 The Hairy Complete Graph

3.1.1 Construction

In this section, we consider a family of graphs that generalize the complete graph

and the double star. The hairy complete graph is the graph on n + a1 + · · · + an

vertices obtained from Kn by appending ai pendant vertices to xi for i = 1, ..., n. We

denote this graph Kn(a1, ..., an). Without loss of generality, we assume that a1 ≥ 1,

a1 ≥ · · · ≥ an, and n ≥ 3. We denote the ai pendants adjacent to xi as xi,1, ..., xi,ai .

Let Xi = {xi,1, ..., xi,ai}, and let X = {x1, ..., xn}. For S ⊂ V (G), the function ρ(S)

gives the current number of pegs in S.

An example of a hairy complete graph is given in Figure 24.

Figure 24: The hairy complete graph K3(5, 3, 2)

3.1.2 Hairy Complete Purge

To aid in our results, we introduce a new purge for eliminating pegs in the hairy

complete graph. For the hairy complete graphKn(a1, ..., an) with an ≥ d and a hole in

xn, we perform the jumps x1,k·
−→

x1 ·xn and xj,k·
−→

xj ·xj−1 for j = 2, ..., n and k = 1, ..., d.
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These jumps eliminate d pegs from each cluster of the graph, leave a peg in each xi,

where i ∈ {1, ..., n− 1}, and leave a hole in xn. We note that these jumps work with

the initial hole in any xi, where i ∈ {1, ..., n}. We refer to these jumps as the hairy

complete purge, denoted HC(xi, c, d), where there is a hole in xi, c is the number

of clusters involved in the purge, and d is the number of pegs eliminated from each

cluster. Figure 25 shows an example of the hairy complete purge.

1: 2:

Figure 25: The hairy complete graph K3(5, 3, 2) before and after HC(x1, 3, 2)

3.1.3 Necessary and Sufficient Conditions

Theorem 3.1 For the hairy complete graph G = Kn(a1, ..., an):

(i) The graph G is solvable iff a1 ≤
∑n

i=2 ai + n− 1;

(ii) The graph G is freely solvable iff a1 ≤
∑n

i=2 ai + n − 2 and (n, a1, a2, a3) 6=

(3, 1, 0, 0);

(iii) The graph G is distance 2-solvable iff a1 =
∑n

i=2 ai + n;

(iv) The graph G is (a1 −
∑n

i=2 ai − n + 2)-solvable if a1 ≥
∑n

i=2 ai + n.

Proof. We begin with the case of G = K3(1, 0, 0). Suppose that the initial hole is in

vertex x2. Jump x1,1·
−→

x1 ·x2 and x2·
−→

x3 ·x1 to solve the graph with the final peg in x1.
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Thus, the graph is solvable. Suppose that the initial hole is in x1,1. The first jump,

x2·
−→

x1 ·x1,1, is forced. This results in a peg in x1,1 and a peg in x3, which are distance

2 apart. So the graph is not freely solvable.

Suppose that G 6= K3(1, 0, 0). To establish necessary conditions, we first examine

the optimal method for solving the graph. The pegs in each cluster must be elimi-

nated. Hence all pegs in X1 must be removed. To do so, a peg must first be in x1.

For this to occur, one of two jumps must be made, namely, xi·
−→

xj ·x1, where i 6= j

and i, j 6= 1, or xj,1·
−→

xj ·x1, where i 6= j. Therefore, one of two double star purges is

necessary, namely DS(X1, Xj, d), where j 6= 1 or DS(X1, X − {x1, xj}, d). Each Xj

can exchange aj pegs with X1, and each xi, where i = 2, ..., n, can exchange 1 peg

with X1. Hence a1 ≤
∑n

i=2 ai + n − 1 is necessary. Moreover, if a1 ≥
∑n

i=2 ai + n,

then, at best, a1 −
∑n

i=2 ai − n + 1 pegs remain in the graph.

For sufficiency, let m be the greatest integer such that a1 −
∑n

i=m+1 ai − 1 ≤

a2 + (m− 2)am. If no such integer exists, then let m = 1. Begin with the initial hole

in xj , for j 6= 1, and jump x1,a1 ·
−→

x1 ·xj . For i = 1, ..., n−m, perform the double star

purge DS(X1, Xn−i+1, an−1+1).

Suppose that m = 1. Then a1 ≥
∑n

i=2 ai + 1. So, ρ(X1) = a1 −
∑n

i=2 ai −

1. If a1 =
∑n

i=2 ai + 1, then the graph reduces to Kn with a hole in x1, which

is solvable by Theorem 2.4. If a1 ≥
∑n

i=2 ai + 2, then perform the double star

purge DS(X1, X − {x1, xj},min(ρ(X1), n − 2)) to remove min(a1 −
∑n

i=2 ai, n − 2)

pegs from X1. If a1 ≤
∑n

i=2 ai + n − 2, then this reduces the graph to Kr, where
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r =
∑n

i=2 ai + n − a1, with a hole in x1, which is solvable. If a1 ≥
∑n

i=2 ai + n − 1,

then there are a1 −
∑n

i=2 ai − n+1 pegs in X1 and one peg in xj . Thus, the graph is

(a1 −
∑n

i=2 ai − n+ 2)-solvable.

Suppose that m ≥ 2. Then a1 <
∑n

i=2 ai + 1. So, ρ(X1) = a1 −
∑n

i=m+1 ai − 1

and ρ(Xi) = ai for i = 1, ..., m. Perform the double star purge DS(X1, X2, a2 − a3)

to eliminate a2 − a3 pegs from X1 and X2. For j = 3, ..., m − 1, perform the hairy

complete purge HC(x1, j, aj − aj+1) so that ρ(X1) = a1 −
∑n

i=m+1 ai − 1− a2 + am.

Let k = ⌊ρ(X1)
m−1

⌋. For j = 1, ..., m − 1, perform the double star purge DS(X1,

Xm−j+1, k). Now perform the hairy complete purge HC(x1, m,min(ρ(X1), ρ(X2))). If

ρ(X1) = · · · = ρ(Xn) = 0, then this reduces the graph to Kn with hole in x1, which

is solvable. If ρ(X1) = 0 and ρ(X2) ≥ 1, then jump x2,1·
−→

x2 ·x1. Then perform the

hairy complete purge HC(x2, m− 1, ρ(X2)). For j = 3, ..., m, jump xj,1·
−→

xj ·xj−1. This

reduces the graph toKn with a hole in xm, which is solvable. If ρ(X1) ≥ 1 and ρ(Xi) =

0, for i 6= 1, then perform the double star purge DS(X1, X−{x1, xj},min(ρ(X1), n−

2)). This is solvable by the above arguments. If ρ(X1) ≥ 1 and ρ(Xi) ≥ 1, for i 6= 1,

then let ρ(X1) = ℓ. For j = 1, ..., ℓ, perform the double star purge DS(X1, Xm−j+1, 1).

This reduces the graph to a configuration that is solvable by the above arguments.

For the freely solvable result, we first show that Kn(a1, ..., an) is not freely solvable

if a1 =
∑n

i=2 ai + n− 1. Assume that the initial hole is in xi,1, with i 6= 1. If ai ≥ 2,

then we can jump xi,2·
−→

xi ·xi,1. This reduces the graph to Kn(a1, ..., ai− 1, ..., an) with

a hole in xi. This graph is not solvable by the above arguments. If ai = 1, then
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jump xi−1·
−→

xi ·xi,1, x1,1·
−→

x1 ·xi, and xi,1·
−→

xi ·x1. This reduces the graph to Kn−1(a1 −

1, ..., ai−1, ai+1, ..., an) with a hole in xi, which is unsolvable by the above arguments.

We now show that Kn(a1, ..., an) with a1 ≤
∑n

i=2 ai + n − 2 is solvable with the

initial hole in any vertex, up to automorphism. Note that the graph is solvable with

the initial hole in xj for j 6= 1, as outlined above. Suppose the initial hole is in xj,1

for j 6= 1. If aj = 1, then jump xk·
−→

xj ·xj,1, x1,1·
−→

x1 ·xj , and xj,1·
−→

xj ·x1 for k 6= 1 and

k 6= j. Ignoring xj and xj,1, this reduces the graph toKn−1(a1−1, ..., aj−1, aj+1, ..., an)

with a hole in xk, which is solvable by the above arguments. If aj ≥ 2, then jump

xj,aj ·
−→

xj ·xj,1. This reduces the graph to Kn(a1, ..., aj−1, aj−1, aj+1, ..., an), with a hole

in xj , which is solvable by the above arguments.

Suppose the initial hole is in x1. If a2 = 0, then jump xn·
−→

x2 ·x1. This reduces the

graph toKn−1(a1, ..., an−1) with a hole in x2, which is solvable by the above arguments.

If a2 ≥ 1, then jump x2,a2 ·
−→

x2 ·x1. This reduces the graph to Kn(a1, a2 − 1, a3, ..., an)

with a hole in x2, which is solvable by the above arguments.

Suppose the initial hole is in x1,1. If a1 = 1 and an = 1, then for j = 2, ..., n

jump xj,1·
−→

xj ·xj−1. This reduces the graph to Kn with a hole in xn, which is solvable.

If a1 = 1 and an = 0, then let ℓ be the greatest integer such that aℓ = 1. Jump

xn·
−→

x1 ·x1,1 and xℓ,1·
−→

xℓ ·x1. Ignoring xn, this reduces the graph to Kn−1(a1, ..., aℓ−1, aℓ−

1, aℓ+1, ..., an−1) with a hole in xℓ, which is solvable by the above arguments. If ℓ = 1

and n ≥ 4, then jump x2·
−→

x1 ·x1,1, xn−1·
−→

xn ·x1, and x1,1·
−→

x1 ·x2. If n = 4, then the graph

is solved. If n ≥ 5, then this reduces the graph to Kn−2 with a hole in x1, which is
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solvable. If a1 ≥ 2, then jump x1,a1 ·
−→

x1 ·x1,1. This reduces the graph to Kn(a1, ..., an)

with a hole in xj after the first jump, which is solvable by Observation 2.6 and the

above arguments.

The following corollary addresses an open problem in [5] of how to construct

unsolvable graphs.

Corollary 3.2 An unsolvable graph H can be constructed from graph G by the addi-

tion of at most |V (G)| pendants to G.

Proof. Pick any vertex v ∈ G. Append |V (G)| pendants to vertex v. The resulting

graph, H , is a spanning subgraph of K|V (G)|(|V (G)|, 0, ..., 0), which is unsolvable by

Theorem 3.1. By Proposition 2.8, H is unsolvable.

3.2 The Hairy Complete Bipartite Graph

3.2.1 Construction

In this section, we consider a family of graphs that generalize the complete bi-

partite graph and the double star. The hairy complete bipartite graph, denoted

Kn,m(a1, ..., an; b1, ..., bm) is the graph on n+m+ a1+ · · ·+ an+ b1+ · · ·+ bm vertices

obtained fromKn,m by appending ai pendant vertices to xi for i = 1, ..., n and append-

ing bj pendant vertices to yj for j = 1, ..., m. Without loss of generality, we assume
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that n ≥ 2, m ≥ 2, a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bm, a1 ≥ 1, and
∑n

i=1 ai ≥
∑m

j=1 bj .

Figure 26 shows an example of the hairy complete bipartite graph. We denote the

ai pendants adjacent to xi with xi,1, ..., xi,ai. We denote the bj pendants adjacent

to yj with yj,1, ..., yj,bj . Let Xi = {xi,1, ..., xi,ai}, let Yj = {yj,1, ..., yj,bj}, and let

X = {x1, ..., xn}. For convenience of exposition, we refer to X1, ..., Xn as the heavy

clusters and Y1, ..., Ym as the light clusters. We define property P as n = 2, m is even,

and a2 = 0. We define (∼ P) as n = 2, m is odd or n = 2, m is even, and a2 ≥ 1 or

n ≥ 3.

Figure 26: The hairy complete bipartite graph K3,4(3, 1, 1; 2, 1, 1, 0)

3.2.2 Necessary and Sufficient Conditions

Theorem 3.3 For the hairy complete bipartite graph G = Kn,m(a1, ..., an; b1, ..., bm):

(i) If P, then the graph G is solvable iff
∑n

i=1 ai ≤
∑m

j=1 bj + n− 1.

If (∼ P), then the graph G is solvable iff
∑n

i=1 ai ≤
∑m

j=1 bj + n.

(ii) If P, then the graph G is freely solvable iff
∑n

i=1 ai ≤
∑m

j=1 bj + n− 2.

If (∼ P), then the graph G is freely solvable iff
∑n

i=1 ai ≤
∑m

j=1 bj + n− 1.
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(iii) If P, then the graph G is distance 2-solvable iff
∑n

i=1 ai =
∑m

j=1 bj + n + 1.

If (∼ P), then the graph G is distance 2-solvable iff
∑n

i=1 ai =
∑m

j=1 bj + n+ 2.

(iv) If P, then graph G is (
∑n

i=1 ai−
∑m

j=1 bj−n+1)-solvable if
∑n

i=1 ai ≥
∑m

j=1 bj+n.

If (∼ P), then the graph G is (
∑n

i=1 ai −
∑m

j=1 bj − n)-solvable if
∑n

i=1 ai ≥

∑m

j=1 bj + n + 1.

Proof. To establish necessary conditions, we first examine the optimal method for

solving the graph. The pegs in each cluster must be eliminated. Hence all pegs in

each Xi must be removed. To do so, a peg must first be in xi. For this to occur, one

of two jumps is necessary, namely, yj,k·
−→

yj ·xi or xℓ·
−→

yj ·xi, where ℓ 6= i. Therefore one

of two double star purges is necessary, namely DS(Xi, Yj, d) or DS(Xi, X − {xi}, d).

Each Yj can exchange bj pegs with Xi, and each xℓ, where ℓ ∈ {1, ..., i−1, i+1, ..., n},

can exchange with a peg in Xi. Hence
∑n

i=1 ai ≤
∑m

j=1 bj +n is necessary. Moreover,

if
∑n

i=1 ai ≥
∑m

j=1 bj +n+1, then, at best,
∑n

i=1 ai −
∑m

j=1 bj − n pegs remain in the

graph.

We now show these conditions are sufficient using an algorithm for the elimination

of pegs. We define a homomorphism φ : G → G′, where G′ = Kn,1(a1, ..., an;
∑m

j=1 bj).

Let sj =
∑j−1

k=1 bk. The homomorphism φ is defined by φ(yj) = y′, φ(yj,ℓ) = y′sj+ℓ, and

φ(v) = v for all other vertices. Let Y ′ denote the set of all ysj+ℓ.

This homomorphism has the effect of collapsing the support vertices of the light

clusters. In addition, it allows the movement of a hole along each of the yj. This
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occurs because as each Yj empties, the jumps xi,1·
−→

xi ·yj and yj−1,1·
−→

yj ·xi, for k 6= j,

result in a net loss of zero pegs for both X and Y .

Begin with the initial hole in y′. This corresponds to beginning with the initial hole

in yj for some j. Perform the double star purge DS(Xn−i+1, Y
′,min(ρ(Y ′), an−i+1)),

for i = 1, ..., n.

We now consider G. Note that we now have no pegs in Yj, for j = 1, ..., m. We

have
∑n

i=1 ai −
∑m

j=1 bj pegs in X1 ∪ · · · ∪ Xn. Further, we have n pegs in X and

m− 1 pegs in Y . Without loss of generality, assume that there is a hole in ym.

If
∑n

i=1 ai =
∑m

j=1 bj , then this reduces G to the complete bipartite graph with a

hole in a single vertex, which is solvable with the final two pegs in xi and yj, for any

i and j. Thus, the graph may be solved with the final peg in xi, yj, xi,1, or yj,1 for

any i and j. Hence, by Theorem 2.9 G is freely solvable.

If
∑n

i=1 ai ≥
∑m

j=1 bj+1, then let ℓ be the greatest integer such that ρ(Xℓ) ≥ 1. For

i = 1, ..., ℓ, perform the double star purge DS(Xℓ−i+1, X − {xℓ−i+1},min(ρ(Xℓ−i+1),

ρ(X−{xℓ−i+1}))). If
∑n

i=1 ai ≥
∑m

j=1 bj+n, then we now have
∑n

i=1 ai−
∑m

j=1 bj−n+1

pegs in X1 ∪ · · · ∪Xn. We have no pegs in Yj, for j = 1, ..., m. In addition, we have

1 peg in X , and m− 1 pegs in Y .

If
∑m

j=1 bj + 1 ≤
∑n

i=1 ai ≤
∑m

j=1 bj + n − 1, then this reduces the graph to the

complete bipartite graph with a hole in ym. By the same argument as above, we may

solve the graph with the final peg in any vertex. Hence, by Theorem 2.9, the graph

is freely solvable.
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If
∑n

i=1 ai ≥
∑m

j=1 bj + n, then let ℓ be the greatest integer such that ρ(Xℓ) ≥ 1.

Without loss of generality, assume there is a peg in xℓ. If n ≥ 3 and m is even, then

let ℓ′ 6= ℓ, ℓ” 6= ℓ, and ℓ” 6= ℓ′. Jump xℓ·
−→

ym−1·xℓ′, xℓ′ ·
−→

ym−2·xℓ”, and xℓ”·
−→

ym−3·xℓ.

Let µ = ρ(Y ). For k = 1, ..., ⌊µ

2
⌋, jump xℓ·

−→

y2k−1·xℓ′ and xℓ′ ·
−→

y2k·xℓ. If n = 2

and m is odd or n ≥ 3, then jump xℓ,1·
−→

xℓ ·yj. If
∑n

i=1 ai =
∑m

j=1 bj + n, then

the graph is solved with the final peg in yj. If
∑n

i=1 ai ≥
∑m

j=1 bj + n + 1, then

∑n

i=1 ai −
∑m

j=1 bj − n pegs remain in X1 ∪ · · · ∪ Xn and one peg remains in yj. In

particular, if
∑n

i=1 ai =
∑m

j=1 bj + n + 2, then one peg remains in X1 and one peg

remains in yj .

If P, then we have one peg in x1, one peg in Y , and
∑n

i=1 ai −
∑m

j=1 bj − n + 1

pegs in X1. In any case, the peg in x1 will be removed. If n = 2, m is even, and

a2 ≥ 1, then we perform one less double star purge during the homomorphism so

that ρ(X2) = 1. Instead, we perform the additional double star purge DS(Y1, X1, 1)

during the homomorphism. Then before removing the pegs in Y , we perform the

double star purge jump DS(X2, X − {x2}, 1) and jump x2·
−→

ym−1·x1. After removing

the pegs in Y , we make the final jump x1,1·
−→

x1 ·y1. For the distance 2-solvable result,

if P, then we make the final jump x1,1·
−→

x1 ·y2.

For the freely solvable result, we first show that if P, thenKn,m(a1, ..., an; b1, ..., bm)

with
∑n

i=1 ai ≤
∑m

j=1 bj+n−1 is not freely solvable. Note that if
∑n

i=1 ai ≤
∑m

j=1 bj+

n− 2, then Kn,m(a1, ..., an; b1, ..., bm) is solvable. Thus, it suffices to consider the case

where
∑n

i=1 ai =
∑m

j=1 bj + n − 1. Assume that the initial hole is in yk,1 for some k.
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If we jump yk,2·
−→

yk ·yk,1, then
∑n

i=1 ai pegs remain in X1 ∪ · · · ∪Xn, but
∑m

j=1 bj − 1

pegs remain in Y1 ∪ · · · ∪ Ym. Since one fewer peg can exchange with the pegs in

X1 ∪ · · · ∪ Xn, the graph is unsolvable. If we jump xi·
−→

yk ·yk,1, then
∑n

i=1 ai pegs

remain in X1 ∪ · · · ∪Xn, but n− 1 pegs remain in X −{xi}. Since one fewer peg can

exchange with the pegs in X1 ∪ · · · ∪ Xn, the graph is unsolvable. The argument is

similar for n = 2 where m is odd or n = 2, where m is even, and a2 ≥ 1 or n ≥ 3

with
∑n

i=1 ai ≤
∑m

j=1 bj + n.

We now show that if (∼ P), thenKn,m(a1, ..., an; b1, ..., bm) with
∑n

i=1 ai ≤
∑m

j=1 bj+

n− 1 is solvable with the initial hole in any vertex, up to automorphism. Note that

the graph is solvable with the initial hole in yj, as outlined above.

Suppose the initial hole is in yj,1 for some j. If bj = 1 and an = 0, then

jump xn·
−→

yj ·yj,1. This reduces the graph to Kn−1,m(a1, ..., an−1; b1, ..., bm) with a

hole in yj, which is solvable by the above arguments. If bj = 1 and an ≥ 1, then

jump xn·
−→

yj ·yj,1, yj−1,1·
−→

yj−1·xn, xn,1·
−→

xn ·yj, and yj,1·
−→

yj ·xn. This reduces the graph to

Kn,m−1(a1, ..., an; b1, ..., bj−1, bj+1, ..., bm−1) with a hole in yj−1, which is solvable by

the above arguments. If bj ≥ 2, then jump yj,bj ·
−→

yj ·yj,1. This reduces the graph to

Kn,m(a1, ..., an; b1, ..., bj−1, bj −1, bj+1..., bm) with a hole in yj, which is solvable by the

above arguments.

Suppose the initial hole is in xi for some i. Jump yj,1·
−→

yj ·xi, where j is such that

bj ≥ 1. This reduces the graph to Kn,m(a1, ..., an; b1, ..., bj−1, bj − 1, bj+1..., bm), with

a hole in yj, which is solvable by the above arguments.
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Suppose the initial hole is in xi,1. If ai = 1, then jump yj·
−→

xi ·xi,1, yℓ,bℓ·
−→

yℓ ·xi, and

xi,1·
−→

xi ·yℓ, where ℓ 6= j and bℓ ≥ 1. This reduces the graph to Kn−1,m(a1, ..., an−1;

b1, ..., bℓ−1, bℓ − 1, bℓ+1, ..., bm), with a hole in yj, which is solvable by the above ar-

guments. If ai ≥ 2, then jump xi,ai ·
−→

xi ·xi,1 and yj,1·
−→

yj ·xi. This reduces the graph

to Kn,m(a1, ..., ai−1, ai − 1, ai+1, ..., an; b1, ..., bj−1, bj − 1, bj+1..., bm), with a hole in yj,

which is solvable by the above arguments.
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4 FOOL’S SOLITAIRE RESULTS

In this section, we present fool’s solitaire results for the hairy complete graph and

the hairy complete bipartite graph.

4.1 The Hairy Complete Graph

Theorem 4.1 For the hairy complete graph G = Kn(a1, ..., an):

(i) If n ≥ 3 and an = 0, then Fs(G) =
∑n

i=1 ai + 1 = α(G);

(ii) If n = 3 and an = 1 or n ≥ 4 and an ≥ 1, then Fs(G) =
∑n

i=1 ai = α(G);

(iii) If n = 3 and an ≥ 2, then Fs(G) =
∑n

i=1 ai − 1 = α(G)− 1.

Proof. Suppose that n ≥ 3 and an = 0. The maximum independent set is A =

X1 ∪ ... ∪Xn−1 ∪ {xn}. The dual of A is A′ = {x1, ..., xn−1}. Solve A′ by solving the

Kn subgraph with a hole in xn, which is freely solvable by Theorem 2.4.

Suppose that n = 3 and an = 1. We take A = X1 ∪X2 ∪ {x3} for the maximum

independent set. The dual of A is A′ = {x1, x2, x3,1}. Jump x1·
−→

x2 ·x3 and x3,1·
−→

x3 ·x1

to solve A′.

Suppose that n = 3 and an ≥ 2. The maximum independent set is A = X1∪X2∪

X3. However, the dual of this set, A′ = {x1, x2, x3}, is unsolvable since the forced

jump x1·
−→

x3 ·x3,1 leaves pegs in x2 and x3,1, which are distance 2 apart. Consider the

set T = (X1 − {x1,1}) ∪ X2 ∪ X3. The dual of T is T ′ = {x1,1, x1, x2, x3}. Jump

x3·
−→

x2 ·x2,1, x1,1·
−→

x1 ·x2, and x2,1·
−→

x2 ·x1 to solve T ′.
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Suppose that n ≥ 4 and an ≥ 1. The maximum independent set is A = X1 ∪

... ∪Xn. The dual of A is A′ = X . To solve A′, jump xn−1·
−→

xn ·xn,1, xn−3·
−→

xn−2·xn, and

xn,1·
−→

xn ·xn−3. If n = 4, then A′ is solved with the final peg in xn−3. If n ≥ 5, then this

reduces A′ to Kn−2 with a hole in xn−2, which is solvable by Theorem 2.4.

4.2 The Hairy Complete Bipartite Graph

Note that for the following result, we parameterize differently.

Theorem 4.2 For G = Kn,m(a1, ..., an; b1, ..., bm) with ai = 0 for i ≥ n−ℓ+1, bj = 0

for j ≥ m− λ+ 1, and ℓ ≥ λ:

(i) If ℓ = 0, then Fs(G) =
∑n

i=1 ai +
∑m

j=1 bj = α(G);

(ii) If 1 ≤ ℓ ≤ n− 1, then Fs(G) =
∑n

i=1 ai +
∑m

j=1 bj + ℓ = α(G);

(iii) If ℓ = n, then Fs(G) =
∑n

i=1 ai +
∑m

j=1 bj + ℓ− 1 = α(G)− 1.

Proof. Suppose that ℓ = 0. Thus ai ≥ 1 for all i and bj ≥ 1 for all j. The maximum

independent set is A = X1 ∪ · · · ∪Xn ∪ Y1 ∪ · · · ∪ Ym. The dual of A is A′ = X ∪ Y .

To solve A′, jump y1·
−→

x1 ·x1,1, x2·
−→

y2 ·x1, and x1,1·
−→

x1 ·y2. If n = 2 and m = 2, then A′ is

solved with the final peg in y2. If n = 3 and m = 2, then jump x3·
−→

y2 ·x1 to solve A′.

If n ≥ 4 and m ≥ 2, then this reduces A′ to Kn−2,m with a hole in y1, which is freely

solvable by Theorem 2.4.
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Suppose that 1 ≤ ℓ ≤ n − 1. The maximum independent set is A = X1 ∪ · · · ∪

Xn ∪ Y1 ∪ · · · ∪ Ym ∪ {xn−ℓ+1, ..., xn}. The dual of A is A′ = {x1, ..., xn−ℓ} ∪ Y . To

solve A′, solve the Kn−ℓ+1,m subgraph with a hole in xn−ℓ+1. This is freely solvable

by Theorem 2.4.

Suppose that ℓ = n. The maximum independent set is A = X ∪ Y1 ∪ · · · ∪ Ym.

The dual of this set is A′ = Y . Since no pegs are adjacent in A′, it is not solvable.

Thus, at least one peg must be added to the dual. Suppose that we add x1 to obtain

T ′ = Y ∪{x1}. To solve T ′, solve the K2,m subgraph with a hole in x2, which is freely

solvable by Theorem 2.4.

49



5 EXTREMAL AND CRITICALITY RESULTS

In this section, we provide extremal and criticality results. We first define some

useful terms. A graph G is edge k-critical if G is k-solvable, but the addition of any

edge reduces the number of pegs at the end of the game. In particular, G is edge

critical if G is not solvable, but the addition of any edge results in a solvable graph.

We call an unsolvable (solvable but not freely solvable) graph G a critical graph if the

addition of any edge to G results in a solvable (freely solvable) graph.

In [5], Beeler and Gray present the solvability of all 996 non-isomorphic con-

nected graphs with seven vertices or less. The graphs are obtained from the appendix

of Harary [32] and a small graph database [31]. The solvability of the graphs is de-

termined using an exhaustive computer search algorithm [10]. In Figures 27, 29, 30,

and 31, a black vertex indicates that the graph can be solved with the initial hole in

that vertex. Graphs that are not solvable have the minimum number of pegs that can

be obtained in a terminal state associated with a single vertex starting state listed.

If a graph is distance 2-solvable, then this is indicated with a D, and a black vertex

indicates that the graph can be distance 2-solved with the initial hole in that vertex.

Since all hamiltonian graphs of even order are freely solvable by [8], these graphs are

omitted. Figure 27 gives all non-isomorphic connected graphs with order four or less.

A chorded cycle, denoted C(n,m), is obtained from a cycle on n vertices, which

are labeled 0, 1, ..., n−1 in the usual way. An edge from 0 to m is inserted to form the
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D

Figure 27: The solvability of all graphs with four vertices or less [5]

chord. By [5], the chorded five cycle C(5, 2) is freely solvable. This result is extended

in a later theorem. Figure 28 shows the chorded five cycle, and Figure 29 gives the

solvability of all non-isomorphic connected graphs with five vertices that do not have

the chorded five cycle as a spanning subgraph [5].

Figure 28: The chorded five cycle C(5, 2)

3 D

D

Figure 29: The solvability of graphs with five vertices [5]

Of the 112 non-isomorphic connected graphs with six vertices, nine are not freely
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solvable. Figure 30 lists only those graphs that are not freely solvable [5].

D D
4

D D

Figure 30: Graphs with six vertices that are not freely solvable [5]

There are 853 non-isomorphic connected graphs with seven vertices. Of these,

thirty-three are not freely solvable. Figure 31 lists only those graphs with seven

vertices that are not freely solvable [5].

Tables 1 and 2 show the percentages of connected graphs on seven vertices that

are solvable and freely solvable. Note that as the number of edges increases, the

percentages of solvable and freely solvable graphs increase as well.

Graphs on Seven Vertices

Edges 6 7 8 9 10
Percent Solvable 54.5% 87.9% 98.5% 100% 100%

Table 1: Percentage of solvable graphs with order seven

Graphs on Seven Vertices

Edges 6 7 8 9 10
Percent Freely Solvable 0% 53.1% 92.3% 98.1% 100%

Table 2: Percentage of freely solvable graphs with order seven

Beeler and Gray [6] present all freely solvable trees with order 10 or less. Figure

32 shows these trees.
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5 D

3 3 D

D

Figure 31: Graphs with seven vertices that are not freely solvable [5]

Using [10], Beeler and Gray [5] determined that C(2n+1, m) is freely solvable for

all n ≤ 9 and m ≤ n. To what extent all chorded odd cycles are freely solvable is not

yet known. However, an important result is given in the following theorem.

Theorem 5.1 [5] For all n and m ≤ n, the chorded odd cycle C(2n+1, m) is solvable.

Proof. If m = 3, then begin with the initial hole in 1. Jump 2n·
−→

0 ·1 and 2·
−→

3 ·0. For

the next series of n− 2 jumps, the ith jump is 2i+1·
−→

2i ·2i− 1 for i = 2, ..., n− 1. For
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Figure 32: All freely solvable trees with order 10 or less [6]

the final series of n− 1 jumps, the jth jump is 2j·
−→

2j + 1·2j + 2 for j = 0, 1, ..., n− 2,

until a single peg remains in 2n− 2.

If m 6= 3, then note that if we ignore 0 and m, then the graph consists of a path

with an odd number of vertices and a path with an even number of vertices. If m is

odd, then relabel 0 as α0 and m as α2n+1−m. Relabel the vertices of the odd path so

that vertices 2n, 2n− 1, ..., j are labeled α1, α2, ..., α2n+1−j , respectively. Relabel the

vertices of the even path so that vertices m−1, m−2, ..., 1 are labeled α2n−m+2, ..., α2n,

respectively.

Begin with the initial hole in α2n−3. Treating α2n−m, α2n+1−m, ..., α2n−2 as an even
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path, solve it as described in Remark 2.5 so that the remaining peg on the path is

in α2n+1−m. For the next series of n − 3 jumps, the ith jump is α2n−m−2i·
−→

α2n−m−2i+1

·α2n−m−2i+2 for i = 1, 2, ..., n− m+1
2

. Now jump α2n+1−m·
−→

α0 ·α1 and α2n−1·
−→

α2n·α0. For

the final series of n−2 jumps, the jth jump is α2j ·
−→

α2j+1·α2j+2 for j = 0, 1, ..., n− m+1
2

,

until a single peg remains in α2n+1−m.

If m is even, then begin with the initial hole in 2n−3. Treating m−1, m, ..., 2n−2

as an even path, solve it as described in Remark 2.5 so that the remaining peg on

the path is in m. For the next series of m
2
− 1 jumps, the ith jump is (m − 2i −

1)·
−→

(m− 2i)·(m − 2i + 1) for i = 1, 2, ..., m
2
− 1. Now jump m·

−→

0 ·1 and (2n − 1)·
−→

2n·0.

For the final series of m
2
jumps, the jth jump is 2j·

−→

(2j + 1)·(2j+2) for j = 0, ..., m
2
−1,

until a single peg remains in m.

Beeler and Gray [6] expand the results on chorded odd cycles while examining

the cycle with a subdivided chord. The cycle with a subdivided chord, denoted

CSC(n,m), is formed from a cycle on n vertices, labeled 0, 1, ..., n − 1 in the usual

way, by adding an edge from vertex 0 to vertex m to form a chord. This edge is then

subdivided once. The resulting vertex on the chord is labeled c. Figure 33 shows a

cycle with a subdivided chord.

The following result shows that CSC(n,m) is solvable with the initial hole in

several vertices. However, these graphs may be solvable from additional vertices as

well.
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Figure 33: The cycle with a subdivided chord CSC(6, 2)

Lemma 5.2 [6] The graph CSC(2k,m) is solvable with the initial hole in 0, 1, 2, 3,

m−3, m−2, m−1, m, m+1, m+2, m+3, 2k−3, 2k−2, 2k−1, or c. The graph

CSC(2k + 1, m) is solvable with the initial hole in 0, 2, m− 2, m, m+ 2, or 2k − 1.

Proof. Note that the vertices i and i+m (mod n) are symmetric.

For CSC(2k,m), suppose that the initial hole is in 0. Jump m·
−→

c ·0. An even

path subgraph is formed by m − 1, m, ..., 2k − 1, 0, ..m − 2 with a hole in m. This

subgraph is solvable with the final peg in m− 3 by Remark 2.5. Alternately, an even

path is formed by m+1, m,m− 1, ..., 0, 2k− 1, ..., m+2 with a hole in m. Solve this

path with the final peg in m+3. By Theorem 2.9, the graph may also be solved with

the initial hole in m − 3 or m + 3. A similar argument holds if the initial hole is in

m, 3, and 2k − 3.

Suppose that the initial hole is in 1. Jump c·
−→

0 ·1. Solve the even cycle formed by

the remaining pegs with a hole in 0. A similar argument holds when the initial hole

is in m− 1, m+ 1, or 2k − 1.

Suppose that the initial hole is in 2. Jump 0·
−→

1 ·2. Solve the even path formed by

the remaining pegs with a hole in 0. A similar argument holds for the case when the
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initial hole is in m− 2, m+ 2, or 2k − 2.

Suppose that the initial hole is in c. Jump 1·
−→

0 ·c. Solve the even path formed by

the remaining pegs with a hole in 0.

For CSC(2k + 1, m), suppose that the initial hole is in vertex 0. An even path is

formed by c, 0, 1, ..., 2k with a hole in 0. Solve this path with the final peg in 2k − 1.

Alternately, an even path is formed by c, 0, 2k, 2k − 1, ..., 1 with a hole in 0. Solve

this path with the final peg in 2. By Theorem 2.9, the graph may also be solved with

the initial hole in 2k − 1 or 2. A similar argument holds when the initial hole is in

m, m− 2, or m+ 2.

We now provide a freely solvable example of this type of graph.

Theorem 5.3 [6] The graph CSC(2k, 1) is freely solvable.

Proof. If the initial hole is in {2k − 3, 2k − 1, 0, 1, 2, 4}, then the graph is solvable

by Lemma 5.2.

Suppose that the initial hole is in i, where i is even and 6 ≤ i ≤ 2k − 4. An even

path is formed by i+ 1, i, ..., 1, c with a hole in i. Solve this path, ending in 1. Then

jump 1·
−→

0 ·c. Finally, solve the even path with a hole in 1, formed by c, 1,...,i+ 2.

Suppose that the initial hole is in j, where j is odd and 3 ≤ j ≤ 2k − 5. An even

path is formed by j − 1, j, ..., 2k − 1, 0, c with a hole in j. Solve this path, ending

in 0. Now jump 1·
−→

0 ·c. Finally, solve the even path with a hole in 1, formed by
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c, 1, ..., j − 2.

Note that CSC(2k, 1) is isomorphic to C(2k + 1, 2). Thus, this provides partial

progress on the open question from [5] as to whether all chorded odd cycles are freely

solvable.

The results from Theorem 5.1 and Theorem 5.3 establish the next result.

Theorem 5.4 The odd cycle C2k+1 is a critical graph.

Proof. The odd cycle C2k+1 is distance 2-solvable by Theorem 2.4. The addition of

an edge results in either a solvable graph by Theorem 5.1 or a freely solvable graph

by Theorem 5.3.

A goal of this thesis is to improve the bounds on the maximum possible number

of edges for an unsolvable connected graph on a fixed number of vertices. We denote

this number τ(n), where n is the number of vertices in a graph. We use T(n) in

the freely solvable case. Such results reveal more information about the necessary

number of edges needed to guarantee that a graph is solvable (or freely solvable),

regardless of its structure. They also provide progress on a peg solitaire analog to

Turán’s Theorem and an open problem posed in [8]. From the work in [5], the value

of τ(n) and T(n) is known for several values of n. Table 3 shows τ(n) and T(n) for

4 ≤ n ≤ 7.
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n 4 5 6 7
τ(n) 3 5 6 8
T(n) 4 6 7 9

Table 3: τ(n) and T(n) for 4 ≤ n ≤ 7

5.1 The Hairy Complete Graph

The graphs Kn(n, 0, ..., 0), Kn+1(n, 0, ..., 0), and Kn(n+1, 0, ..., 0) are three special

cases of the hairy complete graph. Figure 34 shows an example of Kn(n, 0, ..., 0).

Figure 34: The hairy complete graph K5(5, 0, 0, 0, 0)

Theorem 5.5 For n ≥ 3, the hairy complete graphs Kn(n, 0, ..., 0), Kn+1(n, 0, ..., 0),

and Kn(n + 1, 0, ..., 0) are critical graphs.

Proof. If the initial hole is in xj , where j 6= 1, then Kn(n, 0, ..., 0) is distance 2-

solvable, Kn+1(n, 0, ..., 0) is solvable, and Kn(n+ 1, 0, ..., 0) is 3-solvable by Theorem

3.1. For all three graphs, up to automorphism, an additional edge may be inserted

between two pendants, say x1,1 and x1,2, or between a pendant and a support vertex

of the graph, say x1,1 and xj .
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(i) For Kn(n, 0, ..., 0), begin with the initial hole in x1, and perform the double star

purge DS(X1, X − {x1, xj}, n − 2), with j 6= 1, until pegs remain in x1,1, x1,2,

and xj .

For Kn(n, 0, ..., 0) + x1,1x1,2, jump x1,1·
−→

x1,2·x1 and xj ·
−→

x1 ·x1,1 to solve the graph

with the final peg in x1,1. Note that the final jump could also be xj ·
−→

x1 ·x1,3 or

xj ·
−→

x1 ·xk, for k 6= j and k 6= 1. Thus, by Theorem 2.9, Kn(n, 0, ..., 0) + x1,1x1,2

may also be solved with the initial hole in x1,1, x1,3, or xk.

For Kn(n, 0, ..., 0) + x1,1xj , jump x1,1·
−→

xj ·x1 and x1,2·
−→

x1 ·xj. Note that the final

jump could also be x1,2·
−→

x1 ·x1,1 or x1,2·
−→

x1 ·xk for k 6= 1 and k 6= j. Thus, by

Theorem 2.9, Kn(n, 0, ..., 0) + x1,1xj may also be solved with the initial hole in

xj , x1,1, or xk.

(ii) For Kn+1(n, 0, ..., 0) + x1,1x1,2, suppose that n = 3. Begin with the initial hole

in x1 and jump x3·
−→

x4 ·x1, x1,3·
−→

x1 ·x3, and x1,1·
−→

x1,2·x1. This reduces the graph to

K4 with a hole in x4, which is solvable with the final peg in x1,1, x1,3, x1, or xk,

with k 6= 1 and k 6= 4. By Theorem 2.9, K4(3, 0, ..., 0) + x1,1x1,2 may also be

solved with the initial hole in x1,1, x1,3, x1, or xk.

Suppose that n ≥ 4. Begin with the initial hole in xj , and jump x1,3·
−→

x1 ·xj .

Perform the double star purgeDS(X1, X−{x1, xj}, n−3), and jump x1,1·
−→

x1,2·x1.

This reduces the graph to Kn+1 with a hole in xk, for k 6= 1 and k 6= j.

This is solvable with the final peg in x1,1, x1,3, or x1. Thus, by Theorem 2.9,
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Kn+1(n, 0, ..., 0) + x1,1x1,2 may also be solved with the initial hole in x1,1, x1,3,

or x1.

For Kn+1(n, 0, ..., 0)+ x1,1xj begin with the initial hole in x1,2 and jump x1,3·
−→

x1

·x1,2. Perform the double star purge DS(X1, X − {x1, xj}, n − 2), until pegs

remain in x1,1, xj , and xk, with k 6= 1 and k 6= j. Then jump x1,1·
−→

xj ·x1 and

xk·
−→

x1 ·x1,1 to solve the graph with the final peg in x1,1. Note that the final two

jumps could also be x1,1·
−→

xj ·xℓ and xℓ·
−→

xk ·x1, for ℓ /∈ {1, j, k}. Thus, by Theorem

2.9, Kn+1(n, 0, ..., 0)+ x1,ixj may also be solved with the initial hole in x1,1, x1,

or xj .

(iii) For Kn(n + 1, 0, ..., 0), begin with the initial hole in xj and solve the graph as

described in the proof of Theorem 3.1 until pegs remain in x1,1, x1,2 and xj . For

Kn(n + 1, 0, ..., 0) + x1,1x1,2, jump x1,2·
−→

x1,1·x1 and xj ·
−→

x1 ·x1,1 to solve the graph

with the final peg in x1,1. For Kn(n + 1, 0, ..., 0) + x1,ixj , jump x1,1·
−→

xj ·x1 and

x1,2·
−→

x1 ·x1,1 to solve the graph with the final peg in x1,1.

Using Theorem 5.5, we can now give nontrivial lower bounds on τ(n) and T(n).

Corollary 5.6 For k ∈ Z
+, τ(2k) ≥ k(k+1)

2
and τ(2k + 1) ≥ k(k+1)

2
+ 1. Further,

these bounds are sharp.
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Proof. By Theorem 3.1, the hairy complete graphs Kk(k, 0, ..., 0) and Kk(k +

1, 0, ..., 0) are not solvable. By Theorem 5.5, the addition of any single edge to either

graph results in a solvable graph. The size of Kk(k, 0, ..., 0) is k(k+1)
2

. The size of

Kk(k + 1, 0, ..., 0) is k(k+1)
2

+ 1.

Corollary 5.7 For k ∈ Z
+, T(2k) ≥ k(k+1)

2
and T(2k + 1) ≥ k(k+3)

2
. Further, these

bounds are sharp.

Proof. By Theorem 3.1 the hairy complete graphs Kk(k, 0, ..., 0) and Kk+1(k, 0, ..., 0)

are not freely solvable. By Theorem 5.5, the addition of any single edge to either

graph results in a freely solvable graph. The size of Kk(k, 0, ...0) is
k(k+1)

2
. The size

of Kk+1(k, 0, ..., 0) is
k(k+3)

2
.

Corollary 5.6 states that a lower bound for τ(n) is approximately n2

8
. Because the

trivial upper bound for τ(n) is n(n−1)
2

, it may be difficult to find a better lower bound.

This leads us to the following conjecture.

Conjecture 5.8 For all k ∈ Z
+, τ(2k) = k(k+1)

2
.

Theorem 5.9 Among all unsolvable graphs with a double star spanning subgraph and

order n+m, the graph Kn(m, 0, ..., 0), with m ≥ n, is the one with maximum size.

Proof. Consider the double star K2(n, n − 2), where n ≥ 3. Adding any num-

ber of edges to the set {x1, x2, x2,1, ..., x2,n−2} results in a spanning subgraph of
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Kn(n, 0, ..., 0). Since this is not solvable by Theorem 3.1, this results in an unsolvable

graph by Proposition 2.8. For n ≥ 4, up to automorphism, there are three remaining

places an edge can be added.

(i) An edge is inserted between x1,1 and x1,2. Begin with the initial hole in x1.

Perform the double star purge DS(X1, X2, n−2) so that the remaining pegs are

in x1,1, x1,2, and x2. Jump x1,1·
−→

x1,2·x1 and x2·
−→

x1 ·x1,1 to solve the graph with

the final peg in x1,1.

(ii) An edge is inserted between x1,1 and x2. Begin with the initial hole in x1.

Perform the double star purge DS(X1, X2, n−2) so that the remaining pegs are

in x1,1, x1,2, and x2. Jump x1,1·
−→

x2 ·x1 and x1,2·
−→

x1 ·x1,1 to solve the graph with

the final peg in x1,1.

(iii) An edge is inserted between x1,1 and x2,1. Begin with the initial hole in x2.

Perform the double star purge DS(X2, X1, n − 3), so that the remaining pegs

are in x1,1, x1,2, x1,3, x1 and x2,2. Jump x1,3·
−→

x1 ·x2, x2,2·
−→

x2 ·x2,1, x2,1·
−→

x1,1·x1, and

x1,2·
−→

x1 ·x2 to solve the graph with the final peg in x2.

For n = 3, edge addition between x1,1 and x2,1, results in K2,2(2, 0; 0, ..., 0), which

is not solvable. Figure 35 shows K2,2(2, 0; 0, ..., 0). However, K2,2(2, 0; 0, ..., 0) has the

same size as K3(3, 0, 0). Further, in the next section, we show that K2,2(2, 0; 0, ..., 0)
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is a critical graph.

Figure 35: The hairy complete bipartite graph K2,2(2, 0; 0, ..., 0)

5.2 The Hairy Complete Bipartite Graph

The graph K2,m(a1, a2; 0, ..., 0) is a special case of the hairy complete bipartite

graph. Figure 36 shows an example of K2,m(a1, a2; 0, ..., 0).

x1,1 x1,2

x1

y1 y2 y3 y4

x2

Figure 36: The hairy complete bipartite graph K2,4(2, 0; 0, 0, 0, 0)

Theorem 5.10 The hairy complete bipartite graph G = K2,m(a1, a2; 0, ..., 0) is a crit-

ical graph.

Proof. The graph G is unsolvable by Theorem 3.3, with a1 + a2 − 1 pegs remaining

in X1 ∪X2. If P, then a peg also remains in x2. If (∼ P), then, instead, this peg is
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in y1. Up to automorphism, an additional edge can be inserted in one of nine places:

(i) An edge is inserted between x1,1 and x1,2. Solve the graph as described above.

Then jump x1,1·
−→

x1,2·x1. This removes an additional peg. The argument is similar

for an edge inserted between x2,1 and x2,2.

(ii) An edge is inserted between x1,1 and x2,1. Solve the graph as described above.

The jump x2,1·
−→

x1,1·x1 removes an additional peg.

(iii) An edge is inserted between x1,1 and x2. By relabeling x1,1 as ym+1, the graph is

isomorphic to K2,m+1(a1 − 1, a2; 0, ..., 0). As noted in the proof of Theorem 3.3,

the peg in ym+1 may be removed while removing the pegs in Y and X − {x1}.

Thus, this is an additional peg that can be removed. The argument is similar

for an edge inserted between x2,1 and x1.

(iv) An edge is inserted between x1 and x2. The graph now has a double star

spanning subgraph.

(v) An edge is inserted between y1 and y2. Before removing the pegs in Y and

X − {x1}, jump y1·
−→

y2 ·x1 and x1,1·
−→

x1 ·y1. This removes an additional peg from

X1.

(vi) An edge is inserted between x1,1 and y1. If (∼ P), then solve the graph as

described above. Then jump x1,1·
−→

y1 ·x1. This removes an additional peg. If P,

then with the initial hole in x1, first jump x1,1·
−→

y1 ·x1 before solving the graph
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as described above. This removes an additional peg. The argument is similar

for an edge inserted between x2,1 and y1.

Note that each addition of an edge listed above may result in the elimination of

multiple pegs. Also, the arguments are similar for freely solvable criticality.

Using Theorem 5.10, we can now give nontrivial lower bounds on τ(n) and T(n).

Corollary 5.11 For k ∈ Z
+, τ(2k + 5) ≥ 4k + 4 and τ(2k + 6) ≥ 4k + 5. Further,

these bounds are sharp.

Proof. By Theorem 3.3, the hairy complete bipartite graphs K2,2k+1(2, 1; 0, ..., 0)

and K2,2k+1(1, 1; 0, ..., 0) are not solvable. By Theorem 5.10, any addition of a single

edge to either graph results in a solvable graph. The size of K2,2k+1(2, 1; 0, ..., 0) is

4k + 5. The size of K2,2k+1(1, 1; 0, ..., 0) is 4k + 4.

Corollary 5.12 For k ∈ Z
+, T(2k + 3) ≥ 4k + 1 and T(2k + 4) ≥ 4k + 3. Further,

these bounds are sharp.

Proof. By Theorem 3.3, the hairy complete bipartite graphs K2,2k(1, 0; 0, ..., 0) and

K2,2k+1(1, 0; 0, ..., 0) are not freely solvable. By Theorem 5.10, any addition of a single

edge to either graph results in a freely solvable graph. The size of K2,2k(1, 0; 0, ..., 0)
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is 2k + 3. The size of K2,2k+1(1, 0; 0, ..., 0) is 2k + 4.

Table 4 and Table 5 summarize the established sharp lower bounds on τ(n) and

T(n) for numerous values of n.

n 3 4 5 6 7 8 9 10 11 12 13
Actual Value 2 3 5 6 8 10 ≥ 12 ≥ 15 ≥ 16 ≥ 21 ≥ 22
Corollary 5.6 2 3 4 6 7 10 11 15 16 21 22
Corollary 5.11 n/a n/a n/a n/a 8 9 12 13 16 17 20

Table 4: Sharp lower bounds for τ(n)

n 3 4 5 6 7 8 9 10 11 12 13
Actual Value 2 4 6 7 9 11 ≥ 14 ≥ 15 ≥ 20 ≥ 21 ≥ 27
Corollary 5.7 2 3 5 6 9 10 14 15 20 21 27
Corollary 5.12 n/a n/a 5 7 9 11 13 15 17 19 21

Table 5: Sharp lower bounds for T(n)
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6 CONCLUDING REMARKS

In this section, we conclude our discussion with open problems for future research.

Theorem 3.1 and Theorem 3.3 establish the necessary and sufficient conditions for the

hairy complete graph and the hairy complete bipartite graph. What are the necessary

and sufficient conditions for the solvability of other graph families? Also, the proof of

Theorem 3.3 utilizes a homomorphism. For what other graphs does a homomorphism

prove helpful to eliminate pegs?

Theorem 5.4, Theorem 5.5, and Theorem 5.10 discuss critical graphs. What other

graphs are critical graphs? In addition, how much can edge addition improve the

solvability of a graph? What specific edge additions improve the solvability of a

graph the most? What specific edge additions improve the solvability of a graph the

least?

Corollary 5.6, Corollary 5.7, Corollary 5.11 and Corollary 5.12 provide lower

bounds for τ(n) and T(n). Can we find nontrivial upper bounds for τ(n) and T(n)?

In addition, under what circumstances does T(n) = τ(n)? Under what circumstances

does T(n) = τ(n) + 1?

The following open problems are also included in other studies of peg solitaire on

graphs.

Corollary 3.2 provides a way to construct unsolvable graphs. As asked in [7], are

there other methods of constructing unsolvable graphs?
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Figure 27 , Figure 29, Figure 30, and Figure 31 include the solvability of all graphs

with seven vertices or fewer. As asked in [5], what is the solvability of all graphs with

eight vertices?

Theorem 5.3 discusses the solvability of a cycle with a subdivided chord. As asked

in [6], what is the solvability of a cycle with a chord that is subdivided multiple times?

Theorem 4.1 and Theorem 4.2 concern fool’s solitaire. As asked in [11], how much

can edge deletion lower the fool’s solitaire number of a graph? Also, what are the

criticality results for fool’s solitaire?

We discuss many graphs with pendants. As asked in [6], is the corona of a (freely)

solvable graph likewise (freely) solvable?

In some variants of the traditional peg solitaire game, the location of the initial

hole and the final peg is required to be the same. As asked in [6], for what graphs is

it possible to start with a specific initial jump and end with another specific jump?

Suppose that we want to start with the initial hole in any vertex s and end with the

final peg in any vertex t. For what graphs is this possible?

In peg duotaire two players take turns making peg solitaire jumps. The player

that is left without a jump loses. As asked in [8], for which graphs does Player One

have a winning strategy? For which graphs does Player Two have a winning strategy?

What if we consider peg solitaire moves rather than jumps, where a move is a series

of jumps made with a single peg?
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