
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

5-2013

Web 2.0 Technologies in the Software
Development Process.
Jocelyn Borgers
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Software Engineering Commons

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Borgers, Jocelyn, "Web 2.0 Technologies in the Software Development Process." (2013). Undergraduate Honors Theses. Paper 164.
https://dc.etsu.edu/honors/164

CORE Metadata, citation and similar papers at core.ac.uk

Provided by East Tennessee State University

https://core.ac.uk/display/214063866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=dc.etsu.edu%2Fhonors%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

College of Business and Technology
Honors Thesis Signature Approval Form

Web 2.0 Technologies in the Software Development Process

April 2, 2013

The members of the Thesis Committee
approve the Senior Honors Thesis for
Jocelyn Borgers _____________________________________

Thesis Committee Co-Chair
Bill Pine _____________________________________

Thesis Committee Co-Chair
Dr. Martin Barrett _____________________________________

CBAT Thesis Committee Member
Dr. Suzanne Smith _____________________________________

External Thesis Committee Member
Dr. Robert Price Jr. _____________________________________

CBAT Honors Director
Dr. Tom W. Moore _____________________________________

1

EAST TENNESSEE STATE UNIVERSITY COLLEGE OF BUSSINESS AND TECHNOLOGY

Web 2.0 Technologies in

the Software Development

Process

Jocelyn Borgers

4/2/2013

2

Contents
Intro .. 3

Web 2.0 in Software Development .. 3

Social Media for Software Engineering ... 5

Business Impact of Web 2.0 Technologies .. 6

Using Wiki’s in Software Development ... 8

The Impact of Social Media on Software Engineering Practices and Tools 9

Collaboration Tools for Global Software Engineering ... 10

A Survey of Social Media Use in Software Systems Development ... 11

Communication Patterns in Geographically Distributed Software Development and Engineers'

Contributions to the Development Effort .. 12

On the Perceived Interdependence and Information Sharing Inhibitions of Enterprise Software

Engineers .. 13

Mining Task-Based Social Networks to Explore Collaboration in Software Teams and Predicting

Build Failures Using Social Network Analysis on Developer Communication 15

Summary .. 18

Web 2.0 Technologies in Software Development Survey .. 19

 Appendix I: Participant Letter ... 21

Appendix II: The Survey .. 22

Acknowledgements .. 24

Works Cited .. 26

3

Intro

Web 2.0 is another way of saying social media. The idea is that Web 1.0 is a user interacting with a

web page or web site; Web 2.0 is a user interacting with another user, or users, through a web page or

web site. Web 2.0 technologies are designed to help people communicate without distance being an

obstacle.

The software development process varies from company to company but all of the methodologies

used can be broken down into five phases of requirements, design, implementation, quality assurance, and

maintenance. Requirements is the phase where the developers talk with the customer to try and determine

what product the customer is asking for and get an idea of the features that the customer needs. The

Design phase is where the requirements that have been gathered are looked at and molded into a design of

a system. Implementation is where the code for the system is written. Quality Assurance is to debug the

software created in the Implementation phase. The Maintenance is the day to day upkeep of the software

once it has been implemented. Throughout these phases, communication is imperative. The further along

in the software development process, the more it costs to fix any kind of bug.

 Web 2.0 technologies are designed to help with communication making it quicker and easier. This

can be a great benefit to global companies who have software developers scattered around the world all

working on the same project. This thesis explores the connection of Web 2.0 technologies with the

software development process by surveying local software developers. It attempts to connect developers’

usage of social media with specific phases of the development process.

Web 2.0 in Software Development

Various authorities have noted the importance of effective communication for effective software

development. This includes DeMarco and Lister (1987), who state that developers spend 70% of their

4

time working with others, and Hayes (2003) , who notes that even small miscommunications can create

major problems for a software project.

Social media have gained recognition as an effective means of communication for software

development. Research into the use of social-media based communication for software engineering

includes surveys of Web 2.0 use in real-world software development, case studies of communication

within geographically distributed projects, and attempts to correlate communications in social networks

with build failures (Wolf, Schroter, Damian, & Nguyen, 2009). Types of social media that are being used

in software development include technical Q&A sites, Wikis, Blogs, Microblogs, and social networks:

• A technical Q&A site is a place for users to ask technical questions of and get answers from other

software engineers or programmers who are users or site employees. An example of this is Stack

Overflow (Stack Exchange Inc., 2013).

• A wiki is online form of “collaboration and knowledge sharing” (Louridas, 2006). Ideally wikis

should be easy to use and update, even for people who may lack programming experience. An

example of a technical wiki is Hughes Systique Corporation’s wiki, HSC Technical Wiki

(Hughes Systique Corporation, 2013).

• A blog is a series of writings on a website by an author, or a group of authors, upon which readers

can then comment. Software engineering related blogs are used to share and get feedback from

employees and customers about technical information. One such blog is Adobe’s secure software

engineering team (ASSET) blog (Adobe Systems Incorporated, 2013).

• A microblog, like Twitter, is a blog that limits users to short messages. Microblogs are useful for

sharing links, status updates, and meeting reminders because they are quick and concise. Some

companies have their own microblogs for these purposes like Yammer (2013).

• A social network site is a website, like Facebook, that links people into a graph. This graph

allows users to traverse its links to learn about others in the network. Microsoft supports an

internal social network, Codebook, which provides its employees with social connections along

5

with access to shared work artifacts like code, documentation, and bug reports (Begel, DeLine, &

Zimmermann, 2010).

This use of social media to foster software development has attracted the attention of various

researchers, who have studied how social media are being used in software development along with how

effective its use has been. Examples include Begel et al.'s description of possible social media

applications for each stage of Tuckman and Jensen’s five-stage, forming-storming- norming-performing-

adjourning model for group dynamics (2010); Andriol's interviews regarding and surveys on social media

in software engineering (2010); Louridas's (2006) analysis of Wiki’s in software development (2006);

Storey et al.'s and Lanubile et al.'s assessment of social media tools in software development (2010);

Black et al.'s pilot survey of Twitter followers (2010); Cataldo et al.'s comparison of social-media-based

patterns of communication used by teams from two different geographically distributed projects (2008);

Grubb and Begal's analysis of how well software developers think they communicate (2012); and Wolf et

al.'s research on the use of data mining to create a social network that could detect project failure (2009).

Social Media for Software Engineering

As a starting point for identifying further uses for social media in software development, Begel et al.

consider possible applications of social media to Tuckman and Jensen’s five-stage model for group

dynamics. In the first stage of Tuckman and Jensen’s model, forming, workers are organized into teams.

Social media like social networks can be used to find and recruit team members during this first phase of

team development. During the second, storming phase of team development, a team sets goals for a

project. Begel et al. see blogs as a tool for “enabl[ing] coworkers to discuss application ideas, future

trends, potential markets, and their own personal requirements for working in a team” (Begel, DeLine, &

Zimmermann, 2010). Blogs are also good for getting customer feedback. During the third, norming,

phase, social media can help teams to select a software methodology and engineering process. In this

stage microblog-based communication can be helpful especially if team members can't meet face to face.

According to Begel et al., frequent use of microblogs helps teammates to understand each other and

6

quickly distribute knowledge. In the fourth, performing, stage, social media can help with software

creation. Begel et al. cite Amazon's use of an application, Mechanical Turk (MTurk), which partitions

programs into smaller tasks for to others to implement, at a rate of between $.01 and $.10 per task. This

type of crowd sourcing has been successful in creating speech recognition software. Finally, social media

can support the last, adjourning, stage by facilitating the process of reflecting on a project's processes.

Business Impact of Web 2.0 Technologies

Andriole (2010) describes research into how companies are using Web 2.0 technologies and how well

those technologies were being used. Andriole interviewed “[a]pproximately 15 senior managers”[sic]

(Andriole, 2010) from five different companies, including a big pharmaceutical company, a global

chemicals company, a national real estate and mortgage company, a global IT company, and a large

financial services company. On simple questions like “Which Web 2.0 technologies have you piloted?”

answers differed little. All companies, for example, had piloted blogs and Wikis. For more complex

questions like “How would you quantify the impact in knowledge management, rapid application

development, customer relationship management, collaboration, communication, innovation and

training?”, answers were longer and had more variation. One of the more important points learned

through the interviews was “that Web 2.0 technologies, in spite of the hype, are entering the enterprise

slowly but deliberately” (Andriole, 2010).

Andriole also surveyed ninety-eight companies from around the world, including the five companies

that participated in his interviews. The survey mainly focused on six different performance areas:

knowledge management, rapid application development (RAD), customer relationship management,

collaboration and communication, innovation, and training. The results, given in Table 1, showed that

companies had avoided most external uses of Web 2.0 technologies for fear of information leaks—but

that this fear was starting to dissipate. The two most used Web 2.0 technologies were Wikis and blogs.

The least used were virtual worlds followed by crowdsourcing and mashups. 22% of the participants did

7

not use any Web 2.0 technologies at all. Andriole believes these results also show growth of external

deployment, confirming what was learned from the interviews.

According to Andriole “[c]ollaboration and communications were slightly exaggerated in the

expectations survey data, though collaboration and communications were still highly affected by Web 2.0

technologies.” All six areas showed overly enthusiastic expectations. Web 2.0 technologies for

knowledge management were found to be more descriptive and operational than prescriptive and

strategic. Wikis, blogs, and folksonomies/content management are the top three technologies that

improve knowledge management. The leading technology for RAD was Wikis. Mashups would have

value in RAD but according to the survey they are not yet used in this way. For improving customer

relationship management external customer blogs and external social networks were found to be the most

beneficial. Compared to the other five performance areas, Web 2.0 technologies were used very little for

customer relationship management. This suggests that not enough research has been done in this field. In

the area of communication and collaboration Web 2.0 technologies are so far having a significant effect.

Wikis again are most common followed by blogs and internal social networks. The survey data indicates

that these technologies are not yet being used to their full potential.

These companies were in their initial deployment of Web 2.0 technologies and still testing their

impact. In the area of innovation Wikis and internal employee blogs, according to the survey, had the

most impact. External crowd sourcing was surprisingly underused. Training was the last area evaluated.

As noted by Andriole “survey respondents have not yet defined how Web 2.0 technologies can contribute

to training.” Wikis were still at the top of the list with 40.8% of participants saying that they had seen

improvement in training with Wikis. 28.4% had not seen any improvement in training with any Web 2.0

technologies.

Together the interviews, survey, and observation show that tend to restrict the use of social media for

a number of reasons. The main reason is that social network are not very secure; by having an internal

8

social network a company can control it easier and make it more secure. Some companies that use social

networks are concerned about the amount of time employees spend on them. This is also the reason some

companies block social networks. Still the interview and survey data shows that “Wikis, blogs, and social

networks, perhaps due to their consumer-to-consumer origins, have been deployed more than the other

Web 2.0 technologies” (Andriole, 2010). Simpler technologies like Wikis and blogs have been adopted

quicker than complex ones, e.g. mashups and crowdsourcing. Companies also have to consider the

possibility of cyberbullying, or people looking to harm them through their Web 2.0 technologies.

Using Wiki’s in Software Development

Wikis were created by Ward Cunningham in 1995 as a way of creating “new forms of collaboration

and knowledge sharing on the Web and empowering many people to contribute to online content.”

(Louridas, 2006) The word “wiki” is Hawaiian for easy. Ease of use is the main requirement for a wiki

implementation device or a wiki engine. Wikis should be written in natural language with a few

extensions for text entities like headers, titles, and links. Wikis should also be easy to update by people

who lack programming expertise.

Making Wikis easy to update by any user can invite errant and malicious changes. To address this

issue, Wikis should maintain a history file that records who made changes, what they changed, and when

they made those changes. A history file can also support collaborative document creation by providing a

central location for letting collaborators know who did what when.

Wikis have different uses for software development. According to Louridas “[a]t the simplest level,

you can use Wikis as a project documentation repository” (Louridas, 2006). Wikis can also be used to

create and maintain project documentation as well as administrative documents like meeting agendas and

meeting minutes. With a wiki, meeting agendas can become the meeting minutes. Conducting project-

related discussions on Wikis allows users to see the development of ideas, and keep things neat as

opposed to email where long conversations with many people can be hard to follow.

9

The Impact of Social Media on Software Engineering Practices and Tools

Storey et al. concur with Begel et al's observation that research into the use of social media in

software engineering has been limited. Storey et al. attribute this to the rate at which new social media

technologies are being adopted, which they see as too fast for researchers to keep up with (Storey, Treude,

Deursen, & Cheng, 2010). While some empirical studies have examined the adoption of social media in

software engineering as a whole, most have focused on social media in individual projects.

Integrated Design Environments (IDEs) were originally designed to help individual developers to

write, debug, refactor, and reuse code. Newer IDEs, known as Collaborative Development Environments

(CDEs), provide network-based features for team development that include version control, release

management tracking, issue tracking, and mailing lists. According to Storey et al., “[t]he primary goal of

CDEs is to reduce friction in collaborative processes” (Storey, Treude, Deursen, & Cheng, 2010). Two

examples of CDEs are Jazz and the Microsoft Team Foundation Server. Another category of IDEs are

Social Development Environments (SDEs), which use web sites to support collaborative software

development. Examples of SDEs include Stackoverflow, Github, TopCoder, and Freshmeat.

Storey et al. discuss the uses and potential use of blogs, microblogs, tagging, feeds, social networks,

mashups, and crowdsourcing for software development. Blogs are widely used for exchanging technical

knowledge, including “how-to” documentation. Microblogs like Twitter are used to exchange quick bits

of information. Tagging is used to track issues, work items, and builds. Research has also been done on

the use of tagging in IDEs. Feeds provide short real-time update statues to subscribers. Jazz uses a feed

to provide information of project occurrences like workspace changes, developer statuses, and process

events to project members. Social networks like Facebook can, when used for software engineering,

connect work artifacts with people. Mashups combine data or functionality from different sources.

Crowdsourcing can provide developers with feedback on their software, including descriptions of bugs

and ideas for new features. One way of leveraging crowdsourcing is to present different versions of a

website to different users, to see which page was more effective and easier to use.

10

Managing globally distributed projects is challenging. Social media can become a virtual water

cooler for these global projects, to help get communication flowing. Further research is needed to find

best practices of social media for software engineering. Storey et al. believe that “there is considerable

evidence that these tools are being used in innovative ways in practice, yet there have been few research

studies that articulate the benefits and limitations of these tools on software engineering” (Storey, Treude,

Deursen, & Cheng, 2010). They suggest open, closed, and crowd-sourced projects; co-located or globally

distributed projects; projects across different domains; and projects using agile and traditional

development processes as some possible topics for future research.

Collaboration Tools for Global Software Engineering

Lanubile et al. (2010) recommend various tools that are not necessarily associated with Web 2.0 for

global software engineering. One, version control systems, help team members manage software

artifacts. A second, trackers, a.k.a. tickers, maintain records of current defects, changes, and requests for

support. A third, build tools like Maven and CruiseControl, create and schedule workflows and provide

remote repositories. Secure remote repositories are a major need for distributed projects and an even

greater need for globally distributed projects. A fourth, modelers, help developers create software

artifacts; Lanubile et al. differentiate collaborative software engineering from the simple sharing of files

based on the former's use of modelers. A fifth, knowledge centers, are websites where team members can

share knowledge. Some examples of knowledge centers are the Eclipse help system and KnowledgeTree.

A final type of tool, communication tools, is widely used by software engineers, especially those in

globally distributed project teams. These can be divided into asynchronous tools like email, mailing lists,

newsgroups, Web forums, and blogs; synchronous tools like telephones, conference calls, instant

messaging, voice over IP, and video conferencing; and tools like websites with auto-dialer response that

combine asynchronous and synchronous communication.

Lanubile et al. view Web 2.0 as a set of technologies that “extends traditional collaborative software

by means of direct user contributions, rich interactions, and community building” (Lanubile, Ebert,

11

Prikladnicki, & Vizcaino, 2010). Web 2.0 technologies have become common in open source and

globally distributed projects. CDEs can contain some or all of the previously mentioned collaborative

tools. Companies often don’t use CDEs since they have a legacy tool or environment they must use.

Lanubile et al. also classify communication tools for globally distributed projects by function. They

place tools in one of four different categories: project management, requirements engineering, designing,

and testing. Tools with calendars and milestone tracking are useful for project management. Examples of

these tools are ActiveCollab and WorldView, both of which have a web-based interface. Tools that use

natural language text are useful for requirements engineering. Doors and IRqA are two such tools that

have Word-based interface and a web interface. Lanubile et al. suggest Gliffy and Creately as good

design and modeling tools. Gliffy and Creately support team communication with features for

commenting and creating blogs. TestLink is an example of a popular testing tool. It has a web-based

interface for convenient access. Some other testing tools are Selenium and OpenSTA.

Lanubile et al. argue that collaboration tools fail to support the ready integration of data across tools,

due to varying implementations of collaborative features. They also fail to ensure efficiency, consistency,

and information security for projects with multiple teams in multiple locations. According to Lanubile et

al., “[n]o current tool or CDE supports all the activities necessary for global software engineering”

(Lanubile, Ebert, Prikladnicki, & Vizcaino, 2010).

A Survey of Social Media Use in Software Systems Development

In (2010) Black et al. present the results of a pilot study on the use of social networking in globally

distributed development teams. Participants were recruited with a Twitter message. This message, which

was sent to followers of Dr. Black, asked "Do u work in software systems development use social media

2 communicate? If so please take our survey: http://tinyurl.com/yavuwj7” (Black, Harrison, & Baldwin,

2010). Of the thirty-one participants, 20 were male, 9 were female, and 2 didn't specify gender. A higher

proportion of men than women had a bachelors or master’s degree. The average age of respondents was

12

41 and the amount of time that they had worked with their current employer varied widely. Participants

ranked Twitter highest among social media, followed by instant messaging, LinkedIn, Facebook,

Googlewave, and Plaxo. This result should be considered in view of the authors' use of Twitter to recruit

responders. In response to a question about what was communicated using social media, over 50%

responded yes to “new ideas”. “Social arrangements” was the top answer for ways in which social media

were used. Another question that asked respondents for the number of hours they used social media each

day was disqualified from consideration since it failed to differentiate background execution of social

media from active use of a social media application.

The survey's validity is questionable, given the non-random selection procedure, the small number of

respondents, and the way the respondents were informed about the survey. The authors tried to enhance

the survey’s validity by incorporating some unstructured interviews into their data. Despite these

problems Black et al. argue that. “[their] results [were] valid and useful within this restricted context”

(ibid.).

Communication Patterns in Geographically Distributed Software Development and

Engineers' Contributions to the Development Effort

In (2008), Cataldo compared communications dynamics for two engineering projects that were

implemented by two different companies. Both projects involved the use of Geographically Distributed

Software Development (GDSD). Both projects used modification requests to track individuals'

accomplishments. People who completed more modification requests were said to be more productive.

Project A in Cataldo's study produced a large distributed system for the data storage industry. Project

A was studied through 4 releases (about 3 years). This project had 114 developers, divided into 8

development teams at 3 locations. The primary means of communication were an online chat system

(IRC), a modification request tracking system, email, and video conferencing. No formal roles were

13

assigned to the developers. In the absence of formal roles, a group of people from all three locations

became the center for coordination and information exchange.

Project B produced a large medical system. Project B’s company divided work into 8-week

iterations; this study followed the 7th iteration. This project had 83 engineers, divided into 10 teams at 4

locations: two in the United States and one each in India and Eastern Europe. Formal roles were defined

and assigned to project developers. This included the use of designated coordinators for managing

communications. Far fewer people assumed this role than in Project A.

The modification requests resolved in Project A were analyzed according to factors that included

domain experience, common usage, and average change size. It was found that “individuals benefit by

ample access to information rather than by controlling the flow of information” (Cataldo, 2008). Since

not enough data was collected on Project B to analyze these same factors, a subset of those factors was

analyzed instead. This included intercept and degree centrality. As in Project A, individuals from Project

B that were highly connected completed more modification requests. In both cases more experienced

developers completed more than inexperienced ones.

In Project A, the core group of highly productive developers became the contacts between different

locations. In Project B, where the role of liaison was formalized, the liaisons contributed less to the

development effort than the rest of the developers. Cataldo suggests future research to account for the

differences in productivity between the informal and formal liaisons.

On the Perceived Interdependence and Information Sharing Inhibitions of Enterprise

Software Engineers

In (2012), Grubb and Begel present the results of a case study on information sharing among 3,000

software engineers at Microsoft in summer 2010. This study involved a survey of people who had

worked at Microsoft for at least a year. The survey characterized information sharing among developers

in terms of Microsoft's model for software engineering roles, which further categorizes engineers into

14

developers, project managers (PM), and testers. Information sharing was characterized in terms of two

new terms: iDepend, meaning that “the respondent perceives that he depends on work done by others

outside his team”, and oDepend, meaning that “the respondent perceives that individuals from outside his

team depend on him for his work” (Grubb & Begel, 2012).

Grubb and Begel obtained 989 responses to their survey. To determine how respondents related their

work to that of other Microsoft employees, participants were asked to affirm or deny two statements:

• “I personally depend on the work of people outside my team.”

• “People outside my team depend on the work that I personally do.”

Only 67.4% said yes to both statements.

Grubb and Begel identified five reasons for software engineers not wanting to share information. The

material requested was sensitive and could not be openly shared; the engineer was uncertain about

whether the information should be shared; the information requested was incomplete; the requestor was

not trusted by engineer; and the engineer did not believe the requestor would understand the information.

33.2% of participants said that they had been asked for sensitive material that they could not share.

25.1% said that they felt uncomfortable sharing the information requested. Based on job functions it was

found that PMs were more comfortable sharing more information than they were allowed to, whereas

testers did not feel comfortable with sharing what they were allowed to share. Follow up interviews with

testers found this was due to lack of confidence.

Some questions on the survey attempted to determine if some documents were relied on more than

participants thought. Most respondents reported that they waited on (iDepend) release schedules and

specifications and others were waiting on them (oDepend) for specifications and source code. iDepends

were almost always greater than oDepends. For example 53.85% of PMs had an iDepend for others work

status, but only 17.41% said they had an oDepend on their work status. Grubb and Begel also found that

participants with a higher iDepend were more likely to feel comfortable sharing their work. PMs were

15

found to be more likely to say that they had oDepend than developers or testers. This was expected

because it is the PM’s job to coordinate their team with others. Respondents of all three job functions that

were more experienced had a higher oDepend.

Grubb and Begel suggest various ideas to improve communications involving work-related

dependencies. One is a system that notifies a user of others with a possible interest in a document being

developed, then allows that user to choose to whom to send that document. They also suggest that the

system allow users to modify their messages for different types of recipients. This, however, might make

more work for users than current systems, becoming more of a hindrance than a help.

Mining Task-Based Social Networks to Explore Collaboration in Software Teams and

Predicting Build Failures Using Social Network Analysis on Developer Communication

Social networks can be used to study collaboration among members of software development teams.

In (2009), Wolf et al. describe “a systematic approach for mining large software repositories to generate

social networks that use task-based communication between developers” (Wolf, Schroter, Damian, &

Panjer, Mining Task-Based Social Networks to Explore Collaboration in Software Teams, 2009). Once

created, these social networks can be used to analyze patterns of communication.

Wolf et al. tested their approach in the context of IBM’s Rational Jazz project, an effort to create a

development environment that focuses on collaboration support. Because their data was based on a single

case study, the authors caution that their results may not apply to other projects. The Jazz project is a

collaboration among 16 sites in the United States, Canada, and Europe. Six-week iterations of the Jazz

project are divided into planning, development, and stabilization. Work items are traceable across an

entire iteration, due to the Jazz project's use of a source code management tool called Stream. Each team

has its own Stream that each team member contributes to. When a team is ready to integrate a build, the

team publishes all changes from its Team Stream to the Project Integration Stream. These builds produce

16

an indicator of ERROR, WARNING, or OK. Because an indicator of WARNING was treated the same

as an OK, both were regarded as a successful build.

Wolf et al. modeled Jazz-based collaboration using a graph that represents project members and

collaborative tasks as nodes and communication paths as weighted lines. Weights indicate amount of

communication: for the Jazz project this was the number of comments on a work item. This graph was

filtered to create task-based social networks for multiple uses. Wolf et al. described three strategies for

filtering this graph, corresponding to different scopes of collaboration: project members, tasks, and

communication. These strategies included the use of different filtering orders to obtain different views of

communication patterns. One way of ordering the filters produces a social network that identifies

candidates for communication brokers. A communication broker is someone who understands what two

parties need to communicate and who can easily communicate with both parties. Communication brokers

are useful when two people could have trouble communicating, e.g. are in different time zones. To

produce this network, all tasks would first be filtered by relevance to the project at hand. Then project

members would be filtered based on contributions to those tasks left. After being filtered, those project

members are connected to each other based on task communication. This creates a social network that

makes it easy to find possible communication brokers for any two project members.

Wolf et al. performed two major studies with the Jazz project. To retrieve data for these studies from

the Jazz project’s data repository, a plug-in for the projects’ client was created. This attempt to monitor

communications was complicated by the repository's large size and the need to make data extraction

minimally invasive to preserve Jazz's performance. This was accomplished using incremental queries, the

results of which were stored into a reporting and analysis database. Information from this database was

processed using Java Universal Network/Graph (JUNG).

The first study focused on using communication structures to predict build failures, which can occur

nightly for team builds and at the end of each iteration for project builds. First, to find “whether any

17

individual measure of communication structure can predict integration failure or success” (Wolf,

Schroter, Damian, & Nguyen, Predicting Build Failures Using Social Network Analysis on Developer

Communication, 2009), data was collected and analyzed from each team and project build. Teams were

categorized into groups based upon successful and failed builds. Wolf et al. compared the networks'

density, centrality, structural holes, and number of direct connections. Density measures the density of

the connections and is calculated as a percentage. Centrality measures the importance of a node in a

social network. Structural holes represent a lack of communication between nodes. No correlation

however, was found between any of these measures and successful and failed builds. The authors then

correlated these measures using a Bayesian classifier and the leave one out cross validation method. The

results of this correlation were categorized using recall and precision. Recall is the percentage of

successful or failed build predictions out of the total number of actual successful or failed builds.

Precision is the percentage of actual successful or failed builds out of the total number of successful or

failed build prediction. The recall values of failed team builds were between 55% and 75% and the recall

values of failed project builds were at least 89%. The precision values were also high.

The second study involved the visualization of communication in the Jazz project. Contrary to

expectations, communication response times were largely independent of distance. Wolf et al. attribute

this unexpected result to the Jazz team's use of best practices like prioritizing offsite requests and tools for

integrated development.

The authors concluded with various suggestions for deploying task-based social networks. If, like the

Jazz project, a project’s data repository is large and in current use; incrementally mining the data reduces

load and performance issues. Storing mined data will help keep a data repository from getting bogged

down with re-mining. Using a visualization of a project's social network can help bring new developers

up to speed. Wolf et al. advocate further research about what type of information is valuable to

developers and the best means for conveying that information. A particularly important finding was that

successful integration of a build depends on good communication between developers and team members.

18

Failures could be prevented by monitoring communication and affecting it, when necessary. There are

multiple possibilities for this type of system. A warning system could be created to alert someone when

communications are becoming weak so that project workers would know they needed to communicate

more. Management could use social network analysis to effectively manage projects. Social networks

created as early as in the first quarter of a project proved to be helpful for predictions. A team’s

communication structure can be easily examined by management with such a social network to identify

problems like missing communication links. Once a missing link is discovered a project manager can

assign communication brokers to fill it. Possible communication brokers are easy for project managers to

find with a task-based social network. Wolf et al. claim that task-based social networks can be adjusted

by project managers to meet their specific project needs.

Summary

Communication is an important part of developing a successful software system. Some Web 2.0

technologies are in widespread use as communication tools for software projects. Wikis and Blogs are

the most successfully used so far, probably due to their ease of use. IDEs are also using Web 2.0

technologies to help with communication and collaboration between project members. SDEs, social

IDEs, are being used but not as extensively as Wikis and blogs.

Global distribution of work has become commonplace for software development. Large companies

have offices and workers all over the world. In Cataldo’s study, communication dynamics of

geographically distributed projects were found to be better when no formal communication roles were

assigned (Cataldo, 2008). More research is needed to understand this relationship.

From interviews and surveys conducted by Andriole it was found that Wikis and internal employee

blogs were deployed the most. External technologies were used less because of security risks. Use of

social networks was less than expected because of employers' concerns about their effect on employee

19

productivity. Black et al. and Begel et al. agree that Web 2.0 technologies have become popular for

software development because they are already in high use; people are comfortable using them.

To understand information sharing Grubb and Begel surveyed software engineers at Microsoft. They

categorized survey participants based on the types of project managers, developers, and testers. Their

results indicated that people did not realize others depended on their work as much as they depended on

someone else’s and project managers were more likely than the other two categories to say someone

depended on their work.

Social networks can be used to map communication paths between project members and project

documents. Wolf et al. showed how this could be used to analyze communication paths and find potential

build failures. This kind of social network can also be used to get newly employed developers up to

speed. Wolf et al. suggested that other uses could be found with more research.

Web 2.0 Technologies in Software Development Survey

I created a survey to determine the use of Web 2.0 technologies in the five phases of the software

development process. The target respondents for this survey are software engineers currently working on

a software development project. This is to keep the findings as current as possible with what is used now.

The target area for the survey is the Tri-Cities and Knoxville area simply because that is the area I know.

If more respondents are needed then the area can be expanded. The survey will be administered using the

survey site surveygizmo.com (Widgix, LLC dba SurveyGizmo). SurveyGizmo has a setting to allow

survey respondents to remain anonymous. Potential respondents will receive a link via email or social

media asking them to take the survey. If they choose to do so, clicking on the link will take them to the

first page of the survey. The survey consists of five pages, which can be viewed in Appendix I.

There are three different hypothetical results for this survey. The first is that software engineers are

Facebook friends with their co-workers and as a result talk about work related items over Facebook. This

20

hypothesis comes from the popularity of Facebook and software engineers desire to keep up with the

latest technologies. The second hypothesis is that Blogs, Wikis, and internal social networks are the most

commonly used Web 2.0 technologies in the software development process. This hypothesis is based on

the fact that previous surveys have found these three to be most commonly used because they are among

the easiest to implement and use. The third and final hypothesis is that the most communication and the

most Web 2.0 technologies are used in the requirements and design phase. This hypothesis is based on

the fact that the most time and money can be saved by having better communication in these first two

stages.

21

 Appendix I: Participant Letter

22

Appendix II: The Survey

23

24

25

26

27

28

29

30

Acknowledgements

This thesis would not have been possible without my thesis advisers Bill Pine and Dr. Marty Barrett.

Thank you, Mr. Pine, for teaching my software engineering classes which gave me the knowledge to

begin this thesis. Thank you, Dr. Barrett, for giving me the idea for my thesis, agreeing to be my thesis

adviser, and getting Mr. Pine involved. Both of you kept me going with words of encouragement and

extra ideas and advise. I really expanded my knowledge in this area because of you both. I also want to

thank the other members of my advisory board, Dr. Smith and Dr. Price. You both agreed to be readers

without hesitation. I also want to thank Dr. Pfeiffer for reviewing my writing. You are the best and

fastest grammar reviewer I have ever met; I appreciate your doing this for me. I would also like to thank

my computer science friends who tested my survey. Lastly I want to thank all my friends and family who

have supported me and offered me words of encouragement throughout this process.

31

Works Cited

Adobe Systems Incorporated. (2013). Adobe Secure Software Engineering Team (ASSET) Blog. Retrieved

March 4, 2013, from http://blogs.adobe.com/asset/

Andriole, S. J. (2010, December). Business Impact of Web 2.0 Technologies. Communications of the

ACM, pp. 67-79.

Begel, A., DeLine, R., & Zimmermann, T. (2010). Social Media for Software Engineering. FoSER '10

Proceedings of the FSE/SDP workshop on Future of software engineering research (pp. 33-38).

New York: ACM.

Black, S., Harrison, R., & Baldwin, M. (2010). A Survey of Social Media Use in Software Systems

Development. Web2SE'10. Cape Town, South Africa: ACM.

Cataldo, M. (2008). Communication Patterns in Geographically Distributed Software Development and

Engineers' Contributions to the Development Effort. CHASE '08, 25-28.

DeMarco, T., & Lister, T. (1987). Peopleware: Productive Projects and Teams. New York: Dorset House

Publishing Co., Inc.

Grubb, A., & Begel, A. (2012). On the Perceived Interdependence and Information Sharing Inhibitions of

Enterprise Software Engineers. CSCW '12 (pp. 1337-1346). New York: ACM.

Hayes, J. H. (2003). Do You Like Pina Coladas? How Improved Communication Can Improve Software

Quality. IEEE Software, 90-92.

Hughes Systique Corporation. (2013, January 13). HSC Technical Wiki | Main / Home Page browse.

Retrieved March 4, 2013, from HSC Technical Wiki: http://wiki.hsc.com/

Lanubile, F., Ebert, C., Prikladnicki, R., & Vizcaino, A. (2010). Collaboration Tools for Global Software

Engineering. IEEE Software, 52-55.

32

Louridas, P. (2006). Using Wikis in Software Development. IEEE Software, 88-91.

Stack Exchange Inc. (2013). Stack Overflow. Retrieved March 4, 2013, from Stack Overflow:

http://stackoverflow.com/

Storey, M.-A., Treude, C., Deursen, A., & Cheng, L.-T. (2010). The Impact of Social Media on Software

Engineering Practices and Tools. FoSER '10 Proceedings of the FSE/SDP workshop on Future of

software engineering research (pp. 359-364). New York: ACM.

Widgix, LLC dba SurveyGizmo. (n.d.). Retrieved from SurveyGizmo: http://www.surveygizmo.com/

Wolf, T., Schroter, A., Damian, D., & Nguyen, T. (2009). Predicting Build Failures Using Social

Network Analysis on Developer Communication. ICSE'09.

Wolf, T., Schroter, A., Damian, D., & Panjer, L. D. (2009). Mining Task-Based Social Networks to

Explore Collaboration in Software Teams. IEEE Software, 58 - 66.

Yammer. (2013). Yammer: The Enterprise Social Network. Retrieved March 4, 2013, from Yammer:

https://www.yammer.com/

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2013

	Web 2.0 Technologies in the Software Development Process.
	Jocelyn Borgers
	Recommended Citation

	Microsoft Word - Web2.0TechnologiesInTheSoftwareDevelopmentProcess-draft6.docx

