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ABSTRACT 

Quantitative Analysis Of Domain Testing Effectiveness 

By 

Narendra Koneru 

 

The criticality of the applications modeled by the real-time software places stringent 

requirements on software quality before deploying into real use. Though automated test 

tools can be used to run a large number of tests efficiently, the functionality of any test 

tool is not complete without providing a means for analyzing the test results to determine 

potential problem sub-domains and sub-domains that need to be covered, and estimating 

the reliability of the modeled system. 

 

This thesis outlines a solution strategy and implementation of that strategy for deriving 

quantitative metrics from domain testing of real-time control software tested via 

simulation. The key portion of this thesis addresses the combinatorial problems involved 

with effective evaluation of test coverage and provides the developer with reliability 

metrics from testing of the software to gain confidence in the test phase of development. 

The two approaches for reliability analysis- time domain approach and input domain 

approaches are studied and a hybrid approach that combines the strengths of both these 

approaches is proposed. A Reliability analysis Test Tool (RATT) has been developed to 

implement the proposed strategies. The results show that the metrics are practically 

feasible to compute and can be applied to most real-time software. 
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CHAPTER 1 

INTRODUCTION  
 
 

This thesis outlines a solution strategy and implementation of that strategy for 

deriving quantitative metrics from domain testing of real-time control software tested via 

simulation. The key portion of this thesis addresses the combinatorial problems involved 

with effective evaluation of test coverage and provides the developer with reliability 

metrics from testing of the software to gain confidence in the test phase of development. 

A Reliability Analysis Test Tool (RATT) has been developed to accomplish these tasks. 

RATT evaluates the test results produced from testing the software and provides 

reliability metrics along with quantitative test coverage measurements for input and 

output domains of the system.  

 

Importance of Real Time Software Testing 

The increased flexibility and functionality provided by digital computers had led 

to an ever-increasing demand for use in many different applications. The tremendous 

amount of computing power provided by these machines, at exceptionally low cost, has 

enabled them to be used in building more complex and larger real -time control systems. 

Many of these systems are used to manage safety critical tasks. Examples of these tasks 

include controlling of wind tunnels, piloting of vehicles, and monitoring and coordinating 

missiles for control systems. Failures in such computer systems may cause great financial 

loss, an environmental disaster, or even loss of human lives. The criticality of the tasks 

involved and the potential heavy losses associated with failures of control systems place 



 

9 

stringent requirements on the quality of real-time software. There is a great need for this 

control software to be tested thoroughly before it is deployed for actual use. This in turn 

forces the developer to measure software testing quantitatively and attain maximum 

quality in the system before its final release. There are many challenges involved in 

testing real-time software, including the unavailability of target hardware, huge input and 

output domain spaces, and the time constraints of real-time systems.  Merely determining 

the correctness of outputs is also a major challenge. These problems make assessing the 

quality of software testing and achieving the required quality all the more difficult. There 

is a need for systematic testing of the control software using automated test tools and 

analyzing the test results to measure overall system reliability.  

This research is focused on reducing the overwhelming combinatorial domain 

space problem and analyzing the test results for reliability predictions of large real time 

software control systems. The reliability metrics are aimed to guide the test process and 

improve the confidence of the developer in the system as the test phase progresses. 

 

Outline of Thesis 

A precise statement of the problems addressed by the thesis is defined in Chapter 

2. An overview of testing and quantifying real time software is given in Chapter 3.  

A solution for the problem is proposed in Chapter 4. A brief description of the 

two tools used for analyzing the proposed metrics, MATRIXx
  and MATT, is given to 

introduce the concept of testing real time systems using simulation.  

Chapter 5 covers the design and implementation approach used for RATT. It also 

discusses the use of RATT within NASA and other organizations.  
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Chapter 6 deals with the results obtained from RATT. Ideas and areas that can be 

explored further to improve the metrics are given in chapter 7. 

Formulas used for obtaining reliability metrics are presented as well as software 

reliability growth models.  These topics lead to discussion of ways to improve reliability 

and are described here as well. 
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CHAPTER 2 

PROBLEM STATEMENT 

 
This research focuses on addressing the problems and challenges involved in 

testing and improving the quality of real-time software. The aim of the study is to provide 

the software developer with quantitative reliability measures of the developed real-time 

control software.  The remainder of this chapter introduces real-time testing and describes 

the problems and challenges involved in testing real-time systems. 

 

Terminology and Definitions 

This section introduces definitions that will be used throughout the thesis [9]. 

Reliability is defined as the probability that a system functions according to its 

specification for a specified time and in a specified environment. It gives a measure of 

confidence in the system for the user. A failure occurs when the run-time system 

behavior does not match the specifications. A fault is a static component of the software 

that causes the failure. A fault causes failure only when that part of the code is executed, 

and hence, not all faults result in failures. An error is a programmer action or omission 

and results in a fault. Mean time to Failure (MTTF) is defined as the time between 

successive failures. Reliability is a statistical study of the failures, and MTTF is one of 

the measures of reliability. A domain space for the variable is defined as the set of all 

possible legal values that the variable can assume during system operation. 

To achieve high system reliability, extensive testing is required, and, hence, some 

terms used in testing are defined next. A Test Case is defined as a single value mapping 
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for each input of the program that enables a single execution of the software system. Test 

Script is a set of conditions specified on each input variable for guiding the automatic 

generation of test cases. A Test Suite or a Test Run is a set of test cases that are executed 

sequentially. 

 

Testing Real-Time Systems 

Real-time systems interact with the environment in a time constrained 

input/output event model. Real-time systems sample external devices, execute a loop in 

the program, and then refresh the outputs, typically within milliseconds of the input of 

data or stimuli. Input and output data are sampled many times per second and this process 

is continued over possibly long periods of time. The precision of an output depends both 

on the logical and temporal correctness of values. These factors make real time systems 

inherently complex, which in turn make testing highly difficult. As many real-time 

software systems control mission critical applications, it is very important that these 

systems are highly reliable and the only way to assure that the system is reliable is by 

exhaustive testing. In spite of employment of the best available software development 

techniques and the participation of highly talented personnel, there have been serious 

software errors, some of which led to unbelievable failures like the destruction of a 

French meteorological satellite [8]. One of the causes of this failure was attributed to 

non-execution of a valid input combination during the test phase. Hence, thorough testing 

of the accuracy of the outputs and response times is necessary before the software can be 

deployed in the real environment.  
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The rest of this chapter gives a description of the goals and steps involved in real 

time testing and also discuss the challenges involved. 

 

Goals of Testing 

Testing is a validation process that determines the conformance of the software’s 

implementation to its specification. It is an important phase in software development life 

cycle and is even more important in real time systems.  

There are two main goals of testing real-time software. On one hand, testing can 

be viewed as a means of achieving required quality of the system. The main aim here is 

to probe the software for defects and fix them. This is also called debug testing and is 

assumed to be very effective in uncovering potential faults. On the other hand, testing can 

also be viewed as a means of assessing the existing quality of the system and provide 

fault coverage measurement, which consists of studying the potential faults generated by 

a given test suite.  This method is called operational testing and is proved to be effective 

in predicting the future reliability of the system. 

In debug testing, a systematic approach is followed for selecting test cases based 

on situations likely to produce the most number of errors. The drawback of this approach 

is that it may uncover failures with negligible rates of occurrence and risk, and the test 

effort may not worth the reliability improvement achieved. Another drawback is that it 

does not provide complete mathematical and technical validity of the reliability 

assessments. 

In operational testing, a test case is selected based on the probability of its 

occurrence in the real operating environment. Hence, this method is likely to uncover 
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failures with highest probability of occurrence first and provide accurate assessment of 

current reliability. This is done after the debugging phase, and the objective is to assert 

that the system is reliable and gain confidence for the final release of the system. The 

method is not very effective in improving the reliability of the system, and at the same 

time it is very difficult to generate an accurate operational profile. 

The main goal of this thesis is to assist the developer to improve the quality of the 

real-time control models by accurately predicting the domain areas of weakness based on 

test results. A blend of debug testing assisted by the domain knowledge of the final users 

is used in this thesis to improve reliability. 

  

Steps in Real-Time Testing 

Real-time software works in association with external environment and hence 

validating the system against the functional specifications is important. This form of 

testing is called Black-Box Testing and is the process in which test cases are selected 

based on the requirements and external design specifications, rather than the knowledge 

of internal details of the program. Testing real-time systems involves four phases and 

each phase is described below [10]. 

Simulating the System’s Operating Environment  

Testing real-time software cannot always be done on the target hardware and in 

the target environment. This occurs due to the costs and risks associated with the 

potential damage of the sophisticated target hardware environment. The tester’s main aim 

is to break the software system that in turn may lead to the rupture of the operating 

environment. Also, the target hardware may not be available for testing during the 
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maintenance phase and, in aerospace applications, target hardware may not even exist 

during the test phase.  The expensive hardware can wear out during testing and may not 

be useful by the time the product is deployed. Hence, simulation is used by many 

organizations to test functions that cannot be tested on the target hardware. Also, 

simulation is cheaper and faster than testing on the real hardware. With simulation, more 

tests can be executed without hardware degradation. In view of these advantages, 

simulation is used in this thesis for testing and analyzing the test results. 

Selecting the Test Cases 

The input and output domain space for a complex system is typically very large 

and completely impractical for manual testing of each combination of the input values 

within the domain space. An automated test tool for generating test cases based on user-

specified criteria is needed to cover as much of the test domain as possible. Automated 

testing also allows the many more tests to be run than manually testing and permits tests 

to be easily run over and over again. This repeating of previous tests is an important step 

in testing and is referred to as regression testing. Regression testing attempts to assure 

that software failure correction does not introduce additional failures. In chapter 4 of this 

thesis a brief description of an automated test tool is given that generates large numbers 

of test cases based on some user selected test criteria. 

Run the Test Cases 

Once the test suite is selected, it must be run in the simulated environment 

sequentially and the results must be captured. Any failures generated also have to be 

captured and reported to the user. This involves integrating the automated test tool with 

the simulated environment. 
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Analyze the Test Results 

This is the most important part of testing and should be done very carefully. The 

test results are used as a mechanism for identifying the defects in the software or the 

model and should be used as a mechanism to quantify the software reliability. The test 

results have to be analyzed to assess the quality of the software and to determine potential 

problem areas that require more testing and to identify portions of the input domains that 

have not been tested. An important consideration here is to leverage measurements 

against multiple independent test runs. A decision regarding the end of the test phase is to 

be made based on all test runs. 

These are the four essential steps that are to be performed when testing real-time 

software, and the importance of the last step can never be realized until it is done. This 

thesis mainly focuses on analyzing the test results from multiple independent test runs 

and providing measurements indicating the overall reliability of the system. 

  

Problems and Challenges in Testing Real-Time Software 

Although there are many issues involved with simulation and automated test case 

generation, much work has already been done in this area and there are many software 

packages available that provide this functionality. An area to be explored further is the 

analysis of the test results.  The rest of this section discusses the problems involved in 

analyzing the test results and quantifying the software. 

Huge Domain Space 

Complete testing of real-time software presents some interesting challenges that 

are not encountered in other software application areas. The input and output domain 
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space of a real-time system can be very large and a quantitative evaluation of domain 

testing faces some difficult combinatorial problems. For example, an input domain of 0.0 

to 99.9999 with an accuracy of just four decimal points gives us 106 (1,000,000) possible 

values. Consider a simple real-time system with two inputs with the same range; the total 

number of possible input combinations would be 1012. This is true for the output domain 

as well if two outputs exist with ranges of 106. Soon these figures become unmanageably 

large even for relatively small real-time systems. Given the combinatorial complexity, we 

need to find a way of validating the software with a reasonable and tractable number of 

test cases and determine if a test effort is sufficient. An effective solution to this problem 

has to be found that makes the combinatorial problem tractable and determines if 

sufficiently large numbers of test cases are executed to satisfy a minimal portion of both 

input and output domain values and combinations. 

Faulty Domain Combinations  

Another important concern in testing real-time systems, which is not involved in 

non-real-time software, is the complexity involved in determining the combination of 

input subsets producing a significant number of faults. For example, when we are testing 

a word processor application for its correctness in saving the file with a given name, it 

does not make sense to test for all combinations of input characters for the name of the 

file. However, this is not same as testing a missile control system with two hardware 

valves controlling the speed and direction of the missile. Values of 10.1, 20.3 for these 

valves may be valid but values of 10.2, 20.3 may increase the speed to unacceptable 

levels causing the missile to miss its target. The combinations of speed and direction 

valves causing miss hits are to be determined so that further testing in those areas can be 
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taken to pinpoint the fault. Hence, it is important to determine the combination of input 

domain subsets producing highest number of errors. 

The inherent complexity and huge domain space of real-time systems make 

tracking the test process more difficult. As testing is a continuous process, test results 

from multiple test runs have to be analyzed together and measurements computed based 

on these results. An effective solution addressing this problem has to be found. 

Need for Quantitative Metrics 

The reliability of real-time software should be as high as possible. Reliability of 

the system is not a measure of the test effort but rather a measure of the probability of the 

system’s correct operation given its specifications. Software metrics increase the 

confidence of the developer in the system and determine if the software is ready for 

release. These metrics also help the developer to actually track reliability changes over 

time and assess the test process for improvement. Reliability is an important and 

measurable aspect of software quality and is a measure of how well the system meets its 

specifications. Reliability metrics should depend on the attributes of the system and 

should change accordingly. As response times are an important concern in real-time 

systems, reliability metrics should not only predict the probability of system failure for all 

possible input states but also should predict the time interval between successive failures. 

At the same time, metrics also should provide the dependability or probability of 

successful operation for each output variable. This is important in real-time systems as 

each output variable may control an external device and the probability requirements 

should match the priorities of the external devices. For example, the probability of failure 
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for hardware valve controlling the in-flow of plutonium into a nuclear reactor should be 

much lower than another valve controlling the in-flow of water. 

 

Goals of the Thesis 

Software reliability measurements are evolving and studies have shown that there 

is no exact method of measuring the reliability of software. The goals of this thesis are to 

provide measurements for the domain analysis of the software control systems, address 

the software quantification problem, and estimate reliability. The final goal of the thesis 

is to produce a well-designed and extensible software product with a minimal interface 

that assists the user in analyzing the test results and calculates the reliability metrics. A 

standard ASCII text file should be generated with the all the reports. It is also necessary 

to have proper design documentation for the software to support future extensions. 
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CHAPTER 3 

QUANTITATIVE METRICS FOR REAL TIME SOFTWARE 

 
Before a solution can be proposed for the problems stated in the previous chapter, 

a thorough understanding of factors affecting software reliability and existing reliability 

growth models is required. This chapter introduces software reliability metrics and 

reliability growth models and describes techniques for applying reliability metrics to real-

time software. 

 

Software Reliability 

Software reliability is an important measurable aspect of software quality. 

According to the American National Standards Institute (ANSI), Software Reliability is 

defined as: 

“The probability of failure free operation software operation for a specified period 

of time in a specified environment” [5].  

Informally, Software Reliability can be defined as a measure of how well the users think 

the system operates according to its specifications. Software Reliability cannot be defined 

objectively and it means different things in different contexts. It can be fairly assumed 

that software does not wear out over time like a physical device, and, hence, software 

reliability is not linearly dependent on time and is always a probabilistic function of time. 

Software reliability estimation is a difficult problem not suitable for the standard 

models used in other engineering disciplines for estimating reliability. Software failures 

are different from hardware failures. Hardware failures occur due to physical faults 
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resulting from malfunctioning of one or more physical components. On the other hand, 

software failures are always design faults, occurring from the misinterpretation of 

specifications or incorrect implementation of those specifications. Software failures can 

be closely related to fuzzy human errors and are usually difficult to visualize and correct. 

A simple replacement of a component causing a failure, as is typically done in hardware 

engineering, may not always remove faults and hence may not always result in reliability 

growth. Hence, the standard models of hardware reliability cannot be applied for 

estimating reliability metrics for software.  

Software reliability models are also complicated by the fact that not all software 

failures are equally catastrophic. Removing X% faults may not always increase the 

reliability by a corresponding X%. Reliability is more often improved when faults present 

in most frequently used parts of software are removed. It is often necessary to identify 

different failure categories and specify different measurements for each of them. The 

main objective in reliability improvement is to remove most frequently occurring faults 

[9]. 

 

Reliability Metrics 

While hardware reliability metrics are dependent on component failures and the 

need to replace a component, this approach cannot always be applied to software. Several 

metrics proposed in the literature closely relate to software reliability and some of them 

are described next [5]. 

Mean time to failure (MTTF) is defined as the time interval between successive 

failures. An MTTF of 100 indicates that the average failure interval is 100 time units. The 



 

22 

time units are totally dependent on the system and it can even be specified in the number 

of transactions, as is the case of database query systems. For time-based systems, to 

ensure that there is no failure within a transaction, MTTF should be at least greater than 

response time [5].  

System Availability is a measure of the time during which the system is available 

over long time periods. It takes into account the repair and restart times for the system. 

An availability of 0.99 indicates the system is available 99 out of 100 time units [5]. 

Probability of failure on demand (POFOD) is defined as the probability that the 

system will fail when a service is requested. A POFOD of 0.1 indicates that at least one 

out of 10 service requests will fail. POFOD is an important measure for safety critical 

systems and should be kept as low as possible [5]. 

Rate of failure occurrence (ROCOF) is the number of failures occurring in unit 

time interval. A ROCOF of 0.02 means 2 failures will occur for every 100 operational 

time unit steps [5]. 

A measure of the number of values tested and the number of inputs causing 

failures in each input sub-domain, gives an indication of the confidence for that input 

variable. This is particularly important for software with a large number of inputs and 

outputs each covering a large range of values [2]. 

 Because real-time software is used to control hardware events and these events 

are prioritized, an important metric would be to find the probability of failure for a given 

output variable controlling the event. A lower probability of failure is desired for events 

with high priority. 
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Factors Influencing Software Reliability 

There are many factors influencing software reliability growth. Increase in 

reliability typically results from a change in one or more of these factors. The factors 

affecting reliability and their influence are discussed next. 

Reliability vs. Cost 

Reliability is linearly dependent on cost. Testing software systems to achieve 

more reliability is a costly process and a tradeoff has to be chosen between the costs 

involved in finding and removing the failures and the costs involved in repairing the 

system when the failure occurs in the operating environment. The following graph 

demonstrates the relationship between reliability and cost [9]. 

 

Figure 3.1: Reliability vs. Cost. 

As the graph shows, a higher level of desired reliability requires more testing 

effort and consequently costs more. For normal business applications, modest reliability 

may be adequate and the failure removal costs may be more than the actual costs of the 

failures. However, in real-time software the costs of failures in the operating environment 
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may be very high and hence it is desirable to remove as many faults as possible before 

the system is deployed.  

Reliability vs. Time 

Reliability changes only when the software is modified either during the 

development or maintenance phases, and, hence, the time required to achieve the desired 

reliability level is proportional to the actual reliability of the software. The following 

graph shows the relationship between time and reliability [8]. 

 

 

Figure 3.2: Time vs. Failure Rate. 

Software reliability is influenced by fault introduction resulting from new or 

modified code, fault removal that occurs during debugging, and the environment in which 

the software is used. The failure intensity decreases rapidly during initial test phases, and 

this can be attributed to the removal of failures with highest probability of occurrence. 

Software does not wear out with time and the quality of software will not change once it 

is deployed. Hence, software reliability is not dependent on operational time and the 

straight horizontal line at the end of the graph indicates this. 
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Reliability vs. Efficiency 

Reliability is often increased by making the systems redundant and by additional 

run time checks, thus decreasing the overall use of the system resources. Hence, 

efficiency of the system is decreased with increase in reliability. However, in real-time 

control software, failure costs are much higher than the total system costs. Because 

hardware costs have come down rapidly, sometimes the need to use a resource’s capacity 

completely is not as vital.  

Reliability vs. Operational Profile 

Reliability improvement is largely dependent on the availability of operational 

profile that statistically models the patterns in which the system is more likely to be used 

in the operating environment. An accurate operational profile tends to bring out most 

frequently occurring failures first. However, generating an operational profile is a non-

trivial process and is especially difficult for real-time software. 

All the above factors make reliability analysis and growth in real-time software a 

difficult process. As reliability is an important issue in real-time systems, an attempt 

should be made to increase reliability, which in turn requires the allocations of sufficient 

resources. 

 

Improving Reliability 

A large number of reliability models are proposed in the literature for improving 

the reliability of the software, but there is no single model that can be used in all 

situations. Every model is dependent on a set of constraints and assumptions, and not all 

of them are valid for every system. The rest of this section gives an overview of some 



 

26 

main reliability models that are applicable for quantifying reliability of real time 

software. 

One of the standard ways for improving software reliability is to use formal 

methods for the software development where the implementation of the software can be 

traced back to the requirements specification. The entire process can be automated and 

the number of remaining faults in the software can be determined directly. The 

development of formal specification forces a detailed analysis of the system and leads in 

better understanding of the requirements. However, the inherent complexity of formal 

methods makes them difficult to use in practice, even for trivial real time systems. Formal 

methods may hide problems that users do not understand, and at the same time formal 

program proofs can contain errors, resulting in generation of false passes.  

Hence other models are proposed in the literature to increase the reliability of 

real-time software, each based on some assumptions about the operating environment of 

the software. These models can be classified using several criteria.  

Based on the time at which reliability assessment is done, these models are 

classified into the following two criteria: Reliability growth models and Reliability 

models. Reliability Growth Models are applied during the debug phase of the software 

development life cycle and are aimed at improving the reliability of the system. They 

model repeated testing, failure detection, and correction. These models calculate MTTF 

based on the observed failure patterns and help the managers to decide when to release 

the final product. Reliability models on the other hand are used during the operational 

stage after debugging of the software development and are aimed at assessing the 

reliability of the software. An accurate operational profile is required and these models 
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predict MTTF that the users can expect from the system by fitting the failure patterns to 

statistical models.  

Reliability growth models use feedback data to predict the reliability of the 

system, and the predictions are very accurate in most cases. Conversely, Reliability 

models use statistical models to predict the future reliability of the system, and, hence, 

these models need to be very accurate. The correctness of reliability models depends on 

the accuracy of operational profile, which is a difficult task. More courage is needed to 

trust the reliability models than the reliability growth models. As generation of an 

accurate profile is very difficult in real-time software, in this research reliability growth 

models are used to model the characteristics of reliability improvement. 

 Based on the data analyzed for predicting reliability, reliability improvement 

models can again be classified into two categories- time domain models and input domain 

models [3]. Time domain models assess software reliability by calculating the ability of 

the software to function properly over time. Input domain models, on the other hand, 

assess reliability by calculating the ability of the software to function properly for 

different sets of input. Time domain models stress and predict the overall reliability of the 

system where as the input domain models provide information relating the input states to 

the reliability. Input domain models can be used to thoroughly test the software before its 

final release.  

Time Domain Models 

Reliability in time domain models is defined as the “probability of failure free 

operation for a specified amount of time and in a specified environment” [6]. The 

predictions here depend on the failure arrival rate, which is assumed to be a random 
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variable in the statistical validation process. The observed failure data are fitted to one of 

the statistical models, based on the assumptions of the system’s operating environment, 

and the final predictions of software or system reliability are made. These models treat 

either the failure interval or the number of failures in the given interval as a random 

variable and fit the observed data accordingly. For example, in the Jelinski-Moranda [6] 

model, the failure interval is treated as random variable and the failure rate for ith failure 

is given by  

ϕi = µ(N-(i-1), where µ, N are constants.  

In this model, the current failure rate is assumed to be directly proportional to the number 

of remaining faults in the system. 

The three key elements of reliability measurements in time domain models are 

failure rate, time, and testing environment. The definitions of failure and testing 

environment are consistently defined to reflect the final customer-operating environment. 

However, the time factor may vary and it needs to be defined based on the environment. 

There are three ways in which time can be specified for a reliability model- calendar 

time, execution time, and logical time.  

Calendar time is recorded as the actual failure time with timestamps loosely 

related to the calendar dates. However, this measurement cannot be applied to the 

systems where there are large variations between successive test steps. Execution time 

takes into account only the actual amount of CPU execution time for modeling the 

reliability. Execution time cannot be applied to all systems and is not effective when the 

majority of the system’s operations are user driven with little CPU execution. Hence, 

execution time based reliability models can be applied only to specific subsystems with 
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excessive CPU usage. Logical time is applied to transaction-based systems or to systems 

where the tests are time ordered in a logical sequence. As many real-time systems are 

event-triggered and operate in a cycle, with each cycle having a number of time steps 

with a fixed interval, the focus of this research is on applying calendar-time in reliability 

modeling 

Though the time domain models have proven to be effective in some practical 

applications, they are based on assumptions some of which may be not valid in all 

applications. These assumptions include considering time as the basis for determining 

failure rate that demands an accurate measurement of time related data, assuming that 

reliability is directly dependent upon the remaining faults in the system, assuming that 

faults are equally distributed throughout the system, and also assuming that testing is 

randomized without any coverage criteria for detecting failure intervals. The time domain 

models do not take valid input states into consideration, which are important to determine 

when to stop testing. 

Input Domain Models 

Reliability in input domain models is informally defined as “the probability of 

failure free operation for specific input states” [3]. The valid input and output states are 

defined and the overall reliability is assessed based on the coverage achieved for the 

domains. In Nelson’s Input domain model, system reliability is given by 

 R = 1 – f/n;  

Here, ‘f’ is the number of inputs producing failures and ‘n’ is the total number of sampled 

input states. The input values for each test run can be selected based on a coverage 

criterion and techniques like sampling input domains into sub-domains, and random 
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selection to mimic operational profile can be used. The probability of failure for each 

sub-domain can be determined pointing out areas requiring additional tests. 

Although input domain models provide valuable information for the test process, 

they are based on the assumption of random sampling without error correction. For most 

systems, this is not a valid assumption as faults are located and removed as soon as a 

failure is detected and the system reliability changes once the software is modified. Input 

domain models do not take this change into consideration.  

Implicit assumptions of this research are that all detected defects are removed and 

higher coverage of input domains leads higher confidence of the system. Also, as 

exhaustive testing of all the valid input and output states is not practical for large 

applications, it is imperative to divide the domain space into sub-domains and apply the 

metrics to these sub domains separately. As real-time software is characterized by large 

domain space with time constraints, the strengths of both time domain and input domain 

approaches can be combined and used for reliability prediction. 
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CHAPTER 4 

SOLUTION APPROACH 

 
From the researcher’s point of view, one of the greatest limitations in assessing 

the reliability of real-time software is a detailed analysis of the test results. After a careful 

study of the existing reliability improvement models, a solution to the problems stated in 

Chapter 2 is proposed here.  

 As most real-time software is hierarchically organized into different modules, 

from here on, the words software and module will be used interchangeably. The solution 

approach makes certain assumptions about a software module and the test environment. 

They are as follows. 

•  Every module has some input variables and output variables. Typically in real-

time software, input variables are linked to sensors while output variables control 

physical devices and act as hardware triggers. 

•  Each input/output variable has a data type. Although the number of distinct data 

types supported by the system varies, these can be broadly classified into three 

types: Integer, Floating Point, and Boolean. 

•  The domain and accuracy for each variable is specified. This includes the 

minimum and maximum values for the variable, and accuracy in case of floating 

point variables. The range and accuracy of the variable can be different for 

different test runs allowing incremental testing  

•  The number of test steps for each test run is specified and the software remains 

unchanged between successive steps in a test run. 
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•  Input values are generated, output values captured, and criteria for determining 

exceptions (faults) are specified. 

•  The response time and time interval between successive test steps, in case of a 

simulated environment are specified. 

 Our solution approach uses a hybrid scheme that combines time domain and input 

domain reliability models, and measures software reliability as a function of the 

correctness of input states calculated over time. The domain knowledge of the system 

developer is taken into consideration for deriving the metrics. Several metrics modeling 

reliability, as defined in Chapter 3, are provided.  The proposed metrics are broadly 

classified into the following three categories: 1) Domain Percentile bucketing, 2) 

Probability results, 3) MTTF results. All other aspects of the system are merely additional 

features and are means of efficiently accomplishing these functions. 

 

Domain Percentile Bucketing 

Quantitative evaluation of domain testing in real-time systems faces especially 

difficult combinatorial problems, as noted in Chapter 2 [2]. One solution to this problem 

is to partition the domain space for each input and output variable into percentile sub-

domains, in effect 100 buckets of contiguous values. The partitioning scheme presented 

here is termed Percentile Bucketing. Tests can then be executed and evaluated to 

determine which input buckets for each input variable are sampled. Similarly, the output 

domain can be evaluated to determine if testing produced values covering all output 

buckets for each output variable. The domain knowledge of the systems engineer is used 

to specify minimum coverage requirement for each input percentile prior to testing, 
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giving higher coverage requirements for error-prone and boundary percentiles. Achieving 

the coverage requirements for a bucket is then equivalent to testing for all the possible 

values in that bucket and the engineer can concentrate on remaining buckets. 

Another related and important measure is buckets with higher percentage of 

defects. For each test step, defects are identified based on the exception criteria and are 

mapped to the corresponding input buckets. Most of the time, exceptions occur when an 

output value falls out of the given range, and, hence, this value cannot be mapped to any 

of the output buckets. The coverage values and the error values for each percentile can be 

used to infer the behavior of the software for all possible inputs in that percentile. 

Bucketing also reduces the number of possible combinations. For the example 

given in Chapter 2, real-time software with two input variables will now have 1002 (104) 

combinations instead of 1012. Although this is a significant reduction in the problem 

space and makes the job of developer much easier, for large systems with hundreds of 

inputs with large domains, bucketing cannot reduce the combinatorial problem 

sufficiently to make testing all combinations tractable. However, bucketing can be used 

to identify defect-prone combinations by saving the bucket value for each input value 

when a defect is discovered and associating a counter with each such combination. For 

example, if test values from bucket 10 for input 1, bucket 20 from input 2, and bucket 45 

for input 3 are associated with multiple defects, then this combination could be 

considered error prone. This combination can be used to guide further testing to discover 

the point of error causing defects and leveraged when retesting to determine if the error 

has been corrected [2].  
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Results from multiple test runs can be leveraged to obtain the percentile coverage 

values. However, as the specified domain space for a variable can be different for 

different test runs, a partitioning scheme that leverages all the values from multiple runs 

uniformly is designed. For every input or output variable, the domain is determined by 

calculating the minimum as the minimum of all test run minimums, and the maximum as 

the maximum of all test run maximums. In case of floating point values, accuracy is 

determined as the maximum of all the test accuracies. This gives the engineer the ability 

to execute several independent test runs and then integrate and analyze the test results 

only once. The engineer will also be able to see the growth in percentile coverage. The 

decrease in the number of error-prone percentiles indicates that defects are being 

removed and software reliability increasing. 

The formulae for calculating the bucket size and bucket participation are given 

next. For every input variable, the size for each bucket is calculated as  

  Bucket Size = (Test Max – Test Min) / 100. 

Given the bucket size, the range of values for each bucket is calculated as follows.  

  Min of Bucket I = Test Min + (I-1) * Bucket size, 

  Max of Bucket I = Test Min + I * Bucket size, where 1 <= I <= 100. 

The minimum value is included for bucket 1 and excluded for all other buckets, whereas 

maximum value is included for all buckets. Given a value x, the bucket that contains x is 

calculated as follows. 

 

  Bucket for x = If x is not equal to Test Min  

ceil ((x – min) / Bucket Size),  
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 Otherwise 

               = 1. 

Although percentile bucketing, in its most general sense, can be applied to integer 

and floating-point variables, it cannot be applied to Boolean variables. The minimum and 

maximum values for every variable are 0 and 1 respectively and hence there are at most 

two buckets for all Boolean variables. Also, though input values are controlled, software 

can generate out of bound values for output variables and hence two additional buckets 0 

and 101 are added for every output variable to signify values falling below minimum and 

above maximum respectively. 

 

Probability Metrics 

 Analysis of test results is not complete without providing quantitative metrics for 

the software. This section gives a description of the metrics that have been designed to 

describe various aspects of software. 

Reliability Results Describing Output Variable Correctness 

An output value is considered as an exception if the value does not satisfy the 

specified correctness conditions for that output variable. A test step is considered as a 

failure if there exists an exception in at least one output variable. Based on these 

assumptions, the following metrics are proposed that describe the software based on the 

behavior of output variables. 

Probability of an exception in any one test step is the ratio of the number of test 

steps producing at least one exception in any output variable to the total number of test 
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steps. This value signifies the correctness of the system for a given number cycles over a 

period of time. 

Probability of an exception in exactly one output variable in any one test step is 

the ratio of total number of exceptions in all output variables to the product of number of 

output variables and the number of time steps. This value signifies the confidence in the 

system based on all output variables over a period of time. 

Probability of an exception in an output variable Oi in any one test step is the 

ratio of the number test steps producing exceptions in Oi to the total number of time 

steps. This value signifies the reliability of the system based on the reliability of a single 

output variable and is important in real time software, where each output value acts as a 

trigger for some system operation. Output variables are prioritized and this metric should 

be close to zero for outputs with higher priorities.  

Reliability Results Based on Valid Input States 

All three metrics proposed in the previous section take only valid output states 

into consideration and predict the probability of correct system operation based on a 

given output state and are completely independent of the input states and input sub-

domains. However, gaining confidence in input sub-domains is equally important, given 

the huge domain space of real-time software. The following section details a technique 

for computing the reliability of the system based on input percentile bucketing. 

This approach is an enhancement of the basic reliability assessment done in input 

domain models and involves calculating the probability of selecting each bucket, 

determining the failure probability of each bucket, and then calculating the reliability of 

the entire system. The steps in this approach are outlined below. 
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For every input variable I, 

1. For each bucket bj, 

•  Assign the probability that bucket bj is selected as  

     P (bj) = No. Of values selected in bucket bj / Total number of test steps. 

•  Assign the probability that bucket bi is a failure as 

θ (bj) = No. Of values in bucket bj producing exceptions in at least one output       

variable  / No. Of values selected for bucket bj for the current test 

run. 

•  Calculate the probability that a bucket bj is selected and is a failure as P (bj) * 

θ (bj). 

2. The probability that the system fails for input variable I, in any one test step, is the 

sum of the failure probabilities for each bucket calculated as 

•  φi = ∑ P (bj) * θ (bj). 

3. The probability that the system succeeds for this input variable in N test steps can be 

calculated as  

•  (1 - φi) N  

4. The total reliability of the system considering all the input variables is given by  

•  (1 - φ 1) N  (1 - φ 2) N  (1 - φ 3) N …… 

This metric gives the overall reliability of the system based on valid input buckets and is 

a close measure of the Probability of Failure On Demand (POFOD) defined in Chapter 3. 

The term ‘demand’ here reflects the validity of an input state. The intermediary results, 

probability of failure associated with a bucket (θ (bj)) can also be used to identify defect-

prone percentiles and can be used to guide further tests. 
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MTTF Results 

As time is an important factor in real-time systems, metrics are necessary to 

predict Mean Time To Failure (MTTF), which is defined as the time interval between 

successive failures. The failure rate should in turn be dependent on input or output states. 

The solution proposed extends the basic idea in time-domain reliability models by 

leveraging the correctness of output states and also predicts the failure arrival rate when 

input values are selected from a bucket. 

MTTF is calculated by considering the fact that test cases are run sequentially in a 

single test run. The testing time required for a test run with N1 time steps and a time 

interval T1 between each test step is N1*T1. The execution time of real time software is 

negligible when compared to time interval between successive steps, and, hence, is 

ignored. As the model remains unchanged during the testing phase, the failure rate can be 

fairly assumed to be uniform through out successive steps in a test run. If we have m 

independent test runs for the same module, then the total testing time is calculated as  

N1*T1 + N2*T2 + N3*T3 +… + Nm*Tm 

Let the number of time steps with at least one exception in any output variable for each 

test run be E1, E2, E3… Em respectively. Considering the validity of the output states 

throughout the testing time, the total number of failures is given by  

E1 + E2 + E3 +… Em. 

Fitting this data into the time domain approach, MTTF is the ratio of the total time to the 

number of failures occurring in that time and is given by the formula below, 

MTTF = (N1*T1 + N2*T2 + N3*T3 +… + Nm*Tm) / (E1 + E2 + E3 +… Em)  

For a single test run, this formula turns out to be  
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MTTF = (N1*T1) / E1.  

In case of a single test run, each input bucket is also given a MTTF value which 

enables the user to determine the approximate time in which the system fails when an 

input value in that bucket is selected. The formula for MTTF for a bucket I for any input 

variable is given by, 

MTTF for a bucket I = (No of values falling in bucket I * Time Interval) / (No Of 

values in bucket I producing exceptions in at least one 

output variable); 

This value cannot be computed in the case of multiple test runs, as all the values 

falling in a given bucket may not come from the same test run and the time interval may 

be different for different test runs.  
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CHAPTER 5 

SOLUTION IMPLEMENTATION 

 
Theoretical work is rarely of practical use until transitioned to commercial 

environments.  In the case of this research, theoretical results need be transitioned to the 

commercial environment via a tool that provides the capability to compute and verify the 

theoretical results. The Reliability Analysis Test Tool (RATT) has been developed to 

verify the practicality of the results proposed in Chapter 4. RATT analyzes the results 

produced from testing real-time software via simulation and provides metrics to assess 

domain-testing effectiveness. In addition to this, RATT also provides test suggestions, 

based on the domain coverage metrics, to guide further testing. The latter part was done 

by another graduate student, Ms. Radhika Turlapati, as part of her thesis. This chapter 

provides an overview of the RATT design, the problems encountered during the 

development process, and the RATT user interface. A brief description of the tools used 

for developing and testing real-time software, MATRIXx
  and MATT is given.  An 

introduction to the concept of testing real-time systems using simulation is also provided.  

 

Overview of MATRIXx
  and MATT 

The environment for this work included MATRIXx
 , a real-time software-

modeling package developed by a Sunnyvale based company called Integrated Systems 

Inc., and MATT, a real-time software-testing tool. A brief description of each product is 

given next. 
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MATRIXx
  is a product family consisting of the following tools- Xmath, 

SystemBuild, AutoCode, DocumentIt, and RealSim. SystemBuild is used to graphically 

visualize, model, and simulate hierarchically structured dynamic systems. Xmath is a 

mathematical analysis tool used to verify SystemBuild models using simulation. 

DocumentIt automatically generates specification documents for SystemBuild models. 

AutoCode is used to generate the C or Ada source code from the SystemBuild model for 

the target hardware. RealSim is used for rapid prototyping of the generated models and 

allows generated code to be run as a simulation before deploying on target system. These 

tools allow the control engineer to create graphical models of the system, simulate the 

models at various levels, and automatically generate source code implementing the 

modeled system. The resulting source code is compiled, linked, and deployed on the 

target system [1]. 

Though MATRIXx
  product family provides comprehensive environment for 

developing real-time systems, it lacks the environment for automated testing of 

SystemBuild models. Testing tools can generate and run thousands of tests and 

automatically detect defects.  One such tool used to test real-time software via simulation 

is the MATRIXx
  Automated Test Tool (MATT).  MATT developed under a NASA 

grant at ETSU, implements effective test strategies defined by Dr. Joel Henry and 

validated on NASA Wind Tunnel Systems, the X-33, and the International Space Station 

[2]. 

MATT provides a tab-based user interface for configuring test scripts. MATT 

currently provides 25 test types to generate test values for the input variables. The user 

can set the test min, test max values, and the test type required for each input variable. 
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MATT also allows specifying the number of test steps and the accuracy required for each 

input variable. The range and the type of exceptions required for each output variable can 

be specified. MATT then generates the input matrix and runs simulation in tandem with 

SystemBuild and generates the output matrix. MATT then detects and lists the 

exceptions, which are identified as defects. The test scripts and input and output matrices 

can be saved as comma separated test case files and can be used later for further analysis. 

RATT analyses these test case files and computes the metrics proposed in Chapter 4.  

 

RATT Design 

 A top down design approach has been followed during RATT development 

process. Figure 5.1 gives the overall system architecture with the major system 

components and the classes contained in each of these components. 

The system is divided into four different components communicating with each 

other using well-defined interfaces. The ‘User Interface’ component contains all the GUI 

related classes. The ‘Work Horses’ contains classes used to compute the actual metrics 

and the ‘Data Storage’ contains classes used to store all the massive data read from the 

files, and also the intermediate data computed using ‘Work Horse’ classes. ‘Utilities’ 

component contains general classes and data structures that are independent of RATT. 

The ‘Work Horses’ and ‘Data Storage’ classes are written in C++ and are designed to be 

platform independent. The ‘User Interface’ classes are implemented using MFC and 

communicate with the interface provided by ‘Work Horses’. The decision to make ‘Work 

Horses’ and ‘Data Storage’ classes independent of ‘User Interface’ enables RATT to be 

extended to other platforms by simply plugging in the new ‘User Interface’ component. 
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As the focus of RATT is on computing and saving the proposed metrics, only ‘Work 

Horses’ and ‘Data Storage’ classes are described here. The complete class diagram 

showing all the classes with relationships and the class diagram for ‘User Interface’ 

package is given in appendix A.  

 

UserInterface
+ CMainFrame
+ CRATTApp
+ CRATTDoc
+
CAboutDlg
+ rt_CManager

WorkHorses
+ rt_CBucketCoverage
+ rt_CMTTF
+ rt_CProbabilities
+ rt_CTestFilesMngr
+ rt_CTestSuggestions
+ rt_CInputBucketsMTTF
+ rt_CInputBucketsProbabilities

Data Storage
+ rt_CBoolTestType
+ rt_CTestType
+ rt_CTestScript
+ rt_CInputMatrix
+ rt_COutputMatrix
+ rt_CBuckets
+ rt_CInputBuckets
+ rt_COutputBuckets
+ rt_CIntTestType
+ rt_CTestInput
+ rt_CFloatTestType
+ rt_CMatrix
+ rt_CTestOutput
+ rt_CTestCase

Utilities
+ IntMap
+ DoubleMap
+ rt_CException
+ VectorOfBkts
+
+ rt_CTestCaseList
+ mt_EExceptionTypes
+ mt_EDataTypes

Uses

Uses Communicates

Figure 5.1: Package Diagram for RATT 

Data Storage Component 

The classes involved in ‘Data Storage’ component and the relationships between 

them are shown in figure 5.2. A top-down approach is followed for the design of data 

storage classes and the requirements originate from the format of test case files.  
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rt_CBoolTestType rt_CIn tTestTypert_CFloatTestType

rt_CMatrix

rt_CInputBuckets

rt_CTestType

rt_COutputBuckets

rt_CTestInputrt_CTestOutput

rt_CInputMatrix rt_COutputMatrix rt_CTestScript

rt_CTestCase

rt_CBuckets

#m_ptrInputBuckets

0..1

#m_ptrTestType

0..1

#m_ptrOutputBuckets

0..1

1

0..1

1

0..1

1

#m_ptrTestInput
0..10..1

1

1

0..1

1

-m_ptrInpu t

0..1

-m_ptrOutput

0..1
-m_ptrTestScript

0..1

1

0..1

1 1

0..1

1
1

0..1

1

1

1

 

Figure 5.2: Class Diagram for RATT Data Storage Component. 

A test case in MATT is defined as a grouping of the user defined test script, the 

MATT generated input matrix, and the output matrix generated by testing the model. A 

test script in turn contains the number of tests, the test interval, and an array of the input 

and output objects. Each of the inputs and outputs will contain a buckets object, apart 

from its properties. Every bucket object will have an array of 100 integer values, each 

reflecting the number of test values covered in that bucket. In addition, the input buckets 

will also have 100 integer values representing the number of exceptions in each bucket. 

The test input also contains the corresponding MATT test type object, and this object is 

used to calculate further test suggestions. Access to all the data values in all classes is 
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provided through inspector and mutator methods. Methods are also provided to read from 

the test case files and populate the required classes. 

Work Horses Component 

The class diagram with relationships for ‘Work Horses’ component is shown in 

figure 5.3. 

rt_CInputBucketsMTTFrt_CInputBucketsProbabilities

rt_CBucketCoverage rt_CMTTFrt_CProbabilities

rt_CTestFilesMngr

rt_CTestSuggestions

0..1

1

#m_ptrTestFilesMngr

0..1

1

rt_CManager
(from UserInterface)

0..1

1

#m_ptrBucketCoverage

0..1

1

0..1

1

#m_ptrMTTF

0..1

1

0..1

1

#m_ptrProbabilities

0..1

1

0..1

1

#m_ptrTestFilesMngr

0..1

1

0..1

1

#m_ptrTestSuggestions

0..1

1

 

Figure 5.3: Class Diagram for RATT Work Horses Component. 

There is a centralized manager class that controls all the communication between 

the user interface and ‘Work Horse’ classes. The distinct functionalities of RATT 

proposed in Chapter 4, the domain coverage results, the probabilities results, and the 

MTTF results, are each supported by a class as shown in the diagram. There is one 

additional test suggestion class that guides the user to carry out further tests based on the 

metrics and is managed by Ms. Radhika. Every Probability and MTTF object will have 

an array of pointers to the bucket objects, one each for every input variable of the system. 

The type of this bucket object is determined dynamically using Run Time Type 
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Information (RTTI) to obtain bucket coverage, and exception coverage values. As it is 

important to read and analyze data from multiple files, a test files manager class is 

created that isolates all the operations required for managing file i/o.  A Test Case object 

is created within the test files manager class every time a file is loaded and a single test 

script object is maintained in the test files manager class that leverages the information 

gathered from multiple test scripts.  

 

RATT Implementation and GUI 

RATT is implemented in Microsoft Visual Studio 6.0 as a single document 

application using Microsoft Foundation Classes (MFC) application wizard. The user 

interface for RATT is implemented using MFC resource editors. However, a header and a 

source file are created for every class in ‘Work Horse’ and ‘Data Storage’ component to 

separate interface from implementation details, and also to reuse these classes easily. 

Compile time dependencies are removed using forward declarations and this enables 

these classes to be used directly by including their header files. Good software 

engineering principles are followed wherever applicable to prevent illegal access to data 

within classes.  

The user interface of RATT uses both mouse and keyboard input for carrying out 

the menu options.  Shortcut buttons and accelerator keys are also provided for frequently 

used operations. The main window is shown in figure 5.4. The client area of the main 

window is used only to display the results and is locked for editing by user. A brief 

description and a sample illustration of the major menu options are given below. 
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File Menu 

 The following selections are available from the file menu: Load, Add, Save, Print, 

Print Preview, Print Setup, and Exit. Each selection involves calling the file manipulation 

functions within RATT. 

 

 

Figure 5.4: RATT Main Window. 

 
Load: The Load option pulls up a dialog box as displayed in Figure 5.5. This dialog box 

gives the user the ability to select a comma separated Test Case file from the windows 

file structure and load into the system. The selected file should be in the same format as a 

MATT generated test case file. Load option will remove any of the previous test case 

files from the system and eventually clean any data storage objects created for the 
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previous analysis. The loaded file is scanned and the data storage objects are re-

initialized. 

Add: The Add option also displays a dialog box similar to the one shown in Figure 5.5 

and gives the user the ability to add another test case file to the existing one and get 

comprehensive results. The added file is scanned and the data storage objects are 

updated. The Add option is not available to the user unless there is at least one file 

already loaded into the system.  

 

Figure 5.5: Open Dialog Box. 

The maximum number of files that can be added to the system is 10 and can be changed 

by modifying the MaxTestCases entry in the system registry under 

‘HKEY_CURRENT_USER’. 

Save: The save option displays a similar dialog box as in Figure 5.5 and allows the user 

to save the results generated using RATT as a comma separated value (CSV) file. This 

file can later be loaded into excel type applications for further analysis. RATT allows 

three types of files to be saved: file only with reliability metrics and domain coverage 

(.rlr), files only with test suggestions (.sug), and files with both reliability results and test 
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suggestions (.rtt). The save option is not available for user selection till the corresponding 

results are generated. 

Print, Print Preview, and Print Setup: The print options allow the user to set up a 

printer, preview the document before printing, and finally print the document. 

Exit: The exit option allows the user to close RATT gracefully.  

Edit Menu 

The Edit menu offers the following standard selections: Copy and Clear Screen. 

These selections are mainly aimed at providing the user with a reasonable view of the 

results on the screen.  

Copy: The ‘Copy’ option allow the user to copy the text in the client area and paste this 

into a different application like a notepad for editing the results. The user will not be able 

to modify the data in the client area, and this decision is taken to preserve the authenticity 

of the results produced by RATT. 

Clear Screen: Clear Screen option clears the complete client area and allows the user to 

concentrate one item at a time. 

Run Menu 

The Run menu has the following selections: Get Reliability Metrics, Get Test 

Suggestions, and Get Test Suite Suggestions. Selecting an option in this menu triggers 

methods in the workhorse classes and the results are computed. 

Get Reliability Metrics: This option will trigger RATT to analyze all the files loaded 

into the system and then compute reliability and domain coverage metrics. At least one 

test file should be loaded before this option can be enabled. The compute methods of 

bucket coverage class, probability metrics class and MTTF class are invoked. 
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Get Test Suggestions: The user can select this option to get test suggestions aimed at 

improving further tests. As the test suggestions are based on the domain coverage 

metrics, this option is not available till the reliability metrics are computed using the ‘Get 

Reliability Metrics’ option. Also test suggestions differ in case of multiple files, and, 

hence, this option is disabled in case multiple files are loaded. 

Get Test Suite Suggestions: Same as ‘Get Test Suggestions’ except that this option is 

used only when multiple files are loaded. Please refer Radhika’s thesis [4] for more 

information. 

Output Menu 

 The Output menu has selections that allow the user to view results on the client 

area. However, these results are available only after loading files and generating RATT 

results. The following selections are available here: Percentiles Coverage, Exception 

Coverage, MTTF, Probability Results, Test Suggestions, and Summary. Each of these 

selections may in turn pop up another sub-menu. The results can also be saved to a file 

using one of the File->Save options. All these options will use the inspector functions of 

the workhorse classes via manager class to display the results. Figure 5.6 gives a sample 

output generated by loading a single file ‘Circuit9.cas’. 

Percentile Coverage: This option allows the user to print the top 10 buckets with 

LEAST coverage of test values for every input and output variable.  

Exception Coverage: When this option is selected, the top 10 buckets with highest 

number of exceptions for every input variable are printed on the screen. Combinations of 

input buckets producing highest number of exceptions are also printed. 
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Figure 5.6: RATT Window with Results. 

MTTF: The system MTTF is printed in milliseconds on the screen. In case of a single 

file, input buckets with highest MTTF are also printed. The later is not available when 

multiple test case files are loaded, as each file may have a different test time interval and 

all the values in the bucket may not come from the same test case file. 

Probability Results: The probability metrics proposed in Chapter 4 are printed when this 

option is selected. 

Summary: This option is provided to allow the user to print all the metrics using one 

mouse click instead of selecting every item in the Options menu.  
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CHAPTER 6 

RESULTS 
 
 
 Software metrics should quantify the software characteristics and modifications to 

the software should be reflected in the metrics. In this chapter, the results of the test 

analysis produced by RATT are presented and analyzed. Analysis determines the 

effectiveness of the metrics proposed in chapter 4 in evaluating the effectiveness of 

testing real-time software. 

 The results presented in this chapter are produced by testing the 

ASCS_SCALING model used in controlling NASA’s wind tunnel. This is a simple 

model with 8 inputs and 4 outputs. The model has been tested recursively before and after 

updates using MATT. The test case files produced by MATT for each test run are then 

fed to RATT to obtain reliability metrics. The sequence of the steps involved and the test 

parameters are as follows. 

•  Three independent test case files are generated without changing the model. 

Different input values are generated for each test run without changing the 

attributes of the outputs. 

•  Fourth test case file is generated after a minor modification to the software 

model. The modifications here include changing limits of an output variable, 

changing the exception criteria for at least one output variable.  

•  Fifth test case file is generated after a major update to the model resulting in a 

drastic reduction of the number of exceptions. 

•  The number of time steps in each test-run is set to 1000. 
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•  The time interval between each time step for all the test-runs is set to 1000 

milliseconds. 

The generated test case files are analyzed using RATT, results saved, and changes 

in the metrics after loading each test case are represented graphically. For each test run, 

all the previously generated test case files are added to RATT for tracking the test 

progress and modeling reliability growth. 

 

Domain Percentile Bucketing 

Percentile Coverage 

Figure 6.1 shows the graph for the coverage values achieved for the first ten 

buckets of the fourth input variable. The four columns for each bucket represent the 

number of values falling in that bucket after each of the four test-runs.  
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Figure 6.1: Bucket Coverage 

The coverage improvement for every bucket from successive test runs is 

additively modeled and the user can easily keep track of the least covered buckets over 
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multiple test runs. Further tests can be concentrated in any uncovered buckets and 

additional tests run to increase domain coverage. If it can be assumed that the state of 

each bucket correctly represents the state of the system for all possible values in that 

bucket, then percentile bucketing reduces the number of possible states to K * 100, where 

K is a constant. The constant ‘K’ represents the desired level of coverage for every 

bucket set by software managers at the beginning of the test phase. For ASCS_SCALING 

model, the total number of values in the domain for fourth input variable with a minimum 

of 0, maximum of 100, and accuracy of 10 is (100 –0) * 1010. If the required coverage for 

every bucket is 100 values, percentile bucketing reduces the total number of values to be 

tested from 1012 to 104. Although the basic assumption is not valid for all real-time 

software, percentile bucketing still allows the user to keep track of the number of values 

in each sub domain and is much better than the brute force method. 

Exception Coverage 

Figure 6.2 shows the graph for the exceptions uncovered for the first ten buckets 

of the fourth input variable during four successive test runs. Exceptions in each bucket 

over different test runs are represented and the user can easily keep track of the current 

number of exceptions in each bucket, which in turn is an indication of the confidence of 

the user in the probability of success when a value is selected in that bucket. The graph 

shows that exceptions have increased during the first three test runs and more exceptions 

are found in buckets 4,6, 8, and 10. Based on the exceptions uncovered, the model is 

modified after the third test run and tested again in the fourth test run. The exceptions are 

reduced over all the buckets and the decrease is more significant in buckets 4 and 6.  
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Percentile bucketing helps identify the input sub domains producing a higher 

number of exceptions and allows the user to concentrate further tests within these faulty 

buckets to pinpoint the exact point of error. Instead of keeping track of distinct input 

values producing exceptions, a range of values producing exceptions is identified. As it is 

assumed that exceptions are linearly distributed over a given bucket, each bucket is 

assigned a failure probability. The failure probabilities for each bucket are listed in the 

reliability file saved by RATT. This file can be loaded into a spreadsheet application, and 

then buckets with higher failure probabilities can be identified by sorting. The software is 

updated accordingly, and the old test cases are run again (regression testing). If the 

number of exceptions uncovered after the update is less than the number of exceptions 

before the update, it can be inferred that the updates are improving the software 

reliability.  
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Figure 6.2: Exception Coverage 
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Hence, the graphs not only allow the user to identify defect prone sub domains but also 

allow the user to keep track of the test progress after software updates over multiple test 

runs. 

Input Bucket Combinations 

The input bucket combinations producing highest number of exceptions for the 

first test run of ASCS_SCALING model are shown in figure 6.3. Each row indicates the 

bucket number for every input variable producing exceptions. Only the top 10-bucket 

combinations producing exceptions are stored and displayed. The bucket combinations 

provide important information and can improve testing. 

 

Figure 6.3: Input Bucket Combinations 

The combinatorial problem discussed in Chapter 3 is reduced drastically. The 

total number of possible input combinations for ASCS_SCALING model with 8 inputs 

each taking values from 0 to 100 with a precision of 10 decimal places is (1012) 8, i.e. 
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1096. The number of combinations with percentile bucketing is reduced to 1008, i.e. 

1016.Although the combinatorial number is reduced by a large factor, this number can 

still be very high for large real-time systems. However, only combinations producing 

defects are reported by RATT allowing the user to tackle the problem by divide and 

conquer rule. 

 

Quantitative Metrics 

Reliability Results Based on Output Variable Correctness 

The graph shown in figure 6.4 models, the changes to the probability of an 

exception in any one time step during successive test runs.   
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Figure 6.4: Probability of an Exception in any One Time-Step 

The probability of an exception is increased during the first three test runs and this 

can be attributed to the fact that more errors are uncovered with rigorous testing. The 

update is reflected in the fourth test run, where the number of exceptions has reduced. 

The amount of decrease in the curve is directly proportional to the quality of the update to 
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the model. A larger decrease here means that the update was a major one in the desired 

direction, which is improving reliability. As such, the graph also clearly and correctly 

indicates that the first update after the third test run is a minor one compared to the 

update after the fourth test run. As the metric changes rapidly both by uncovering more 

errors and also by model updates, the model has to be tested until the metric is stabilized, 

i.e. the curve becomes linear over successive test runs.  

The graph shown in figure 6.4 models, the changes to the probability of an 

exception for every output variable in any one time-step during successive test runs.   
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Figure 6.5: Probability of an Exception in an Output Variable in any Time-Step 

The four curves in the graph show ways in which probabilities of an exception 

changes for each of the four output variables. The bold curve in red shows the average of 

all the four curves and gives the probability of an exception in exactly one output variable 

in any one time step. As the graph indicates, the probability of an exception in output 

variable 1 changes rapidly and indicates instability in this output. The graph is useful in 

predicting the stability of the system based on each individual output variable and points 
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out potential problem output states. This is important in systems where the outputs are 

prioritized. Lower probabilities should be achieved for outputs with higher priorities. 

Reliability Results Based on Input Variable Correctness 

Figure 6.6 shows the graph reflecting changes to the reliability of the system over 

all time steps based on valid input states. Only results from the first four test runs are 

shown in figure 6.6, as the value from the fifth run is much higher and cannot be 

interpolated in this graph. The value from the fifth test run is shown in figure 6.7. 
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Figure 6.6: Probability of System Success Over all Time Steps (4 Test Runs) 

The results obtained closely model the theoretical bathtub reliability graph shown 

in figure 3.1. The graph shows that reliability falls as more exceptions are detected and 

increases as the software is updated correctly. The results are based on the validity of all 

possible input combinations and greatly reduce the effort of the user in keeping track of 

the valid and invalid input states. This metric is also closely related to Probability of 

Failure On Demand (POFOD) defined in Chapter 2. A lower reliability value is an 

indication of two related concerns: 
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•  Not Enough values have been tested in all buckets of all input variables. 

More testing without changing the model can improve this figure provided 

further test runs results in more successes than failures. 

•  The model is very poor and needs modifications. 

However, in either case the curve should become linear over successive test runs 

before making a decision. The curve clearly shows the reliability growth over multiple 

test runs. 
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Figure 6.7: Probability of System Success over all Time Steps (5 Test Runs) 

 

MTTF Results 

Figure 6.7 shows the graph reflecting changes to the System Mean Time To 

Failure (MTTF). As the graph shows, more exceptions are uncovered during the first 

three test runs, and this reduces the MTTF value. However, upgrades to the model 

increase MTTF, and the amount of increase depends on the quality of the update. MTTF 

for individual buckets for every input variable are also listed in the RATT files and 



 

61 

provide useful information about the next failure interval when values from that bucket 

are selected. From the graphs, it can be concluded that MTTF growth is correctly 

modeled by the proposed metrics, and MTTF changes as the software is changed. MTTF 

gives useful information about the occurrence of next failure. For transaction based real-

time systems the sum of response time and recovery time should be less than MTTF for 

uninterrupted operation.  
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Figure 6.8: System Mean Time To Failure (MTTF) 

The results shown in this chapter indicate that the domain coverage metrics 

provide valuable information to the user for uncovering defects, and the reliability 

metrics correctly describe the software under test and change as more defects are 

uncovered or software is modified. While the former is useful from a developer point of 

view, the latter is useful from the managerial perspective. Managers can pre-assign values 

for all the reliability metrics and the development process continues until these metrics 

are achieved. We have not only proposed reliability metrics in this project but also 

verified the feasibility of computing these metrics and the practical applicability of the 
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metrics by testing the results on models used in controlling NASA’s wind tunnel. While 

MATRIXx
  and MATT solves the first three steps in real time software development, 

RATT solves the final step of analyzing the test results and producing quantitative 

metrics describing the software. 

Finally, RATT is proposed to be used within Boeing for improving the test 

process and evaluating the models to be developed for NASA. At the same time, RATT 

is also proposed to be used by NASA’s Independent Verification and Validation Center 

for evaluating the product delivered by Boeing. RATT is also proposed to be used within 

other organizations such as Allied signal and Sperry for improving the test process in the 

development of real-time control models. In essence, RATT will be used as a standard for 

assessing the quality of real time software produced via simulation. 
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CHAPTER 7 

LIMITATIONS AND FUTURE WORK 
 

This chapter provides an overview of the current limitations of the reliability 

metrics and also provides an insight to improvements that can be achieved. Features that 

can be implemented in RATT to make it more efficient and robust are also discussed. 

One of the major limitations of the input based reliability metric is that the basic 

assumption that exceptions are linearly distributed over a given input bucket has to be 

valid. This limitation is particularly not valid when the input range is very large and also 

for control systems with discrete input points. One technique of overcoming this 

limitation includes testing incrementally by taking small ranges at a time. Another 

limitation of system reliability metric is that though the system reliability reaches one 

when there are no exceptions, the metric values fall rapidly when even a very small 

number of exceptions are uncovered. It can be attributed to the fact that multiplication of 

small floating-point numbers makes the product decrease rapidly. This might prevent 

managers from gaining confidence in the system based on a smaller system reliability 

value. Hence, the managers should be cautious in assigning a target value prior to testing 

or else the specified value may never be reached. 

Currently MTTF metrics for individual input buckets are not provided when 

multiple test case files are loaded into RATT. The reason for this is the fact that the time 

interval between time-steps may be different for different test runs. MTTF for individual 

buckets are useful in predicting the failure interval when an input value in a bucket is 

selected. One way of obtaining MTTF for individual buckets is to average the time 
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intervals from all the test case files and apply the same calculations as in a single test case 

file. However the effectiveness of computing the average has yet to be analyzed with the 

help of a domain expert. Another improvement to the domain coverage metrics is the 

ability to predict the combinations of input buckets producing the highest number of 

exceptions. This can be achieved by applying pattern matching to the currently reported 

input bucket combinations. Reliability growth models based on random variable 

sampling can be studied in more depth as well, and applied to the current metrics by 

incorporating the operational profile into testing. 

Further improvements to RATT could improve efficiency in computing the 

current metrics and also port RATT to other operating systems (i.e. Sun Solaris). The 

current design allows the development and integration of a new user interface component 

easily and hence RATT can be ported to other platforms as required. One feature that can 

be included in RATT is the ability to generate and display graphs from the user interface. 

Although graphs can be generated currently by loading RATT files into spreadsheet 

applications, incorporation into RATT would be a nice feature for the user. 

In conclusion, the two goals of this project have been achieved: by providing 

metrics to quantify real-time software and by verifying the feasibility, and practical 

applicability, of the results by testing on real-time control models. More importantly, the 

limitations of the metrics are also identified to avoid any inappropriate applicability of 

the same to all real-time control systems.  
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APPENDIX: RATT High-Level Class Diagram 
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APPENDIX (cont’d) 
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