
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

5-2001

Quantitative Analysis of Domain Testing
Effectiveness.
Narendra Koneru
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Koneru, Narendra, "Quantitative Analysis of Domain Testing Effectiveness." (2001). Electronic Theses and Dissertations. Paper 56.
https://dc.etsu.edu/etd/56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by East Tennessee State University

https://core.ac.uk/display/214064317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Quantitative Analysis of Domain Testing Effectiveness

A thesis

presented to

the faculty of the Department of Computer and Information Sciences

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Masters of Science in Information Sciences

by

Narendra Koneru

May 2001

Dr. Martin Barrett, Chair

Dr. Don Bailes

Mr. John Chenoweth

Key Words: Real-time Systems, Simulation, Software Testing, Domain and Fault

Coverage, Software Reliability, Reliability growth models.

2

ABSTRACT

Quantitative Analysis Of Domain Testing Effectiveness

By

Narendra Koneru

The criticality of the applications modeled by the real-time software places stringent

requirements on software quality before deploying into real use. Though automated test

tools can be used to run a large number of tests efficiently, the functionality of any test

tool is not complete without providing a means for analyzing the test results to determine

potential problem sub-domains and sub-domains that need to be covered, and estimating

the reliability of the modeled system.

This thesis outlines a solution strategy and implementation of that strategy for deriving

quantitative metrics from domain testing of real-time control software tested via

simulation. The key portion of this thesis addresses the combinatorial problems involved

with effective evaluation of test coverage and provides the developer with reliability

metrics from testing of the software to gain confidence in the test phase of development.

The two approaches for reliability analysis- time domain approach and input domain

approaches are studied and a hybrid approach that combines the strengths of both these

approaches is proposed. A Reliability analysis Test Tool (RATT) has been developed to

implement the proposed strategies. The results show that the metrics are practically

feasible to compute and can be applied to most real-time software.

3

ACKNOWLEDGEMENTS

Firstly, I would like to thank my parents and my sister for giving me the support

and encouragement necessary to achieve my educational goals. Next, I express my

sincere gratitude to my thesis advisor, Dr. Joel Henry, for his valuable time, support,

excellent direction, and motivation throughout the project. I must acknowledge NASA

for the monitory support provided. I also gratefully acknowledge the help and support

extended by my committee chair, Dr. Martin Barrett, for his valuable time and

suggestions. Finally a special thanks to my friend, Radhika Turlapati, for her support

throughout the project.

4

CONTENTS

Chapter Page

ABSTRACT. ………………………………………………………………… 2

ACKNOWLEDGEMENTS. ………………………………………………… 3

LIST OF ILLUSTRATIONS………………………………………………… 7

1. INTRODUCTION…..………………………………………………….. 8

 Importance of Real Time Software Testing...…………………… 8

 Outline of Thesis………………………...….…………………… 9

2. PROBLEM STATEMENT……………………………………………… 11

 Terminology and Definitions.…………………………………… 11

 Testing Real-Time Systems.………………………………….…. 12

 Goals of Testing…..…………...…………………………………. 13

 Steps in Real-Time Testing……………………………………….. 14

 Simulating the System’s Operating Environment………… 14

 Selecting the Test Cases…………………………………… 15

 Run the Test Cases………………………………………… 15

 Analyze the Test Results…………………………………... 16

 Problems and Challenges in Testing Real-Time Software……….. 16

 Huge Domain Space……………………………………….. 16

 Faulty Domain Combinations……………………………… 17

 Need for Quantitative Metrics……………………………… 18

 Goals of the Thesis……………………………………………….. 19

5

Chapter Page

3. QUANTITATIVE METRICS FOR REAL TIME SOFTWARE………… 20

 Software Reliability………………………………………………. 20

 Reliability Metrics………………………………………………… 21

 Factors Influencing Software Reliability………………………….. 23

 Reliability vs. Cost…………………………………………... 23

 Reliability vs. Time………………………………………….. 24

 Reliability vs. Efficiency…………………………………….. 25

 Reliability vs. Operational Profile…………………………… 25

 Improving Reliability……………………………………………… 25

 Time Domain Models……………………………………….. 27

 Input Domain Models……………………………………….. 29

4. SOLUTION APPROACH..…………………………….…………………. 31

 Domain Percentile Bucketing……………………………………… 32

 Probability Metrics……………………….. ………………………. 35

 Reliability Metrics Describing Output Variable Correctness.. 35

 Reliability Metrics Based on Valid Input States…………….. 36

 MTTF Results……………………………………………………... 38

5. SOLUTION IMPLEMENTATION…………….…………………………. 40

 Overview of MATRIXx
 and MATT.……………………………... 40

 RATT Design……………………….……………………..……… 42

 Data Storage Component……………………………………. 43

 Work Horses Component……………………………………. 45

6

Chapter Page

 RATT Implementation and GUI…………………………………... 46

 File Menu……………………………………………………. 47

 Edit Menu……………………………………………………. 49

 Run Menu……………………………………………………. 49

 Output Menu..……………….………………………………. 50

6. RESULTS………………………………………….……………………… 52

 Domain Percentile Bucketing……….…………………………….. 53

 Percentile Coverage…………………………………………. 53

 Exception Coverage…………………………………………. 54

 Input Bucket Combinations…………………………………. 56

 Quantitative Metrics………………………………………………. 57

 Reliability Results Based on Output Variable Correctness….. 57

 Reliability Results Based on Input Variable Correctness…… 59

 MTTF Results.………………………………………………. 60

7. LIMITATIONS AND FUTURE WORK…….……………….…………… 63

BIBILIOGRAPHY…………………………………..……….………………….. 65

APPENDIX……………………………………………………………………. 68

VITA………………………………………….………………………………… 70

7

LIST OF ILLUSTRATIONS

Figure
Page

3.1 Reliability vs. Cost…………………………………………………... 23

3.2 Time vs. Failure Rate………………………………………………... 24

5.1 Package Diagram for RATT………………………………………… 43

5.2 Class Diagram for RATT Data Storage Component………………… 44

5.3 Class Diagram for RATT Work Horses Component……………….. 45

5.4 RATT Main Window……………………………………………….. 47

5.5 Open Dialog Box…………………………………………………….. 48

5.6 RATT Window with Results………………………………………… 51

6.1 Bucket Coverage…………………………………………………….. 53

6.2 Exception Coverage………………………….…………………….... 55

6.3 Input Bucket Combinations………………………………………….. 56

6.4 Probability of an Exception in any One Time-Step………………… 57

6.5 Probability of an Exception in an Output Variable in any Time-Step 58

6.6 Probability of System Success Over all Time Steps (4 Test Runs) … 59

6.7 Probability of System Success Over all Time Steps (5 Test Runs) … 60

6.8 System Mean Time To Failure (MTTF).……………………………. 61

8

CHAPTER 1

INTRODUCTION

This thesis outlines a solution strategy and implementation of that strategy for

deriving quantitative metrics from domain testing of real-time control software tested via

simulation. The key portion of this thesis addresses the combinatorial problems involved

with effective evaluation of test coverage and provides the developer with reliability

metrics from testing of the software to gain confidence in the test phase of development.

A Reliability Analysis Test Tool (RATT) has been developed to accomplish these tasks.

RATT evaluates the test results produced from testing the software and provides

reliability metrics along with quantitative test coverage measurements for input and

output domains of the system.

Importance of Real Time Software Testing

The increased flexibility and functionality provided by digital computers had led

to an ever-increasing demand for use in many different applications. The tremendous

amount of computing power provided by these machines, at exceptionally low cost, has

enabled them to be used in building more complex and larger real -time control systems.

Many of these systems are used to manage safety critical tasks. Examples of these tasks

include controlling of wind tunnels, piloting of vehicles, and monitoring and coordinating

missiles for control systems. Failures in such computer systems may cause great financial

loss, an environmental disaster, or even loss of human lives. The criticality of the tasks

involved and the potential heavy losses associated with failures of control systems place

9

stringent requirements on the quality of real-time software. There is a great need for this

control software to be tested thoroughly before it is deployed for actual use. This in turn

forces the developer to measure software testing quantitatively and attain maximum

quality in the system before its final release. There are many challenges involved in

testing real-time software, including the unavailability of target hardware, huge input and

output domain spaces, and the time constraints of real-time systems. Merely determining

the correctness of outputs is also a major challenge. These problems make assessing the

quality of software testing and achieving the required quality all the more difficult. There

is a need for systematic testing of the control software using automated test tools and

analyzing the test results to measure overall system reliability.

This research is focused on reducing the overwhelming combinatorial domain

space problem and analyzing the test results for reliability predictions of large real time

software control systems. The reliability metrics are aimed to guide the test process and

improve the confidence of the developer in the system as the test phase progresses.

Outline of Thesis

A precise statement of the problems addressed by the thesis is defined in Chapter

2. An overview of testing and quantifying real time software is given in Chapter 3.

A solution for the problem is proposed in Chapter 4. A brief description of the

two tools used for analyzing the proposed metrics, MATRIXx
 and MATT, is given to

introduce the concept of testing real time systems using simulation.

Chapter 5 covers the design and implementation approach used for RATT. It also

discusses the use of RATT within NASA and other organizations.

10

Chapter 6 deals with the results obtained from RATT. Ideas and areas that can be

explored further to improve the metrics are given in chapter 7.

Formulas used for obtaining reliability metrics are presented as well as software

reliability growth models. These topics lead to discussion of ways to improve reliability

and are described here as well.

11

CHAPTER 2

PROBLEM STATEMENT

This research focuses on addressing the problems and challenges involved in

testing and improving the quality of real-time software. The aim of the study is to provide

the software developer with quantitative reliability measures of the developed real-time

control software. The remainder of this chapter introduces real-time testing and describes

the problems and challenges involved in testing real-time systems.

Terminology and Definitions

This section introduces definitions that will be used throughout the thesis [9].

Reliability is defined as the probability that a system functions according to its

specification for a specified time and in a specified environment. It gives a measure of

confidence in the system for the user. A failure occurs when the run-time system

behavior does not match the specifications. A fault is a static component of the software

that causes the failure. A fault causes failure only when that part of the code is executed,

and hence, not all faults result in failures. An error is a programmer action or omission

and results in a fault. Mean time to Failure (MTTF) is defined as the time between

successive failures. Reliability is a statistical study of the failures, and MTTF is one of

the measures of reliability. A domain space for the variable is defined as the set of all

possible legal values that the variable can assume during system operation.

To achieve high system reliability, extensive testing is required, and, hence, some

terms used in testing are defined next. A Test Case is defined as a single value mapping

12

for each input of the program that enables a single execution of the software system. Test

Script is a set of conditions specified on each input variable for guiding the automatic

generation of test cases. A Test Suite or a Test Run is a set of test cases that are executed

sequentially.

Testing Real-Time Systems

Real-time systems interact with the environment in a time constrained

input/output event model. Real-time systems sample external devices, execute a loop in

the program, and then refresh the outputs, typically within milliseconds of the input of

data or stimuli. Input and output data are sampled many times per second and this process

is continued over possibly long periods of time. The precision of an output depends both

on the logical and temporal correctness of values. These factors make real time systems

inherently complex, which in turn make testing highly difficult. As many real-time

software systems control mission critical applications, it is very important that these

systems are highly reliable and the only way to assure that the system is reliable is by

exhaustive testing. In spite of employment of the best available software development

techniques and the participation of highly talented personnel, there have been serious

software errors, some of which led to unbelievable failures like the destruction of a

French meteorological satellite [8]. One of the causes of this failure was attributed to

non-execution of a valid input combination during the test phase. Hence, thorough testing

of the accuracy of the outputs and response times is necessary before the software can be

deployed in the real environment.

13

The rest of this chapter gives a description of the goals and steps involved in real

time testing and also discuss the challenges involved.

Goals of Testing

Testing is a validation process that determines the conformance of the software’s

implementation to its specification. It is an important phase in software development life

cycle and is even more important in real time systems.

There are two main goals of testing real-time software. On one hand, testing can

be viewed as a means of achieving required quality of the system. The main aim here is

to probe the software for defects and fix them. This is also called debug testing and is

assumed to be very effective in uncovering potential faults. On the other hand, testing can

also be viewed as a means of assessing the existing quality of the system and provide

fault coverage measurement, which consists of studying the potential faults generated by

a given test suite. This method is called operational testing and is proved to be effective

in predicting the future reliability of the system.

In debug testing, a systematic approach is followed for selecting test cases based

on situations likely to produce the most number of errors. The drawback of this approach

is that it may uncover failures with negligible rates of occurrence and risk, and the test

effort may not worth the reliability improvement achieved. Another drawback is that it

does not provide complete mathematical and technical validity of the reliability

assessments.

In operational testing, a test case is selected based on the probability of its

occurrence in the real operating environment. Hence, this method is likely to uncover

14

failures with highest probability of occurrence first and provide accurate assessment of

current reliability. This is done after the debugging phase, and the objective is to assert

that the system is reliable and gain confidence for the final release of the system. The

method is not very effective in improving the reliability of the system, and at the same

time it is very difficult to generate an accurate operational profile.

The main goal of this thesis is to assist the developer to improve the quality of the

real-time control models by accurately predicting the domain areas of weakness based on

test results. A blend of debug testing assisted by the domain knowledge of the final users

is used in this thesis to improve reliability.

Steps in Real-Time Testing

Real-time software works in association with external environment and hence

validating the system against the functional specifications is important. This form of

testing is called Black-Box Testing and is the process in which test cases are selected

based on the requirements and external design specifications, rather than the knowledge

of internal details of the program. Testing real-time systems involves four phases and

each phase is described below [10].

Simulating the System’s Operating Environment

Testing real-time software cannot always be done on the target hardware and in

the target environment. This occurs due to the costs and risks associated with the

potential damage of the sophisticated target hardware environment. The tester’s main aim

is to break the software system that in turn may lead to the rupture of the operating

environment. Also, the target hardware may not be available for testing during the

15

maintenance phase and, in aerospace applications, target hardware may not even exist

during the test phase. The expensive hardware can wear out during testing and may not

be useful by the time the product is deployed. Hence, simulation is used by many

organizations to test functions that cannot be tested on the target hardware. Also,

simulation is cheaper and faster than testing on the real hardware. With simulation, more

tests can be executed without hardware degradation. In view of these advantages,

simulation is used in this thesis for testing and analyzing the test results.

Selecting the Test Cases

The input and output domain space for a complex system is typically very large

and completely impractical for manual testing of each combination of the input values

within the domain space. An automated test tool for generating test cases based on user-

specified criteria is needed to cover as much of the test domain as possible. Automated

testing also allows the many more tests to be run than manually testing and permits tests

to be easily run over and over again. This repeating of previous tests is an important step

in testing and is referred to as regression testing. Regression testing attempts to assure

that software failure correction does not introduce additional failures. In chapter 4 of this

thesis a brief description of an automated test tool is given that generates large numbers

of test cases based on some user selected test criteria.

Run the Test Cases

Once the test suite is selected, it must be run in the simulated environment

sequentially and the results must be captured. Any failures generated also have to be

captured and reported to the user. This involves integrating the automated test tool with

the simulated environment.

16

Analyze the Test Results

This is the most important part of testing and should be done very carefully. The

test results are used as a mechanism for identifying the defects in the software or the

model and should be used as a mechanism to quantify the software reliability. The test

results have to be analyzed to assess the quality of the software and to determine potential

problem areas that require more testing and to identify portions of the input domains that

have not been tested. An important consideration here is to leverage measurements

against multiple independent test runs. A decision regarding the end of the test phase is to

be made based on all test runs.

These are the four essential steps that are to be performed when testing real-time

software, and the importance of the last step can never be realized until it is done. This

thesis mainly focuses on analyzing the test results from multiple independent test runs

and providing measurements indicating the overall reliability of the system.

Problems and Challenges in Testing Real-Time Software

Although there are many issues involved with simulation and automated test case

generation, much work has already been done in this area and there are many software

packages available that provide this functionality. An area to be explored further is the

analysis of the test results. The rest of this section discusses the problems involved in

analyzing the test results and quantifying the software.

Huge Domain Space

Complete testing of real-time software presents some interesting challenges that

are not encountered in other software application areas. The input and output domain

17

space of a real-time system can be very large and a quantitative evaluation of domain

testing faces some difficult combinatorial problems. For example, an input domain of 0.0

to 99.9999 with an accuracy of just four decimal points gives us 106 (1,000,000) possible

values. Consider a simple real-time system with two inputs with the same range; the total

number of possible input combinations would be 1012. This is true for the output domain

as well if two outputs exist with ranges of 106. Soon these figures become unmanageably

large even for relatively small real-time systems. Given the combinatorial complexity, we

need to find a way of validating the software with a reasonable and tractable number of

test cases and determine if a test effort is sufficient. An effective solution to this problem

has to be found that makes the combinatorial problem tractable and determines if

sufficiently large numbers of test cases are executed to satisfy a minimal portion of both

input and output domain values and combinations.

Faulty Domain Combinations

Another important concern in testing real-time systems, which is not involved in

non-real-time software, is the complexity involved in determining the combination of

input subsets producing a significant number of faults. For example, when we are testing

a word processor application for its correctness in saving the file with a given name, it

does not make sense to test for all combinations of input characters for the name of the

file. However, this is not same as testing a missile control system with two hardware

valves controlling the speed and direction of the missile. Values of 10.1, 20.3 for these

valves may be valid but values of 10.2, 20.3 may increase the speed to unacceptable

levels causing the missile to miss its target. The combinations of speed and direction

valves causing miss hits are to be determined so that further testing in those areas can be

18

taken to pinpoint the fault. Hence, it is important to determine the combination of input

domain subsets producing highest number of errors.

The inherent complexity and huge domain space of real-time systems make

tracking the test process more difficult. As testing is a continuous process, test results

from multiple test runs have to be analyzed together and measurements computed based

on these results. An effective solution addressing this problem has to be found.

Need for Quantitative Metrics

The reliability of real-time software should be as high as possible. Reliability of

the system is not a measure of the test effort but rather a measure of the probability of the

system’s correct operation given its specifications. Software metrics increase the

confidence of the developer in the system and determine if the software is ready for

release. These metrics also help the developer to actually track reliability changes over

time and assess the test process for improvement. Reliability is an important and

measurable aspect of software quality and is a measure of how well the system meets its

specifications. Reliability metrics should depend on the attributes of the system and

should change accordingly. As response times are an important concern in real-time

systems, reliability metrics should not only predict the probability of system failure for all

possible input states but also should predict the time interval between successive failures.

At the same time, metrics also should provide the dependability or probability of

successful operation for each output variable. This is important in real-time systems as

each output variable may control an external device and the probability requirements

should match the priorities of the external devices. For example, the probability of failure

19

for hardware valve controlling the in-flow of plutonium into a nuclear reactor should be

much lower than another valve controlling the in-flow of water.

Goals of the Thesis

Software reliability measurements are evolving and studies have shown that there

is no exact method of measuring the reliability of software. The goals of this thesis are to

provide measurements for the domain analysis of the software control systems, address

the software quantification problem, and estimate reliability. The final goal of the thesis

is to produce a well-designed and extensible software product with a minimal interface

that assists the user in analyzing the test results and calculates the reliability metrics. A

standard ASCII text file should be generated with the all the reports. It is also necessary

to have proper design documentation for the software to support future extensions.

20

CHAPTER 3

QUANTITATIVE METRICS FOR REAL TIME SOFTWARE

Before a solution can be proposed for the problems stated in the previous chapter,

a thorough understanding of factors affecting software reliability and existing reliability

growth models is required. This chapter introduces software reliability metrics and

reliability growth models and describes techniques for applying reliability metrics to real-

time software.

Software Reliability

Software reliability is an important measurable aspect of software quality.

According to the American National Standards Institute (ANSI), Software Reliability is

defined as:

“The probability of failure free operation software operation for a specified period

of time in a specified environment” [5].

Informally, Software Reliability can be defined as a measure of how well the users think

the system operates according to its specifications. Software Reliability cannot be defined

objectively and it means different things in different contexts. It can be fairly assumed

that software does not wear out over time like a physical device, and, hence, software

reliability is not linearly dependent on time and is always a probabilistic function of time.

Software reliability estimation is a difficult problem not suitable for the standard

models used in other engineering disciplines for estimating reliability. Software failures

are different from hardware failures. Hardware failures occur due to physical faults

21

resulting from malfunctioning of one or more physical components. On the other hand,

software failures are always design faults, occurring from the misinterpretation of

specifications or incorrect implementation of those specifications. Software failures can

be closely related to fuzzy human errors and are usually difficult to visualize and correct.

A simple replacement of a component causing a failure, as is typically done in hardware

engineering, may not always remove faults and hence may not always result in reliability

growth. Hence, the standard models of hardware reliability cannot be applied for

estimating reliability metrics for software.

Software reliability models are also complicated by the fact that not all software

failures are equally catastrophic. Removing X% faults may not always increase the

reliability by a corresponding X%. Reliability is more often improved when faults present

in most frequently used parts of software are removed. It is often necessary to identify

different failure categories and specify different measurements for each of them. The

main objective in reliability improvement is to remove most frequently occurring faults

[9].

Reliability Metrics

While hardware reliability metrics are dependent on component failures and the

need to replace a component, this approach cannot always be applied to software. Several

metrics proposed in the literature closely relate to software reliability and some of them

are described next [5].

Mean time to failure (MTTF) is defined as the time interval between successive

failures. An MTTF of 100 indicates that the average failure interval is 100 time units. The

22

time units are totally dependent on the system and it can even be specified in the number

of transactions, as is the case of database query systems. For time-based systems, to

ensure that there is no failure within a transaction, MTTF should be at least greater than

response time [5].

System Availability is a measure of the time during which the system is available

over long time periods. It takes into account the repair and restart times for the system.

An availability of 0.99 indicates the system is available 99 out of 100 time units [5].

Probability of failure on demand (POFOD) is defined as the probability that the

system will fail when a service is requested. A POFOD of 0.1 indicates that at least one

out of 10 service requests will fail. POFOD is an important measure for safety critical

systems and should be kept as low as possible [5].

Rate of failure occurrence (ROCOF) is the number of failures occurring in unit

time interval. A ROCOF of 0.02 means 2 failures will occur for every 100 operational

time unit steps [5].

A measure of the number of values tested and the number of inputs causing

failures in each input sub-domain, gives an indication of the confidence for that input

variable. This is particularly important for software with a large number of inputs and

outputs each covering a large range of values [2].

 Because real-time software is used to control hardware events and these events

are prioritized, an important metric would be to find the probability of failure for a given

output variable controlling the event. A lower probability of failure is desired for events

with high priority.

23

Factors Influencing Software Reliability

There are many factors influencing software reliability growth. Increase in

reliability typically results from a change in one or more of these factors. The factors

affecting reliability and their influence are discussed next.

Reliability vs. Cost

Reliability is linearly dependent on cost. Testing software systems to achieve

more reliability is a costly process and a tradeoff has to be chosen between the costs

involved in finding and removing the failures and the costs involved in repairing the

system when the failure occurs in the operating environment. The following graph

demonstrates the relationship between reliability and cost [9].

Figure 3.1: Reliability vs. Cost.

As the graph shows, a higher level of desired reliability requires more testing

effort and consequently costs more. For normal business applications, modest reliability

may be adequate and the failure removal costs may be more than the actual costs of the

failures. However, in real-time software the costs of failures in the operating environment

24

may be very high and hence it is desirable to remove as many faults as possible before

the system is deployed.

Reliability vs. Time

Reliability changes only when the software is modified either during the

development or maintenance phases, and, hence, the time required to achieve the desired

reliability level is proportional to the actual reliability of the software. The following

graph shows the relationship between time and reliability [8].

Figure 3.2: Time vs. Failure Rate.

Software reliability is influenced by fault introduction resulting from new or

modified code, fault removal that occurs during debugging, and the environment in which

the software is used. The failure intensity decreases rapidly during initial test phases, and

this can be attributed to the removal of failures with highest probability of occurrence.

Software does not wear out with time and the quality of software will not change once it

is deployed. Hence, software reliability is not dependent on operational time and the

straight horizontal line at the end of the graph indicates this.

25

Reliability vs. Efficiency

Reliability is often increased by making the systems redundant and by additional

run time checks, thus decreasing the overall use of the system resources. Hence,

efficiency of the system is decreased with increase in reliability. However, in real-time

control software, failure costs are much higher than the total system costs. Because

hardware costs have come down rapidly, sometimes the need to use a resource’s capacity

completely is not as vital.

Reliability vs. Operational Profile

Reliability improvement is largely dependent on the availability of operational

profile that statistically models the patterns in which the system is more likely to be used

in the operating environment. An accurate operational profile tends to bring out most

frequently occurring failures first. However, generating an operational profile is a non-

trivial process and is especially difficult for real-time software.

All the above factors make reliability analysis and growth in real-time software a

difficult process. As reliability is an important issue in real-time systems, an attempt

should be made to increase reliability, which in turn requires the allocations of sufficient

resources.

Improving Reliability

A large number of reliability models are proposed in the literature for improving

the reliability of the software, but there is no single model that can be used in all

situations. Every model is dependent on a set of constraints and assumptions, and not all

of them are valid for every system. The rest of this section gives an overview of some

26

main reliability models that are applicable for quantifying reliability of real time

software.

One of the standard ways for improving software reliability is to use formal

methods for the software development where the implementation of the software can be

traced back to the requirements specification. The entire process can be automated and

the number of remaining faults in the software can be determined directly. The

development of formal specification forces a detailed analysis of the system and leads in

better understanding of the requirements. However, the inherent complexity of formal

methods makes them difficult to use in practice, even for trivial real time systems. Formal

methods may hide problems that users do not understand, and at the same time formal

program proofs can contain errors, resulting in generation of false passes.

Hence other models are proposed in the literature to increase the reliability of

real-time software, each based on some assumptions about the operating environment of

the software. These models can be classified using several criteria.

Based on the time at which reliability assessment is done, these models are

classified into the following two criteria: Reliability growth models and Reliability

models. Reliability Growth Models are applied during the debug phase of the software

development life cycle and are aimed at improving the reliability of the system. They

model repeated testing, failure detection, and correction. These models calculate MTTF

based on the observed failure patterns and help the managers to decide when to release

the final product. Reliability models on the other hand are used during the operational

stage after debugging of the software development and are aimed at assessing the

reliability of the software. An accurate operational profile is required and these models

27

predict MTTF that the users can expect from the system by fitting the failure patterns to

statistical models.

Reliability growth models use feedback data to predict the reliability of the

system, and the predictions are very accurate in most cases. Conversely, Reliability

models use statistical models to predict the future reliability of the system, and, hence,

these models need to be very accurate. The correctness of reliability models depends on

the accuracy of operational profile, which is a difficult task. More courage is needed to

trust the reliability models than the reliability growth models. As generation of an

accurate profile is very difficult in real-time software, in this research reliability growth

models are used to model the characteristics of reliability improvement.

 Based on the data analyzed for predicting reliability, reliability improvement

models can again be classified into two categories- time domain models and input domain

models [3]. Time domain models assess software reliability by calculating the ability of

the software to function properly over time. Input domain models, on the other hand,

assess reliability by calculating the ability of the software to function properly for

different sets of input. Time domain models stress and predict the overall reliability of the

system where as the input domain models provide information relating the input states to

the reliability. Input domain models can be used to thoroughly test the software before its

final release.

Time Domain Models

Reliability in time domain models is defined as the “probability of failure free

operation for a specified amount of time and in a specified environment” [6]. The

predictions here depend on the failure arrival rate, which is assumed to be a random

28

variable in the statistical validation process. The observed failure data are fitted to one of

the statistical models, based on the assumptions of the system’s operating environment,

and the final predictions of software or system reliability are made. These models treat

either the failure interval or the number of failures in the given interval as a random

variable and fit the observed data accordingly. For example, in the Jelinski-Moranda [6]

model, the failure interval is treated as random variable and the failure rate for ith failure

is given by

ϕi = µ(N-(i-1), where µ, N are constants.

In this model, the current failure rate is assumed to be directly proportional to the number

of remaining faults in the system.

The three key elements of reliability measurements in time domain models are

failure rate, time, and testing environment. The definitions of failure and testing

environment are consistently defined to reflect the final customer-operating environment.

However, the time factor may vary and it needs to be defined based on the environment.

There are three ways in which time can be specified for a reliability model- calendar

time, execution time, and logical time.

Calendar time is recorded as the actual failure time with timestamps loosely

related to the calendar dates. However, this measurement cannot be applied to the

systems where there are large variations between successive test steps. Execution time

takes into account only the actual amount of CPU execution time for modeling the

reliability. Execution time cannot be applied to all systems and is not effective when the

majority of the system’s operations are user driven with little CPU execution. Hence,

execution time based reliability models can be applied only to specific subsystems with

29

excessive CPU usage. Logical time is applied to transaction-based systems or to systems

where the tests are time ordered in a logical sequence. As many real-time systems are

event-triggered and operate in a cycle, with each cycle having a number of time steps

with a fixed interval, the focus of this research is on applying calendar-time in reliability

modeling

Though the time domain models have proven to be effective in some practical

applications, they are based on assumptions some of which may be not valid in all

applications. These assumptions include considering time as the basis for determining

failure rate that demands an accurate measurement of time related data, assuming that

reliability is directly dependent upon the remaining faults in the system, assuming that

faults are equally distributed throughout the system, and also assuming that testing is

randomized without any coverage criteria for detecting failure intervals. The time domain

models do not take valid input states into consideration, which are important to determine

when to stop testing.

Input Domain Models

Reliability in input domain models is informally defined as “the probability of

failure free operation for specific input states” [3]. The valid input and output states are

defined and the overall reliability is assessed based on the coverage achieved for the

domains. In Nelson’s Input domain model, system reliability is given by

 R = 1 – f/n;

Here, ‘f’ is the number of inputs producing failures and ‘n’ is the total number of sampled

input states. The input values for each test run can be selected based on a coverage

criterion and techniques like sampling input domains into sub-domains, and random

30

selection to mimic operational profile can be used. The probability of failure for each

sub-domain can be determined pointing out areas requiring additional tests.

Although input domain models provide valuable information for the test process,

they are based on the assumption of random sampling without error correction. For most

systems, this is not a valid assumption as faults are located and removed as soon as a

failure is detected and the system reliability changes once the software is modified. Input

domain models do not take this change into consideration.

Implicit assumptions of this research are that all detected defects are removed and

higher coverage of input domains leads higher confidence of the system. Also, as

exhaustive testing of all the valid input and output states is not practical for large

applications, it is imperative to divide the domain space into sub-domains and apply the

metrics to these sub domains separately. As real-time software is characterized by large

domain space with time constraints, the strengths of both time domain and input domain

approaches can be combined and used for reliability prediction.

31

CHAPTER 4

SOLUTION APPROACH

From the researcher’s point of view, one of the greatest limitations in assessing

the reliability of real-time software is a detailed analysis of the test results. After a careful

study of the existing reliability improvement models, a solution to the problems stated in

Chapter 2 is proposed here.

 As most real-time software is hierarchically organized into different modules,

from here on, the words software and module will be used interchangeably. The solution

approach makes certain assumptions about a software module and the test environment.

They are as follows.

• Every module has some input variables and output variables. Typically in real-

time software, input variables are linked to sensors while output variables control

physical devices and act as hardware triggers.

• Each input/output variable has a data type. Although the number of distinct data

types supported by the system varies, these can be broadly classified into three

types: Integer, Floating Point, and Boolean.

• The domain and accuracy for each variable is specified. This includes the

minimum and maximum values for the variable, and accuracy in case of floating

point variables. The range and accuracy of the variable can be different for

different test runs allowing incremental testing

• The number of test steps for each test run is specified and the software remains

unchanged between successive steps in a test run.

32

• Input values are generated, output values captured, and criteria for determining

exceptions (faults) are specified.

• The response time and time interval between successive test steps, in case of a

simulated environment are specified.

 Our solution approach uses a hybrid scheme that combines time domain and input

domain reliability models, and measures software reliability as a function of the

correctness of input states calculated over time. The domain knowledge of the system

developer is taken into consideration for deriving the metrics. Several metrics modeling

reliability, as defined in Chapter 3, are provided. The proposed metrics are broadly

classified into the following three categories: 1) Domain Percentile bucketing, 2)

Probability results, 3) MTTF results. All other aspects of the system are merely additional

features and are means of efficiently accomplishing these functions.

Domain Percentile Bucketing

Quantitative evaluation of domain testing in real-time systems faces especially

difficult combinatorial problems, as noted in Chapter 2 [2]. One solution to this problem

is to partition the domain space for each input and output variable into percentile sub-

domains, in effect 100 buckets of contiguous values. The partitioning scheme presented

here is termed Percentile Bucketing. Tests can then be executed and evaluated to

determine which input buckets for each input variable are sampled. Similarly, the output

domain can be evaluated to determine if testing produced values covering all output

buckets for each output variable. The domain knowledge of the systems engineer is used

to specify minimum coverage requirement for each input percentile prior to testing,

33

giving higher coverage requirements for error-prone and boundary percentiles. Achieving

the coverage requirements for a bucket is then equivalent to testing for all the possible

values in that bucket and the engineer can concentrate on remaining buckets.

Another related and important measure is buckets with higher percentage of

defects. For each test step, defects are identified based on the exception criteria and are

mapped to the corresponding input buckets. Most of the time, exceptions occur when an

output value falls out of the given range, and, hence, this value cannot be mapped to any

of the output buckets. The coverage values and the error values for each percentile can be

used to infer the behavior of the software for all possible inputs in that percentile.

Bucketing also reduces the number of possible combinations. For the example

given in Chapter 2, real-time software with two input variables will now have 1002 (104)

combinations instead of 1012. Although this is a significant reduction in the problem

space and makes the job of developer much easier, for large systems with hundreds of

inputs with large domains, bucketing cannot reduce the combinatorial problem

sufficiently to make testing all combinations tractable. However, bucketing can be used

to identify defect-prone combinations by saving the bucket value for each input value

when a defect is discovered and associating a counter with each such combination. For

example, if test values from bucket 10 for input 1, bucket 20 from input 2, and bucket 45

for input 3 are associated with multiple defects, then this combination could be

considered error prone. This combination can be used to guide further testing to discover

the point of error causing defects and leveraged when retesting to determine if the error

has been corrected [2].

34

Results from multiple test runs can be leveraged to obtain the percentile coverage

values. However, as the specified domain space for a variable can be different for

different test runs, a partitioning scheme that leverages all the values from multiple runs

uniformly is designed. For every input or output variable, the domain is determined by

calculating the minimum as the minimum of all test run minimums, and the maximum as

the maximum of all test run maximums. In case of floating point values, accuracy is

determined as the maximum of all the test accuracies. This gives the engineer the ability

to execute several independent test runs and then integrate and analyze the test results

only once. The engineer will also be able to see the growth in percentile coverage. The

decrease in the number of error-prone percentiles indicates that defects are being

removed and software reliability increasing.

The formulae for calculating the bucket size and bucket participation are given

next. For every input variable, the size for each bucket is calculated as

 Bucket Size = (Test Max – Test Min) / 100.

Given the bucket size, the range of values for each bucket is calculated as follows.

 Min of Bucket I = Test Min + (I-1) * Bucket size,

 Max of Bucket I = Test Min + I * Bucket size, where 1 <= I <= 100.

The minimum value is included for bucket 1 and excluded for all other buckets, whereas

maximum value is included for all buckets. Given a value x, the bucket that contains x is

calculated as follows.

 Bucket for x = If x is not equal to Test Min

ceil ((x – min) / Bucket Size),

35

 Otherwise

 = 1.

Although percentile bucketing, in its most general sense, can be applied to integer

and floating-point variables, it cannot be applied to Boolean variables. The minimum and

maximum values for every variable are 0 and 1 respectively and hence there are at most

two buckets for all Boolean variables. Also, though input values are controlled, software

can generate out of bound values for output variables and hence two additional buckets 0

and 101 are added for every output variable to signify values falling below minimum and

above maximum respectively.

Probability Metrics

 Analysis of test results is not complete without providing quantitative metrics for

the software. This section gives a description of the metrics that have been designed to

describe various aspects of software.

Reliability Results Describing Output Variable Correctness

An output value is considered as an exception if the value does not satisfy the

specified correctness conditions for that output variable. A test step is considered as a

failure if there exists an exception in at least one output variable. Based on these

assumptions, the following metrics are proposed that describe the software based on the

behavior of output variables.

Probability of an exception in any one test step is the ratio of the number of test

steps producing at least one exception in any output variable to the total number of test

36

steps. This value signifies the correctness of the system for a given number cycles over a

period of time.

Probability of an exception in exactly one output variable in any one test step is

the ratio of total number of exceptions in all output variables to the product of number of

output variables and the number of time steps. This value signifies the confidence in the

system based on all output variables over a period of time.

Probability of an exception in an output variable Oi in any one test step is the

ratio of the number test steps producing exceptions in Oi to the total number of time

steps. This value signifies the reliability of the system based on the reliability of a single

output variable and is important in real time software, where each output value acts as a

trigger for some system operation. Output variables are prioritized and this metric should

be close to zero for outputs with higher priorities.

Reliability Results Based on Valid Input States

All three metrics proposed in the previous section take only valid output states

into consideration and predict the probability of correct system operation based on a

given output state and are completely independent of the input states and input sub-

domains. However, gaining confidence in input sub-domains is equally important, given

the huge domain space of real-time software. The following section details a technique

for computing the reliability of the system based on input percentile bucketing.

This approach is an enhancement of the basic reliability assessment done in input

domain models and involves calculating the probability of selecting each bucket,

determining the failure probability of each bucket, and then calculating the reliability of

the entire system. The steps in this approach are outlined below.

37

For every input variable I,

1. For each bucket bj,

• Assign the probability that bucket bj is selected as

 P (bj) = No. Of values selected in bucket bj / Total number of test steps.

• Assign the probability that bucket bi is a failure as

θ (bj) = No. Of values in bucket bj producing exceptions in at least one output

variable / No. Of values selected for bucket bj for the current test

run.

• Calculate the probability that a bucket bj is selected and is a failure as P (bj) *

θ (bj).

2. The probability that the system fails for input variable I, in any one test step, is the

sum of the failure probabilities for each bucket calculated as

• φi = ∑ P (bj) * θ (bj).

3. The probability that the system succeeds for this input variable in N test steps can be

calculated as

• (1 - φi) N

4. The total reliability of the system considering all the input variables is given by

• (1 - φ 1) N (1 - φ 2) N (1 - φ 3) N ……

This metric gives the overall reliability of the system based on valid input buckets and is

a close measure of the Probability of Failure On Demand (POFOD) defined in Chapter 3.

The term ‘demand’ here reflects the validity of an input state. The intermediary results,

probability of failure associated with a bucket (θ (bj)) can also be used to identify defect-

prone percentiles and can be used to guide further tests.

38

MTTF Results

As time is an important factor in real-time systems, metrics are necessary to

predict Mean Time To Failure (MTTF), which is defined as the time interval between

successive failures. The failure rate should in turn be dependent on input or output states.

The solution proposed extends the basic idea in time-domain reliability models by

leveraging the correctness of output states and also predicts the failure arrival rate when

input values are selected from a bucket.

MTTF is calculated by considering the fact that test cases are run sequentially in a

single test run. The testing time required for a test run with N1 time steps and a time

interval T1 between each test step is N1*T1. The execution time of real time software is

negligible when compared to time interval between successive steps, and, hence, is

ignored. As the model remains unchanged during the testing phase, the failure rate can be

fairly assumed to be uniform through out successive steps in a test run. If we have m

independent test runs for the same module, then the total testing time is calculated as

N1*T1 + N2*T2 + N3*T3 +… + Nm*Tm

Let the number of time steps with at least one exception in any output variable for each

test run be E1, E2, E3… Em respectively. Considering the validity of the output states

throughout the testing time, the total number of failures is given by

E1 + E2 + E3 +… Em.

Fitting this data into the time domain approach, MTTF is the ratio of the total time to the

number of failures occurring in that time and is given by the formula below,

MTTF = (N1*T1 + N2*T2 + N3*T3 +… + Nm*Tm) / (E1 + E2 + E3 +… Em)

For a single test run, this formula turns out to be

39

MTTF = (N1*T1) / E1.

In case of a single test run, each input bucket is also given a MTTF value which

enables the user to determine the approximate time in which the system fails when an

input value in that bucket is selected. The formula for MTTF for a bucket I for any input

variable is given by,

MTTF for a bucket I = (No of values falling in bucket I * Time Interval) / (No Of

values in bucket I producing exceptions in at least one

output variable);

This value cannot be computed in the case of multiple test runs, as all the values

falling in a given bucket may not come from the same test run and the time interval may

be different for different test runs.

40

CHAPTER 5

SOLUTION IMPLEMENTATION

Theoretical work is rarely of practical use until transitioned to commercial

environments. In the case of this research, theoretical results need be transitioned to the

commercial environment via a tool that provides the capability to compute and verify the

theoretical results. The Reliability Analysis Test Tool (RATT) has been developed to

verify the practicality of the results proposed in Chapter 4. RATT analyzes the results

produced from testing real-time software via simulation and provides metrics to assess

domain-testing effectiveness. In addition to this, RATT also provides test suggestions,

based on the domain coverage metrics, to guide further testing. The latter part was done

by another graduate student, Ms. Radhika Turlapati, as part of her thesis. This chapter

provides an overview of the RATT design, the problems encountered during the

development process, and the RATT user interface. A brief description of the tools used

for developing and testing real-time software, MATRIXx
 and MATT is given. An

introduction to the concept of testing real-time systems using simulation is also provided.

Overview of MATRIXx
 and MATT

The environment for this work included MATRIXx
 , a real-time software-

modeling package developed by a Sunnyvale based company called Integrated Systems

Inc., and MATT, a real-time software-testing tool. A brief description of each product is

given next.

41

MATRIXx
 is a product family consisting of the following tools- Xmath,

SystemBuild, AutoCode, DocumentIt, and RealSim. SystemBuild is used to graphically

visualize, model, and simulate hierarchically structured dynamic systems. Xmath is a

mathematical analysis tool used to verify SystemBuild models using simulation.

DocumentIt automatically generates specification documents for SystemBuild models.

AutoCode is used to generate the C or Ada source code from the SystemBuild model for

the target hardware. RealSim is used for rapid prototyping of the generated models and

allows generated code to be run as a simulation before deploying on target system. These

tools allow the control engineer to create graphical models of the system, simulate the

models at various levels, and automatically generate source code implementing the

modeled system. The resulting source code is compiled, linked, and deployed on the

target system [1].

Though MATRIXx
 product family provides comprehensive environment for

developing real-time systems, it lacks the environment for automated testing of

SystemBuild models. Testing tools can generate and run thousands of tests and

automatically detect defects. One such tool used to test real-time software via simulation

is the MATRIXx
 Automated Test Tool (MATT). MATT developed under a NASA

grant at ETSU, implements effective test strategies defined by Dr. Joel Henry and

validated on NASA Wind Tunnel Systems, the X-33, and the International Space Station

[2].

MATT provides a tab-based user interface for configuring test scripts. MATT

currently provides 25 test types to generate test values for the input variables. The user

can set the test min, test max values, and the test type required for each input variable.

42

MATT also allows specifying the number of test steps and the accuracy required for each

input variable. The range and the type of exceptions required for each output variable can

be specified. MATT then generates the input matrix and runs simulation in tandem with

SystemBuild and generates the output matrix. MATT then detects and lists the

exceptions, which are identified as defects. The test scripts and input and output matrices

can be saved as comma separated test case files and can be used later for further analysis.

RATT analyses these test case files and computes the metrics proposed in Chapter 4.

RATT Design

 A top down design approach has been followed during RATT development

process. Figure 5.1 gives the overall system architecture with the major system

components and the classes contained in each of these components.

The system is divided into four different components communicating with each

other using well-defined interfaces. The ‘User Interface’ component contains all the GUI

related classes. The ‘Work Horses’ contains classes used to compute the actual metrics

and the ‘Data Storage’ contains classes used to store all the massive data read from the

files, and also the intermediate data computed using ‘Work Horse’ classes. ‘Utilities’

component contains general classes and data structures that are independent of RATT.

The ‘Work Horses’ and ‘Data Storage’ classes are written in C++ and are designed to be

platform independent. The ‘User Interface’ classes are implemented using MFC and

communicate with the interface provided by ‘Work Horses’. The decision to make ‘Work

Horses’ and ‘Data Storage’ classes independent of ‘User Interface’ enables RATT to be

extended to other platforms by simply plugging in the new ‘User Interface’ component.

43

As the focus of RATT is on computing and saving the proposed metrics, only ‘Work

Horses’ and ‘Data Storage’ classes are described here. The complete class diagram

showing all the classes with relationships and the class diagram for ‘User Interface’

package is given in appendix A.

UserInterface
+ CMainFrame
+ CRATTApp
+ CRATTDoc
+
CAboutDlg
+ rt_CManager

WorkHorses
+ rt_CBucketCoverage
+ rt_CMTTF
+ rt_CProbabilities
+ rt_CTestFilesMngr
+ rt_CTestSuggestions
+ rt_CInputBucketsMTTF
+ rt_CInputBucketsProbabilities

Data Storage
+ rt_CBoolTestType
+ rt_CTestType
+ rt_CTestScript
+ rt_CInputMatrix
+ rt_COutputMatrix
+ rt_CBuckets
+ rt_CInputBuckets
+ rt_COutputBuckets
+ rt_CIntTestType
+ rt_CTestInput
+ rt_CFloatTestType
+ rt_CMatrix
+ rt_CTestOutput
+ rt_CTestCase

Utilities
+ IntMap
+ DoubleMap
+ rt_CException
+ VectorOfBkts
+
+ rt_CTestCaseList
+ mt_EExceptionTypes
+ mt_EDataTypes

Uses

Uses Communicates

Figure 5.1: Package Diagram for RATT

Data Storage Component

The classes involved in ‘Data Storage’ component and the relationships between

them are shown in figure 5.2. A top-down approach is followed for the design of data

storage classes and the requirements originate from the format of test case files.

44

rt_CBoolTestType rt_CIn tTestTypert_CFloatTestType

rt_CMatrix

rt_CInputBuckets

rt_CTestType

rt_COutputBuckets

rt_CTestInputrt_CTestOutput

rt_CInputMatrix rt_COutputMatrix rt_CTestScript

rt_CTestCase

rt_CBuckets

#m_ptrInputBuckets

0..1

#m_ptrTestType

0..1

#m_ptrOutputBuckets

0..1

1

0..1

1

0..1

1

#m_ptrTestInput
0..10..1

1

1

0..1

1

-m_ptrInpu t

0..1

-m_ptrOutput

0..1
-m_ptrTestScript

0..1

1

0..1

1 1

0..1

1
1

0..1

1

1

1

Figure 5.2: Class Diagram for RATT Data Storage Component.

A test case in MATT is defined as a grouping of the user defined test script, the

MATT generated input matrix, and the output matrix generated by testing the model. A

test script in turn contains the number of tests, the test interval, and an array of the input

and output objects. Each of the inputs and outputs will contain a buckets object, apart

from its properties. Every bucket object will have an array of 100 integer values, each

reflecting the number of test values covered in that bucket. In addition, the input buckets

will also have 100 integer values representing the number of exceptions in each bucket.

The test input also contains the corresponding MATT test type object, and this object is

used to calculate further test suggestions. Access to all the data values in all classes is

45

provided through inspector and mutator methods. Methods are also provided to read from

the test case files and populate the required classes.

Work Horses Component

The class diagram with relationships for ‘Work Horses’ component is shown in

figure 5.3.

rt_CInputBucketsMTTFrt_CInputBucketsProbabilities

rt_CBucketCoverage rt_CMTTFrt_CProbabilities

rt_CTestFilesMngr

rt_CTestSuggestions

0..1

1

#m_ptrTestFilesMngr

0..1

1

rt_CManager
(from UserInterface)

0..1

1

#m_ptrBucketCoverage

0..1

1

0..1

1

#m_ptrMTTF

0..1

1

0..1

1

#m_ptrProbabilities

0..1

1

0..1

1

#m_ptrTestFilesMngr

0..1

1

0..1

1

#m_ptrTestSuggestions

0..1

1

Figure 5.3: Class Diagram for RATT Work Horses Component.

There is a centralized manager class that controls all the communication between

the user interface and ‘Work Horse’ classes. The distinct functionalities of RATT

proposed in Chapter 4, the domain coverage results, the probabilities results, and the

MTTF results, are each supported by a class as shown in the diagram. There is one

additional test suggestion class that guides the user to carry out further tests based on the

metrics and is managed by Ms. Radhika. Every Probability and MTTF object will have

an array of pointers to the bucket objects, one each for every input variable of the system.

The type of this bucket object is determined dynamically using Run Time Type

46

Information (RTTI) to obtain bucket coverage, and exception coverage values. As it is

important to read and analyze data from multiple files, a test files manager class is

created that isolates all the operations required for managing file i/o. A Test Case object

is created within the test files manager class every time a file is loaded and a single test

script object is maintained in the test files manager class that leverages the information

gathered from multiple test scripts.

RATT Implementation and GUI

RATT is implemented in Microsoft Visual Studio 6.0 as a single document

application using Microsoft Foundation Classes (MFC) application wizard. The user

interface for RATT is implemented using MFC resource editors. However, a header and a

source file are created for every class in ‘Work Horse’ and ‘Data Storage’ component to

separate interface from implementation details, and also to reuse these classes easily.

Compile time dependencies are removed using forward declarations and this enables

these classes to be used directly by including their header files. Good software

engineering principles are followed wherever applicable to prevent illegal access to data

within classes.

The user interface of RATT uses both mouse and keyboard input for carrying out

the menu options. Shortcut buttons and accelerator keys are also provided for frequently

used operations. The main window is shown in figure 5.4. The client area of the main

window is used only to display the results and is locked for editing by user. A brief

description and a sample illustration of the major menu options are given below.

47

File Menu

 The following selections are available from the file menu: Load, Add, Save, Print,

Print Preview, Print Setup, and Exit. Each selection involves calling the file manipulation

functions within RATT.

Figure 5.4: RATT Main Window.

Load: The Load option pulls up a dialog box as displayed in Figure 5.5. This dialog box

gives the user the ability to select a comma separated Test Case file from the windows

file structure and load into the system. The selected file should be in the same format as a

MATT generated test case file. Load option will remove any of the previous test case

files from the system and eventually clean any data storage objects created for the

48

previous analysis. The loaded file is scanned and the data storage objects are re-

initialized.

Add: The Add option also displays a dialog box similar to the one shown in Figure 5.5

and gives the user the ability to add another test case file to the existing one and get

comprehensive results. The added file is scanned and the data storage objects are

updated. The Add option is not available to the user unless there is at least one file

already loaded into the system.

Figure 5.5: Open Dialog Box.

The maximum number of files that can be added to the system is 10 and can be changed

by modifying the MaxTestCases entry in the system registry under

‘HKEY_CURRENT_USER’.

Save: The save option displays a similar dialog box as in Figure 5.5 and allows the user

to save the results generated using RATT as a comma separated value (CSV) file. This

file can later be loaded into excel type applications for further analysis. RATT allows

three types of files to be saved: file only with reliability metrics and domain coverage

(.rlr), files only with test suggestions (.sug), and files with both reliability results and test

49

suggestions (.rtt). The save option is not available for user selection till the corresponding

results are generated.

Print, Print Preview, and Print Setup: The print options allow the user to set up a

printer, preview the document before printing, and finally print the document.

Exit: The exit option allows the user to close RATT gracefully.

Edit Menu

The Edit menu offers the following standard selections: Copy and Clear Screen.

These selections are mainly aimed at providing the user with a reasonable view of the

results on the screen.

Copy: The ‘Copy’ option allow the user to copy the text in the client area and paste this

into a different application like a notepad for editing the results. The user will not be able

to modify the data in the client area, and this decision is taken to preserve the authenticity

of the results produced by RATT.

Clear Screen: Clear Screen option clears the complete client area and allows the user to

concentrate one item at a time.

Run Menu

The Run menu has the following selections: Get Reliability Metrics, Get Test

Suggestions, and Get Test Suite Suggestions. Selecting an option in this menu triggers

methods in the workhorse classes and the results are computed.

Get Reliability Metrics: This option will trigger RATT to analyze all the files loaded

into the system and then compute reliability and domain coverage metrics. At least one

test file should be loaded before this option can be enabled. The compute methods of

bucket coverage class, probability metrics class and MTTF class are invoked.

50

Get Test Suggestions: The user can select this option to get test suggestions aimed at

improving further tests. As the test suggestions are based on the domain coverage

metrics, this option is not available till the reliability metrics are computed using the ‘Get

Reliability Metrics’ option. Also test suggestions differ in case of multiple files, and,

hence, this option is disabled in case multiple files are loaded.

Get Test Suite Suggestions: Same as ‘Get Test Suggestions’ except that this option is

used only when multiple files are loaded. Please refer Radhika’s thesis [4] for more

information.

Output Menu

 The Output menu has selections that allow the user to view results on the client

area. However, these results are available only after loading files and generating RATT

results. The following selections are available here: Percentiles Coverage, Exception

Coverage, MTTF, Probability Results, Test Suggestions, and Summary. Each of these

selections may in turn pop up another sub-menu. The results can also be saved to a file

using one of the File->Save options. All these options will use the inspector functions of

the workhorse classes via manager class to display the results. Figure 5.6 gives a sample

output generated by loading a single file ‘Circuit9.cas’.

Percentile Coverage: This option allows the user to print the top 10 buckets with

LEAST coverage of test values for every input and output variable.

Exception Coverage: When this option is selected, the top 10 buckets with highest

number of exceptions for every input variable are printed on the screen. Combinations of

input buckets producing highest number of exceptions are also printed.

51

Figure 5.6: RATT Window with Results.

MTTF: The system MTTF is printed in milliseconds on the screen. In case of a single

file, input buckets with highest MTTF are also printed. The later is not available when

multiple test case files are loaded, as each file may have a different test time interval and

all the values in the bucket may not come from the same test case file.

Probability Results: The probability metrics proposed in Chapter 4 are printed when this

option is selected.

Summary: This option is provided to allow the user to print all the metrics using one

mouse click instead of selecting every item in the Options menu.

52

CHAPTER 6

RESULTS

 Software metrics should quantify the software characteristics and modifications to

the software should be reflected in the metrics. In this chapter, the results of the test

analysis produced by RATT are presented and analyzed. Analysis determines the

effectiveness of the metrics proposed in chapter 4 in evaluating the effectiveness of

testing real-time software.

 The results presented in this chapter are produced by testing the

ASCS_SCALING model used in controlling NASA’s wind tunnel. This is a simple

model with 8 inputs and 4 outputs. The model has been tested recursively before and after

updates using MATT. The test case files produced by MATT for each test run are then

fed to RATT to obtain reliability metrics. The sequence of the steps involved and the test

parameters are as follows.

• Three independent test case files are generated without changing the model.

Different input values are generated for each test run without changing the

attributes of the outputs.

• Fourth test case file is generated after a minor modification to the software

model. The modifications here include changing limits of an output variable,

changing the exception criteria for at least one output variable.

• Fifth test case file is generated after a major update to the model resulting in a

drastic reduction of the number of exceptions.

• The number of time steps in each test-run is set to 1000.

53

• The time interval between each time step for all the test-runs is set to 1000

milliseconds.

The generated test case files are analyzed using RATT, results saved, and changes

in the metrics after loading each test case are represented graphically. For each test run,

all the previously generated test case files are added to RATT for tracking the test

progress and modeling reliability growth.

Domain Percentile Bucketing

Percentile Coverage

Figure 6.1 shows the graph for the coverage values achieved for the first ten

buckets of the fourth input variable. The four columns for each bucket represent the

number of values falling in that bucket after each of the four test-runs.

Bucket Coverage Improvement

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Input Percentiles

N
o

of
 H

its

Test Run 1
Test Run 2
Test Run 3
Test Run 4

Figure 6.1: Bucket Coverage

The coverage improvement for every bucket from successive test runs is

additively modeled and the user can easily keep track of the least covered buckets over

54

multiple test runs. Further tests can be concentrated in any uncovered buckets and

additional tests run to increase domain coverage. If it can be assumed that the state of

each bucket correctly represents the state of the system for all possible values in that

bucket, then percentile bucketing reduces the number of possible states to K * 100, where

K is a constant. The constant ‘K’ represents the desired level of coverage for every

bucket set by software managers at the beginning of the test phase. For ASCS_SCALING

model, the total number of values in the domain for fourth input variable with a minimum

of 0, maximum of 100, and accuracy of 10 is (100 –0) * 1010. If the required coverage for

every bucket is 100 values, percentile bucketing reduces the total number of values to be

tested from 1012 to 104. Although the basic assumption is not valid for all real-time

software, percentile bucketing still allows the user to keep track of the number of values

in each sub domain and is much better than the brute force method.

Exception Coverage

Figure 6.2 shows the graph for the exceptions uncovered for the first ten buckets

of the fourth input variable during four successive test runs. Exceptions in each bucket

over different test runs are represented and the user can easily keep track of the current

number of exceptions in each bucket, which in turn is an indication of the confidence of

the user in the probability of success when a value is selected in that bucket. The graph

shows that exceptions have increased during the first three test runs and more exceptions

are found in buckets 4,6, 8, and 10. Based on the exceptions uncovered, the model is

modified after the third test run and tested again in the fourth test run. The exceptions are

reduced over all the buckets and the decrease is more significant in buckets 4 and 6.

55

Percentile bucketing helps identify the input sub domains producing a higher

number of exceptions and allows the user to concentrate further tests within these faulty

buckets to pinpoint the exact point of error. Instead of keeping track of distinct input

values producing exceptions, a range of values producing exceptions is identified. As it is

assumed that exceptions are linearly distributed over a given bucket, each bucket is

assigned a failure probability. The failure probabilities for each bucket are listed in the

reliability file saved by RATT. This file can be loaded into a spreadsheet application, and

then buckets with higher failure probabilities can be identified by sorting. The software is

updated accordingly, and the old test cases are run again (regression testing). If the

number of exceptions uncovered after the update is less than the number of exceptions

before the update, it can be inferred that the updates are improving the software

reliability.

Exception Coverage

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9 10

Input Percentiles

N
o

O
f E

xc
ep

tio
ns

Test Run 1
Test Run 2
Test Run 3
Test Run 4

Figure 6.2: Exception Coverage

56

Hence, the graphs not only allow the user to identify defect prone sub domains but also

allow the user to keep track of the test progress after software updates over multiple test

runs.

Input Bucket Combinations

The input bucket combinations producing highest number of exceptions for the

first test run of ASCS_SCALING model are shown in figure 6.3. Each row indicates the

bucket number for every input variable producing exceptions. Only the top 10-bucket

combinations producing exceptions are stored and displayed. The bucket combinations

provide important information and can improve testing.

Figure 6.3: Input Bucket Combinations

The combinatorial problem discussed in Chapter 3 is reduced drastically. The

total number of possible input combinations for ASCS_SCALING model with 8 inputs

each taking values from 0 to 100 with a precision of 10 decimal places is (1012) 8, i.e.

57

1096. The number of combinations with percentile bucketing is reduced to 1008, i.e.

1016.Although the combinatorial number is reduced by a large factor, this number can

still be very high for large real-time systems. However, only combinations producing

defects are reported by RATT allowing the user to tackle the problem by divide and

conquer rule.

Quantitative Metrics

Reliability Results Based on Output Variable Correctness

The graph shown in figure 6.4 models, the changes to the probability of an

exception in any one time step during successive test runs.

Prob Of System Exception

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

No Of Test Runs

Pr
ob

ab
ili

ty
 o

f S
ys

te
m

Ex

ce
pt

io
n

Prob Of Exception

Figure 6.4: Probability of an Exception in any One Time-Step

The probability of an exception is increased during the first three test runs and this

can be attributed to the fact that more errors are uncovered with rigorous testing. The

update is reflected in the fourth test run, where the number of exceptions has reduced.

The amount of decrease in the curve is directly proportional to the quality of the update to

58

the model. A larger decrease here means that the update was a major one in the desired

direction, which is improving reliability. As such, the graph also clearly and correctly

indicates that the first update after the third test run is a minor one compared to the

update after the fourth test run. As the metric changes rapidly both by uncovering more

errors and also by model updates, the model has to be tested until the metric is stabilized,

i.e. the curve becomes linear over successive test runs.

The graph shown in figure 6.4 models, the changes to the probability of an

exception for every output variable in any one time-step during successive test runs.

Output Variables

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

1 2 3 4 5
Test Runs

Pr
ob

ab
ili

ty
 o

f E
xc

ep
tio

n
in

 a
n

ou
tp

ut
 v

ar
ia

bl
e Prob Of Excp in Output 1

Prob Of Excp in Output 2
Prob Of Excp in Output 3
Prob Of Excp in Output 4
Prob of Excp in any output

Figure 6.5: Probability of an Exception in an Output Variable in any Time-Step

The four curves in the graph show ways in which probabilities of an exception

changes for each of the four output variables. The bold curve in red shows the average of

all the four curves and gives the probability of an exception in exactly one output variable

in any one time step. As the graph indicates, the probability of an exception in output

variable 1 changes rapidly and indicates instability in this output. The graph is useful in

predicting the stability of the system based on each individual output variable and points

59

out potential problem output states. This is important in systems where the outputs are

prioritized. Lower probabilities should be achieved for outputs with higher priorities.

Reliability Results Based on Input Variable Correctness

Figure 6.6 shows the graph reflecting changes to the reliability of the system over

all time steps based on valid input states. Only results from the first four test runs are

shown in figure 6.6, as the value from the fifth run is much higher and cannot be

interpolated in this graph. The value from the fifth test run is shown in figure 6.7.

System Reliability

0
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008

1 2 3 4

Test Runs

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 o
ve

r
al

l t
im

e
st

ep
s

Series1

Figure 6.6: Probability of System Success Over all Time Steps (4 Test Runs)

The results obtained closely model the theoretical bathtub reliability graph shown

in figure 3.1. The graph shows that reliability falls as more exceptions are detected and

increases as the software is updated correctly. The results are based on the validity of all

possible input combinations and greatly reduce the effort of the user in keeping track of

the valid and invalid input states. This metric is also closely related to Probability of

Failure On Demand (POFOD) defined in Chapter 2. A lower reliability value is an

indication of two related concerns:

60

• Not Enough values have been tested in all buckets of all input variables.

More testing without changing the model can improve this figure provided

further test runs results in more successes than failures.

• The model is very poor and needs modifications.

However, in either case the curve should become linear over successive test runs

before making a decision. The curve clearly shows the reliability growth over multiple

test runs.

System Reliability

0

0.05

0.1

0.15

0.2

1 2 3 4 5

Test Runs

Sy
st

em
 R

el
ia

bi
lit

y

System Reliability

Figure 6.7: Probability of System Success over all Time Steps (5 Test Runs)

MTTF Results

Figure 6.7 shows the graph reflecting changes to the System Mean Time To

Failure (MTTF). As the graph shows, more exceptions are uncovered during the first

three test runs, and this reduces the MTTF value. However, upgrades to the model

increase MTTF, and the amount of increase depends on the quality of the update. MTTF

for individual buckets for every input variable are also listed in the RATT files and

61

provide useful information about the next failure interval when values from that bucket

are selected. From the graphs, it can be concluded that MTTF growth is correctly

modeled by the proposed metrics, and MTTF changes as the software is changed. MTTF

gives useful information about the occurrence of next failure. For transaction based real-

time systems the sum of response time and recovery time should be less than MTTF for

uninterrupted operation.

System MTTF

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5
Test Runs

M
TT

F(
M

ill
i S

ec
on

ds
)

Mean Time To
Failure

Test Interval = 1000 m

Figure 6.8: System Mean Time To Failure (MTTF)

The results shown in this chapter indicate that the domain coverage metrics

provide valuable information to the user for uncovering defects, and the reliability

metrics correctly describe the software under test and change as more defects are

uncovered or software is modified. While the former is useful from a developer point of

view, the latter is useful from the managerial perspective. Managers can pre-assign values

for all the reliability metrics and the development process continues until these metrics

are achieved. We have not only proposed reliability metrics in this project but also

verified the feasibility of computing these metrics and the practical applicability of the

62

metrics by testing the results on models used in controlling NASA’s wind tunnel. While

MATRIXx
 and MATT solves the first three steps in real time software development,

RATT solves the final step of analyzing the test results and producing quantitative

metrics describing the software.

Finally, RATT is proposed to be used within Boeing for improving the test

process and evaluating the models to be developed for NASA. At the same time, RATT

is also proposed to be used by NASA’s Independent Verification and Validation Center

for evaluating the product delivered by Boeing. RATT is also proposed to be used within

other organizations such as Allied signal and Sperry for improving the test process in the

development of real-time control models. In essence, RATT will be used as a standard for

assessing the quality of real time software produced via simulation.

63

CHAPTER 7

LIMITATIONS AND FUTURE WORK

This chapter provides an overview of the current limitations of the reliability

metrics and also provides an insight to improvements that can be achieved. Features that

can be implemented in RATT to make it more efficient and robust are also discussed.

One of the major limitations of the input based reliability metric is that the basic

assumption that exceptions are linearly distributed over a given input bucket has to be

valid. This limitation is particularly not valid when the input range is very large and also

for control systems with discrete input points. One technique of overcoming this

limitation includes testing incrementally by taking small ranges at a time. Another

limitation of system reliability metric is that though the system reliability reaches one

when there are no exceptions, the metric values fall rapidly when even a very small

number of exceptions are uncovered. It can be attributed to the fact that multiplication of

small floating-point numbers makes the product decrease rapidly. This might prevent

managers from gaining confidence in the system based on a smaller system reliability

value. Hence, the managers should be cautious in assigning a target value prior to testing

or else the specified value may never be reached.

Currently MTTF metrics for individual input buckets are not provided when

multiple test case files are loaded into RATT. The reason for this is the fact that the time

interval between time-steps may be different for different test runs. MTTF for individual

buckets are useful in predicting the failure interval when an input value in a bucket is

selected. One way of obtaining MTTF for individual buckets is to average the time

64

intervals from all the test case files and apply the same calculations as in a single test case

file. However the effectiveness of computing the average has yet to be analyzed with the

help of a domain expert. Another improvement to the domain coverage metrics is the

ability to predict the combinations of input buckets producing the highest number of

exceptions. This can be achieved by applying pattern matching to the currently reported

input bucket combinations. Reliability growth models based on random variable

sampling can be studied in more depth as well, and applied to the current metrics by

incorporating the operational profile into testing.

Further improvements to RATT could improve efficiency in computing the

current metrics and also port RATT to other operating systems (i.e. Sun Solaris). The

current design allows the development and integration of a new user interface component

easily and hence RATT can be ported to other platforms as required. One feature that can

be included in RATT is the ability to generate and display graphs from the user interface.

Although graphs can be generated currently by loading RATT files into spreadsheet

applications, incorporation into RATT would be a nice feature for the user.

In conclusion, the two goals of this project have been achieved: by providing

metrics to quantify real-time software and by verifying the feasibility, and practical

applicability, of the results by testing on real-time control models. More importantly, the

limitations of the metrics are also identified to avoid any inappropriate applicability of

the same to all real-time control systems.

65

BIBLIOGRAPHY

66

BIBILIOGRAPHY

[1] Henry, J., and Patterson-Hine, A., “An Effective Strategy for Testing of Real

Time Software”, International Symposium on Software Testing and Analysis,

Portland, Oregon, August 21-24, 2000

[2] Henry, J., Koneru, N., Turlapati, R., "Quantitative Evaluation of Domain

Testing", Testing Computer Software, June 18-22, 2001, Accepted for publication

 [3] MATT User Guide [On-line] Available from:

http://cscidbw.etsu.edu/matt/docs/matt_userguide/matt_userguide.htm

[4] Turlapati, R., “Leveraging Test Measurements into Proposing Additional Domain

Tests”, ETSU Master’s thesis, 2001

 [5] J.D. Musa, A. Iannino, Kazuhira Okumoto, “Software Reliability: Measurement,

Prediction, Application” New York: McGraw-Hill, 1987.

[6] Jeff Tian, “Integrating time domain and input domain analyses of software

reliability using tree-based models”, IEEE Transactions on Software Engineering

Dec 1995 v21 n12 p945 (14)

[7] Ricky W. Butler George B. Finelli, “ The infeasibility of quantifying the

reliability of life critical real time software”, Available from:

http://shemesh.larc.nasa.gov/fm/paper-nonq/nonq-tse.html

[8] Reliability: Embedded Systems, Available From:

http://www.cs.cmu.edu/~koopman/des_s99/sw_reliability/#definition

[9] Software Reliability, Available From:

http://www.comp.lancs.ac.uk/computing/users/tam/CS231/slides-18/index.htm

67

[10] Phyllis G. Frankl, Richard G. Hamlet, Bev Littlewood, Lorenzo Strigini,

“Evaluating testing methods by delivered reliability”, IEEE Transactions on

Software Engineering August 1998 v24 n8 p586 (16)

[11] Gutjahr, Walter-J, “Partition testing vs. random testing: the influence of

uncertainty”, IEEE Transactions on Software Engineering September1999 v25 n5

p661 (15)

[12] Norman F. Schneidewind, “Reliability Modeling for Safety-Critical Software”,

IEEE Transactions on Reliability, August 1997 v46 n1

68

APPENDIX: RATT High-Level Class Diagram

rt_CMatrix
(from Data Storage)

CMainFrame
(from UserInterface)

CRATTView
(from UserInterface)

CAboutDlg
(from UserInterface)

CRATTApp
(from UserInterface)

rt_CFloatTestType
(from Data Storage) rt_CBoolTestType

(from Data Storage) rt_CIntTestType
(from Data Storage)

rt_CBuckets
(from Data Storage)

rt_CException
(from Utilities)

rt_COutputBuckets
(from Data Storage)

mt_EExceptionTypes
(from Utilities)

rt_CTestType
(from Data Storage)

mt_EDataTypes
(from Utilities)

rt_COutputMatrix
(from Data Storage)

rt_CInputMatrix
(from Data Storage)

rt_CTestCase
(from Data Storage)

0..1

1

-m_ptrInputMatrix
0..1

1

0..1

1

-m_ptrOutputMatrix

0..1

1

rt_CTestOutput
(from Data Storage)

0..1

1
#m_ptrOutputBuckets

0..1

1

1

1

#m_iExceptionType
1

1

1

1

#m_iDatatype

1

1

rt_CBucketCoverage
(from WorkHorses)

0..1

1

-m_ptrCurrentOutputMatrix
0..1

1

0..1

1

-m_ptrCurrentInputMatrix

0..1

1

rt_CTestFilesMngr
(from WorkHorses)

CRATTDoc
(from UserInterface)

rt_CTestSuggestions
(from WorkHorses)

0..1

1

#m_ptrTestFilesMngr

0..1

1

rt_CProbabilities
(from WorkHorses)

rt_CTestInput
(from Data Storage)

0..1

1

#m_ptrTestType
0..1

1 0..1

1

#m_ptrTestInput
0..1

1
1

1
#m_iDataType

1

1

rt_CInputBucketsProbabilities
(from WorkHorses)

rt_CTestScript
(from Data Storage)

0..1

1

-m_ptrFinalTestScript

0..1

1

0..1

1

-m_ptrCurrentTestScript
0..1

1

0..1

1

-m_ptrTestScript

0..1

1

0..1

1

#m_ptrFinalTestScript
0..1

1

0..1

1

-m_ptrFinalTestScript

0..1

1

rt_CManager
(from UserInterface)

0..1

1

#m_ptrBucketCoverage
0..1

1

0..1

1

#m_ptrTestFilesMngr

0..1

1

0..1

1

+m_ptrManager

0..1

1

0..1

1

#m_ptrTestSuggestions

0..1

1

0..1

1

#m_ptrProbabilities

0..1

1

rt_CInputBuckets
(from Data Storage)

0..1
1 #m_ptrInputBuckets

0..1
1

0..1

1

#m_ptrInputBuckets
0..1

1

rt_CMTTF
(from WorkHorses)

0..1

1

#m_ptrFinalTestScript

0..1

1

0..1

1

#m_ptrMTTF
0..1

1

rt_CInputBucketsMTTF
(from WorkHorses)

0..1

1
#m_ptrInputBuckets

0..1

1

69

APPENDIX (cont’d)

rt_CManager

CRATTDoc

0..1

1

+m_ptrManager

0..1

1

CAboutDlg

CMainFrame CRATTView Uses

CRATTApp

Uses
Uses

RATT User Interface classes

70

VITA

NARENDRA KONERU

Personal Data: Date of Birth: June 8, 1978
 Place of Birth: Hyderabad, INDIA

Education: Bala Bharathi High School, Hyderabad, India
 St. Anthony’s Junior College, Hyderabad, India
 University College of Engineering, Osmania University,

 Hyderabad, India; Computer Science, B.E., 1999
 East Tennessee State University, Johnson City,

 Tennessee; Computer Science, M.S., 2001

Professional Experience: Software Intern, ANURAG, DRDO,

 Hyderabad, India, 1998
 Software Engineering Intern, 3CX,

 San Jose, 2000
 Graduate Assistant, East Tennessee State University,

 Johnson City, Tennessee, 1999-2001

Publications: Henry J., Koneru N., Turlapati R., "Quantitative

Evaluation of Domain Testing", Testing Computer
Software, June 18-22, 2001, Accepted for publication

Nominated for Best Graduate Student Award, 1999-2000. Honors and Awards
Outstanding Scholastic Achievement Award, East
 Tenessee State University, 1999 - 2000 and 2000-2001.

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2001

	Quantitative Analysis of Domain Testing Effectiveness.
	Narendra Koneru
	Recommended Citation

	tmp.1358118723.pdf.MOJ_s

