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ABSTRACT

Double Domination of Complementary Prisms

by

Lamont Vaughan

The complementary prism of a graph G is obtained from a copy of G and its comple-

ment G by adding a perfect matching between the corresponding vertices of G and

G. For any graph G, a set D ⊆ V (G) is a double dominating set (DDS) if that set

dominates every vertex of G twice. The double domination number, denoted γ×2(G),

is the cardinality of a minimum double dominating set of G. We have proven results

on graphs of small order, specific families and lower bounds on γ×2(GG).
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1 INTRODUCTION

There are several real-life applications that can be modeled with graph theory.

For example, it can be used if a company wants to minimize the number of computers

for a backup network or find the most cost effective way to route airplanes. Using

graph parameters, such as domination, we can model these real-life problems.

A graph G is an ordered pair (V (G), E(G)) consisting of two sets. The set V (G)

is called the vertex set, and the set E(G) is called the edge set. Two vertices u and

v are said to be adjacent if there is an edge between the two. This edge is denoted as

uv, and u and v are called neighbors. The order of a graph G, denoted as |V (G)|, is

the cardinality of V (G). For the purposes of this paper, we will ignore graphs with

loops, an edge between one vertex, and multiple edges; having more than one edge

between two vertices. Also, we will omit graphs where the edge uv differs from vu,

known as digraphs. A trivial graph is a graph with no edges. An isolated vertex,

or an isolate, is a vertex of graph that has no neighbors. The degree of a vertex in

a graph, denoted as degv(G), is the number of vertices in G that are adjacent to v.

The open neighborhood of a vertex v ∈ G is N(v)= {u ∈ V (G)|uv ∈ E(G)}, and

the closed neighborhood of a vertex v ∈ G is N [v]={v} ∪ N(v). A leaf of a graph

is vertex of degree one, and the vertex adjacent to a leaf is called a support vertex.

The complement of a graph G, denoted G, is a graph with all the vertices of G and

uv ∈ E(G) if and only if uv /∈ E(G).

There are some specific families of graphs that will be discussed. For example, a

complete graph or clique, Kn, is a graph on n vertices where every vertex of Kn is

adjacent to every other vertex of Kn. In other words, the graph Kn has all possible

8



edges. A path, denoted by Pn, is a graph G whose vertices can be ordered in a way

that two vertices are adjacent if and only if they are consecutive in the ordered list.

A cycle, denoted by Cn, is a graph with the |V (G)| = |E(G)| and for each vertex the

degv(G) = 2. Similar to the path, for a cycle, the set V (G) is ordered and two vertices

u and v in the cycle are adjacent if and only if {u, v} ⊆ V (G). A wheel, denoted Wn,

is a graph composed of Cn−1 ∪ K1 where every vertex of Cn−1 is adjacent to K1. A

star is a connected graph with no cycles consisting of a K1 graph and every vertex

of G − K1 has degv(G) = 1.

A subset of vertices D in V (G) is a called a dominating set if every vertex of

V \ D is adjacent to a vertex of D. The domination number of a graph G, denoted

as γ(G), is the cardinality of a minimum dominating set of G. A dominating set with

cardinality γ(G) is a γ(G)-set. A total dominating set, or TDS, is a set of vertices

T where every vertex of G is adjacent to a vertex of T . Similar to domination, the

total domination number of a graph G, denoted by γt(G), is the cardinality of a

minimum total dominating set of G. A total dominating set with cardinality γt(G)

is a γt(G)-set. Note that only graphs with no isolates will have a total domination

number because a vertex is not adjacent to itself. For a graph G, a set D ⊆ V (G) is

a double dominating set (DDS) if that set dominates every vertex of G twice. Note

that every vertex dominates itself and its neighbors. The double domination number,

denoted γ×2(G), is the cardinality of a minimum double dominating set of G. A DDS

with minimum cardinality is called a γ×2(G)-set. Again the graph G can have no

isolates for γ×2(G) to be defined.

The Cartesian Product of two graphs G and H, G�H, has a vertex set of V (G)×
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V (H). The edges of G�H are formed by replacing each vertex in G with a copy of

H and replacing each vertex of H with a copy of G. Now, given two graphs G and

H and subsets A ⊆ V (G) and B ⊆ V (H), the complementary product, denoted

G(A)�H(B) has the vertex set V (G) × V (H). The edge set is defined as follows:

There is an edge between the vertices (gi, hj) and (gk, hl) if one of the following holds

[2]:

(1) i = k, gi is in A and there is an edge between hj and hl

(2) or if i = k, gi is not in A and there is no edge between hj and hl

(3) if j = l, hj is in B and there is an edge between gi and gk

(4) or if j = l, hj is not in B and there is no edge between gi and gk.

More simply, the complementary product is a graph on V (G)×V (H) vertices and for

a vertex in G, we replace that vertex with a copy of H if it is in A and a copy of H if it

is not in A. For a vertex in H, we replace that vertex with a copy of G if it is in B and

a copy of G if it is not in B. See Figure 1 for an example. We have finally come to the

type of graph that is the focus of this paper, the complementary prism, a special case

of the complementary product G�K2(S) where |S|=1. The complementary prism

of a graph G, denoted as GG, is obtained from the graph G ∪ G by adding a perfect

matching between the corresponding vertices of G and G. For examples, see Figures

2 and 3. We note that the Petersen Graph is the complementary prism C5C5.

10



Figure 1: Complementary Product

Figure 2: Complementary Prism
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Figure 3: The Petersen Graph C5C5
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2 MOTIVATION

In this paper, we will explore double domination in complementary prisms. Sev-

eral earlier results have been proven by Haynes, Henning, Slater and Van Der Merwe

[3] that introduce the complementary prism and discuss parameters such as vertex

degree, chromatic number, domination and total domination. We list them here. The

first results on domination of the complementary prism are proven for specific families

of graphs, followed by graphs or small order.

Proposition 2.1 [3]

(a) If G = Kn, then γ(GG) = n.

(b) If G = tK2, then γ(GG) = t + 1.

(c) If G = Kt ◦ K1 and t ≥ 3, then γ(GG) = γ(G) = t.

(d) If G = Cn and n ≥ 3, then γ(GG) = d(n + 4)/3e.

(e) If G = Pn and n ≥ 2, then γ(GG) = d(n + 3)/3e.

Proposition 2.2 [3]

Let G be a graph of order n. Then,

(a) γ(GG) = 1 if and only if G = K1.

(b) γ(GG) = 2 if and only if n ≥ 2 and G has a support vertex that dominates V or

G has a support vertex that dominates V .

Next, there are general upper and lower bounds for dominating GG.

Proposition 2.3 [3]

For any graph G, max{γ(G), γ(G)} ≤ γ(GG) ≤ γ(G) + γ(G).

13



Lastly, for domination we have a characterization of graphs where the domination

number of the complementary prism equals the domination number of the graph. A

subset P of the vertices of G is called an open packing if the open neighborhoods of

vertices of P are pairwise disjoint [3].

Theorem 2.4 [3]

A graph G satisfies γ(GG) = γ(G) ≥ γ(G) if and only if G has an isolated vertex or

there exists a packing P of G such that |P | ≥ 2 and γ(G − P ) = γ(G) − |P |.

The paper then transitions to total domination and again presents results about

specific families of graphs.

Proposition 2.5 [3]

(a) If G = Kn, then γt(GG) = n.

(b) If G = tK2, then γt(GG) = n = 2t.

(c) If G = Kt ◦ K1 and t ≥ 3, then γt(GG) = γt(G) = t.

(d) If G ∈ {Pn, Cn} with order n ≥ 5, then

γt(GG) =





γt(G) if n ≡ 2 (mod 4)
γt(G) + 2 if G = Cn and n ≡ 0 (mod 4)
γt(G) + 1 otherwise.

Results for graphs with small order and general bounds for γt(GG) are proven next

in the paper, as they were with domination.

Proposition 2.6 [3]

Let G be a graph of order n ≥ 2 with |E(G)| ≥ |E(G)|. Then,

(a) γt(GG) = 2 if and only if G = K2.
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(b) γt(GG) = 3 if and only if n ≥ 3 and G = K3 or G has a support vertex that

dominates V or G has a support vertex that dominates V .

Proposition 2.7 [3]

If G and G have no isolated vertices, then max{γt(G), γt(G)} ≤ γt(GG) ≤ γt(G) +

γt(G).

The final result in this section comes from [3]. It is a characterization of the graphs

G where γt(G) ≥ γt(G) and G and its complementary prism GG have equal total

domination numbers.

Theorem 2.8 [3]

Let G be a graph such that neither G nor G has an isolated vertex. Then, γt(GG) =

γt(G) ≥ γt(G) if and only if G = n
2
K2 or there exists an open packing P = P1 ∪ P2

in G satisfying the following conditions:

(i) |P | ≥ 2;

(ii) P1 ∩ P2 = ∅;

(iii) if P1 6= ∅, then P1 is a packing in G;

(iv) if P1 = ∅, then |P | ≥ 3 or G[P ] = K2;

(v) γt(G − N [P1] − P2) = γt(G) − 2|P1| − |P2|.

Suppose that a network of computers needs to be designed so that each computer

is backed up by two special computers and the most cost-effective way to model

the computer connection has the structure of the complementary prism. Herein lies

the motivation for this thesis. We will prove results for the double domination of

the complementary prism similar to the ones presented above in this chapter on
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domination and total domination. In particular, we study double domination of

complementary prisms where γ×2(GG) is small, for specific families of graphs such

as cycles and paths, establish upper and lower bounds for double dominating all

complementary prisms and give examples of graphs where γ×2(G) = γ×2(GG).
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3 RESULTS

In this section, we present results on the double domination number of comple-

mentary prisms. We begin with a key observation on double domination regarding

leaves and an upper bound on the double domination number of complementary

prisms of cycles.

Observation 3.1 If D is a double dominating set of a graph G, then D contains all

the leaves and support vertices of G.

Theorem 3.2 Let n ≥ 5 and if G = Cn, then γ×2(GG) ≤ 2 + γ×2(G).

Proof. The result is easily verified for n = 5. Therefore, assume that n ≥ 6 and let D

be a γ×2(Cn)-set such that there exists two vertices vi,vj 6∈ D. Since D is a γ×2(Cn)-

set we will two have disjoint paths containing vi and vj, then distG{vi, vj} ≥ 3.

Consider the vertices {vi−1, vi+1, vj−1, vj+1} ∈ D, and observe that in G each ver-

tex {vi−1, vi+1, vj−1, vj+1} is dominated exactly once by D. Now notice in G, that

vi will dominate G − {vi−1, vi+1} and vj will dominate G − {vj−1, vj+1}. Therefore,

D∪{vi, vj} forms a double dominating set of GG and hence γ×2(GG) ≤ 2+γ×2(G). �

Next we give the domination number of GG when G is a star.

Theorem 3.3 If G a star with order n ≥ 3, then γ×2(GG) = n + 1.

Proof. Let G be a star with order n ≥ 3. First, we show γ×2(GG) ≤ n + 1. Let D

be a γ×2(GG)-set. Since G is a star, then the support vertex v in G is an isolated
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vertex v in G and a leaf in GG. Therefore, by Observation 3.1, {v, v} ∈ D. Denote

the n−1 leaves of G by {u1, u2, ..., un−1} and notice that they are dominated once by

v. Since G is a star, the corresponding leaf vertices in G will form a complete graph

on n − 1 vertices in G. Consider the set {u1, u2, ..., un−1} ∪ {v, v}. This set forms

a double dominating set of GG and hence, γ×2(GG) ≤ n + 1. Now we must show

that n + 1 ≥ γ×2(GG). Previously, it has been shown that {v, v} ⊂ D. We must at

least dominate the n − 1 leaf vertices of G and double dominate their corresponding

vertices in G. However, to do this we must have at least n−1 vertices because the set

L of leaves of G is independent in GG and no pair of them have a common neighbor

in GG. In other words, L is a packing in GG and needs at least n − 1 vertices to

dominate it. Therefore n − 1 + 2 = n + 1 ≤ γ×2(GG) and γ×2(GG) = n + 1. �

Theorem 3.4 If G=Kn, then γ×2(GG) = 2n.

Proof. Let G=Kn and recall that to double dominate a leaf we must use that vertex

and its neighbor. Since G is a complete graph, then G will be a set isolated vertices.

This makes all n vertices of G leaves in GG. Therefore, we need at least 2n vertices to

double dominate GG and 2n vertices will double dominate GG, thus γ×2(GG) = 2n. �

Next we will show an upper bound for double domination of the complementary

prism of a path and a wheel. Recall that a path is a graph G whose vertices can be

ordered in such a way that two vertices are adjacent if and only if they are consecutive

in the ordered list.

Theorem 3.5 Let G be a path and n ≥ 4, then γ×2(PnP n) ≤ γ×2(Pn−2) + 2.

18



Proof. Let G be a path and n ≥ 4. Let D be a γ×2(Pn−2)-set for G \ {u, v} where

u and v are the two ends of the path. Next, in P n take u and v. This double

dominates u and v in G along with all the remaining vertices in G and D ∪ {u, v}

double dominates PnP n. Therefore γ×2(PnP n) ≤ γ×2(Pn−2) + 2. �

Theorem 3.6 If G is a wheel of order n, then γ×2(GG) ≤ n + 1.

Proof. Let G be a wheel of order n and consider GG. Since the center vertex v of G

is adjacent to every other vertex of G, it is an isolate in G and a leaf in GG. There-

fore, by Observation 1, we at least need two vertices, v and v, to double dominate

GG. So far we have dominated all the remaining n− 1 vertices of G once with v and

not dominated any of the remaining vertices of G. Now, by using the remaining n−1

vertices of G, we can double dominate GG. Therefore γ×2(GG) ≤ n−1+2 = n+1. �

Next we consider complementary prisms with small double domination numbers.

Theorem 3.7 For a graph G, γ×2(GG) = 2 if and only if G is the trivial graph K1.

Proof. Clearly if G = K1 then GG = P2 and γ×2(GG) = 2. Next assume that

γ×2(GG) = 2. Let D be a γ×2(GG)-set. If D ⊂ V (G) (respectively, D ⊂ V (G)),then

V (G) (respectively, V (G)) is not double dominated by D. Hence, let D1 = D∩V (G),

D2 = D ∩V (G), and |D1| = |D2| = 1. Moreover the vertex v in D1 must be adjacent

to the vertex in D2 implying that D2 = {v}. It follows that V − {v} = ∅ because no

vertex in GG can be double dominated by D = {v, v}. Hence G = K1 and GG = P2.

�
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Theorem 3.8 For any nontrivial graph G, γ×2(GG) ≥ 4.

Proof. Let G be a nontrivial graph. By Theorem 4, γ×2(GG) ≥ 3. Assume that

γ×2(GG) = 3, and let D = γ×2(GG)-set. If D ⊂ V (G) (respectively, D ⊂ V (G)), then

V (G) (respectively, V (G)) is not double dominated by D. Let D1 = D ∩ V (G) and

D2 = D ∩ V (G). Then {|D1|, |D2|} = {1, 2}. Without loss of generality, let |D1| = 1

and D2 = {u, v}. Since D is a γ×2(GG) set, then it follows that u is adjacent to v,

then uv 6∈ E(G). Since D1 ⊆ V (G) and |D1| = 1, then without loss of generality

D1 = {u} otherwise u is not double dominated. But recall that uv 6∈ E(G), then v is

not double dominated by D, a contradiction. Therefore, γ×2(GG) ≥ 4. �

We define a family of graphs F = {G|G= {P2, P3}} ∪ {G is a graph with an

induced P4 such that every vertex in G− P4 is adjacent to the support vertices of P4

and not adjacent to the leaves of P4}.

Theorem 3.9 Let G be a graph. Then γ×2(GG) = 4 if and only if G ∈ F .

Proof. Clearly if G ∈ F , Theorem 3.8 implies that γ×2(GG) ≥ 4. It is a simple exer-

cise to to see that γ×2(GG) = 4. For the converse, let G be a graph and γ×2(GG) = 4,

and let D be a γ×2(GG) set. Let D1 = D ∩ G and D2 = D ∩ G. Note that if either

D1 or D2 is empty, then GG is not double dominated. Therefore, either we have

(1) without loss of generality |D1| = 1 and |D2| = 3 or (2) |D1| = 2 and |D2| = 2.

First, suppose |D1| = 1 and |D2| = 3, and let {u} = D1, then u must be an element

of D2 or u will not be double dominated. Now, let v, w be the other two elements

in D2. Notice that v and w in G must be adjacent to u to be double dominated.
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Therefore, to double dominate v and w, they must be adjacent. Now, suppose there

exists x 6= u, v, w in G, then x must be adjacent to u ∈ D1 and is only adjacent to

x ∈ G so it will only be dominated once by D. Therefore, V (G) = {u, v, w} and

G = P3.

Next, suppose |D1| = 2 = |D2|, and we have three possibilities: (1) D1 = {u, v}

and D2 = {u, v}, (2) D1 = {u, v} and D2 = {u, w}, and (3) D1 = {u, v} and

D2 = {x, y}.

Case 1: Let D1 = {u, v} and D2 = {u, v}. Then either v and u are adjacent or u

and v are adjacent. Now, suppose that x 6∈ D1. Then x must be adjacent to u and

v to double dominate it but then x will not be adjacent to u or v and thus not be

double dominated by D, a contradiction. Therefore, V (G) = {u, v} and so G = P2.

Case 2: Let D1 = {u, v} and D2 = {u, w} and notice in G that v must be adjacent

to u to be double dominated by D. Similarly, in G, w must be adjacent to u. Thus,

w is not adjacent to u and must be adjacent to v. Therefore, v is not adjacent to u

or to w and is not double dominated by D, a contradiction.

Case 3: Let D1 = {u, v} and D2 = {x, y}. First, note that u and v must be adjacent

or else they will not be double dominated, likewise x and y are adjacent. Vertices

x and y must be adjacent to at least one of u or v to be double dominated by D.

Suppose x is adjacent to u and v. Then x is not adjacent to u and v. Implying that

u and v must be adjacent to y. Then y is not adjacent to u or v and hence y is

not double dominated in GG. Therefore, x must be adjacent to exactly one of u or

v. Without loss of generality let x be adjacent to u, then u must be adjacent to y

and y must be adjacent to v and v must be adjacent to x. Now suppose that there
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exists another vertex w ∈ G. Then w must be adjacent to u and v and that w cannot

be adjacent to x or y or else w will not be double dominated by D. Therefore, we

can add an unlimited number of vertices to G as long as each vertex w1, w2, ...wn is

adjacent to both u and v, and not adjacent to x and y. So, G is a graph such that

there exists an induced P4 where every vertex of G − P4 is adjacent to the support

vertices of P4 and not adjacent to the leaves of the P4 . �

Now, we will establish upper and lower bounds on γ×2(GG) in terms of the double

domination number of G and G.

Theorem 3.10 For any graph G with no isolated vertices, max{γ×2(G), γ×2(G)} ≤

γ×2(GG) ≤ γ×2(G) + γ×2(G).

Proof. For γ×2(GG) ≤ γ×2(G) + γ×2(G), let D1 be a γ×2(G)-set and let D2 be

a γ×2(G)-set. The set D1 ∪ D2 is a double dominating set of GG. Next, for

max{γ×2(G), γ×2(G)} ≤ γ×2(GG), assume, without loss of generality, that γ×2(G) =

max{γ×2(G), γ×2(G)}. Let D be a γ×2(G)-set, and let D1 = D ∩ V (G) and D2 =

D ∩ V (G). If D1 double dominates G, then we are finished, since γ×2(G) ≤ |D1| ≤

|D1|+ |D2| = |D| = γ×2(GG). If D1 does not double dominate G, then there is some

set S ⊆ V (G) that is not double dominated by D1. Note that if v ∈ S, then either:

(1) v 6∈ D1 and is adjacent to at most one other vertex in D1 or (2) v ∈ D1 and v has

no neighbor in D1. Let A = S ∩ D1. Since the vertices in A have no neighbor in D1,

then each v ∈ A is dominated by v in GG. Hence, A ⊆ D2. Since G has no isolates,

v has a neighbor in V − D1, for each vertex in A, select a neighbor in V − D1 and

call this set A′. Then, |A′| ≤ |A| = |A|. Let B = S − D1. Since the vertices in B are

not double dominated in G by D1, each has at most one neighbor in D1. However,
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since D double dominates GG and by the definition of the complementary prism, the

vertices of B are dominated exactly once by B ⊆ D2 and each vertex in B has exactly

one neighbor in D1. Hence, D1 ∪ A′ ∪ B is a double dominating set of G. Therefore,

γ×2(G) ≤ |(D1 ∪A′)∪B| ≤ |D1|+ |A′|+ |B| ≤ |D1|+ |A|+ |B| = |D1|+ |A|+ |B| ≤

|D1| + |D2| = |D| = γ×2(G, G). �

We note that the lower bound of Theorem 3.10 is sharp. For example, if G ∈

{P7, P10}, then γ×2(G) = γ×2(GG). Also, for any graph G where every vertex is

either a leaf or a support vertex and no component of G is a star, γ×2(G) = γ×2(GG).

On the other hand, we have not been able to show that the upper bound is the best

possible.
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4 CONCLUSION

We have shown various results for the double domination of the complementary

prism of specific families of graphs. Also, we have proven upper and lower bounds

for the double domination number of complementary prisms. We noted that the

lower bound of Theorem 3.10 is sharp. Further research is needed because it is

possible that the upper bound in Theorem 3.10 may be be improved to γ×2(GG) ≤

γ×2(G) + γ×2(G) − 1. Also, further study will attempt to characterize the graphs G

for which the lower bound holds.
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