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ABSTRACT

Coverage Properties of the Inverse Sinh Transformation and the Adjusted Wald

Con¯dence Intervals for the Odds Ratio and the Relative Risk

by

Troy Allen Bowman

The inverse sinh transformation on the Woolf interval is used to calculate the con-
¯dence interval for the odds ratio and the relative risk in a 2 £ 2 table. According
to Robert Newcombe, the new interval should improve the coverage probabilities and
shorten the width of the con¯dence interval for these ratios, but the new interval
requires evaluation of coverage properties. In this thesis, we will evaluate the exact
coverage properties of this modi¯ed interval in extreme cases. Also , we will compare
the coverage properties of this new interval to other widely-used adjusted intervals.
Through comparisons of exact coverage probabilities and interval widths, we will dis-
cover if Newcombe's inverse sinh transformation provides better coverage properties
than the adjusted methods.
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CHAPTER 1

Introduction

Computing con¯dence intervals for ratios such as the odds ratio and relative risk

are important inferential procedures in the statistical analysis of categorical data.

However, it is easy to ¯nd and implement numerous large sample con¯dence intervals

for a particular set of data. Therefore, the coverage probabilities for approximate con-

¯dence intervals are of strong interest in both small and large samples. If a proposed

con¯dence interval of 1¡ ® does not achieve this intended coverage probability, then
problems arise in the relevance of the conclusions drawn from the data based on this

con¯dence interval. Also, if the con¯dence interval is very wide, then the conclusions

drawn from the con¯dence interval are not relevant either. Note, a con¯dence interval

has a lower bound and an upper bound. The width or length of a con¯dence interval

refers to the di®erence between the upper bound and the lower bound. When deal-

ing with con¯dence intervals, the researcher always wants high con¯dence and short

intervals. Hence, the researcher must decide on the formula to use for calculating

the con¯dence interval for di®erent data sets. Also, one must remember that each

formula for calculating the con¯dence interval has di®erent coverage probabilities and

di®erent interval widths. If the sample size is large, then the intervals provide ap-

proximately the same high coverage probabilities along with short interval widths.

What happens when sample size is very small, the cell frequency of a single cell is

very small, or when the probabilities of certain outcomes within the data set are very

small as well? In these extreme cases, the con¯dence interval can produce overshoot,
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or the con¯dence interval may not even be able to be calculated at all. Also, some

intervals may be conservative or even liberal in certain situations. By being liberal,

the con¯dence interval does not achieve the level of con¯dence 1 ¡ ® exactly, but
the coverage probability is less than 1 ¡ ® level stated for the test. While being
conservative implies that the con¯dence level of 1 ¡ ® is not only reached, but that
coverage property is exceeded. An even higher level con¯dence interval is formed.

What about the length of the newly formed con¯dence interval? The ideal con¯dence

interval will not only provide the 1 ¡ ® coverage probability desired, but the con¯-
dence interval will also have the shortest width. It is easy to obtain a high coverage

probability for a con¯dence interval if the width of the interval is not considered. In

theory, the con¯dence interval [0;1] will have the desired coverage probability, but
with the large width, this con¯dence interval is otherwise useless. A large width can

be illustrated with liberal con¯dence intervals. These intervals have high coverage

probabilities, but they are usually very wide as well. A very undesired property for

a con¯dence interval. Therefore, when new formulas for calculating the con¯dence

interval are proposed, a study of the coverage probabilities and the width of these

new intervals must be undertaken, and the results clearly de¯ned.

One proposed con¯dence interval for the odds ratio is the inverse sinh transfor-

mation on the Woolf interval [1]. When measuring the odds ratio in an ordinary 2£2
table, the odds ratio is ! = ad

bc
where a, b, c, and d are the four cell frequencies in

the 2 £ 2 table. Consider the Woolf interval ln! § y, where y = z
q
1
a
+ 1

b
+ 1

c
+ 1

d
.

This interval has good coverage probabilities and short interval widths when sample

size is large and cell entries are equivalent, but in extreme cases when n is small
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or cell entries zero, the coverage probabilities falter. Hence, apply the inverse sinh

transformation to form the new con¯dence interval of the form ln! § 2x, where x =
sinh¡1(y

2
)[1], and discover if this transformation improves the coverage probabilities

and shortens the widths of the con¯dence intervals formed in extreme cases.

Now, consider another ratio in statistics, the relative risk. For an ordinary 2£ 2
table with cell frequencies a,b,c, and d, the relative risk is RR =

( a
n1
)

( b
n2
)
with n1 =

a + c and n2 = b + d. Also, n1 and n2 are ¯xed and can be thought of as two

independent groups. The Woolf con¯dence interval for relative risk is lnRR § y
where y = z

q
1
a
+ 1

b
¡ 1

n1
¡ 1

n2
. This interval, as seen before with the odds ratio, also

falters in the extreme cases of a small sample size or cell entries a or b = 0. Therefore,

consider the inverse sinh transformation on the Woolf interval as lnRR§sinh¡1(y
2
)[1]

in order to study the coverage probabilities of this new interval for any improvements

in coverage probabilities and interval widths of the con¯dence intervals formed in

extreme cases.
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CHAPTER 2

Odds Ratio

Measures of association are used to measure the strength of an association between

variables. One such measure of association is the odds ratio. The odds deal with the

probability of a yes outcome in a population. An odds ratio compares the odds of the

yes probability in one group with the odds of the yes probability in the other group.

The odds ratio can range from values of 0 to1. An odds ratio equal to 1 implies that
there is no association between the two groups, or the odds are equal between the two

groups. For an odds ratio greater than 1, Group 1 has a larger chance to have a yes

outcome than Group 2. Group 1 has greater odds of occuring than Group 2. Now for

an odds ratio less than 1, Group 1 has less chance to occur than Group 2. Group 2 has

the greater odds of occuring than Group 1. The odds ratio is widely used in medical

research, for example, to compare treatment e®ects of the two groups in order to ¯nd

if the odds of a success are the same for both groups. But what about the di®erence in

proportions? Di®erences between two sample proportions can also be used to compare

treatment e®ects of two groups. However, the di®erences tend to vary in meaning

when proportions are near 0 or 1. If p1 is the probability of a disease in the absence

of treatment, and p2 is the probability of a disease under treatment with a preventive

drug, then a di®erence of :05 may be rather small if the true probabilities are :5

and :45. The same di®erence, however, can have considerable practical importance if

the true probabilities are :10 and :05[2]. In the second case, the disease could have

been prevented in 1 out of 2 people who contracted the disease, a very signi¯cant
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result from a small di®erence. This illustrates the use of the di®erence between two

proportions may not be the best way to compare the two groups, because a small

di®erence can be very misleading in respect to the overall situation. Since the odds

ratio seems to be the better way to compare two proportions, con¯dence intervals for

the odds ratio are of particular importance along with the coverage probabilities and

the width of these con¯dence intervals. The odds ratio for an ordinary 2 £ 2 table
is ! = ad

bc
with a,b,c, and d as the four cell frequencies. If all the cell frequencies

are approximately the same or all quite large, then any formula used to calculate

the con¯dence interval for the odds ratio works very well. That is, all con¯dence

intervals have good coverage properties and similar, short widths in this situation.

What happens when the population n is small, or some cell frequencies are very small

or even zero? For these small sample sizes, the sampling distribution is highly skewed.

The use of the natural logarithm is implemented to the odds ratio, since the natural

log has less skewness. This is illustrated by the formulas chosen to calculate the

con¯dence intervals for the odds ratio. However, these extreme cases can still have

a huge e®ect on the coverage probabilities and the widths of the con¯dence intervals

for the odds ratio.

First, let's consider an example to illustrate the calculation of an odds ratio and

the con¯dence interval for the odds ratio. Some say that vitamin C can help prevent

the common cold. Hence, a Canadian experiment examined the claim with the results

in Table 1 [4]. From the table, an estimate of the odds ratio is ! = (335)(105)
(76)(302)

= 1:533.

This means that the odds of catching a cold taking the placebo are 1:53 times higher

than the odds of catching a cold taking vitamin C. The same as saying the odds

12



Table 1: Vitamin C and the common cold

Cold No Cold Totals
Placebo 335 76 411
Vitamin C 302 105 407
Totals 637 181 818

of catching a cold taking the placebo are 53:3% greater than the odds of catching

a cold taking vitamin C. An approximate 95% con¯dence interval for the log odds

ratio is ln(1:53)§2(sinh¡1(1:96
2
(
q

1
335
+ 1

76
+ 1

302
+ 1

105
) = :4269§:3321 or (:0948; :759).

Therefore, an approximate 95% con¯dence interval for the odds ratio is (e:0948; e:759)

which equals (1:099; 2:136). The research indicates with 95% con¯dence that the

true odds of catching a cold taking the placebo are 1:099 to 2:136 times higher than

catching a cold taking the vitamin C.

Now, what happens when calculating the odds ratio in extreme cases? An exact

con¯dence interval for the odds ratio can be calculated. This exact interval, however,

is very hard to calculate and gives a resulting con¯dence interval that is liberal and

very wide. Therefore, consider the inverse sinh transformation on the Woolf's interval

as ln! § 2x, where x = sinh¡1(y
2
) and y = z

q
1
a
+ 1

b
+ 1

c
+ 1

d
[1]. The con¯dence

interval works well in normal cases, but what happens with the coverage probabilities

and the width of the interval in extreme cases? How will the coverage probabilities

and the width of the inverse sinh transformation con¯dence interval be e®ected in

extreme cases as compared to other con¯dence intervals for the odds ratio? One

such widely-used con¯dence interval is an adjustment to the Woolf interval by the

addition of 1
2
to each cell frequency. The adjustment interval is the ln!§y where ! =
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(a+:5)(d+:5)
(b+:5)(c+:5)

and y = z
q

1
a+:5

+ 1
b+:5

+ 1
c+:5

+ 1
d+:5

. Will the adjustment interval work as

well or better in extreme cases as compared to the inverse sinh transformation?

To do the comparisons and to de¯ne the coverage properties for the inverse sinh

transformation, a MatLab program (Appendix B : Program 1) is used. With the

program, changing the population size n and randomly selecting cell frequencies for

n can be computed easily. The ¯rst step in the program is to generate a matrix of

all possible cell frequencies for a given population n. The process is referred to as

multinomial sampling, since the total population is ¯xed but not the distribution in

the cell frequencies. Now the inverse sinh transformation, unlike the Woolf interval,

can deal with a single cell entry of zero. Therefore, the matrix of all possible cell

frequencies must be altered in such a way that only the cell frequencies with at most

one zero cell entry remain. For example, if cell entry a = 0 and by letting a ! 0,

holding b, c, and d ¯xed, then

lnU = ln! + 2x

» lnU = ln d
bc
¡ ln(4sinh2x

z2
¡ 1

b
¡ 1

c
¡ 1

d
) + 2x

» ln z2d
4bc
+ 2x¡ 2 ln sinhx

U » z2d
4bc
( ex

sinhx
)2

! z2d
bc

[1].

Also, for the upper limit when d = 0 and the lower limit when b = 0 and c = 0,

substitute z2 into that cell entry[1]. When d = 0 the interval [0; az
2

bc
] serves as the

con¯dence interval for the odds ratio. Also when b = 0, the interval [ ad
z2c
;1] serves

as the con¯dence interval.
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After the calculation of the con¯dence intervals, the program focuses on the cov-

erage probabilities for the given con¯dence interval, labeled covadj and covnew with

covnew standing for the inverse sinh transformation interval. The program can also

randomly select probabilities for each cell entry to calculate the odds ratio, or values

can be entered to produce a desired odds ratio, for instance 1, 2, 4, etc. Next, the pro-

gram calculates the coverage probabilities of the given intervals under examination.

By changing values of n or the probability of each cell entry, the e®ect on the coverage

probabilities of the inverse sinh transformation of the Woolf's interval can be exam-

ined. This examination can provide information on the reaction of the con¯dence

interval and comparisons between the inverse sinh transformation and the adjusted

con¯dence interval for the odds ratio. Also notice, ¯nding the interval widths for

the two methods can be accomplished easily in MatLab. This will lead to another

comparison between the two con¯dence intervals. Therefore, looking at the coverage

probabilities and the widths of the two con¯dence intervals will provide information

on which con¯dence interval has the best coverage properties in extreme cases.
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CHAPTER 3

Relative Risk

The odds ratio is a useful measure of association regardless of the method used to

collect the data. However, the odds ratio has special meaning for cross-sectional and

prospective studies, because it is used to estimate a quantity called relative risk [3].

The key to calculate relative risk for the two types of studies is a ¯xed sample size n1

and n2 for the explanatory variable. Only when n1 and n2 are ¯xed, can one calculate

the relative risk. The relative risk is referred to in principle as the ratio of the success

probabilities for two groups, p1
p2
. A di®erence between these two probabilities may have

great importance when one or both probabilities are near 0 or 1. Like the odds ratio,

relative risk can range from values of 0 to1. A relative risk equal to 1, occurring when
p1 = p2, means the probability of success is the same for both groups and the response

is independent to a group. Relative risk acts the same as the odds ratio when it is

greater than 1 and less than 1. In practice, the relative risk is a parameter of major

importance in the medical ¯eld, because it is referred to as the risk of developing a

condition, usually a disease, for one group compared to another group. Researchers

have many di®erent methods to calculate con¯dence intervals for the relative risk,

but researchers want to use the most e±cient method to make calculations. That is,

the method that o®ers the best coverage probabilities and shortest interval width for

the con¯dence interval of relative risk. When dealing with a large population of the

two groups, n1 and n2, and with p1 and p2 approximately equal, :5, it follows that

any formula used for calculating the con¯dence interval for relative risk would have

16



great coverage probabilities and short interval widths. However, when n is small and

one of the probabilities is near 0 or 1, the coverage probabilities and interval widths

for a given con¯dence interval can be e®ected greatly. With a small sample size the

relative risk can be highly skewed as well, so the natural log transformation is used

when calculating con¯dence intervals for relative risk.

Let's look at an example in order to calculate the relative risk. There seems

to be an association between aspirin and heart attacks. A research group did a

¯ve year study testing whether regular intake of aspirin reduces mortality from

cardiovascular disease (MI) with the following results [3]. From the data, no-

Table 2: Aspirin Use and Myocardial Infarction (MI)

Group MI Yes MI No Total
Placebo 189 10845 11034
Aspirin 104 10933 11037

tice two independent binomial samples of size n1 = 11; 034 and n2 = 11; 037. An

estimate of the relative risk is
( 189
11034

)

( 104
11037

)
= 1:818. This means that the proportion

of heart attacks (MI cases) was 81:8% higher for the group of doctors taking the

placebo. An approximate 95% con¯dence interval for the log relative risk is ln(1:818)§
2(sinh¡1(1:96

2
(
q

1
189
+ 1

104
¡ 1

11;034
¡ 1

11;037
) = :5976 § :2373 or (:3603; :8349). The ap-

proximate 95% con¯dence interval for the relative risk is (e:3603; e:8349) which equals

(1:434; 2:305). The research indicates with 95% con¯dence that the true proportion

of heart attack cases for the group taking the placebo is between 1:434 to 2:305 times

the proportion of heart attacks for the group taking aspirin. Illustrating the risk of

17



a heart attack is at least 43:4% higher for the group taking the placebo. This is a

very important result. What would happen if the researchers looked at the di®erence

in proportions instead of relative risk? The approximate 95% con¯dence interval for

the di®erence in proportions is found to be (:005; :011). This di®erence is very small

and it seems like the two groups are not very di®erent at all. The relative risk, how-

ever, illustrates a major di®erence that is important to public health. So, when the

proportions are very small the di®erence of the proportions can be very misleading

as illustrated in this example.

Since relative risk and the odds ratio are very similar, calculating an exact con-

¯dence interval for the relative risk can also be considered. However, this process

is not only long and hard to do in general, but the results are a liberal con¯dence

interval that is very wide in length. Consider the inverse sinh transformation on the

Woolf's interval, since it is easy to calculate and may give shorter interval widths.

Remember, this interval is lnRR § 2 sinh¡1(y
2
) where y = z

q
1
a
+ 1

b
¡ 1

n1
¡ 1

n2
[1] as

noted before. Will this transformation perform well in extreme cases? Other formu-

las used to calculate the con¯dence interval for relative risk deal with adjustments

on the Woolf's interval. Adjustment 1 deals with the addition of 1
2
of a success

to the sample implying the con¯dence interval lnRR § y with RR =
(
(a+:5)
n1

)

(
(b+:5)
n2

)
and

y = z
q

1
a+:5

+ 1
b+:5

¡ 1
n1
¡ 1

n2
. Adjustment 2 deals with the addition of 1

2
of a success

and 1
2
of a failure to the sample implying that the con¯dence interval is lnRR § y

with RR =
(
(a+:5)
(n1+1)

)

(
(b+:5)
(n2+1)

)
and y = z

q
1

a+:5
+ 1

b+:5
¡ 1

n1+1
¡ 1

n2+1
. Therefore, comparing the

coverage probabilities and the widths of the con¯dence intervals will reveal if the new

inverse sinh transformation provides better coverage probabilities and shorter interval

18



widths than the widely-used adjusted intervals.

In order to examine the coverage probabilities, interval widths, and to make com-

parisons between the con¯dence intervals, the use of a computer program is needed.

The MatLab program (Appendix B : Program 2) can be used to sample di®erent

population sizes n1 and n2, along with di®erent probabilities p1 and p2, in order

to study the coverage properties of these con¯dence intervals. By changing sample

size, cell frequencies, and probabilities, the e®ects of the extreme cases on coverage

probabilities and the width of these con¯dence intervals can be examined.

The relative risk for an ordinary 2 £ 2 table having cell frequencies a,b,c, and d
with n1 = a + c and n2 = b + d is RR =

( a
n1
)

( b
n2
)
. The program utilizes independent

binomial sampling, since n1 and n2 are ¯xed. Meaning when there are two categories,

we assume a binomial distribution for the sample in each column, with the number

of trials equal to some ¯xed column total. Next, the program builds a matrix cor-

responding to all possible combinations of values for cell frequencies a and b. The

inverse sinh transformation of the Woolf con¯dence interval for relative risk deals with

a single cell entry of zero as well. Therefore, the removal of any possible combination

of cell frequencies when both a and b are zero must be completed. The adjusted

formulas, however, can deal with multiple cell frequencies of zero. For the inverse

sinh transformation, the method copes with a or b equal to zero by substituting z2

for the zero cell entry [1]. So as a! 0, holding b ¯xed, let

lnU = lnRR+ y

» lnU = ln
1
n1
b
n2

¡ ln(4sinh2x
z2

¡ 1
b
¡ 1

n1
¡ 1

n2
) + y

» ln
z2

n1
4b
n2

+ y ¡ 2 ln sinh y

19



U »
z2

n1
4b
n2

( ex

sinhx
)2

!
z2

n1
b
n2

.

As seen with the odds ratio, when a = 0 the interval [0;
z2

n1
b
n2

] serves as the con¯dence

interval for relative risk. Also when b = 0, the interval [
a
n1
z2

n2

; inf] serves as the con¯dence

interval for relative risk.

Next, after calculating the con¯dence intervals for relative risk, ¯nd the coverage

probabilities for these intervals, labeled covadjwoolf and covnew in the program.

Covnew stands for the coverage probabilities for the inverse sinh transformation in-

terval, and covadjwoolf stands for the coverage probabilities for the adjusted Woolf

intervals. The program also easily calculates the interval widths for the con¯dence

intervals along with random assignment or deliberate assignment of probabilities p1

and p2 used to calculate the coverage probabilities for the con¯dence intervals. Now

changing the values of n1, n2, p1, and p2 illustrates the e®ect of the extreme cases

on coverage probabilities and interval widths. Studying these e®ects of the extreme

cases on the coverage probabilities and the widths of the con¯dence interval will lead

to the e®ectiveness of the inverse sinh transformation con¯dence interval as compared

to the other well-known adjusted con¯dence intervals.
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CHAPTER 4

Results

The suggested modi¯ed inverse sinh transformation con¯dence interval for the

odds ratio and the relative risk requires evaluation of coverage properties to well-

known adjusted con¯dence intervals of the odds ratio and the relative risk. In order to

compare the coverage properties of these con¯dence intervals, two properties of these

intervals were examined in this thesis. The properties considered are the coverage

probabilities and the width of the con¯dence intervals at di®erent sample sizes, at

all possible cell frequencies in the 2£ 2 table with these sample sizes, and at a given
1¡® level of con¯dence. Sample sizes were extreme in order to analyze the coverage
properties of the intervals in extreme cases, since most intervals have similar coverage

properties when sample size is large.

The ¯rst property used to compare the con¯dence intervals was the coverage

probabilities for a given con¯dence interval at a 1¡® level of con¯dence. The coverage
probabilities include the minimum coverage, mean coverage, and the mean squared

error of coverage probabilities for all possible cell frequencies of the 2£ 2 table with
sample size n. Remember if we are calculating a level C con¯dence interval, the

con¯dence interval formed should have coverage probabilities very close to this level

C con¯dence. If not, the interval formed is not very useful. This thesis examines

the mean coverage and the minimum coverage of the con¯dence interval at di®erent

sample sizes and 1 ¡ ® levels of con¯dence. Hopefully, the mean coverage for the
con¯dence intervals will be the same as the 1¡® level of con¯dence, and the minimum
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coverage will be very close to the 1¡ ® level of con¯dence as well. The programs in
the thesis also calculate the mean squared error for the probability coverage about the

nominal level. The mean squared error (MSE) provides an estimate for the variation

in the coverage probabilities for the con¯dence intervals formed at this 1 ¡ ® level
of con¯dence. Since the mean square error measures the variability in the coverage

probabilities, hopefully this value is small in order to illustrate a small variation in

the coverage probabilities for the con¯dence intervals formed at a given 1¡® level of
con¯dence and at a given sample size n.

The other coverage property examined in this thesis is the width of the con¯dence

interval at a given sample size n. Recall, the width of a con¯dence interval is equal to

the di®erence between the upper bound and the lower bound of the formed con¯dence

interval. In the program, the interval widths were calculated for every possible cell

frequency of a given sample size n. By looking at the ¯ve number summary of the

widths of the con¯dence intervals, the summary will be useful in comparing the width

of these intervals at a given sample size n. Note, a good con¯dence interval will have

high con¯dence and short interval width. How will the coverage properties for the

inverse sinh transformation con¯dence interval compare to the coverage properties of

the widely-used adjusted con¯dence interval for the odds ratio and relative risk?

Through the use of the MatLab programs, the coverage properties for the inverse

sinh transformation con¯dence interval and the adjusted con¯dence intervals were

calculated and recorded in the tables found in Appendix A of the thesis. To compare

the coverage probabilities of the con¯dence interval for the odds ratio using the two

methods, di®erent con¯dence intervals were formed at di®erent levels of con¯dence
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(90%, 95%, and 99%). At each of these levels of con¯dence, di®erent sample sizes

were used along with a maximum odds value in order to compare the coverage prob-

abilities of the inverse sinh transformation con¯dence intervals for odds ratio with

the adjustment method con¯dence intervals for odds ratio. The maximum odds value

refers to a limit placed on the odds ratio ! in order to keep the odds ratio between !

and 1
!
before calculating the coverage probabilities. This was implemented in order

to see if one of the methods for calculating the con¯dence intervals is e®ected by

large values of the odds ratio. Looking at the tables of coverage probabilities for the

con¯dence interval for the odds ratio, Tables 3-5, one notices a trend. At any level of

con¯dence and at any sample size, the mean coverage of the con¯dence interval for

the adjustment method is always better, closer to the level of con¯dence, than the

inverse sinh method (Newcombe). Also notice that the minimum coverage and the

MSE almost always follow the same trend. In only a few cases, with a maximum odds

value ¸ 16, the inverse sinh transformation has a larger minimum coverage proba-

bility and a smaller MSE than the adjustment method. Therefore from the tables

illustrating the coverage probabilities, it seems that the adjustment method o®ers

better coverage probabilities for the con¯dence interval of the odds ratio than the

inverse sinh transformation method. The inverse sinh transformation only performs

as well as the adjustment method is cases where the odds ratio takes on a large value.

What about the interval width? Remember that a con¯dence interval should have a

high coverage probability but a short width. By calculating the ¯ve number summary

for the width of the con¯dence intervals formed with the two methods, Table 9, notice

that the trend continues. At di®erent sample sizes, the con¯dence intervals formed
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by the adjustment method have a shorter widths than do the con¯dence intervals

formed by the inverse sinh transformation. This can be easily illustrated from Table

9. Remember, the program is ¯nding the width of all possible con¯dence intervals

formed from all possible cell frequencies at a given sample size n. Notice the di®er-

ences in the sizes of the interquartile ranges for the two ¯ve number summaries. The

adjustment method has a smaller interquartile range for all sample sizes n. We can

conclude that 50% of the interval widths fall in this range, so the adjustment method

does perform better. The table reveals a smaller width for the con¯dence intervals

formed by the adjustment method as compared to the inverse sinh transformation at

a given sample size n. Hence, with higher coverage probabilities and shorter interval

widths, the adjustment method performs better and will provide a better estimate

for a con¯dence interval for the odds ratio than the inverse sinh transformation.

What about the relative risk? As with the odds ratio, a MatLab program was used,

and the results of the coverage probabilities of the con¯dence intervals for relative

risk were recorded in Tables 6-8. As before, the same levels of con¯dence (90%,95%,

and 99%) were used along with di®erent sample sizes, n1 and n2. Also, a maximum

relative risk of 99 was used in order to calculate the coverage probabilities for the

con¯dence intervals using the three methods. These three methods are the inverse sinh

transformation (Newcombe), the method of adding 1
2
of a success (Adjustment 1), and

the method of adding 1
2
of a success and 1

2
of a failure (Adjustment 2). From the tables,

notice Adjustment 2 exhibits great coverage probabilities even in very extreme cases.

The mean coverage for Adjustment 2 is almost the same as the given con¯dence level,

and the minimum coverage is very high as well. Also, the MSE for Adjustment 2 is
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very small, which means a small variability in the coverage probabilities, another plus.

Therefore, Adjustment 2 gives the best coverage probabilities, while the inverse sinh

transformation seems to have the worst coverage probabilities of the three methods.

Now, the attention turns to the width of the con¯dence intervals formed by the

three methods. Notice from Table 10, the widths of the con¯dence intervals were

calculated at the di®erent sample sizes. The interquartile ranges for the widths of

the three methods are almost identical. It seems that all three methods result in a

con¯dence interval with very similar widths. With the maximum values only occuring

at a small probability, the inverse sinh transformation can compete with the other

two methods when looking at the interval width alone. However, with the higher

coverage probabilities and similar interval widths, Adjustment 2 would be the best

method to use in order to calculate the con¯dence interval for the relative risk in

extreme cases.

What do the results tell us about the inverse sinh transformation? We have de-

cided that Newcombe's method does not perform as well as other adjustment methods

in extreme cases. The ¯rst limitation of the inverse sinh transformation is dealing

with only one cell frequency equal to zero. The adjustment method on the other hand

can deal with multiple cell frequencies of zero. Also, the adjustment methods o®er

better coverage probabilities and shorter interval widths for the con¯dence intervals

of relative risk and the odds ratio as compared to the inverse sinh transformation.

This does not mean, however, that the inverse sinh transformation is useless, only

that it has limitations. The key is to know these limitations in extreme cases. This

knowledge can aid researchers in the decision to choose an appropriate method for
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calculating the odds ratio and relative risk to interpret data more e®ectively in a 2x2

table.
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Table 3: Exact Coverage Probabilities of 90% Con¯dence Intervals for Odds Ratio

Newcombe Adjustment
n Max Min Mean MSE Min Mean MSE
Odds Cov Cov Cov Cov

10 2.25 .0067 .5773 .1652 .0074 .6580 .1406
20 2.25 .0026 .7249 .0749 .0027 .7849 .0712
30 2.25 .0141 .7836 .0492 .0167 .8343 .0447
10 5.44 .0003 .5770 .1672 .0003 .6505 .1446
20 5.44 .0060 .7259 .0817 .0067 .7858 .0729
30 5.44 .0002 .7827 .0511 .0002 .8311 .0465
10 16 .0003 .5780 .1689 .0000 .6383 .1496
20 16 .0015 .7043 .0988 .0019 .7550 .0900
30 16 .0052 .7740 .0606 .0052 .8172 .0564
10 81 .0002 .5498 .1934 .0002 .5913 .1794
20 81 .0000 .5409 .2027 .0001 .5830 .1888
30 81 .0000 .7643 .0664 .0003 .7991 .0683
10 1 .0000 .5063 .2318 0 .5297 .2355
20 1 .0000 .6786 .1187 0 .6962 .1274
30 1 .0000 .7372 .0912 0 .7467 .0996
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Table 4: Exact Coverage Probabilities of 95% Con¯dence Intervals for Odds Ratio

Newcombe Adjustment
n Max Min Mean MSE Min Mean MSE
Odds Cov Cov Cov Cov

10 2.25 .0015 .6226 .1746 .0015 .6824 .1541
20 2.25 .0024 .7847 .0767 .0024 .8312 .0695
30 2.25 .0177 .8398 .0494 .0184 .8775 .0452
10 5.44 .0001 .6090 .1892 .0001 .6607 .1725
20 5.44 .0183 .7747 .0849 .0197 .8183 .0779
30 5.44 .0144 .8294 .0587 .0154 .8650 .0546
10 16 .0009 .6055 .1939 .0009 .6496 .1786
20 16 .0011 .7492 .1019 .0011 .7822 .0944
30 16 .0001 .8230 .0625 .0001 .8568 .0582
10 81 .0000 .5731 .2227 .0000 .6080 .2084
20 81 .0001 .7479 .1035 .0002 .7783 .0976
30 81 .0000 .8117 .0698 .0000 .8386 .0664
10 1 .0000 .5434 .2502 0 .5598 .2532
20 1 .0000 .7049 .1424 0 .7178 .1488
30 1 .0000 .7716 .1014 0 .7832 .1084
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Table 5: Exact Coverage Probabilities of 99% Con¯dence Intervals for Odds Ratio

Newcombe Adjustment
n Max Min Mean MSE Min Mean MSE
Odds Cov Cov Cov Cov

10 2.25 .0050 .6739 .1744 .0052 .7003 .1657
20 2.25 .0107 .6789 .1699 .0109 .7052 .1579
30 2.25 .0162 .8722 .0582 .0175 .8880 .0559
10 5.44 .0001 .6568 .1892 .0001 .6787 .1817
20 5.44 .0131 .8310 .0866 .0130 .8115 .0906
30 5.44 .0124 .8791 .0522 .0131 .8936 .0498
10 16 .0018 .6369 .2063 .0018 .6577 .1982
20 16 .0009 .7865 .1125 .0009 .8043 .1088
30 16 .0022 .8582 .0649 .0022 .8729 .0626
10 81 .0001 .6033 .2379 .0001 .6234 .2287
20 81 .0014 .7869 .1123 .0014 .8037 .1082
30 81 .0001 .8447 .0760 .0001 .8584 .0733
10 1 .0000 .5622 .2775 0 .5764 .2734
20 1 .0000 .7245 .1644 0 .7342 .1625
30 1 .0000 .7985 .1141 0 .8070 .1141

32



Table 6: Exact Coverage Probabilities of 90% Con¯dence Intervals for Relative Risk

Newcombe Adjustment 1 Adjustment 2
n1 n2 Max Min Mean MSE Min Mean MSE Min Mean MSE

Risk Cov Cov Cov Cov Cov Cov
10 10 99 .0001 .7655 .0673 .0091 .8768 .0089 .6648 .9156 .0019
10 20 99 .0000 .7509 .0739 .0095 .8601 .0054 .7374 .9037 .0012
20 20 99 .0167 .8302 .0344 .0332 .8928 .0029 .7881 .9100 .0008
40 40 99 .2092 .8686 .0132 .1096 .8986 .0009 .8095 .9061 .0003
50 40 99 .2847 .8770 .0098 .1307 .9021 .0007 .8609 .9081 .0002
50 50 99 .2749 .8763 .0099 .1559 .9010 .0005 .8609 .9068 .0002
75 75 99 .4217 .8869 .0044 .2796 .9006 .0003 .8721 .9043 .0002
75 100 99 .4476 .8864 .0044 .3340 .8992 .0002 .8721 .9035 .0001
50 100 99 .3056 .8744 .0101 .3892 .8959 .0003 .8579 .9043 .0001
100 100 99 .5394 .8918 .0025 .3994 .9012 .0001 .8590 .9039 .0001

33



Table 7: Exact Coverage Probabilities of 95% Con¯dence Intervals for Relative Risk

Newcombe Adjustment 1 Adjustment 2
n1 n2 Max Min Mean MSE Min Mean MSE Min Mean MSE

Risk Cov Cov Cov Cov Cov Cov
10 10 99 .0005 .8030 .0737 .0167 .9194 .0084 .7374 .9530 .0012
10 20 99 .0000 .7859 .0808 .0956 .9022 .0062 .7374 .9411 .0010
20 20 99 .0952 .8731 .0365 .0591 .9383 .0027 .8179 .9521 .0006
40 40 99 .2445 .9142 .0153 .1096 .9469 .0007 .8822 .9528 .0001
50 40 99 .3074 .9232 .0114 .1617 .9493 .0006 .9086 .9535 .0001
50 50 99 .3062 .9221 .0116 .1560 .9477 .0005 .9086 .9522 .0001
75 75 99 .4675 .9345 .0053 .2802 .9489 .0002 .9117 .9517 .0001
75 100 99 .4670 .9338 .0054 .5268 .9474 .0001 .9192 .9508 .0000
50 100 99 .3056 .9194 .0120 .3944 .9423 .0003 .9096 .9492 .0000
100 100 99 .5588 .9397 .0031 .4015 .9495 .0001 .9192 .9515 .0000
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Table 8: Exact Coverage Probabilities of 99% Con¯dence Intervals for Relative Risk

Newcombe Adjustment 1 Adjustment 2
n1 n2 Max Min Mean MSE Min Mean MSE Min Mean MSE

Risk Cov Cov Cov Cov Cov Cov
10 10 99 .0146 .8329 .0774 .0169 .9585 .0072 .8895 .9845 .0004
10 20 99 .0018 .8192 .0842 .0956 .9485 .0058 .9044 .9778 .0005
20 20 99 .1331 .9065 .0382 .0607 .9733 .0021 .9265 .9866 .0002
40 40 99 .2937 .9495 .0164 .1908 .9845 .0005 .9393 .9877 .0001
50 40 99 .3689 .9602 .0114 .3908 .9872 .0003 .9106 .9863 .0001
50 50 99 .3685 .9514 .0115 .2642 .9861 .0003 .9106 .9884 .0000
75 75 99 .4950 .9717 .0059 .4429 .9875 .0001 .9603 .9889 .0000
75 100 99 .4925 .9709 .0060 .5657 .9865 .0001 .9603 .9881 .0000
50 100 99 .3950 .9570 .0117 .3960 .9722 .0003 .9582 .9861 .0001
100 100 99 .6145 .9780 .0072 .5950 .9885 .0001 .9729 .9893 .0000
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Table 9: Widths of the 95% Con¯dence Intervals for Odds Ratio

5 Number Summaries
Newcombe Adjustment

n Min Q1 Med Q3 Max Min Q1 Med Q3 Max
10 .192 1.955 13.134 177.242 1 .939 4.93 17.353 96.988 1022.5
20 .043 1.441 7.743 104.512 1 .207 2.248 9.131 54.318 3669.4
30 .018 1.071 5.578 51.171 1 .089 1.539 6.3073 39.559 7930.5
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Table 10: Widths of the 95% Con¯dence Intervals for Relative Risk

5 Number Summaries
Method n1 n2 Min Q1 Med Q3 Max

20 20 .019 .551 1.10 3.59 1
40 40 .010 .393 .767 2.39 1

Newcombe 50 40 .003 .361 .727 2.35 1
75 100 .021 .279 .518 1.51 1
50 100 .001 .332 .587 1.62 1
100 100 .001 .249 .480 1.45 1
20 20 .029 .582 1.12 3.54 629.8
40 40 .011 .403 .781 2.36 1267.2

Adjustment 1 50 40 .003 .365 .730 2.27 1264.2
75 100 .024 .284 .525 1.51 3183.7
50 100 .002 .341 .602 1.63 3194.1
100 100 .003 .251 .483 1.44 3178.5
20 20 .189 .613 1.17 3.58 631.9
40 40 .096 .412 .789 2.38 1268.3

Adjustment 2 50 40 .088 .376 .745 2.29 1271.3
75 100 .046 .286 .528 1.51 3173.8
50 100 .061 .342 .601 1.63 3163.8
100 100 .039 .254 .485 1.44 3178.9
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%MatLab Program 1

%Exact coverage for the odds ratio

%exactcovoddsratio.m

clear

covadj = [];

covnew = [];

d = [];

for n = 30

alpha = .05;

z = icdf('norm',1-alpha/2,0,1);

n1 = n + 1;

x1 = (0:n)';

x2 = (1:n)';

x3 = (1:n)';

x4 = (1:n)';

f1 = kron(x1,ones(n^3,1));

f2 = kron(ones(n1,1),kron(x2,ones(n^2,1)));

f3 = kron(ones(n1*n,1),kron(x3,ones(n,1)));

f4 = kron(ones(n1*n^2,1),x4);

F = [f1,f2,f3,f4];

t = find(sum(F')== n);

F1 = F(t,:);

t1 = find(F1(:,1)==0);
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F2 = [F1(t1,2), F1(t1,3), F1(t1,4), F1(t1,1)];

F3 = [F1(t1,3), F1(t1,4), F1(t1,1), F1(t1,2)];

F4 = [F1(t1,4), F1(t1,1), F1(t1,2), F1(t1,3)];

Fnew = [F1;F2;F3;F4];

f1 = Fnew(:,1);

f2 = Fnew(:,2);

f3 = Fnew(:,3);

f4 = Fnew(:,4);

estodds1 = (f1).*(f4)./((f2).*(f3));

estodds2 = (f1+.5).*(f4+.5)./((f2+.5).*(f3+.5));

se1 = sqrt(1./(f1)+1./(f2)+1./(f3)+1./(f4));

se2 = sqrt(1./(f1 + .5) + 1./(f2 + .5) + 1./(f3 + .5) + 1./(f4 + .5));

lb1 = estodds2.*exp(-z*se2);

ub1 = estodds2.*exp(z*se2);

se3 = 2*asinh(z*se1/2);

lb2 = estodds1.*exp(-se3);

ub2 = estodds1.*exp(se3);

w1 = find(f1 == 0);

lb2(w1) = 0;

ub2(w1) = z^2 * f4(w1)./ (f2(w1).* f3(w1));

w2 = find(f2 == 0);

lb2(w2) = f1(w2).*f4(w2)./ (f3(w2).* z^2);

ub2(w2) = inf;
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w3 = find(f3 == 0);

lb2(w3) = f1(w3).*f4(w3)./ (f2(w3).* z^2);

ub2(w3) = inf;

w4 = find(f4 == 0);

lb2(w4) = 0;

ub2(w4) = z^2 * f1(w4)./ (f2(w4).* f3(w4)) ;

for i = 1:2000

p1 = unifrnd(0,1,1,1);

p2 = unifrnd(0,1-p1,1,1);

p3 = unifrnd(0,1-(p1+p2),1,1);

p4 = 1-(p1+p2+p3);

%p1 = .1;

%p2 = .4;

%p3 = .4;

%p4 = .1;

oddsratio = p1*p4/(p2*p3);

d = [d,oddsratio];

%width1 = ub1 - lb1;

%width2 = ub2 - lb2;

indodds1 = (lb1 < oddsratio & oddsratio < ub1);

indodds2 = (lb2 < oddsratio & oddsratio < ub2);

prob = gamma(n1)./(gamma(f1+1).*gamma(f2+1).*gamma(f3+1).*gamma(f4+1)).

*(p1.^f1).*(p2.^f2).*(p3.^f3).*(p4.^f4);
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totodds1 = sum(prob.*indodds1);

totodds2 = sum(prob.*indodds2);

covadj = [covcor, totodds1];

covnew = [covnew, totodds2];

end

c1 = find(1/2.25 <= d & d <= 2.25);

c1 = find(d >= 16 | d <= 1/16);

[min(covadj(c1)),mean(covadj(c1)),var(covadj(c1))+(mean(covadj(c1))-(1-alpha))^2]

[min(covnew(c1)),mean(covnew(c1)),var(covnew(c1))+(mean(covnew(c1))-(1-alpha))^2]

%plot(d,covcor(c1),'.')

end
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% MatLab Program 2

% Exact coverage for Relative Risk

% Exactcovrelativerisk.m

clear

tic;

n1 = 100;

n2 = 100;

n= n1+n2;

alpha = .01;

z = icdf('norm',1-alpha/2,0,1);

covadjwoolf = [];

covnew = [];

d = [];

y1 = 0:1:n1;

y2 = 0:1:n2;

y1 = kron(y1',ones(n2+1,1));

y2 = kron(ones(n1+1,1),y2');

Y = [y1,y2];

t1 = find(y1 ~=0 | y2 ~= 0);

y3 = Y(t1,1);

y4 = Y(t1,2);

phat1 = (y3)./(n1);

phat2 = (y4)./(n2);
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adjphat1 = (y1+.5)./(n1);

adjphat2 = (y2+.5)./(n2);

%corphat1 = (y1+.5)./(n1+1);

%corphat2 = (y2+.5)./(n2+1);

prelhat = (phat1)./(phat2);

adjprelhat = (adjphat1)./(adjphat2);

se1 = sqrt(1./y3 + 1./y4 - 1/n1 - 1/n2);

se2 = sqrt(1./(y1+.5) + 1./(y2+.5) - 1/(n1) - 1/(n2));

%se2 = sqrt(1./(y1+.5) + 1./(y2+.5) - 1/(n1+1) - 1/(n2+1));

se3 = 2*asinh(z*se1/2);

lbadjwoolf = adjprelhat.*exp(-z*se2);

ubadjwoolf = adjprelhat.*exp(z*se2);

lbnew = prelhat.*exp(-se3);

ubnew = prelhat.*exp(se3);

w1 = find(y3 == 0);

lbnew(w1) = 0;

ubnew(w1) = ((z^2)/(n1))/((y4(w1))./(n2));

w2 = find(y4 == 0);

lbnew(w2) = (y3(w2)./(n1))/((z^2)/(n2));

ubnew(w2) = inf;

%for i = 1:1000

%ps = random('unif',0,1,2,1);

%p1 = ps(1);
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%p2 = ps(2);

for p1 = .01:.01:.99

for p2 = p1:.01:.99

%p1 = .1;

%p2 = .9;

relativerisk = p1 / p2;

d = [d,relativerisk];

%width1 = ubnew - lbnew;

%width2 = ubadjwoolf - lbadjwoolf;

indadjwoolf = (lbadjwoolf < relativerisk & relativerisk < ubadjwoolf);

indnew = (lbnew < relativerisk & relativerisk < ubnew);

prob1 = pdf('bino',y1,n1,p1).*pdf('bino',y2,n2,p2);

prob2 = pdf('bino',y3,n1,p1).*pdf('bino',y4,n2,p2);

totadjwoolf = sum(prob1.*indadjwoolf);

covadjwoolf = [covadjwoolf,totadjwoolf];

totnew = sum(prob2.*indnew);

covnew = [covnew,totnew];

end

end

[min(covadjwoolf),mean(covadjwoolf),var(covadjwoolf)+

(mean(covadjwoolf)-(1-alpha))^2]

[min(covnew),mean(covnew),var(covnew)+(mean(covnew)-(1-alpha))^2]
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