
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

11-2014

Client/Server Data Synchronization in iOS
Development
Dmitry Tumanov

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Databases and Information Systems Commons, Other Computer Sciences Commons,
and the Software Engineering Commons

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Tumanov, Dmitry, "Client/Server Data Synchronization in iOS Development" (2014). Undergraduate Honors Theses. Paper 245.
https://dc.etsu.edu/honors/245

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=dc.etsu.edu%2Fhonors%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=dc.etsu.edu%2Fhonors%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=dc.etsu.edu%2Fhonors%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Client/Server Data Synchronization in iOS Development

A thesis

presented to

the faculty of the Department of Computing

East Tennessee State University

In partial fulfillment

of the requirements for degree

Bachelor of Science in Computer Science

Honors-in-Discipline program

by

Dmitry P. Tumanov

November, 2014

Committee Chair, Prof. David Tarnoff

CSCI HID Coordinator, Dr. Christopher Wallace

Committee Member, Dr. Martin L. Barrett

Committee Member, Mr. Murad Ayoub

College of Business and Technology: Honors-in-Discipline

College of Business and Technology
Honors Thesis Signature Approval Form

Client/Server Data Synchronization in iOS Development

November 17, 2014

The members of the Thesis Committee
approve the Senior Honors Thesis for
Dmitry Tumanov

Thesis Committee Chair
Prof. David Tarnoff

CBAT Thesis Committee Member
Dr. Martin L. Barrett

External Thesis Committee Member
Mr. Murad Ayoub

CSCI HID Coordinator
Dr. Christopher Wallace

CBAT Honors Director
Dr. Tom W. Moore

Client/Server Data Synchronization in iOS Development 3

ABSTRACT

Electronic gadgets such as touchpads and smartphones are becoming more popular in

business and everyday life. The main advantage of mobile devices over personal computers is

their portability. Cellular data plans allow Internet access without having permanent access

point. There is a number of web-based applications available for gadgets. The primary

goal of these apps is to provide their services through constant Internet access. However, it

may affect the operation of both devices and applications. The objective of this thesis is to

find a better way of client/server data synchronization in iOS development that can reduce

the negative consequences of constant Internet access such as Internet traffic consumption,

reduced battery life and cover area limitation of cellular services. As the result of the

conducted research, the “FollowQTM” application was developed. Despite the fact, that the

application is synchronized with web server, it does not require constant Internet access to

operate.

Client/Server Data Synchronization in iOS Development 4

Copyright 2014 by Dmitry P. Tumanov

All Rights Reserved

Client/Server Data Synchronization in iOS Development 5

DEDICATION

I dedicate this work to my loving parents who supported me during my education.

Client/Server Data Synchronization in iOS Development 6

ACKNOWLEDGEMENTS

I would like to express my appreciation to everyone who supported me during my

preparation for this thesis, especially Dr. Wallace, Dr. Barrett and Mr. Ayoub for their

time and help. I also want to thank Professor Tarnoff for his significant contribution into

this work.

Client/Server Data Synchronization in iOS Development 7

Contents

APPROVAL FORM 2

ABSTRACT 3

COPYRIGHT 4

DEDICATION 5

ACKNOWLEDGEMENTS 6

CONTENTS 7

LIST OF FIGURES 9

1 INTRODUCTION 10

1.1 Background . 10

1.2 Relevance of the Research . 10

1.3 Objectives . 11

2 REVIEW OF LITRATURE 13

2.1 Background . 13

2.2 Value of Mobile Applications in Tourism . 13

2.3 Influence of Internet Based Apps on the Smartphones Usage 14

2.4 Data Management in iOS Apps . 15

2.5 Data Serialization Formats . 17

2.6 Threading in iOS Development . 19

3 METHODS AND PROCEDURE 22

3.1 Background . 22

3.2 Requirements Elicitation . 22

3.3 Design . 24

Client/Server Data Synchronization in iOS Development 8

3.4 Implementation of the Core Functionality . 27

3.5 Implementation of the Update Functionality 30

3.6 Testing . 32

4 RESULTS AND CONCLUSION 33

4.1 Background . 33

4.2 Results . 33

4.3 Open Issues . 34

4.4 Conclusion . 35

References 36

APPENDICES 38

Appendix A: Use Cases . 38

Appendix B: FollowQTM Screenshots . 43

Appendix C: Communication Schema . 46

Client/Server Data Synchronization in iOS Development 9

List of Figures

1 Main menu . 43

2 Update request . 43

3 List of all barns . 44

4 Map view . 44

5 Favorites . 45

6 Detail view . 45

7 Communication schema . 46

Client/Server Data Synchronization in iOS Development 10

1 INTRODUCTION

1.1 Background

The following chapter will introduce the objectives of the client/server data synchro-

nization in iOS development research. It will discuss the relevance of the thesis to the

problems of applications created for portable devices such as smartphones and touchpads.

These problems include high data consumption and hardware limitations that can affect the

device usage. Then, it will discuss how the conducted research may reduce these problems

through the software implementation.

1.2 Relevance of the Research

The high-tech market saw the growth of portable devices such as smartphones and

touchpads. It is influenced by their size and usability. Despite the fact that they are pocket

sized, modern gadgets do not lose by performance to some modern personal computers.

They contain multi-core processors and high memory capacity. Besides advanced hardware,

gadgets come with progressive operating systems such as iOS, Android and Windows Phone.

Applications created for these platforms became as popular as software products for personal

computers. Literally, gadgets replaced PCs for certain people. The wireless connection lets

users stay online even away from stationary access points. This fact opened new horizons

for the software development and for business in general.

Even though it is undeniable that smartphones and tablets now are close in perfor-

mance to modern computers by means of hardware capacity and performance, there are

constraints that should be taken into concern by the developers. One of these limitations is

battery life. Devices constantly consume electric energy. As more resources are engaged in

the operation of an application, the more energy is absorbed and consequently the less time

is left for a device operation until it is charged. Additionally, the wireless services such as

AT&T, Verizon and T-Mobile do not cover the entire country with cellular access points.

Client/Server Data Synchronization in iOS Development 11

Therefore, there are chances that web based apps would be unusable in uncovered areas.

The third constraint also applies for Internet services. Unfortunately, the data plans that

providers offer to their consumers are unreasonably expansive. Thus, many users limit their

data usage.

1.3 Objectives

The three constraints discussed are especially relevant for Internet based applications.

The following research will try to find the solution to the problem of client/server data

synchronization in iOS development in order to limit battery consumption, data usage and

eliminate operational dependencies on data access points. The “FollowQTM” app will be

developed along with this research to support received data. The goal of the app is to mimic

the “Follow the Quilt Trail” website. The data of the application should be synchronized

with the website with the least amount of dependencies on wireless connection.

Research will start with Review of Literature section that will discuss the work done

with library materials. It will contain the information gathered by a number of scientists and

developers in similar fields of study. It will discuss the importance of mobile applications

in tourism, followed by the influence of the mobile applications on the smartphones usage.

Then it will introduce the data management options in iOS development followed by the

discussion of three different serialization techniques and their advantages and disadvantages.

Finally, this chapter will compare threading options in iOS.

The Methods and Procedure chapter will discuss steps that will be accomplished

to develop the “FollowQTM” app. It will start with gathering the requirements for the

product followed by the design of the user interface. It will then cover the two milestones

of the implementation phase. The first milestone will include the development of the app’s

core functionality. The second milestone will cover the development of the data update

functionality. The last part of the chapter will cover the testing that will be provided after

implementation phase.

Client/Server Data Synchronization in iOS Development 12

The final chapter of the thesis is Results and Conclusion. The goal of this chapter is to

wrap up the results of the thesis. It will discuss the results of the developed iOS application

with client/server data synchronization. It will also cover the open issues that were met

during the development process. Finally, it will provide the conclusion of the research.

Client/Server Data Synchronization in iOS Development 13

2 REVIEW OF LITRATURE

2.1 Background

In order to perform the study discussed above, several topics were reviewed during

the preparation for research. The following section is directed to discuss the work that

has been previously accomplished in the fields of studies that will become the foundation

of this research. It started with a discussion of the importance of mobile applications for

modern business applications followed by the review of currently available local data storage

interfaces that can be used in the development of the “FollowQTM” application. Also, it is

worth discussing the available serialization techniques that could be used during client/server

data exchange over TCP/IP network.

2.2 Value of Mobile Applications in Tourism

It is hard to imagine the growth of modern business without using high technologies

in their operation. Smartphones and tablets along with the services that they provide are

a great source of optimizing business processes, communication and even advertisement for

existing or potential customers. The popularity of gadgets constantly spreads due to their

usability and availability. It is possible to control the whole factory execution through the

portable devices beginning with loading raw materials to a line and finishing by packing an

end production. Also, gadgets have improved the communication between people with VoIP

applications. It may save much money that could be spent paying for roaming.

Particularly, the mobile services that are built in smartphones and tablets may im-

prove one’s traveling experience. There is a number of apps that were specifically built for

tourists all over the world. According to Dewey, “When it comes to mobile phone use for

travel specifically, 53 percent of travelers are utilizing apps and 47 percent are utilizing their

mobile web browser. That follows the overall trend of smartphone users - with 83 percent

using apps and only 17 percent using their mobile web browser” (Dewey, 2013). So, most

Client/Server Data Synchronization in iOS Development 14

tourists are using mobile apps during their vacations in order to improve the quality of

recreation. Since the information and services they are looking for, including flight booking,

hotel booking and attractions, are available through such apps. Also, GPS technologies are

helping tourist to find directions if they are travelling by car or walking. All of the above

make the trips more productive and convenient, decreasing the amount of time spent for trip

preparation.

Several years ago there was no source available for tourists other than their friends

and people they know to get information about the quality of hotels, bars, restaurants, etc.

However, now they can access reviews of other peoples’ experience via tourism mobile apps.

Dewey states that, “Fourteen percent of travelers reported learning about travel deals or

events through social networking, an increase of 7 percent since 2011. Those posting their

own travel reviews grew from 12 percent in 2011 to 25 percent in 2012” (Dewey, 2013).

According to these numbers one can make the conclusion that people increased their trust

in such reviews and became more active in submitting their own reviews in such apps.

2.3 Influence of Internet Based Apps on the Smartphones Usage

Despite the fact that traveling became easier with the development of smartphones,

most of these applications are constantly utilizing an Internet connection in order to synchro-

nize with server data and applications, thus they became limited once an Internet connection

was lost. Other problems with maintaining an Internet connection include limited usage ar-

eas, and high battery consumption

First of all, Web-based applications require an Internet access and traffic usage. With

everyday usage of such apps, cellular service can become costly. For example, AT&T charges

their clients $20 for 300mb of traffic and $30 for 3Gb (AT&T, 2014). If a user exceeds data

limits, he/she would pay twice as much. Most people do not want to overpay for data

plans. Therefore, many people prefer to choose the less expensive data plan and keep the

cellular connection idle most of the time. Instead, they would use online services with Wi-Fi

Client/Server Data Synchronization in iOS Development 15

connections that are only available in certain areas

Secondly, despite the fact that modern providers like AT&T, Verizon, and T-Mobile

have great coverage areas, there are still rural locations where no Internet access may be

found, but services are still needed. For example, there are several traveling applications

including the application that will be created along with this thesis, which provide real-time

information about rural zones that one would like to visit. It is likely, however, that tourists

will not find wireless connections in such places. Thus, it may become impossible to access

Web-based application data; and as a consequence, the application may become useless.

Thirdly, the portable nature of a mobile device means power consumption may be

an issue without an electric source. According to Ding and Wing, “despite the tremendous

market penetration of smartphones, their utility has been and will remain severely limited by

their battery life” (Ding et al., 2013). Continuous Internet access uses a significant amount

of battery power, which can reduce battery life and consequently limit the usage time. As

a result, many users would choose to turn their wireless connections off in order to save

their battery’s life and keep essential phone functions such as calling and instant messaging

services.

2.4 Data Management in iOS Apps

Since “Follow the Quilt Trail Mobile” is a data driven application, an efficient and

simple data storage format shall be chosen. In accordance with the Apple Developer website,

there are a number of options available for developers to meet their data management needs.

These options include Core Data, SQLite, XML files and network connections. Each option

can be usable in the development of data driven applications.

According to Apple’s website “Core Data provides a flexible and powerful data model

framework for building well-factored Cocoa applications based on the Model-View-Controller

(MVC) pattern” (Apple, 2014a). Core data provides a convenient method for data manage-

ment in iOS applications using graphical tools that are available in the Xcode integrated

Client/Server Data Synchronization in iOS Development 16

development environment. It lets the developer organize his/her objects in a way that can

be used for both small and big projects.

In order to manipulate data that is stored in persistent storage, for instance a file, a

developer needs tools to read, write or delete. If one wants to support undo functionality,

an application must track changes as well thereby adding another complexity level for a

developer. However, Apple offers Core Data allowing developers to effectively manipulate

application objects. “Using the Core Data framework, most of this functionality is provided

for you automatically, primarily through an object known as a managed object context (or

just “context”)” (Apple, 2014a). Managed Object Context allows access to the persistent

store coordinator which acts as an intermediary between application objects and data stores

(Apple, 2014a). Besides the ability of manipulating objects, the context lets an application

keep track of changes that adds the ability to undo changes if needed.

It is also possible to retrieve data through the managed object context in a similar

way as working with database management systems. In Core Data this process is called

fetching request. Fetching request objects consist of three parts to specify the data that an

application needs to access. The first part must contain the name of an entity, the second

part should contain the predicate to the data, and the third part specifies the order in which

one wants to retrieve objects.

Extensible Markup Language (XML) is a convenient way to organize, structure and

store data in a way that is both human readable and easy to manipulate from the application

side. Even though this format is rather new, it has already shown its advantages and now is

in the toolbox of a number of software developers. The XML format might look similar to

HTML (Hypertext Markup Language), however the tags used are created by the developer.

The final goal of HTML is to display data, XML on the other hand doesn’t do anything to

data, but it stores it in a convenient way using tags.

XML is a cross platform language and can be integrated into any application or

device. According to Fairbanks, “XML’s platform independence and extensibility allow it

Client/Server Data Synchronization in iOS Development 17

to easily read and generate structured documents in any environment. Thus, XML has

become the language of choice for managing, creating and distributing data in all digital

media” (Fairbanks, Gribbons, Nybo, Pean, & Wright, 2002). Since there is a plan for future

development of “Follow the Quilt Trail Mobile” for both iOS and Android platforms, XML

would be acceptable tool to utilize.

Another option for an iOS developer who wants to create data driven applications

is the SQLite library. SQLite is lightweight and easy to integrate database engine powered

by framework that is part of Xcode installation. According to Lin and Neamtiu, “SQLite

a lightweight, zero-config, server-less SQL engine encapsulated into a library that can be

simply linked into an existing application and used via the SQL API” (Lin & Neamtiu,

2009). Therefore, it might be convenient to choose it in order to simplify cross platform

development. Since it might be used in both iOS and Android applications, it possible to

have one file with stored database and transfer it between the two platforms. Therefore,

SQLite will be the convenient solution for data storage in this project.

2.5 Data Serialization Formats

Most data driven applications require synchronization with a server to get updates.

On the one end of the communication link is the client application that asks the server to

provide it with updated data. On the other end, the server receives the client’s request and

prepares the required data for transferring. There must be a convenient data structure that

can collect data, compress it and send it to the client application. The client application

receives this data and translates it to a format so that it can use it. This process requires se-

rialization and deserialization. There are currently several broadly used serialization formats

such as JSON, XML, Apache Thrift and ProtoBuf. All of them have both advantages and

disadvantages. As discussed previously, “Follow the Quilt Trail” is a data driven application,

which should be synchronized with the server to get periodical updates since the database

of participating farms increases every month. Thus it will require data exchange with the

Client/Server Data Synchronization in iOS Development 18

server and consequently a serialization format to be used.

XML has being used for data serialization for more than 10 years in the operation

of web services. The most beneficial feature of XML serialization is that it is text-based

and thus, human readable and easily implemented. However, it was developed before the

first smartphone was introduced to the market, so it has been criticized for not being “well

suitable in mobile environment” (Sumaray & Makki, 2012).

JSON is another text-based serialization format. It was introduced by Douglas Crock-

ford as, “part of a subset of the JavaScript Programming Language, Standard ECMA-262

3rd Edition - December 1999” (JSON, 2014). JSON is lightweight and has the main ad-

vantage over XML that is lack of markup overhead, that makes JSON objects lighter and

consequently cheaper to transfer compared to XML serialization.

There are also relatively new data serialization formats that in contrast to text-based

serialization formats, use binary in order to serialize data. There are currently two leaders

among binary formats: Apache Thrift and ProtoBuf (Protocol Buffer). Both of them are

extremely fast in serialization and deserialization and they are lightweight.

Apache Thrift was initially developed and used by Facebook. Because they are not

text based, they do not have the same drawbacks during serialization. Instead of passing

a string character by character, they use positional binding letting the name part of the

name-value pair to be “stored in a separate file (.proto for ProtoBuf and .thrift for Apache

Thrift)” (Sumaray & Makki, 2012). Since these files are binary and subsequently smaller

than a text file representing the same data, they can greatly decrease the amount of network

traffic. However, these files need to be compiled, so both Apache Thrift and ProtoBuf are

not cross platform, they were built to be supported by a limited number of programming

languages. “Nowadays, Apache Thrift supports C++, C#, Erlang, Haskell, Java, Objective

C/Cocoa, Perl, PHP, Python, Ruby, and Squeak”, while ProtoBuf supports C++, JAVA,

and Python (Sumaray & Makki, 2012).

One of the most important factors affecting the development of the product is energy

Client/Server Data Synchronization in iOS Development 19

consumption and battery life. The main reason to build an energy-safe application is that,

once the battery dies, all other essential smartphone functions such as the phone are not

able to operate (Oliver & Keshav, 2011). According to Gil and Trezentos’ research, “For

applications that synchronize data with a Web sever repeatedly power management is a key

factor” (Gil & Trezentos, 2011). The data format affects message size and the amount of

time needed to send and receive messages, there fore affecting power usage.

In order to reduce the time needed for message transfer and increase the battery

life, JSON along with ProtoBuf and Apache Thrift are the best available choices for a

developer. Gil and Trezentos state, “Our investigation shows that between XML, JSON

and Protocol Buffers, the better format for data synchronization was the JSON format with

compression, because has better efficiency in terms of time synchronization, parsing on server

and better performance in battery management” (Gil & Trezentos, 2011). In addition to

other advantages, JSON is relatively simple to implement serialization on both the client

and server sides.

2.6 Threading in iOS Development

“Follow the Quilt Trail’s” database is constantly growing since there are more and

more farmers who desire to participate all over the North-East Tennessee. Thus, the up-

dates for mobile app are expected to be significant. The amount of time required for applying

updates from the server is unpredictable; so it is important keep the main application func-

tionality available for a user during this process and avoid the application stopping while

waiting for local data storage to be populated with new data. Threads can help to maintain

operation of the application during the process of synchronization and update using the

advantage of an iPhone’s multi-core processor (starting with the iPhone 4s).

According to Garcia, “Thread is an independent flow of control within a Process. A

traditional UNIX process has a single thread that has sole possession of the process’ memory

and other resources” (Garcia & Fernandez, 2000). Thread is a smaller context and runs

Client/Server Data Synchronization in iOS Development 20

within the process sharing global data. However, each thread has its own call stack, local

variables and program counter, so it can work with a main thread simultaneously having

almost no affect on the main thread’s execution (Garcia & Fernandez, 2000).

Nevertheless, the developers, especially the smartphone and embedded system de-

velopers, must be concerned about resource limitations. Threads allocate memory in both

the program memory and in kernel memory. Thus, inefficient usage of threads can affect

the performance not only of the application, but a system in general. Apple’s iOS provides

developers with a variety of threads, though the most popular and easy to use are NSThread

interface and POSIX threading library. Both of these are relatively easy to implement and

integrate in an app.

Since NSThread is the part of Cocoa library, it is easy to integrate in Objective C

source code without worrying about losing the self-descriptive elegance of this program-

ming language. Moreover it is relatively simple to handle with class methods that can meet

all of the developer’s needs. In order to create a new thread, the application should either call

+(void)detachNewThreadSelector:(SEL)aSelector toTarget:(id)aTarget

withObject:(id)anArgument or +(void)start.

A developer should be careful with the first method of starting a new thread since if the

application is not set up for automatic garbage-collection, he/she should set up autorelease

for the detached thread in the method identified by aSelector and release it once the thread

has completed its tasks (Apple, 2014b).

Objective-C along with C++ is derived from the C language. This means a developer

is able to add C code in his/her application and be sure that it will run on any of Apple’s

platforms. This provides the developer with ability of cross platform programming. Since

multiple APIs already exist that were written using the C language, iOS developers have

access to a number of advantageous libraries that have been developed over several decades.

This includes the POSIX thread libraries.

Portable Operating System Interface (POSIX) thread API that was initially created

Client/Server Data Synchronization in iOS Development 21

in the 1980s in C is also available for iOS application developer since it was developed for

UNIX (iOS is a UNIX like operation system). The IEEE Technical Committee on Operating

Systems standardizes thread specifications such as POSIX, the standard for which is POSIX

1003.1 (Garcia & Fernandez, 2000).

The POSIX library is now part of Xcode, so no additional libraries need to be in-

stalled in a development work station. In order to access the POSIX library, a developer

should include the pthread.h file. The following command will start a new thread:

int threadError = pthread create(&posixThreadID, &attr,

&PosixThreadMainRoutine, NULL).

PosixThreadMainRoutine is a method that will be running as a separate thread. In or-

der to kill the thread, one should call returnVal = pthread attr destroy(&attr)

(Apple, 2014b).

Client/Server Data Synchronization in iOS Development 22

3 METHODS AND PROCEDURE

3.1 Background

The proposed “Follow the Quilt Trail” mobile application will provide users with

most of the functionalities of the “Follow the Quilt Trail” website including advertising and

location services. It will be created for Apple products based on customer’s preference.

According to her research, more potential users of the app use the iPhone and the iPad.

However, in the future there will be a plan to support Android platforms as well.

There are a number of risks that can affect the development process and the quality

of the application. The highest of them is a time limit of eight weeks for the application to

be developed from scratch and published in Apple’s App Store that was provided by the cus-

tomer. A lack of experience working with both smartphones and Objective C programming

language could also cause a significant delay.

The methods that will be used in order to complete this research and develop an

application that will meet all customer needs and Apple’s App Store requirements will be

discussed in this chapter. The project flow is decided to be a simplified unified software

lifecycle model due to time constraints. The development should go through the process of

gathering requirements followed by the design phase. The next step will be implementation

of the core functionality followed by implementation of the update functionality. Finally, the

application will be tested and deployed.

3.2 Requirements Elicitation

The development of any application requires certain procedures that will become a

foundation for the end product. Thus, the development process starts with the requirements

elicitation, which is the most important phase. In the article, “Modern Trends Toward

Requirement Elicitation,” by Asma Sajid, Ayesha Nayyar and Athar Mohsin, they write,

“Accurately capturing system requirements is the major factor in the failure of most of

Client/Server Data Synchronization in iOS Development 23

software projects” (Sajid, Nayyar, & Mohsin, 2010). Despite the fact that this idea is well

known among developers, the market is full of software that fails due to the mistakes made

during the requirement elicitation phase. Therefore, in spite of the time constraint, there is

the need for a qualitative list of requirements that will be accepted by both customer and

developer

Due to the time limitation for the “Follow the Quilt Trail” development, close collab-

oration between the customer and the developer is vital. It is possible to miss the required

information, or create an unneeded feature due to the lack of communication, especially if

the product is to be completed in a short period of time. Thus, it was decided to meet weekly

with the customer and discuss the progress of the development and features that should be

changed or added. The goals of “Follow the Quilt Trail Mobile” can only be achieved through

high cooperation. Usually the requirement elicitation should take a significant amount of

time and effort since it is the foundation of the future software product. Developers should

prepare documentation such as the Software Requirement Specification, create user stories,

use cases and risk management plan before moving to the next design phase. However, when

there is not sufficient amount of time to prepare complete documentation, developers should

reduce the list to contain only those documents that will be the most crucial for both quality

and time. Therefore, it was decided to meet three times during the first week with the

customer in order to create the artifacts required for the development process that include

prcis, the list of requirements, top-level use case diagram and the use cases.

During the first week of the project the following list of requirements was created:

• The system shall be easy to use.

• The system shall support all versions of iPhone.

• The system shall support current iOS version (iOS V6.1 by the time of the discussion).

• The system shall provide user with location services and directions.

• The system shall store data in the local data store.

Client/Server Data Synchronization in iOS Development 24

• The system shall provide the following barn data: address, phone number, barn picture,

and barn description.

• The system shall be synchronized with the server.

• The system shall display sponsors in the main menu.

• The system shall provide users with ability to donate to the project via customer’s web

site.

• The system shall be supported by iPhone 4, iPhone 4s, iPhone 5, iPhone 5s, and iPhone

5c.

These are the main requirements that were approved by both the developer and the customer.

They will be used in the next steps of the development process.

3.3 Design

The next phase in the development of “Follow the Quilt Trail Mobile” is the design.

According to the requirements gathered, the application should be easy to use since the

target users ages may vary. Thus, a GUI that includes menu, navigation, information and

maps should be both intuitive and attractive. In general, all of the menu options will provide

the user with a way to search for a particular barn or learn about barns in their area. There

will be eight views to fulfill all requirements.

1. Main menu

2. County List View to Barns List View

3. County List View to Map View

4. Favorites List View

5. Barns List View

Client/Server Data Synchronization in iOS Development 25

6. Map View

7. Detail View

8. Map Barn View

The main menu is the most important part of the application since it is the first

component viewed by users once the app has been downloaded. It should reflect farm

tourism as the main idea of the app and be attractive. Therefore, the background will be

the picture of one of the barns that participates in the “Follow the Quilt Trail” project. Its

quilt was chosen to become a part of the logo that will be placed in upper part of the screen.

The logo picture will also be used as the button to get to the screen with the information

about the “Follow the Quilt Trail” project. This will also provide a place where the user can

donate if they desire.

Besides the logo, the main menu will contain four buttons that will provide a user

with four options. The first option will forward the user to the County List View with a list

of available counties. From this view, the user will be forwarded to the list of barns available

for the selected county. The Barns List View will represent a table view that will list barns

that participate in the “Follow the Quilt Trail” project. Each cell of the table will contain

the icon representing the quilt for that particular barn. The barn’s name will be shown to

the right of its icon. Also, the address of the barn is shown below its name to provide the

user with the rapid access to the address without loading the detail view. It will make it

easier to drive to the barn.The second option will navigate users to the Barns List View

directly. However, in contrast to the first option, users will get the list of all barns grouped

by counties. The counties’ names will be used as headers of the created groups and will be

ordered alphabetically.

The third option will also navigate the user to the County List View, but in contrast

to the first option, the user will be forwarded to the Map View. The map view will display

the map centered in the chosen county. It will show pins that represent the barns and their

Client/Server Data Synchronization in iOS Development 26

positions such that the user will be able to choose a barn by its geographical position. Each

pin will present an annotation view displaying the icon of the barn, its name and its address.

The fourth option will navigate users to the Favorites View. This view will display

the list of barns that the user decided to save for future use. It will contain an edit button

that will provide him/her with the ability to delete certain barns. It will also display the

amount of barns that are currently in the list.

All four options will ultimately navigate the user to the Detail View. The Detail View

will display the bigger picture of a barn in the upper part of the screen. It will also display

the barn’s name and its address. The address will be stored in the static cell. The user will

be able to select it in order to access directions to the barn. Another static cell will contain

the phone number of the farm if it is stored in the database. If the viewing barn was saved

to favorites, the user will see the blue star next to the barn’s name. Otherwise, the static

cell will display, “Add to Favorites.” If the user selects this option, the barn will be saved

to the list of favorite barns. A small description of the farm will be placed in the bottom

part of the view. Also, many farmers sell their goods locally, so the application will indicate

if the barn’s owner has goods for sale.

The most challenging part in the design process is to support different models of

iPhones starting with iPhone 3gs. Because of this, all parts of the design should be created

for both retina and non-retina displays. The Retina display may contain twice as many

pixels in the same surface area as the standard display. Thus the background picture for

the starting screen must be created in the following sizes: 320 × 480 pixels (iPhone 3gs),

640× 960 pixels (iPhone 4/4s with retina display) and 640× 1136 pixels (iPhone 5, 5s and

5c). In addition to the starting screen, all icons and pictures need to be created in two sizes:

one for retina displays and one for no-retina displays. Photoshop will be used in order to

create most of the design components of the app.

Client/Server Data Synchronization in iOS Development 27

3.4 Implementation of the Core Functionality

The next phase is the implementation of the core system functionality. It will include

the development of most of the client side application other than update functionality. It will

cover the creation of all views required for the “Follow the Quilt Trail Mobile” application,

connecting them in a meaningful way, creating the initial database and writing the Objective

C code that will accomplish functional requirements. Xcode will be the main development

environment, however several additional tools such as Notepad++ and bash scripting may

be required for smaller parts of the development.

The first step will be the creation of the views required for the application. The

Xcode IDE includes a convenient tool called Interface Builder that helps developers create

storyboards with views and connections between them in an interactive way. A number of

templates are available for iOS applications including Master-Detail Application, Tabbed Ap-

plication, Page-Based Application, Single View Application, Utility Application and Empty

Application. The Master-Detail Application template will be used as it is the most suitable

template for the purpose of this app. The Navigator Controller that is created automati-

cally with this template will help control the views and navigation between them in the most

usable way without requiring a great deal of additional code.

The next step is the development of the initial SQLite database that will contain

records about the barns. The records required for the application will be gotten from

http://www.arcd.org/quilttrail/, the official web site of the “Follow the Quilt Trail” project.

The database for this site is written using the MySQL engine. The script for creating the

database can be easily imported using PHP My Admin service in different formats includ-

ing the SQL format. Since both MySQL and SQLite databases use the SQL standard, the

translation of one to another is simple and does not require significant amount of time and

effort even for large databases.

There are several ways in which an SQLite database can be built. The first way is

to create a database in a Shell with the sqlite3 [path to the database file] command. If the

Client/Server Data Synchronization in iOS Development 28

path was not provided, the temporary database file will be created in the current directory.

Once the work is finished, the temporary file will be deleted. After running this command,

the user starts the Sqlite3 program and now is able to work with database. The following

example creates the table “table1” in the Sqlite3 utility:

sqlite>CREATE TABLE table1 (

...>clmn1 int primary key,

...>clmn2 text,

...>clmn3 varchar(33)

...>);

The other simpler way to work with SQLite database is to install the Firefox add-on

SQLite Manager. Besides the ability to write queries in the regular way, the Firefox’s add-

on provides users with the graphical user interface to navigate through, create and delete

records. The user also may specify the settings of the database and create indexes. One

can choose which tool to use in order to build and manage the database, however, the best

way is to combine both tools in order to complete the process faster and more convenient.

The initial database schema can be created using Sqlite3 if one has generate SQL script by

copying and pasting to the terminal window. Once the database is created, the user may

switch to the SQLite Manager to make sure that the records were created in the way he/she

expected, and make changes as needed. After the database is generated, the file with the

database can be moved to the project directory to make it visible in XCode.

The next step of the development is to add additional frameworks that will be needed

during the later development process. In order to be able to manipulate SQLite in an iOS

project, the libsqlite3.dylib framework needs to be added. This framework is written in

C, so all the function calls must be in C format. Also, as the “Follow the Quilt Trail

Mobile” will be using global positioning service, the MapKit.framework also needs to be

added to the project. It provides all the tools needed for the positioning functionality of

the project including maps, pins and directions. The other framework that will be used is

Client/Server Data Synchronization in iOS Development 29

AddressBook.framework. It will aid in managing the contact information for the barns, such

as providing addressing information to the Map View in order to get directions.

The final phase of the implementation of the product is creating classes and writing

the code to provide the functionality of the project. There will be four custom classes

acting as the objects created from the SQLite database file that will be used throughout the

execution of the application. Barn class will be a placeholder for the barns objects; BarnList

will be the class responsible for the collection of barns; County class will collect information

for a certain county; and finally, CountyList will hold the collection of counties.

All of the classes discussed above will be used as templates for the objects that

will be created from the SQLite database. As the application starts, the CountyList and

BarnList will be instantiated and populated in the Application Delegate (AppDelegate)

class. Application delegate class is responsible for handling application level functionalities

such as handling events in the application startup time and application shutdown. Because

CountyList and BarnList objects will be used throughout the execution of the application

by assisting to organize the data in the tables and map views, it was decided to instantiate

them in the

-(BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions: (NSDictionary)launchOptions

method of AppDeligate class. Even though many developers may deem the usage of global

variables as a bad practice, it will allow generating data once the loading of the app is

completed and allow using it throughout the execution. Thus, it will save time on reading

data from database and storing it to memory any time the user switches between views.

Barn class will hold all the information that is needed for the user to get the information

about a particular barn including its address, phone number and description. The rest of

the classes are created automatically in Xcode’s interface builder. Thus, it is outside of the

scope of this project.

Client/Server Data Synchronization in iOS Development 30

3.5 Implementation of the Update Functionality

The final implementation part will require the development and integration of both

the iOS side and the server side portions used in the operation of the “Follow the Quilt

trail mobile”. The server will contain the PHP script that will be responsible for accessing

the MySQL database, reading data and creating a JSON object such that it will contain

updated data readable for the iPhone application. On the other side, the iOS application

will be responsible for providing its current database state, receiving the update in the form

of a JSON object, processing it and applying changes to the local database.

The first step will include creation of the table “update log” in the MySQL database.

It will contain three fields. The “id” field will contain an integer value that will be in-

cremented automatically once the new record becomes the subject to update. It will be

compared against the update state of iOS application in order to generate update the JSON

object with wanted data. The second field “barn id” will hold the identification of the barn

record that was updated. The last field is “action”. This field will be a placeholder for

the action that caused the update. The accepted values for the “action” field are “create”,

“update” and “delete”. If the new record of the “barn” table was inserted, the action field

will contain the varchar value “create”. If the record was updated, the action field will be

set to “update”. Finally, if the record was deleted, the “action” field will contain “delete”.

The second step is to create the PHP script called “synchronization.php” that will

handle server side functionality. Once it receives the “Follow the Quilt Trail” application’s

request with the current database status of the client, it will connect to the MySQL database

and run the query that will output all records that were changed since the client’s status was

last updated. If there is a new data, the script then will generate a JSON object to reflect

all records that have been changed.

The client side is more complicated than server side. It will engage the creation of

the updater class, a thread that will run it without intervention from the main application

flow. NSlocks will protect shared data from the race conditions.

Client/Server Data Synchronization in iOS Development 31

The updater class shall be able to connect to the SQLite database in order to receive

the current update state. The update state will then be sent to the “synchronize.php” script

in order to get the JSON object with the data that should be changed. In the case where

the update state is current and there are no records available for the update, the connection

to the database will be closed and the application will continue its normal operation without

any changes. However, if there are updates in the server’s response, the Apple Delegate class

will ask the user if he/she would like to apply these updates. If he/she decides to apply

updates, the updater class will get the JSON object generated by the “synchronize.php”

script, then store the data in NSDictionary object in order to be processed by the program.

Once the dictionary is created, the data will be passed to one of three methods that will

mimic the actions created in the MySQL database. All actions will use the class’s SQLite

connection in order to run a query corresponding to the action. The method -(void)

handleJasonObject will be responsible for handling actions and calling methods that

are responsible for the action. If a record fails to update, the property errorCounter will be

incremented.

Since it was decided to keep the update routine away from the main program flow, the

updater’s class functionality will run as a separate thread. The thread will be created using

NSThread class in the Application Delegate class. It was decide that the best time for the app

to check for updates was only when the application becomes active using the class’s method

-(void)applicationDidBecomeActive:(UIApplication *)application.

There are two reasons that affected this decision. The first reason is power consumption.

If the thread stays active during the entire application execution time, it will consume

significant amount of energy and generate significant internet traffic in the infinite update

checking loop. The second reason is the inconvenience of unexpected notifications, since

there must be a user response regarding whether or not he/she would like to apply available

updates. There might also be the case when the user is using direction functionality or

reading a barn description and wishes not to be disturbed.

Client/Server Data Synchronization in iOS Development 32

3.6 Testing

Since the size of the application is small, it doesn’t require a significant amount of

tests. Most of the functionality can be tested directly by using the app. The first part of the

implementation will be examined strictly on the user experience. The volunteers who wish

to help testing the beta version of the “Follow the Quilt Trail Mobile” will get access to the

test binary of the app in their smartphones. After two days of usage they will be asked to

write a small review and point out any defects they might find.

The second part of the implementation should be tested in a different way since

its functionality requires more data operations. It was decided to follow the method of

test-driven development for the client/server synchronization part of the application. The

assertion helps the developer test the program during the development process. The function

“assert” is broadly used in languages such as Objective C, C and C++. The main goal of this

testing is to make sure that certain expected conditions have been met and the execution of

a program can be continued. In the case of an assertion fail, the execution halts and displays

a warning message so that the code can be debugged. The assertion is useful for unit tests to

make sure that the flow of the program produces correct results. Thus, several barn records

will be created in a MySQL database that will mimic the new updates available. After that,

they will be updated and deleted in a random order. The assertion that will be written

inside the iOS app will be responsible for checking if the execution process corresponds to

the actions that have been declared on the server side.

Client/Server Data Synchronization in iOS Development 33

4 RESULTS AND CONCLUSION

4.1 Background

The following chapter will describe the results of research. It will include the descrip-

tion of the app that was developed in two versions: “FollowQTM” V1.0 and “FollowQTM”

V1.1. Then, it will state the minor open issues that will be solved in the future development

followed by the conclusion. The objective of the conclusion is to wrap up the results of the

conducted research.

4.2 Results

The “Follow the Quilt Trail Mobile” was developed in two versions: V1.0 and V1.1.

“FollowQTM” V1.0 includes the core functionality of the application that was introduced in

the previous chapter. It allows users to get access to all functions of the “Follow the Quilt

Trail” website without having access to the Internet through the local SQLite database.

It includes simple navigation between views. It also provides the access for positioning

functionalities through the app.

Despite the fact that the application depends on the local data store, it is lightweight

since the pictures in the barn Detail View controller are accessed via wireless connection.

However, it does not affect the goal of the application. If there is no connection available,

the placeholder for description photo will be exchanged with the logo of the application

with the assistance of Reachability class. It was developed as an open source framework

that checks the current wireless connections. The application supports iPhone 4/4S and

5/5C/5S. It was released in the Apple’s App Store in September 2013 with the support

of iOS 6.1. Currently, there are more than 230 downloads. The link to the download is

https://itunes.apple.com/us/app/followqtm/id702387611?mt=8.

The “FollowQTM” V1.1 has not yet been released since there are several open issues

that will be discussed later. It supports the same hardware as V1.0. However, it also was

Client/Server Data Synchronization in iOS Development 34

redesigned in order to be consistent with iOS 7.1. Besides the modern design, it includes

update functionality. Now, the customer can change the data of the MySQL server without

concerns of the inconsistent data provided by the app and the website. The synchronization

was accomplished through the creation of DataUpdater class that sends requests to the server

containing its update state and receives the response in the form of JSON object. It asks

the user if he/she wants to apply new updates and saves them to the SQLite database. This

part was tested and is ready for release after debugging several issues.

4.3 Open Issues

Even though the client/server synchronization part is ready for deployment, there

are still several issues that can cause insignificant delay of the product release. The first

problem is the issue with icons that are part of the Barn Table View Controller. The preset

app already contains icons that correspond to the existing records. It is rather trivial to get

the new PNG icons for the new records through HTTP; however all files that are submitted

as a part of the binary to iTunes Connect are stored in the application bundle. Because of

Apple’s security concerns, the files that are stored in a bundle cannot be modified. Therefore,

there is no way to delete or replace files that have been added to the app through Xcode.

However, there is a possibility to add new files to the document folder with the updates. This

issue will be discussed with the customer to make sure that this workaround is acceptable.

The other issue is that the target OS for V1.1 is iOS 7.1. However, iOS 8 has been

released as of September 17, 2014. Therefore, the “FollowQTM” will require small design

changes to support the new operation system. Also, the app now has to support iPhone

6 and iPhone 6 Plus and their screen resolutions of 1334 × 750 pixels for iPhone 6 and

1920 × 1080 pixels for iPhone 6 Plus respectively. This issue can be easily solved and does

not require big system changes.

Client/Server Data Synchronization in iOS Development 35

4.4 Conclusion

Despite the fact that there are two open issues, the goal of the research was achieved.

The tourism application that mimics the functionality of the website without wireless con-

nection, and consequently without costly Internet traffic and higher battery consumption,

was developed, tested, reviewed and released. “FollowQTM” is a convenient app for people

who enjoy agriculture tourism and want to support local farming. Since several quilt trails

will be merged, the update functionality is vital for the idea of the application.

The success of the project was reached through the conducted research in this thesis.

With the background work provided in the Review of Literature chapter, it was possible to

create methods that became the foundation of the Follow the Quilt Trail Mobile project and

the research of the thesis. The implementation phase was divided into two milestones. The

first milestone required completing the core functionality of the application that included

creation of the graphical user interface, developing the database and providing the core ap-

plication logic. This part was successfully tested and released as V1.0. It has been available

since September 2013 in the App Store. The target OS is iOS 6.1, but it does support the

newer versions of the OS. The second milestone required the creation of client/server data

synchronization logic. It included the development of both the client side logic written in

Objective C/C and server side logic written in PHP. Both parts included the work with

the databases: SQLite in the client side and MySQL in the server side. The communica-

tion between client and server was established through JSON serialization. This format is

recognizable by both PHP and Objective C languages.

To conclude, the client/server data synchronization technique that was developed

during thesis research helped to reduce the constraints of the web based application. Even

though, the application is synchronized with the web site’s database, it can fully operate

with no Internet access. As a result, it eliminates the problem of limited cellular coverage

areas, higher energy consumption and Internet traffic usage.

Client/Server Data Synchronization in iOS Development 36

References

Apple. (2014a, June). Data management in ios. Available from https://developer

.apple.com/technologies/ios/data-management.html

Apple. (2014b, June). Thread management in ios. Available from https://developer

.apple.com/library/mac/documentation/Cocoa/Conceptual/

Multithreading/CreatingThreads/CreatingThreads.html

AT&T. (2014, June). Cell phone plans - cell phone, tablets device plans from at&t. Available

from http://www.att.com/att/planner/#fbid=oNmXG6Xh1wE

Dewey, C. (2013). Tourism goes mobile and social. (cover story). Grand Rapids Business

Journal , 31 (18), 1. Available from https://login.ezproxy.etsu.edu:

3443/login?url=http://search.ebscohost.com/login.aspx?direct=

true&db=edb&AN=87527212&site=eds-live&scope=site

Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y. C., & Rice, A. (2013, June).

Characterizing and modeling the impact of wireless signal strength on smartphone

battery drain. SIGMETRICS Perform. Eval. Rev., 41 (1), 29–40. Available from

http://doi.acm.org/10.1145/2494232.2466586

Fairbanks, A., Gribbons, J., Nybo, E., Pean, D., & Wright, J. (2002, May). Research in xml

(extensible markup language). J. Comput. Sci. Coll., 17 (6), 253–254. Available from

http://dl.acm.org/citation.cfm?id=775742.775785

Garcia, F., & Fernandez, J. (2000, February). Posix thread libraries. Linux J., 2000 (70es).

Available from http://dl.acm.org/citation.cfm?id=348120.348381

Gil, B., & Trezentos, P. (2011). Impacts of data interchange formats on energy consumption

and performance in smartphones. In Proceedings of the 2011 workshop on open source

and design of communication (pp. 1–6). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/2016716.2016718

Introduction to json. (2014, June). Available from http://www.json.org

Lin, D.-Y., & Neamtiu, I. (2009). Collateral evolution of applications and databases. In

https://developer.apple.com/technologies/ios/data-management.html
https://developer.apple.com/technologies/ios/data-management.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
http://www.att.com/att/planner/#fbid=oNmXG6Xh1wE
https://login.ezproxy.etsu.edu:3443/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=87527212&site=eds-live&scope=site
https://login.ezproxy.etsu.edu:3443/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=87527212&site=eds-live&scope=site
https://login.ezproxy.etsu.edu:3443/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=87527212&site=eds-live&scope=site
http://doi.acm.org/10.1145/2494232.2466586
http://dl.acm.org/citation.cfm?id=775742.775785
http://dl.acm.org/citation.cfm?id=348120.348381
http://doi.acm.org/10.1145/2016716.2016718
http://www.json.org

Client/Server Data Synchronization in iOS Development 37

Proceedings of the joint international and annual ercim workshops on principles of

software evolution (iwpse) and software evolution (evol) workshops (pp. 31–40). New

York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/1595808

.1595817

Oliver, E. A., & Keshav, S. (2011). An empirical approach to smartphone energy level

prediction. In Proceedings of the 13th international conference on ubiquitous computing

(pp. 345–354). New York, NY, USA: ACM. Available from http://doi.acm.org/

10.1145/2030112.2030159

Sajid, A., Nayyar, A., & Mohsin, A. (2010). Modern trends towards requirement elicitation.

In Proceedings of the 2010 national software engineering conference (pp. 9:1–9:10).

New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/

1890810.1890819

Sumaray, A., & Makki, S. K. (2012). A comparison of data serialization formats for op-

timal efficiency on a mobile platform. In Proceedings of the 6th international con-

ference on ubiquitous information management and communication (pp. 48:1–48:6).

New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/

2184751.2184810

http://doi.acm.org/10.1145/1595808.1595817
http://doi.acm.org/10.1145/1595808.1595817
http://doi.acm.org/10.1145/2030112.2030159
http://doi.acm.org/10.1145/2030112.2030159
http://doi.acm.org/10.1145/1890810.1890819
http://doi.acm.org/10.1145/1890810.1890819
http://doi.acm.org/10.1145/2184751.2184810
http://doi.acm.org/10.1145/2184751.2184810

Client/Server Data Synchronization in iOS Development 38

APPENDICES

Appendix A: Use Cases

Use Case # 1 View Barns on Map

Goal in Context
Allow for a user to select county to see all the Barns on
map by county

Scope and Level N/A

Preconditions
Follow the Quilt Trail is run and user selects Select
County on the main menu

Success End Condition ser finds the county he/she wants

Failed End Condition ser does not find the county he wants
Primary,
Secondary Actors

User,
Data Store

Trigger User decides to view Barns on Map
Main Success Scenario Step Action

1 User selects county
2 The system runs Select Barn on Map

Extensions Step Branching Action

Open Issues:

1.

Owner Dmitry Tumanov
Initial Entry Date 2/08/2013

Modification History
Date By Whom Modification

Client/Server Data Synchronization in iOS Development 39

Use Case # 2 Select Barn on Map

Goal in Context
Allow for a user to select particular barn from
barns available for particular county on Map Kit

Scope and Level N/A
Preconditions User selected particular county
Success End Condition User finds the barn he wants to get info about
Failed End Condition User cannot find the barn he wants,to get info about
Primary,
Secondary Actors

User,
Data Store, Map Kit

Trigger User decides to get information,about particular barn on map
Main Success Scenario Step Action

1 The system shows Map Kit with,all available barns
for selected county

2 User chooses barn on map
3 System shows barn options

Extensions Step Branching Action
3a1 System shows information about selected barn

3b1 User chooses Get Directions
3b2 Map Kit shows Direction

Open Issues:

1.

Owner Dmitry Tumanov
Initial Entry Date 2/08/2013

Modification History
Date By Whom Modification

Client/Server Data Synchronization in iOS Development 40

Use Case # 3 Select Barn from list

Goal in Context
Allow for user to select a particular barn from
a list of barns

Scope and Level N/A
Preconditions User selected particular county
Success End Condition User finds the barn he wants to get info about
Failed End Condition User cannot find the barn he wants to visit
Primary,
Secondary Actors

User,
Data Store

Trigger
User decides to receive information about
particular barn

Main Success Scenario Step Action

1
The system shows the list of barns ordered by
county

2 User selects the barn from the Barn List
3 System shows barn options

Extensions Step Branching Action
3a1 System shows information about selected barn

3b1 System shows option show on map

3c1 User selects add to favorite
3b2 System stores barn ID on local data store

Open Issues:

1.

Owner Dmitry Tumanov
Initial Entry Date 2/08/2013

Modification History
Date By Whom Modification

Client/Server Data Synchronization in iOS Development 41

Use Case # 4 Show Favorites

Goal in Context
Allow for user to select a,particular barn from a
list of favorite barns

Scope and Level N/A
Preconditions User selected Show Favorites
Success End Condition User finds the barn he wants to get info about
Failed End Condition User cannot find the barn he wants to visit
Primary,
Secondary Actors

User,
Data Store

Trigger
User decides to receive information about
particular barn from Favorites list

Main Success Scenario Step Action
1 User selects the barn from the Favorites List
2 System shows barn options

Extensions Step Branching Action
2a1 System shows information about selected barn

2b1 System shows option show on map

Open Issues:

1.

Owner Dmitry Tumanov
Initial Entry Date 2/08/2013

Modification History
Date By Whom Modification

Client/Server Data Synchronization in iOS Development 42

Use Case # 5 Update Barns

Goal in Context
Allow user to receive database updates from
the server

Scope and Level N/A

Preconditions
User runs the app and
his/her device has Internet access

Success End Condition User receives updates
Failed End Condition The data was not updated
Primary,
Secondary Actors

Updater,
Data Store

Trigger New updates available in the server
Main Success Scenario Step Action

1
The system sends request for new updates to the
server

2 The server responds to the system

3
The system populates local data store with
received data

Extensions Step Branching Action
2a1 The system updates existing record(s)
2a2 The system deletes existing record(s)
2a3 The system inserts new records

Open Issues:

1. Impossible to add new icon to the app’s bundle

Owner Dmitry Tumanov
Initial Entry Date 05/05/2014

Modification History
Date By Whom Modification

Client/Server Data Synchronization in iOS Development 43

Appendix B: “FollowQTM” Screenshots

Figure 1: Main menu

Figure 2: Update request

Client/Server Data Synchronization in iOS Development 44

Figure 3: List of all barns

Figure 4: Map view

Client/Server Data Synchronization in iOS Development 45

Figure 5: Favorites

Figure 6: Detail view

Client/Server Data Synchronization in iOS Development 46

Appendix C: Communication Schema

Figure 7: Communication schema

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	11-2014

	Client/Server Data Synchronization in iOS Development
	Dmitry Tumanov
	Recommended Citation

	APPROVAL FORM
	ABSTRACT
	COPYRIGHT
	DEDICATION
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	Background
	Relevance of the Research
	Objectives

	REVIEW OF LITRATURE
	Background
	Value of Mobile Applications in Tourism
	Influence of Internet Based Apps on the Smartphones Usage
	Data Management in iOS Apps
	Data Serialization Formats
	Threading in iOS Development

	METHODS AND PROCEDURE
	Background
	Requirements Elicitation
	Design
	Implementation of the Core Functionality
	Implementation of the Update Functionality
	Testing

	RESULTS AND CONCLUSION
	Background
	Results
	Open Issues
	Conclusion

	References
	APPENDICES
	Appendix A: Use Cases
	Appendix B: FollowQTM Screenshots
	Appendix C: Communication Schema

