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ABSTRACT 

Incorporating Different Number Bases into the Elementary School Classroom 

by 

Crystal Michele Hall 

 

Since becoming an educator and gaining extensive classroom experience, I have 

concluded that it would be beneficial to elementary school children to learn other 

number bases and their basic functions and operations. In this thesis, I have developed 

five units involving lesson plans for incorporating various number bases into the 

existing curriculum.  The units are Decimal (Base 10), Duodecimal (Base 12), Quinary 

(Base 5), Binary (Base 2), and Octal (Base 8) which are all appropriate for the 

elementary level. 
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1  INTRODUCTION 

The following lessons are designed for classroom teachers.  Each includes an 

introduction to the base being discussed, lesson plans, and sample worksheets.  According to 

John McLeish in, The Story of Numbers: How Mathematics Shaped the Universe, �The binary 

assumption, which in computer science says that switches can be either ON or OFF, suggests 

that people [students] might also be divided into two kinds:  those who are �turned on� or excited 

by numbers and those who are depressed by them.  The second group is the vast majority�(1).  It 

is with this idea that we approach the most daunting of all forums, the elementary school 

classroom. 

1.1 The Premise 

As an elementary school math teacher I have noticed that students, early in their math 

careers, enjoy studying the subject of mathematics.  In my experience, by the time they reach the 

fifth grade, their �switch� has been flipped, meaning they no longer find joy in mathematics.  

Sadly, most are permanently stuck on OFF.   

 As an educator I have wrestled with this problem.  How can I make math more        

enjoyable?  How can I flip their switch back to ON?  How can I help to make math a favorite 

subject of my students?  I am continually looking for innovative ideas and lessons.  With each 

state saturated with high stakes testing and No Child Left Behind regulations, many educators, 

like me, are finding the proverbial pond of new ideas dry.  Children are becoming percentages.  

Educators are, increasingly, looking at students as test scores rather than learners with needs 

(Gross 12).  Politics aside, students must be challenged to think.  They have to be able to reason 

beyond �2+2=4.�  It is with this in mind that I chose my topic and present the following series of 
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units.  These units are meant to be a supplement to the current curriculum and provide a new way 

for students to look at numbers at an early age.   

1.2 Selecting the Units 

  I chose to limit my lessons to the fifth grade, although, they could be used at a lower or 

higher level.  Each base was chosen because it complemented a certain strand of the fifth grade 

objectives.  I narrowed my units to five.  The units are: Decimal (Base 10), Duodecimal (Base 

12), Hand (Base 5), and Binary (Base 2), and Octal (Base8).  

Each unit begins with a brief introduction and history of the selected base.  The unit then moves 

to a description of counting in that base and provides a sample lesson plan, complete with 

reproducible worksheet and answer key.  From there, the unit continues to computation, which I 

have limited to include only addition.  This section also contains a description of addition in that 

base, sample lesson plan, practice worksheets, and answer key.   

The units themselves are designed to be used independently or in sequence.  It is 

recommended that these units be used throughout the school year in conjunction with the current 

curriculum.   
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         2  ROTE MEMORY 

An issue certainly arises when introducing the subject of bases into an elementary 

curriculum, and that is the place of rote memorization in the classroom.  According to an 1850 

edition of Noah Webster�s dictionary, �rote� is defined as �to fix in memory by means of 

frequent repetition� (Webster 567).  A search at Webster Online (www.webster.com) defines 

�rote� as: 

1. the use of memory usually with little intelligence. 

2. routine repetition carried out mechanically or unthinkingly. 

Many of my fellow educators today shy away from rote learning.  It has become outdated 

and ineffective to some circles (Hawkins 212).  In truth, rote learning has its place in any 

learning environment.  Take the subject of history.  As an educator, I have observed many 

students today cannot recall even the most basic historical facts and dates.  Why?  They either 

were not made to memorize the fact because it interrupted the �true learning� of the event, or 

they chose not to memorize the fact because they found it to be useless.  According to a March 

2002 article in the New York Times, �A 1999 survey asked college seniors questions like who 

led our troops at Yorktown; the most common answer was Ulysses S. Grant. In 1986, the 

government tested 17-year-olds in history; most said the Civil War occurred before 1850� 

(Rothestein 2).    As a result, we have produced generations of Americans who have never 

memorized much of anything.  The same is true in the mathematics classroom.  Currently we 

have thousands, maybe millions, of American school children who cannot provide the answer to 

eight times seven(Hawkins 213).  Progressive educators say that the memorization of facts is 

outdated and children should be able to learn them in their own way (Slavkin 18).  Putting a 

calculator in front of a child may produce a correct answer, but the child has no way of knowing 
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if what he/she is seeing is correct.  In my classroom I have noticed it is harder for a child to go 

from concrete to abstract mathematics without having basic mathematical facts in memory. 

Of course rote memory has its drawbacks.  It is a process that begins in your short-term 

memory.  Short-term memory is roughly synonymous with working memory (�Rote Memory� 

par. 3).  As you try to understand the words on this page, your ability to understand these 

concepts depends on your working memory and your long-term memory.   

Short-term memory only lasts about thirty seconds (par. 4).    The newly acquired 

information could be lost if you had not already committed it to long-term memory (par. 4).   

Many students study using rote memorization.  However, this may not be the best way, 

especially if the exam is only minutes away.  It is not reliable.  Studies show that rote 

memorization is not the most effective way to move information from short-term to long-term 

memory (Slavkin 19).   

Therefore, educators should balance their lessons.  Rote memorization is not bad in the 

classroom, but relying solely on rote memorization is a bad classroom practice.  Children must 

be taught the reasoning behind mathematical facts.  Then they should be exposed to many 

different ways of manipulating that fact.  This is true learning.  For example, think of a 

kindergarten child who is just beginning to learn to count.  He/she recite the numbers in order 

from one to twenty.  The parents beam.  They have the smartest kid on the block.  Say that same 

child gets to kindergarten and the teacher asks him/her to get out two crayons.  The child pauses, 

not sure what to do.  Guessing, the child produces four crayons.  This is a child that has the 

number names committed to memory, yet has no concept of what the number two really means.  

He/she memorized the song with repetition and made his/her parents proud, yet had no real 

understanding of the numbers.  These scenarios are not uncommon in elementary school.  As a 
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teacher, I have seen them replayed over and over again, especially in kindergarten and first 

grade.  These problems begin to show themselves as early as kindergarten registration.  At 

registration students are asked to count objects and recite as many numbers in order as they can.  

Some potential students can recite the numbers and cannot count the objects without difficulty 

(Gross 50).   

Children need a balance of both rote learning and learning via manipulatives included in 

their curriculum.  The purpose of lessons on different number bases is to reinforce place value 

concepts already in place.  It also promotes critical thinking skills, not just rote memorization.  A 

child may tell you a number is in the hundreds place without knowing what the hundreds place 

means.  That same child will not be able to rely on memorization of the places to manipulate 

numbers in a different base.  The rules change.  It will then cause the student to think in a 

different manner, one that will stretch ability to think and hopefully reinforce some basic base 10 

principles. 
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                                                  3  NECESSARY TOOLS 

  3.1 What is a base? 

First we must begin with the definition of �base.�  The base of a system of numerals is 

the number that determines the place values for all of the numerals in that system (�Base,� 1).  

For example, in Base 10, 234 equals 2 times 100 (10 squared), 3 times 10 (10 to the first power), 

and 4 times 1 (10 to the zero power).  In Base 8, 234 equals 2 times 64 (8 squared), 3 times 8 (8 

to the first power), and 4 times 1 (8 to the zero power).  Any positive integer greater than one can 

be used as a base.  You can express any number in any base. 

3.2 Base Conversion 

It is sometimes necessary to convert a number to another base.  Most of the time one 

could do that by using a calculator; however, it is important to know how to do the same 

operation by hand.  There is a trick you can use and with some practice, you will not have to 

write the steps down. 

Let us begin with the number 138 in Base 10 and we are going to convert that number to 

Base 5. 

1. 138 = a * 5 + b 

2. Divide 138 by 5.  The quotient is �a� and the remainder is �b.� 

                 138 = 27 * 5 + 3 

3. Now repeat only this time divide 27 by 5. 

27 = 5 * 5 + 2 

 Repeat until a = 0 

 5 = 1 * 5 + 0 

 1 = 0 * 5 + 1 
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4.  If you put all of these calculations together, the remainders from bottom to top give the 

number in Base 5.  (The answer is in bold) 

138 = 27 * 5 + 3 

    27 = 5 * 5 + 2 

     5 = 1 * 5 + 0 

     1 = 0 * 5 + 1                     138 in Base 5 is 1023! 

This is a simple trick that any child on the fifth grade level or higher could master.  As an 

added bonus, it provides basic computation practice as well.  This method is, however, a rote 

form of base conversion.   

  Keep in mind that this conversion formula is a tool to be used after an 

understanding of the base has been established.  It is important for children to understand the 

place value aspect of each base before you move into an abstract way to convert.   Each lesson 

contains a counting chart and alternate methods of base conversion, methods that focus more on 

place value.   

3.3 Technology 

      There are times in the elementary classroom where we want to introduce a skill without 

the students getting bogged down in the arithmetic.  When that happens, it is useful to have a 

calculator or online applet that will allow the students to find answers or to simply check their 

answers.  Listed below are websites for a base calculator and a base converter.  Both will prove 

useful throughout the lessons. 

 

Base Calculator 

http://www.psinvention.com/zoetic/k12addm.htm 

http://www.psinvention.com/zoetic/k12addm.htm
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Base Converter 

http://www.cut-the-knot.org/binary.shtml 

 

 

 

 

http://www.cut-the-knot.org/binary.shtml
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4  DECIMAL (BASE 10) 

4.1 Introduction 

The Decimal (Base 10) system is one of the most commonly used today.  It is assumed to 

have originated because we have ten fingers.  People could count on their fingers up to ten, put a 

mark in the sand, and continue counting on their fingers (�Base Valued Numbers,� 1).   

However, some cultures do or did use other number bases.  The Tzotil use a Base 20 system 

(using all 20 fingers and toes), the Nigerians use a Base 12 system, and the Babylonians formerly 

used a Base 60! (�Decimal,� 1) 

 The Indian culture is credited with developing the decimal system.  The Mohenjo Dan 

culture of the Indus Valley was using a form of decimal numbering some 5,000 years ago 

(�History of Decimal Writers,� par. 2).  Numerous cultural changes in this area developed the 

decimal system into a rigorous numbering system, including the use of zero by the Hindu 

mathematicians almost 1,500 years ago (�Numeral Systems,� 2). 

 The symbol for the digits used around the globe today are called Arabic numerals by 

Europeans and Indian numerals by Arabs, both referring to the culture from which the system 

came (�Base 10,� 1).  However, the symbols used in different areas of the world are not 

identical.  The forms of �our� numbers differ from those in Arab cultures.  The following 

timeline was adapted from an online media source: Wikipedia, the free encyclopedia. 

Decimal Writer Timeline  

Decimal writers 

• c. 3500 - 2500 BC Elamites of Iran possibly use early forms of decimal system. [2] [3]  
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• c. 2900 BC Egyptian hieroglyphs show counting in powers of 10 (1 million + 400,000 

goats, etc.).  

• c. 2600 BC Indus Valley Civilization, earliest known physical use of decimal fractions in 

ancient weight system: 1/20, 1/10, 1/5, 1/2. See Ancient Indus Valley weights and measures.  

• c. 1400 BC Chinese writers show familiarity with the concept: for example, 547 is 

written 'Five hundred plus four decades plus seven of days' in some manuscripts.  

• c. 450 BC Panini uses the null operator in his grammar of Sanskrit 

• c. 400 BC Pingala develops the binary number system for Sanskrit prosody, with a clear 

mapping to the base-10 decimal system.  

• c. 476�550 Aryabhata used an alphabetic cipher system for numbers that used zero.  

• c. 598�670 Brahmagupta � decimal integers, negative integers, and zero  

• c. 790�840 Abu Abdullah Muhammad bin Musa al-Khwarizmi � first to expound on 

algorism outside India  

• c. 920�980 Abu'l Hasan Ahmad ibn Ibrahim Al-Uqlidisi � earliest known direct 

mathematical treatment of decimal fractions  

• 1548/49�1620 Simon Stevin � author of De Thiende ('the tenth')  

• 1561�1613 Bartholemaeus Pitiscus� (possibly) decimal point notation  

• 1550�1617 John Napier� decimal logarithms (�Decimal Timeline� sec. 3). 

4.2 Counting in Base 10 

The digits we use are Arabic/Indian.  They are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.  We use 

just those ten digits to construct all of our numbers.  We can do this because each number 
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occupies a place value.  When �9� is reached, the value goes to zero and �1� is added to the next 

place value. 

Example:  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

When we get to 9, we are out of digits.  Therefore, we start over and use a zero in what 

we call the ones place and add 1 to what is the tens place. 

 Each place value to the left is equal to ten times the place value to the right.  Another way 

to say it is that each value to the right is equal to the place value to the left, divided by ten.  A 

zero is used to represent nothing of a particular place value. 

 A good way to provide practice and reinforcement in place value in the elementary 

classroom is to use Base 10 blocks.  These blocks can be purchased and used as a hands-on 

manipulative in the classroom or they can be accessed through numerous online applets.  The 

base 10 block applet used on the following page can be found at the following address:  

http://www.arctech.org/java/b10blocks.htm.  

   

 

http://www.arctech.org/java/b10blocks.htm


 22

The figure below (figure 1) is a great example of the technology available.  It is recommended 

that technology such as this be used as a supplement. 

Figure 1. Base 10 Applet 

4.3 Use of the Base 10 applet 

            The program itself is user friendly and students on a fifth grade level should have no 

trouble navigating through its various uses and commands.  As you can see from the previous 

page, the colored blocks on the left are the manipulative themselves.  These blocks can be 

dragged into the work space and there is no limit on how many you can drag over.  Figure 2 

shows a short description of the blocks used in this program:   

(Note:  these descriptions were taken and adapted from the original website) 
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 s the 1-block or unit block the smallest of all the blo

 
s the 10-block corresponding to 10 units.  It is also 

referred to as a rod or long. 

 

s the 100-block and corresponds to 100 units. It is al

called a flat. 

                           Figure 2. Applet Instructions 

            It is essential to discuss these blocks and their meaning and uses before beginning a Base 

10 block activity.  Typically teachers like to give their students time to �play� with the 

manipulative and develop their own uses for it before telling then how they are actually to be 

used.  This activity is valuable in two ways: 

1. It gives the students time to get acquainted with the symbols while satisfying their curiosity. 

2. It allows the teacher to assess what the skill level of each student is.  If a student begins 

grouping the blocks and creating numbers, it gives a good indication of understanding. 

4.4 Lesson Plan: Place Value: The M&M King 

Grade Levels: 2nd�8th 

Objective: Through hands-on and role play activities, the student will �discover� and develop the 

concept of place value in a Base 10 system. 
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Materials: 

• Individual packages of M&M candies (numbers will vary with class sizes) 

• Dry erase board or overhead projector 

Before you begin: 

This activity is designed to allow the students to explore and discover place value.  I typically 

complete this activity BEFORE I continue on with the Base 10 blocks.  It is an activity that 

serves well as an introduction to a lesson.  With older students the challenge is to get them NOT 

to count the way that they are used to.  Counting has been so ingrained into them this is not 

always an easy task.  I usually tell them to pretend that they have no knowledge of how to count 

and are about to learn a useful method. 

Procedure: 

1. Place students in groups of five. 

2. Divide the M&Ms among the groups.  Tell them that are not allowed to eat any at this 

time. (Make sure you are well protected, this can cause a riot!) 

3. Read them the story of the Rice King. (attached to lesson plan) 

4. Have the students recreate the Rice King�s methods of counting with the M&Ms. 

5. Have the groups come up before the class and demonstrate the method of counting. 

6. Now, allow them to go back to their groups and devise a new method of counting using 

the M&Ms.  This provides a stepping stone for discussion of other bases. 

Questions to ask the students: 
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1. Why do you think that we have only ten digits in our number system?  How could this be 

useful? 

2. Why does the first person have no fingers raised?  What number does this represent? 

WHY? 

After allowing students to answer the above questions, allow the students to explore various 

applets on the computer.  If possible, use the computer lab within your building so students can 

work simultaneously.  If that is not possible, allow students to work in groups using a classroom 

computer.   

4.5  Attachment: The Rice King (or the M&M King!) 

             A long, long time ago, before we had a written numerical system, there lived a king.  The 

king ruled a land that was rich and fertile and produced an abundance of rice.  The people of the 

land were required to pay taxes to the king in the form of sacks of rice.  Once a month, on the 

first day of that month, the people would arrive very early to the castle with many sacks of rice.  

They would stand in line to deliver the sacks into a large pile.  The king, being selfish, wanted an 

accurate count of the number of rice sacks he collected, this way he could always know how 

much he owned.  The priests thought and thought for days but could not come up with an 

answer.  Finally, as they were walking past a village they stumbled upon the answer.  A young 

boy was counting pebbles.  After he had used all of his fingers, he would make a mark in the dirt 

and start all over again.  This gave the priest an idea for the king.  They rushed back to tell the 

king their news. On the day that the rice was to be counted, three priests stood by the king.  As 

the farmers started to bring their rice, the first priest began counting on his fingers.  When he ran 

out of fingers, the second priest would hold up one finger.  This symbolized the number of times 
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that the first priest had run out of fingers.  On a good day, the second priest would run out of 

fingers and the third would have to begin counting.  He could hold up a finger every time the 

second priest could count no further.  And on and on it went for the day.  At the end of the day, 

they would capture finger counts in the form of special symbols, one for each priest and a 

different symbol for the number of raised fingers.  Legend has it that this was the start of the base 

10 system.           

 Note:  This tale was adapted from the book, One Grain of Rice: A Mathematical Folktale by 

Demi.  It was shortened for classroom use. 

4.6 Practice Worksheet 

 

Write the following in expanded form (Base 10): 

1. 123 

2. 56 

3. 7,843 

4. 108, 938 

 

 

Name the place of the underlined number: 

1. 2,345 

2. 8,930 

3. 427 

4. 89,003 
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Write the following in standard form: 

1. 100 + 20 + 4 

2. 5,000 + 400 + 90 + 1 

3. 1,000,000 + 7,000 + 30 + 6 

4. 300 + 9 

 

4.7  Answer Key 

 

1. 100 + 20 + 3 

2. 50 + 6 

3. 7,000 + 800 + 40 + 3 

4. 100,000 + 8,000 + 900 + 30 + 8 

 

1. Tens 

2. Thousands 

3. Ones 

4. Ten thousands 

 

1. 124 

2. 5,491 

3. 1,007,036 

4. 309 
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4.8 Addition in Base 10 

           Addition in the Base 10 system is a common strand in almost every elementary school 

grade.  The following is a simple explanation and sample lesson plan to promote fluency.  

Addition is the �putting together� of two groups of objects and finding how many in all.  Using a 

place value chart is a great way of ensuring a digit gets into the correct place.  For example, to 

solve an addition problem, model the addends in the place value chart, regroup the blocks as 

needed, and then write the answer in standard form.  The following example shows 135 + 278.  

Figure 3, shown below, is an example of an addition chart using Base 10 blocks. 

 

Figure 3 Base 10 Blocks Chart 

The sum 413 is now shown.  A through mastery of regrouping is essential because it is also used 

in other operations.   

4.9 Lesson Plan: Race to 100 

 

Grade level: 2nd�5th 

Materials Needed: die, Base 10 blocks 
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Procedure: 

1. Place the students in pairs. 

2. Have each partner roll the die and the one who rolls the highest goes first.  If a tie 

arises, the players must roll the die again. 

3. The players will take turns rolling the die, adding each roll onto their previous 

amount using Base ten blocks and racing to reach 100. 

For example: 

          Player 1 will roll the die.  Let�s say player 1 rolls a 5, he/she will take 5 single blocks, 

showing what their score was.  Player 2 does the same.  Now it is again the turn of Player 1 and 

let�s say he/she rolls a 6.  The goal is for students to mentally recognize that they now put back 

their 5 singles and trade for one tens block and one single.  This play continues until one player 

reaches one hundred. 

Extensions and Adaptations: 

           This game could be played �Race to a Dollar,� using pennies, dimes, and dollars.  The 

game could also be played to 1,000 and the students could also graduate from the blocks to paper 

and pencil addition. 

 

4.10  Addition Worksheet 

Solve for the sum: 

1. 291 + 165 = ______  

2. 189 + 478 = ______ 

3. 1,580 + 9,875 = ______ 
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4. 5,239 + 6,346 = ______ 

5. 45,234 + 56,343 = _____ 

 

Find the missing value: 

1. 567 + 56 + g = 1,543 

2. 78,432 + a = 85,543 

3. h + h + 762 = 8 

4.11  Answer Key 

 

1. 456 

2. 667 

3. 11,455 

4. 11,585 

5. 101,577 

 

1. g = 920 

2. a = 7,111 

3. h = 68 
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5 DUODECIMAL (BASE 12) 

5.1 Introduction 

  Twelve is a prolific number.  Several examples follow that feature twelve as a central       

theme.                                                                           

Time 

The clock itself has twelve hours displayed on its face.  There are sixty minutes in an 

hour and sixty seconds in a minute.  Sixty is divisible by twelve.  There are twenty-four hours in 

a day, another multiple of twelve.  And, of course, there are twelve months in a year. 

Degrees 

There are three hundred sixty degrees in a circle, a multiple of twelve. 

Religion 

From a Christian standpoint, twelve is the number of the Apostles of Jesus.  Twelve is 

also the number of signs in the pagan Zodiac. 

Practical 

Twelve is the amount in a dozen, the most common amount for doughnuts and eggs (to 

name a few).  As a practical matter, people tend to divide groups into thirds and 

quarters.  Both are factors of twelve.  A dozen is the smallest that allows one to do this.  

 

5.2 Counting in Base 12 

In a system with more than ten numerals, such as the duodecimal, we need to add some 

other characters in order to count.  Therefore, to count in the duodecimal system, the digits look 

like this: 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B 
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Table 1 shows how some numbers would match up with our familiar Base 10 system: 

Table 1. Base 12 Counting Table 

Base 10 Base 12 Base 10 Base 12 Base 10 Base12
0 0 17 15 34            2A
1 1 18 16 35            2B
2 2 19 17 36 30
3 3 20 18 37 31
4 4 21 19 38 32
5 5 22            1A 39 33
6 6 23            1B 40 34
7 7 24 20 41 35
8 8 25 21 42 36
9 9 26 22 43 37

10              A 27 23 44 38
11              B 28 24 45 39
12 10 29 25 46            3A
13 11 30 26 47            3B
14 12 31 27 48 40
15 13 32 28 49 41  

 

5.3 Lesson Plan: Counting in Base 12 

Grade Level:  4th�8th 

Objective:  Use manipulatives and real world examples to model counting in Base 12. 

Materials: none 

Procedure: 

We will begin by teaching the children to count in Base 12 on their fingers.  This is a way 

that they are already comfortable with, why not use that to the advantage? 

Have the children curl their fingers of their left hand so they can see the tops of the 

knuckles.  The four tips of the fingers make up one row.  The knuckles closest to the tips make a 

second row.  The next set of knuckles make the third row.  (You cannot see the knuckles that 

merge into the back of the hand.)  Point out to the children that altogether you see three rows of 
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four, which make twelve.  Use the opportunity to point out patterns of halves, thirds, and quarters 

within a dozen.   

Have the children create a counting chart in Base 12.  Table 2 is an example chart. 

Table 2. Base 12 Counting Table 

Base 10 Base 12 Base 10 Base 12 Base 10 Base12
0 0 17 15 34            2A
1 1 18 16 35            2B
2 2 19 17 36 30
3 3 20 18 37 31
4 4 21 19 38 32
5 5 22            1A 39 33
6 6 23            1B 40 34
7 7 24 20 41 35
8 8 25 21 42 36
9 9 26 22 43 37

10              A 27 23 44 38
11              B 28 24 45 39
12 10 29 25 46            3A
13 11 30 26 47            3B
14 12 31 27 48 40
15 13 32 28 49 41  

After the children have completed their chart, they can begin practicing conversion 

techniques.  The chart provides a way to convert from Base 10 to Base 12, using Base 10 as a 

�crutch.�   

 For example, if I wanted to know what the number 40 (Base 10) was in Base 12, I would 

only need to count to the fortieth number in the Base 12 sequence.  Using the chart, it is easy to 

tell that 40 (Base 10) is 34 (Base 12).    Of course, this method may not be the best if a student is 

asked to convert a large number.  We would have to find another way. 

Part 3:  Use the conversion formula to covert from Base 10 to Base 12. 

If this is the first time that the students are using the formula, then go slowly outlining the 

steps.   

Example:  Convert 345 (Base 10) to Base 12 
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345 = a * 12 + b 

345= 28 * 12 + 9 

28 = 2 * 12 + 4 

2 = 0 * 12 + 2 

Recall that the list of remainders from bottom to top is the answer.  For example, 345 

base 10 = 249 base 12. 

Other examples to convert to Base 12: 

540 

875 

1,278 

5.4 Practice Worksheet 

 

Convert the following from Base 10 to Base 12: 

 

1. 543 

2. 691 

3. 4,039 

4. 2, 002 

5. 87,442 

 

 

Convert the following from Base 12 to Base 10: 

1. 45 
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2. 21 

3. 3A 

4. 7B 

5. 99 

 

5.5 Answer Key 

 

1.   393  

2.  497 

3.  2,407 

4.  1,1AA 

5.  42,72A 

 

1.  53 

2.  25 

3.  46 

4.  95 

5.  117 

5.6 Addition in Base 12 

Grade Level: 5th�8th 

Objective:  Use concrete and abstract examples in order to add Base 12 numbers. 

Materials:  Graph paper 

 



 36

Procedure:   

Begin by showing the children how to construct an addition table in Base 12.  It is 

recommended that graph paper be used for this.   The chart itself is easy for children to construct 

because it is essentially skip counting, a skill that they have been practicing since kindergarten. 

 An example chart appears in Table 3. 
 
Table 3. Base 12 Addition Table 

 
 0 1 2 3 4 5 6 7 8 9 A B 

0 0 1 2 3 4 5 6 7 8 9 A B 
1 1 2 3 4 5 6 7 8 9 A B 10 
2 2 3 4 5 6 7 8 9 A B 10 11 
3 3 4 5 6 7 8 9 A B 10 11 12 
4 4 5 6 7 8 9 A B 10 11 12 13 
5 5 6 7 8 9 A B 10 11 12 13 14 
6 6 7 8 9 A B 10 11 12 13 14 15 
7 7 8 9 A B 10 11 12 13 14 15 16 
8 8 9 A B 10 11 12 13 14 15 16 17 
9 9 A B 10 11 12 13 14 15 16 17 18 
A A B 10 11 12 13 14 15 16 17 18 19 
B B 10 11 12 13 14 15 16 17 18 19 1A 

 

Practice is all that it takes to master various bases.  The rules are the same as in our 

standard decimal system.  The sum or product of two digits may only produce one or two digit 

numbers.  In the latter case, if necessary, the first digit is carried over to the next column on the 

left.  Use of the table and board examples will help the children understand addition in Base 12. 

The following are board examples: 

 

              135 + 35 =                                            1,257 + 642 = 

 

              679 + 409 =                                          8,503+ 3,932 = 
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            Have the children use the addition chart to answer the board examples.  Explain that the 

process is still the same, just different numbers are used. 

 

5.7   Practice Worksheet 

1. My age is 23 in Base 12.  What is my age in Base 10? 

2. What is your age in Base 12? 

 

3.  345 + 322 =   _________ 

4.  567 + 43 =   __________ 

5.  56 + 76 +  123 =  __________ 

 

6. Construct two addition problems and solve them. 

 

5.8 Answer Key 

1. 27 

2. Answers will vary 

3. 477 

4. 703 

5. 193 

6. Answers will vary 
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6 QUINARY (BASE 5) 
6.1 Introduction 

The Base 5 numbering system was used primarily before the writing of numbers 

(�Number Base� par. 2).  The use of Base 5 as a grouping value is easily understood as the hand 

has five fingers.  This grouping was used for thousands of years by many cultures around the 

globe.   

 The signs or words used were:  one hand equal 5, two hands equal 10, one person equals 

20 (two hands and two feet).  Some cultures would count on fingers with zero being a closed fist 

(�Number Base� par. 2).  Base 5, however, was not formalized as a place value but rather as a 

grouping value (�Number Base� par. 3).   

 This is a number base that children take to easily because they are already accustomed to 

using their fingers to count and perform basic arithmetic.  Base 5 can prove to be an easy 

transition.  

6.2  Counting in Base 5 

 

In Base 5 only the first five digits of the Arabic numerals are used.   

BASE 5:  0, 1, 2, 3, 4 

Therefore, we have no knowledge of the digits 5�9 in a Base 5 world.  The students 

enjoy pretending that they haven�t learned those digits, although it proves to be a greater 

challenge than they anticipate!  To the children, this would be equivalent to counting only on one 

hand.  Counting in Base 5 would be as displayed in Table 4. 
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Table 4. Base 5 Counting Table 

Base 10 Base 5 Base 10 Base 5 Base 10 Base 5
0 0 17 32 34 114
1 1 18 33 35 120
2 2 19 34 36 121
3 3 20 40 37 122
4 4 21 41 38 123
5 10 22 42 39 124
6 11 23 43 40 130
7 12 24 44 41 131
8 13 25 100 42 132
9 14 26 101 43 133

10 20 27 102 44 134
11 21 28 103 45 140
12 22 29 104 46 141
13 23 30 110 47 142
14 24 31 111 48 143
15 30 32 112 49 144
16 31 33 113 50 200

 

In Base 10, there is no single digit that means ten of something.  Consequently, in Base 5, 

there is no single digit that means five of something.  Again, this chart is useful in conversion.  It 

is possible to count using the chart until you have achieved the correct Base 5 number. 

It is time, however, to introduce another way to convert between bases.  The following is 

a rote form of conversion and uses Base 10 as a guide.  It makes it very useful to use with fifth 

grade students who are still getting a grasp on place value in Base 10. 

To explain let us revert to Base 10 and place value.  Let us say that you are given the 

number 547.  What does 547 really represent? 

It can be broken into a series of values.  547 =  seven �ones�+ four �tens� + five �hundreds� 

Using this as a model, it is possible to move into Base 5.  Instead of ones, tens, and hundreds; we 

have ones, fives, and twenty-fives. 

Example: 

Convert 243 (Base 5) into a Base 10 number: 

243 (Base 5) = 3 (1) + 4 (5) + 2 (25) 
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          In this example, I have broken 243 into place values.  You see that 3x1 + 4x5 + 2x 25  = 

73    The result is that 243 (Base 5) is equal to 73 (Base 10).  To convert numbers from Base 10 

to Base 5, refer to the formula in the third chapter.  This formula is good for all base conversions.   

 Figure 4 is an unusual clock used since 1975 in Berlin, Germany.  It is a Base 5 clock.  

The popular name is �Mengenlehreuhr� or a set theory clock.  It displays the hours and minutes 

in a Base 5 sort of system.  The round lamp on top blinks to indicate it is running.  The first row 

shows how many 5-hour blocks have passed since midnight, the second, how many hours in the 

current 5-hour block.  The third row displayed how many 5-minute blocks since the hour, and the 

bottom row indicates how many minutes in the current 5-minute block.  The snapshot was taken 

at 14:57 (�Set Theory Clock� 1).  However, this is the use of Base 5 to get Base 10 answers.  
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Picture taken from Wikipedia, the free encyclopedia 

 

Figure 4. Base 5 Clock  
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6.3  Lesson Plan: Base 5 

 

Grade Level:  4th�8th 

Objective:  Construct a table in Base 5.  Count in Base 5 

Procedure:   

Have students begin by constructing a Base 5 counting table.  This table will be helpful 

throughout the lesson.  It is recommended that graph paper be used.   

Have the students first practice converting from Base 10 to Base 5 by counting on their 

chart.  For example, if you were to find 10 in Base 5 you would count over to the 10th number on 

the chart.   

Next, have the students convert with place value as covered in the second section of this 

chapter.   With this type of lesson I usually hand out individual dry erase boards and require the 

students to record their answers and �hide� the answer until I call.  After all students have 

recorded an answer, they turn their boards around simultaneously and I award points to each 

student with a correct answer.  It is a game to accumulate as many points as possible.  Also, I 

have found that students will work longer if they are writing on something other than standard 

notebook paper. After students have mastered Base 10 to Base 5 conversion, move on to 

examples in Base 5 to Base 10 conversion. 

6.4  Practice Worksheet 

Convert from Base 10 to Base 5 

 

1. 14 

2. 41 
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3. 230 

4. 133 

5. 420 

 

Convert from Base 5 to Base 10 

 

1. 21 

2. 110 

3. 34 

4. 322 

5. 212 

 

6.  What is your age in Base 5? _________________ 

7.  What are your parents� ages in Base 10?  Base 5?  

 

6.5   Answer Key 

 

1. 24 

2. 131 

3. 1,410 

4. 1,013 

5. 3,140 
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1. 11 

2. 30 

3. 19 

4. 87 

5. 57 

6. Answers will vary 

7. Answers will vary 

 

6.6    Addition in Base 5 

 In addition of numbers in Base 5, you carry �fives� to the left in the same way that you 

carry �tens� to the left in the Base 10 system.  It is important to remember that all of your 

addition problems can only include digits allowed in the Base 5 system, the digits 0�4.   

Example 1: 

        1,243     Base 5 

    +_4,243_    Base 5 

Begin in the first column.  3+ 3 = 11 (Base 5), so write down 1 and carry 1. 

          1,243 

      + 4,243 

---------------- 

               1 

The next column is then 1 + 4 + 4 = 14 (Base 5): therefore, you write down 4 and carry 1. 
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That brings us to the next column.  Therefore, 1 + 2 + 2 = 10 (Base 5) and write down 0 and 

carry 1.  The last column would then be 1 + 1 + 4 = 11 (Base 5): therefore, write down 11.  That 

brings that answer to 11,041 (Base 5).  

 

6.7   Lesson Plan: Addition in Base 5 

Grade:  4th�8th 

Objective:  Construct an addition chart to add digits in Base 5 

Materials:  Graph paper 

Have the students begin by constructing an addition table for Base 5.  Remind the 

students that these tables are just skip counting.  They don�t have to be able to add in Base 5 in 

order to construct the table.  Table 5 is an example for addition in Base 5. 

Table 5. Base 5 Addition Table 

 

 

 

 

 

 

                        

6.8 Practice Worksheet 

Add.  Give answers in Base 10 and Base 5 

1. 4 + 3 = __________ 

2. 23 + 64 = ________ 

 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 10 

2 2 3 4 10 11 

3 3 4 10 11 12 

4 4 10 11 12 13 



 46

3. 126 + 432 = _______ 

 

 

4. 493 + 794 = _______ 

 

 

5. 56 + 43+ 234 = __________ 

Construct two addition word problems and solve them in Base 10 and Base 5. 

 

6.9 Answer Key 

1. Base 10 = 7;   Base 5= 12 

2. Base 10= 87;  Base 5= 322 

3. Base 10= 558;  Base 5= 4,213 

4. Base 10= 1,287;  Base 5= 20,122 

5. Base 10= 333;  Base 5= 2,313 

 

Word problems and answers will vary.  Check individual work. 
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7 BINARY (BASE 2) 

7.1   Introduction 

 

 Binary numbers are also known as Base 2.  This is because each digit can only be one of 

two digits, i.e. zero or one.  Computers operate on this kind of system. 

 A transistor, which is the basic unit of a computer, is a switch that can be wired to 

respond to an input by either turning on or off.  �ON� represents the digit 1, and �OFF� 

represents the digit 0 (�Binary and the Computer� par 2).  Wired together the right way, they can 

add.  Wire the adders together correctly and computers can do infinitely more with just these two 

switches. A programmer decides on a certain plan and the computer just manipulates the bits 

according to the plan.  If programmed correctly, you get the information you want!  Here is an 

example of a binary number:  10011100 

 As you can see, it is quite simply a bunch of zeros and ones.  In the example above, there 

are eight numerals that make an 8-bit binary number (�Binary and the Computer� par. 3).  Bit is 

short for Binary Digit.   

7.2 Counting in Base 2 

Remember that the only digits you can use are 0 and 1.  Each digit occupies a place 

value.  When 1 is reached, the value goes to either 0 or 1 and is added to the next place value.  

Each place to the left is equal to two times the place value to the right.  In other words, each 

place value to the right is equal to the place value to the left divided by two.  To count, refer to 

Table 6. 
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Table 6. Binary Counting Table 
 

 

 

 

 

 

 

 

 

To understand binary numbers, begin by recalling elementary school math. When we first 

learned about numbers, we were taught that in the decimal system things are organized into 

columns:  

    H | T | O 

    1 | 9 | 3 

such that "H" is the hundreds column, "T" is the tens column, and "O" is the ones column. So the 

number "193" is 1-hundreds plus 9-tens plus 3-ones.  

Years later, we learned that the ones column meant 10^0, the tens column meant 10^1, 

the hundreds column 10^2 and so on, such that:  

      10^2|10^1|10^0 

        1 |  9 |  3  

 193 is really {(1*10^2)+(9*10^1)+(3*10^0)}.  

  The decimal system uses the digits 0-9 to represent numbers. If we wanted to put a larger 

number in column 10^n (e.g., 10), we would have to multiply 10*10^n, which would give 

10^(n+1) and be carried a column to the left. For example, putting ten in the 10^0 column is 

Base 10 Base 2 Base 10 Base 2 
0 0 17 100001
1 1 18 100011
2 10 19 100111
3 11 20 101111
4 100 21 111111
5 101 22 1000000
6 111 23 1000001
7 1000 24 1000011
8 1001 25 1000111
9 1011 26 1001111

10 1111 27 1011111
11 10000 28 1111111
12 10001 29 10000000
13 10011 30 10000001
14 10111 31 10000011
15 11111 32 10000111

16 100000 33 10001111
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impossible, so we put a 1 in the 10^1 column, and a 0 in the 10^0 column, thus using two 

columns. Twelve would be12*10^0, or 10^0(10+2), or 10^1+2*10^0, which also uses an 

additional column to the left (�Binary� sec. 1).  

The binary system works under the exact same principles as the decimal system, only it 

operates in base 2 rather than base 10. In other words, instead of columns being 

       10^2|10^1|10^0 

It is:  

        2^2|2^1|2^0 

Instead of using the digits 0-9, we only use 0-1 (again, if we used anything larger it 

would be like multiplying 2*2^n and getting 2^n+1, which would not fit in the 2^n column. 

Therefore, it would shift you one column to the left. For example, "3" in binary cannot be put 

into one column. The first column we fill is the right-most column, which is 2^0, or 1. Since 3>1, 

we need to use an extra column to the left, and indicate it as "11" in binary (1*2^1) + (1*2^0). 

Example: What would the binary number 1011 be in decimal notation? 

                                         1011=(1*2^3)+(0*2^2)+(1*2^1)+(1*2^0) 

                                                 = (1*8) + (0*4) + (1*2) + (1*1) 

                                                       = 11 (in decimal notation) 

 

7.3 Lesson Plan: Counting in Binary 

 

Objective:  Count in Base 2.  Construct a counting chart. 

Grade Level:  5th�8th 

I have found that the easiest way to count in Binary is to set up a table.  The numbers can 

get large quickly!  They do, however, begin to follow a pattern that can be seen in table form. 
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To convert a number from Base 10 to Base 2 you can use any of the previously taught methods 

from the other bases.  For Binary, I prefer the conversion formula first introduced in Chapter 3. 

 

7.4  Practice Worksheet 

 

Change from binary to decimal (Base 10) notation. 

1. 10 

2. 111 

3. 10101 

4. 11110 

Remember: 

2^4| 2^3| 2^2| 2^1| 2^0 

|    |    |  1  |  0 

|    | 1  |  1  |  1 

1  | 0  | 1  |  0  |  1 

1  | 1  | 1  |  1  |  0 

7.5   Answer Key 

 

1.  10=(1*2^1) + (0*2^0) = 2+0 = 2 

 

2.  111 = (1*2^2) + (1*2^1) + (1*2^0) = 4+2+1=7 

 

3.  10101= (1*2^4) + (0*2^3) + (1*2^2) + (0*2^1) + (1*2^0)=16+0+4+0+1=21 
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4.  11110= (1*2^4) + (1*2^3) + (1*2^2) + (1*2^1) + (0*2^0)=16+8+4+2+0=30 

 

7.6 Addition in Base 2 

Consider the addition of decimal numbers:   23 + 48.  We begin by adding 3+8=11. Since 

11 is greater than 10, a one is put into the 10s column (carried), and a 1 is recorded in the ones 

column of the sum. Next, add (2+4) +1 (the one is from the carry) =7, which is put in the 10s 

column of the sum. Thus, the answer is 71. 

Binary addition works on the same principle, but the numerals are different. Begin with 

one-bit binary addition: 

    0    0    1 

   +0   +1   +0 

  ___  ___  ___   

    0    1    1 

1+1 carries us into the next column. In decimal form, 1+1=2.   In binary, any digit higher than 1 

puts us a column to the left (as would 10 in decimal notation). The decimal number "2" is written 

in binary notation as "10" (1*2^1)+(0*2^0). Record the 0 in the ones column, and carry the 1 to 

the two�s column to get an answer of "10." In our horizontal notation, 1+ 1 = 10. 

The process is the same for multiple-bit binary numbers:  

         1010 

        +1111 

       ______ 

Step one: 

Column 2^0: 0+1=1. 
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Record the 1.  

Temporary Result: 1; Carry: 0  

Step two: 

Column 2^1: 1+1=10.  

Record the 0, carry the 1. 

Temporary Result: 01; Carry: 1  

Step three: 

Column 2^2: 1+0=1 Add 1 from carry: 1+1=10.  

Record the 0, carry the 1. 

Temporary Result: 001; Carry: 1  

Step four: 

Column 2^3: 1+1=10. Add 1 from carry: 10+1=11. 

Record the 11.  

Final result: 11001  

Alternately: 

    11   (carry) 

    1010 

   +1111 

  ______ 

   11001 

Always remember  
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0+0=0  

1+0=1 

1+1=10  

Try a few examples of binary addition: 

       111      101      111 

      +110     +111     +111 

    ______    _____    _____ 

 

7.7 Lesson Plan: Addition in Binary 

 

Grade Level: 5th�8th 

Objective:  Use concrete and abstract methods to add digits in Binary. 

Materials:  Graph paper, Binary addition table 

 Table 7 is an example of a Binary addition chart. 

Table 7. Binary Addition Table 

 000 1 

0 0 1 

1 1 10 
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7.8  PRACTICE WORKSHEET 

 

Add.  Give answers in Base 10 and Base 2. You may use the online base converter. 

 

1. 52 + 3 =   Base 10 _______       Base 2 ________ 

 

2.  259 + 31 =     Base 10 _______       Base 2 ________ 

 

3. 48 + 22 =      Base 10 ________       Base 2 _______ 

 

4. 822 + 913 =  Base 10 _______      Base 2 _______ 

 

5. 1,001 + 28 =   Base 10 _______    Base 2 ______ 

 

6. 801 + 290 =   Base 10 ______      Base 2 ______ 

 

7.  What is your age in Binary?  _________ 

8.  Mrs. Turner, the principal, is 42 years old.  How old is she in Binary?  _____ 

 

7.9  ANSWER KEY 

 

1. Base 10 = 55;  Base 2 = 110111 

2. Base 10 = 290;  Base 2 = 100100010 
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3. Base 10 = 70;  Base 2 = 1000110 

4. Base 10 = 1,735;  Base 2 = 11011000111 

5. Base 10 = 1,029;  Base 2 = 10000000101 

6. Base 10 = 1,091;  Base 2 = 10001000011 

7. Answers will vary 

8. 101010 

 

 

 

 

 

 

 

 

 

 



 56

8 OCTAL (BASE 8) 

8.1 INRODUCTION TO BASE 8 

The octal numeral system is the Base-8 number system and uses the digits 0 to 7.  

According to Wikipedia, the free encyclopedia, it is reported that the Yuki Native Americans of 

California used an octal system because they counted using the spaces between their fingers 

rather than the fingers themselves(sec. 1.1). Octal counting may have been used in the past 

instead of decimal counting, by counting the spaces like the Yuki or by counting the fingers 

other than the thumbs(sec. 1.1) This may explain why the Latin word novem (nine) is so much 

like the word novus (new). It may have meant a new number. Donald Knuth wrote in his book 

The Art of Computer Programming that King Charles XII of Sweden was the inventor of octal in 

Europe(sec. 1.2).  Octal numerals can be made from binary numerals by grouping consecutive 

digits into groups of three (starting from the right). For example, the binary representation for 

decimal 74 is 1001010, which groups into 1 001 010 � so the octal representation is 112. 

8.2  Counting in Base 8 

As stated in the previous lessons, it is best to begin with a counting chart.  Children 

should have less trouble with base 8 because it only differs by 2 digits from our Base 10 system.  

If you have been completing the lessons in sequence, let the students construct the Octal 

counting chart on their own.  If this is the first lesson, walk the students through the process.  

Table 8 is a Base 8 counting table. 
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Table 8. Base 8 Counting Table 

Base 10 Base 8 Base 10 Base 8 Base 10 Base 8
0 0 17 21 34 42
1 1 18 22 35 43
2 2 19 23 36 44
3 3 20 24 37 45
4 4 21 25 38 46
5 5 22 26 39 47
6 6 23 27 40 50
7 7 24 30 41 51
8 10 25 31 42 52
9 11 26 32 43 53

10 12 27 33 44 54
11 13 28 34 45 55
12 14 29 35 46 56
13 15 30 36 47 57
14 16 31 37 48 60
15 17 32 40 49 61
16 20 33 41 50 62

 

 

8.3 Lesson Plan:  Counting in Base 8 

Objective: Count in Base 8 and construct a counting table. 

Grade Level: 5th�8th 

 In Base 8, you are only 2 digits short of the regular base 10 system that we are used to.  

Therefore, counting can be fairly easy.  The first thing one need do is construct a Base 8 table as 

with Table 9. 
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Table 9. Base 8 Counting Table 

Base 10 Base 8 Base 10 Base 8 Base 10 Base 8
0 0 17 21 34 42
1 1 18 22 35 43
2 2 19 23 36 44
3 3 20 24 37 45
4 4 21 25 38 46
5 5 22 26 39 47
6 6 23 27 40 50
7 7 24 30 41 51
8 10 25 31 42 52
9 11 26 32 43 53

10 12 27 33 44 54
11 13 28 34 45 55
12 14 29 35 46 56
13 15 30 36 47 57
14 16 31 37 48 60
15 17 32 40 49 61
16 20 33 41 50 62

 

Students can know use this table to convert from Base 10 to Base 8 or vice versa. 

Let us begin with the number 234 in Base 10.  We know that in Base 10 we have four 

ones (10 to the zero power), three tens (10 to the first power), and two hundreds (10 squared).  

Similarly, in Base 8, 234 equals 2 times 64 (8 squared), 3 times 8 (8 to the first power), and 4 

times 1 (8 to the zero power).   

8.4   Practice Worksheet 

 

1. What is you age in Base 8? ____________ 

2. What is the current year in Base 8?  _____________ 

3. What is your birth year in Base 8?   ___________ 

 

Convert from Base 10 to Base 8. 
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1. 34 

2. 88 

3. 340 

4. 748 

 

Convert from Base 8 to Base 10. 

1. 77 

2. 711 

3. 341 

4. 566 

8.5 Answer Key 

1. Answers will vary 

2. Answers will vary 

3. Answers will vary 

1. 42 

2. 130 

3. 524 

4. 1,354 

 

1. 63 

2. 457 

3. 225 

4. 374 
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8.6 Addition in Base 8 

Addition in Base 8 is no different from addition in all of the other bases we have covered.  

At this point, you can let your students chose the method of addition that best suits them.  I have 

included an addition table (Table 10) that will help in adding in Octal.  

Table 10. Base 8 Addition Table 

 0 1 2 3 4 5 6 
0 0 1 2 3 4 5 6 
1 1 2 3 4 5 6 7 
2 2 3 4 5 6 7 10 
3 3 4 5 6 7 10 11 
4 4 5 6 7 10 11 12 
5 5 6 7 10 11 12 13 
6 6 7 10 11 12 13 14 
7 7 10 11 12 13 14 14 

 

8.7 Lesson Plan: Addition in Octal 

Grade Level:  5th �8th 

Objective: 

Materials:  Graph paper 

 

 Have students begin by constructing their own addition table in Base 8.  If you have used 

the previous lessons then let the students work this out on their own.  If this is the first base 

lesson that you are teaching, you will have to guide the students in setting up and constructing 

their table, of which Table 11 is an example. 
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Table 11. Base 8 Addition Table 

Base 10 Base 8 Base 10 Base 8 Base 10 Base 8
0 0 17 21 34 42
1 1 18 22 35 43
2 2 19 23 36 44
3 3 20 24 37 45
4 4 21 25 38 46
5 5 22 26 39 47
6 6 23 27 40 50
7 7 24 30 41 51
8 10 25 31 42 52
9 11 26 32 43 53

10 12 27 33 44 54
11 13 28 34 45 55
12 14 29 35 46 56
13 15 30 36 47 57
14 16 31 37 48 60
15 17 32 40 49 61
16 20 33 41 50 62

 

 

8.8 Practice Worksheet 

 

Add.  Give your answer in Base 10 and Base 8 form. 

 

1.  4 + 5 =   Base 10 _____    Base 8 _____ 

2.  40 + 72 =  Base 10 _____   Base 8 _____ 

3.  478 + 938 =  Base 10 _____   Base 8 _____ 

4.  1,002 + 3,902 =  Base 10 _____   Base 8 _____ 

 

Add.  Give your answer only in Octal. 

1. 7 + 8 =  _____ 

2. 88 + 21 =  _____ 
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3. 90 + 86 = _____ 

4. 381 + 940 = _____ 

8.9 Answer Key 

 

1. Base 10 = 9;  Base 8 =  11 

2. Base 10 = 112;  Base 8 = 160 

3. Base 10 = 1,416;  Base 8 = 2,610 

4. Base 10 = 4,904;  Base 8 = 11,450 

 

 

1. 17 

2. 155 

3. 260 

4. 2,451 
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9  Classroom Experience 

In the process of constructing this paper, I consulted eight fifth grade students.  These 

students worked on each unit and provided valuable feedback.  This feedback provides insight 

into what may happen in the everyday classroom. 

  I found that the students liked to convert between the bases and to count in each 

individual base.  They saw it as a game.  The students did not, however, like the addition in 

another base.  Frequently, the students would simply add in Base 10 and convert the sum to the 

current base of study. 

Also, the students struggled in binary.  The numbers became too large too quickly.  The 

students also struggled in duodecimal.  They had a hard time incorporating letters as symbols for 

digits.  All of these experiences should be taken into consideration.  They are certain to reappear 

in future classroom experiences.  
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10    CONCLUSION 

As a teacher, these lessons were not only for my students, but for me.  I found myself 

stretched beyond my comfort zone in order to present this information to my fifth graders.  

Teachers can get into educational ruts.  Years can pass and you can find the same teacher in the 

same room teaching the same subject without ever branching out.  As professionals, we owe it to 

ourselves to stretch our own minds as well as the minds of our students.  I hope that you, the 

reader, will take these lessons back to your students as a challenge and as you do, take the 

challenge yourself to teach them to the best of your ability.   

It may be that you find the lessons lacking or the worksheets too easy or too plain.  If this 

is the case, change them!   Change the lessons and the practice problems to fit your individual 

needs.  I once had a professor say that all a teacher ever did was borrow good ideas from other 

teachers.  The best, he said, took those borrowed ideas and made them their own.  Make these 

your own. 
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