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ABSTRACT

MODELING ANTIBIOTIC RESISTANCE WHEN ADDING A NEW
ANTIBIOTIC TO A HOSPITAL SETTING

by Brandi N. Canter

As of now, not many pharmaceutical companies are producing new categories

of antibiotics to fight bacterial infections [10]. Therefore, bacteria are building up a

resistance to the medications commonly used. Often, antibiotic resistance begins

within a hospital. To combat resistance, researchers completed several studies using

cycling of the medications that are already in place, but they found either no

improvement or the resistance increased with this type of setting

[3, 8, 16, 12, 21, 22]. In addition, although preventative infection control measures

have been shown to decrease antibiotic resistance for some antibiotics, the level of

antibiotic resistance found in hospitals is still extremely high [9, 14]. This motivates

the main goal of this thesis: to quantify how much the overall resistance can be

lowered by simply adding one new drug to the regimen.

The process of adding a new antibiotic can be quantified using mathematical

models that show the flow of patients colonized with various types of bacteria into,

out of, and within the hospital. Deterministic models can be used to model the

spread of resistant bacteria in hospitals with a relatively large number of beds.

However, not all hospitals are large enough to accurately determine the effects using

a deterministic model; thus, we must use stochastic models, where mathematical

formulations include probability in ways that describe intrinsic random fluctuations,

typical of infection processes at smaller scales [2, 20].

In examining the addition of a new antibiotic within a hospital, we consider

different administration protocols, either assuming that physicians are equally likely

to prescribe the new antibiotic as they are to prescribe existing antibiotics or that



physicians prescribe the new antibiotic to only a targeted population of patients.

We will examine the variation in the expected level of overall resistance in a hospital

depending on the administration procedure as well as the whether the hospital is

large (deterministic model) or small (stochastic model). We will conclude with

initial results for fitting these models to simulated data using common inverse

problem methodology.
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CHAPTER 1

INTRODUCTION

Public health is a major concern to all and when something as serious as

antibiotic resistance threatens the traditional way of medicine, we need to be

concerned. We need to pay close attention to antibiotic resistance; the goal should

be to effectively treat patients by using current antibiotics wisely and focus on the

manufacture of new antibiotics. As of now, “...[it] is estimated that each year,

antibiotic resistance in the United States alone results in $20 billion of excess health

care costs. . . . Furthermore, the CDC estimates that resistant infections result in a

total of 8 million additional days that people spend in the hospital each year” [12].

Joyner [12] states that “[today], we attribute longer survival of severely ill patients

and longer life expectancy in the elderly to increase use of antibiotics”. Some

scientists have found the following practices are . . .

risk factors for the development of antibiotic resistance:
excessive and irrational over-utilization of antibiotics in outpatient
practice and in hospitalized patients, either therapeutically or
prophylactically, use of antibiotics in agricultural industry,
particularly in the production of food, longer survival of severely ill
patients, longer life expectancy with increased use of antibiotics in
the elderly, advances in medical science have resulted in the survival
of many patients with severe illness and at risk for infections:
Critically ill patients, Immunosuppression, Congenital diseases (i.e.
cystic fibrosis), lack of use of proven and effective preventive
infection control measure such as hand washing, antibiotic usage
restrictions and proper isolation of patients with resistant infections,
increased use of invasive procedures, and increased use of prosthetic
devices and foreign bodies amenable to super infection with
resistant bacteria [1].

Although antibiotics have cured many life threatening diseases, the increased

use of antibiotics comes with side effects. It has been shown by the World Heath
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Organization [18] that increased use of antibiotics can lead bacteria to form defenses

and become resistant to the prescription drugs which is called antibiotic resistance.

These resistant bacteria can become a catastrophic problem causing normal

infections to become harder and sometimes impossible to treat. Once an individual

is colonized with bacteria resistant to a particular antibiotic, that individual can

spread the resistant bacteria either by direct contact or indirect contact through a

secondary source such as a healthcare worker in a hospital. Hospital stays could

become a problem for both the patient and the healthcare provider resulting in

costlier stays [17]. This situation can be improved if we can determine how the

resistant strains spread and then how to limit this spread. Mathematical models can

aid in describing the spread of resistant bacteria.

Once a mathematical model is developed with an accurate description of the

process involved in the transfer of resistant bacteria within an environment, it can

be used as a tool to measure the quantitative effects of various protocols on the

reduction of the prevalence of resistant bacteria. Lipsitch and Samore [15] state,

“. . . [mathematical models] can be particularly valuable in at least four ways: 1)

generating hypotheses about the relationship between antibiotic use and resistance

that can be used in designing and prioritizing empirical studies; 2) defining the

conditions under which a particular intervention is likely to work, thereby

suggesting how empirical results can (and cannot) be extrapolated to other settings;

3) providing explanations for phenomena that have been observed but whose causes

were uncertain; and 4) identifying biological mechanisms that, while important,

remain poorly understood”.

Many mathematical models can be found in literature describing various

aspects of antibiotic resistance. A few of the models have tested protocols involving

current antibiotics such as mixing versus cycling, a process which takes a limited
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number of antibiotics, normally two, and uses one for a specific amount of time and

then switches to the other medication [14, 15]. Another protocol is isolation where

patients isolated from the general population, such as to another wing of the

hospital [6, 9]. Bergstrom et. al. [6] consider a scenario in which two antibiotics

were used in a cycling protocol, considering only the presence of resistance to only a

single antibiotic. Dual resistance, i.e. resistance to two antibiotics, was assumed to

be negligible. In this scenario, mixing (using two antibiotics in a random manner)

appeared to be a better administration protocol than cycling the antibiotics. Chow

et. al. [9] include the effects of the dual resistance and the competition between the

spread of bacteria resistant to a singular antibiotic versus resistance to two

antibiotics. In this scenario, simulations indicated cycling reduced the spread of

dual resistant bacteria while increasing the spread of single resistant bacteria.

Therefore, they concluded that neither cycling nor mixing caused much impact on

the overall proportion of the hospital colonized with a resistant strain of bacteria.

Although isolation reduced the spread of resistant bacteria slightly, simulations

suggest there would still be a significant proportion of the patients colonized with

resistant bacteria even when isolation practices are implemented.

Therefore, the goal of this thesis is to determine the effect of the introduction

of a new antibiotic on the proportion of patients colonized with resistant bacteria

and how to effectively introduce these new drugs when they are produced. If one

can determine how to utilize the new drugs most effectively then it might be

possible to reduce the widespread incidence of resistance.

In Chapter 2, we will develop deterministic models which depict the

introduction of a new antibiotic under various administration procedures within a

hospital setting. Although deterministic models can be accurately used to describe

the spread of antibiotic resistance when there is a large number of patients in a
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hospital, we must use stochastic models for small hospitals or single units of a large

hospital such as an intensive care unit. Therefore, Chapter 3 will focus on the

corresponding stochastic models. In Chapter 4, we will examine the inverse problem

which can be used to determine a subset of parameters found in the models

developed in Chapters 2 and 3. Finally, in Chapter 5 we conclude with some closing

remarks and directions for future work.
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CHAPTER 2

DETERMINISTIC MODELING OF ANTIBIOTIC RESISTANCE

In this chapter we will develop three deterministic models which describe the

spread of resistant bacteria in a hospital and quantify the effects of introducing a

new drug on this spread. Since the goal of this thesis is to determine how

introducing a new antibiotic in the hospital effects the overall level of patients

colonized with resistant bacteria, a base model is used as a comparison which is

established based on the model developed by Chow et. al. [9]. The Base Model

illustrates the spread of the resistant bacteria with no prevention protocols. Two

additional models are developed, the Random Drug Model and the Targeted Drug

Model which both illustrate adding a new drug under different administration

protocols; all the patients are equally likely to receive the antibiotic (Random Drug

Model) or a targeted population only receives the new antibiotic (Targeted Drug

Model).

We are focusing “. . . on the introduction of an entirely new antibiotic as

opposed to simply an upgrade of an antibiotic within the same class as the drugs

already employed in the hospital. Due to chromosomal mutations or acquisition of

new genetic material leading to the development of resistant bacteria, if a new

antibiotic is introduced which is an upgrade of a current antibiotic, the use of the

new antibiotic on patients already colonized with bacteria resistant to the older

antibiotic could lead to a new high-level resistant strain” [13]. A comparison

between a next-generation antibiotic and a new class of antibiotic can be found in

[12]. In addition, since we are considering an entirely new class of antibiotics,

resistance to the new antibiotic is neglected since the initial mutation rate is
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presumed to be on the order of 10−6 [7, 16, 19]. Given this rate and the fact that

resistance to the new antibiotic could be treated with either of the two existing

antibiotics, we assume resistance to the new antibiotic would be minimal compared

to other resistant populations within the system.

2.1 The Base Model

First, we examine in detail the Base Model from which both the Random

Drug Model and Targeted Drug Models are derived. This model incorporates

patients who are colonized with bacteria resistant to both one and two drugs,

denoted “single” or “dual” resistant, respectively. We are assuming here that there

are only two antibiotics in the model and that some of the patients may be

colonized with bacteria resistant to either one drug or both drugs or neither. It is

assumed there is no antibiotic present to treat the patients resistant to both drugs,

other than their own body’s ability to fight off the infection, a process known as

“spontaneous clearance”. Figure 2.1 gives a schematic for the Base Model.

Figure 2.1: Schematic of the Base Model
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The overall model, the grey box in Figure 2.1, represents a hospital with a fixed

population size N , where N represents 100% of the total hospital population.

Proportions of patients can be categorized in one of five possible compartments, S,

R1, R2, R12, and X. The state variable S represents the proportion of patients in

the hospital who are colonized with bacteria sensitive to both drugs in the model.

Therefore, S is the number of patients colonized with sensitive bacteria divided by

the total population. Sensitive patients can be effectively treated and cleared with

either drug 1 or drug 2. The uncolonized group, X, represents the proportion of

patients in the hospital who are not colonized with bacteria (other than natural

bacteria). The compartments R1 and R2 represent the proportion of patients

colonized with single resistant bacteria, either bacteria resistant to drug 1, R1, or

resistant to drug 2, R2. The main difference between these groups is the type of

drug which will effectively treat the patients. Patients in compartment R1 can only

be effectively treated with drug 2, and patients in R2 can only be effectively treated

with drug 1. the compartment R12 is the proportion of “dual resistant” patients in

the hospital, because they cannot be effectively treated with either drug 1 or drug 2.

In other words, they are colonized with bacteria resistant to both drugs. A

summary of the state variables can be found in Table 2.1. As all the state variables

are considered as proportions of patients within the hospital, we have conservation

of mass

1 = S +X +R1 +R2 +R12. (2.1)

Only a fixed proportion of the total population is assumed to be treated with

antibiotics which is consistent with data found in literature [13]. Physicians

prescribe either drug 1 or drug 2. The rate at which the doctors prescribe drug 1 is

denoted by τ1 and, similarly, τ2 is the rate at which doctors prescribe drug 2.
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Although doctors freely prescribe either of the drugs; patients colonized with

bacteria resistant to a single antibiotic, R1 or R2, will only be effectively treated

with one of the two antibiotics. Patients colonized with bacteria resistant to both

drugs, R12, will be unaffected by the prescription of either antibiotic; whereas,

patients colonized with bacteria sensitive to either drug will be effectively treated by

both.

Table 2.1: The Definition of Model Variables

Variables Description
S Proportion of patients colonized

with bacteria sensitive to both drugs
Ri Proportion of patients colonized

with bacteria resistant to drug i, i = 1, 2
R12 Proportion of patients colonized

with bacteria resistant to both drugs
X Proportion of patients uncolonized

As mentioned previously, it is assumed the total number of patients within the

hospital remain fixed 2.1. Therefore, for every one person entering the hospital,

there must be exactly one person who is discharged. We assume patients enter and

leave the hospital at a constant rate, µ, which is given by the reciprocal of the

average number of days of stay in the hospital. Furthermore, it is assumed patients

can enter the hospital in any of the given compartments. The proportion of patients

entering the hospital with bacteria susceptible to both drugs is given by mS. The

proportion of patients entering colonized with a single resistant bacteria is given by

m1 and m2 for single resistance to drug 1 and single resistance to drug 2,

respectively. The proportion of patients entering the hospital colonized with dual

resistant bacteria is given by m12. Therefore, the proportion of patients admitted to

the hospital uncolonized, mX , can be given by mX = 1− (ms +m1 +m2 +m12).
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The total admission rate is then given by

µmS + µm1 + µm2 + µ12 + µmX .

Substituting for mX , we get the total admission rate

µmS + µm1 + µm2 + µ12 + µ[1− (ms +m1 +m2 +m12)] = µ.

Similarly, it is assumed patients can be discharged from any compartment where the

proportion of patients discharged per day from a particular compartment is µ times

the total proportion in that compartment at time t. For example, µS is the

proportion of patients colonized with susceptible bacteria discharged per day. The

proportion discharged in each compartment is computed in a similar manner.

Therefore, µX is the proportion of uncolonized patients discharged per day. µR1

and µR2 represent the proportion of single resistant patients discharged per day and

lastly, µR12 is the proportion of the dual resistant patients discharged from the

hospital per day. So, the total discharge rate from the hospital is given by

µS + µX + µR1 + µR2 + µR12 = µ(S +R1 +R2 +R12 +X) = µ(1) = µ.

As stated the admission and discharge rates are both given by µ.

We assume that interactions between the different groups, S, X, R1, R2, and

R12, can take place either directly or indirectly through healthcare workers. For

example, suppose a nurse checks on a patient colonized with bacteria resistant to

drug 1 and does not strictly follow the hand-hygiene rules. Then that nurse may act

as an indirect vector in the colonization of patients when checking on other patients.

It is assumed that an average patient in the hospital makes βN effective contacts

with other patients per unit time through either direct contact or similar indirect

contact. This assumption of a rate of contact per infective proportional to the
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population size N is called the mass action incidence [11]. The probability that a

random contact is made by a patient colonized with sensitive bacteria with an

uncolonized patient is given by the number of uncolonized patients divided by the

total population. Therefore, the proportion of the patients in the hospital gained by

new colonizations in a unit time by contact is βX. Thus, the rate of transfer from

compartment X to compartment S is given by βXS. In a similar manner,

uncolonized patients, X, may become colonized with bacteria resistant to drug 1,

drug 2, or both and hence move from X to either R1, R2, or R12, respectively. The

terms representing these movements are similar to the movement from X to S

except the probability of becoming colonized with resistant bacteria is offset by the

fitness cost of the resistant bacteria represented by the parameters c1, c2, and c12.

The fitness cost of bacteria resistant to drug 1 is c1, c2 is the fitness cost of bacteria

resistant to drug 2, and, likewise, c12 is the fitness cost of the dual resistant bacteria.

Fitness cost is a parameter which describes the rate at which
resistant bacteria revert back to being susceptible in the absence of
antibiotic treatment. Resistant bacteria thrive in the presence of
antibiotics; however, in an antibiotic-free environment, the resistant
bacteria are at a disadvantage and less able to reproduce, thus
providing an advantage to the susceptible bacteria. When the
fitness cost is high, the ability to reproduce is much lower and thus
more difficult to spread. On the other hand, the lower the fitness
cost of the resistant bacteria, the easier it is for the bacteria to
spread. ...we assume ... that the dual resistant strain is harder to
spread and, therefore, has a higher fitness cost than the single
resistant bacteria [13].

In other words, if c1 is reduced then the term (1− c1) is increased taking into

account that bacteria spreads at a faster rate. The same is true for c2 and c12.

Patients may also move from S to X by being effectively treated with either

drug 1 or drug 2, or through the process of spontaneous clearance, represented by

the terms τ1S, τ2S, and γS respectively. Combining these together, we obtain the
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rate at which patients colonized with sensitive bacteria move from S to X,

(τ1 + τ2 + γ)S.

Similarly patients may transfer from either R1, R2, or R12 to X. However, in

each of these instances either only one antibiotic will work (R1, R2) or none (R12).

We are again assuming that physicians are unaware of the type of bacteria present.

Hence, if patients are colonized with bacteria resistant to drug 1, they will not be

cleared until treated with drug 2, represented by the term τ2R1, or by spontaneous

clearance, γR1. Terms for R2 and R12 can be found in the schematic in Figure 2.1.

It is assumed that patients cannot be colonized with more than one strain of

bacteria at a given time. Furthermore, the bacteria with the lowest fitness, thus the

quickest rate of reproduction will “win” out over any competing bacteria. It is

assumed that bacteria resistant to multiple antibiotics has a more difficult time

reproducing [9], thus the dual resistant bacteria will never “out-compete” the single

resistant bacteria nor the susceptible bacteria. Therefore, we assume patients

colonized with dual resistant bacteria may move from R12 to either R1, R2, or S;

however, patients in R1, R2, or S are never assumed to move to R12 simply through

interactions. (We are neglecting the possibility of conjugation in this paper.) If the

fitness cost of drug 1 (c1) is larger than the fitness cost of drug 2 (c2), bacteria

resistant to drug 2 out-competes bacteria resistant to drug 1. This process of one

type of bacteria out-competing another type is considered secondary colonization

and is represented by the term σ. Combining all these terms, we have a system of

nonlinear ordinary differential equations describing the Base Model as follows where

the definitions for the parameters are given in Table 2.2.
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dS
dt

= (mS − S)µ− (τ1 + τ2 + γ)S + βXS + βσ(c1R1 + c2R2 + c12R12)S

dR1

dt
= (m1 −R1)µ− (τ2 + γ)R1 + β(1− c1)XR1

+σβ[(c12 − c1)R12 + (c2 − c1)R2 − c1S]R1

dR2

dt
= (m2 −R2)µ− (τ1 + γ)R2 + β(1− c2)XR2

+σβ[(c12 − c2)R12 + (c1 − c2)R1 − c2S]R2

dR12

dt
= (m12 −R12)µ− γR12 + β(1− c12)XR12

−σβ[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12

dX
dt

= (mX −X)µ+ (τ1 + τ2 + γ)S + (τ2 + γ)R1 + (τ1 + γ)R2 + γR12

−βX(S + (1− c1)R1 + (1− c2)R2 + (1− c12)R12).

(2.2)

Table 2.2: The Definition of Parameters

Parameters Description Units
β Per capita primary transmission rate 1/day

(colonization rate)
σ Relative rate of secondary colonization Dimensionless

to that of primary colonization
ci Fitness cost of bacteria resistant to drug i, i = 1, 2 Dimensionless
c12 Fitness cost of bacteria resistant to both drugs Dimensionless
τi Per capita treatment rate of drug i, i = 1, 2 1/day
γ Per capita clearance rate of bacteria 1/day

due to immune response
µ Per capita patient turnover rate in hospital 1/day
mS Proportion of admitted patients Dimensionless

colonized with sensitive bacteria
mi Proportion of admitted patients Dimensionless

colonized with bacteria resistant to drug i, i = 1, 2
m12 Proportion of admitted patients Dimensionless

colonized with bacteria resistant to both drugs

2.2 The Random Drug Model

The objective of this thesis is to determine what happens to the total level of

patients colonized with resistant bacteria within the hospital when a completely new
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drug is added to the prescription regimen. In both the Random Drug and Targeted

Drug Models, we are adding a new antibiotic, referred to as drug 3, to the regimen

to see if the overall total proportion of patients colonized with resistant bacteria is

lowered. The difference between these models is in the population that receives the

new medication. In the Random Drug Model, we are assuming that the doctors can

give any of the three drugs to all patients. In other words, we are assuming there is

an equal likelihood the doctors will choose drug 1, drug 2, or drug 3. The per capita

treatment rates of drugs 1, 2, and 3 are given by τ1, τ2, and τ3, respectively, where it

is assumed τ1 = τ2 = τ3.

Although a new antibiotic is added to the regimen, we assume that the total

population being treated per day, T , remains the same as the Base Model. Thus,

T = τ1 + τ2 + τ3 where τi = T
3

for i = 1, 2, 3. This inherently means that when we

add the third drug, we are lowering the per capita treatment rates of drug 1 and 2.

Although we still assume physicians do not know what type of bacteria each patient

has contracted, two drugs are now effective for patients colonized with single

resistant bacteria. Furthermore, patients colonized with dual resistant bacteria now

have a mechanism for clearance other than their own immune system. As with the

Base Model, there is a possibility that patients will initially be given a medication

that does not work. For example, if a patient is in the R1 compartment and given

drug 1, the patient will not be cleared. However, if they are given drug 2 or drug 3

in the Random Drug Model, they will become uncolonized. Figure 2.2 shows a

schematic fro the Random Drug Model.



14

Figure 2.2: Schematic of the Random Drug Model

The set of differential equations representing the model are as follows:

dS
dt

= (mS − S)µ− (τ1 + τ2 + τ3 + γ)S + βXS

+βσ(c1R1 + c2R2 + c12R12)S

dR1

dt
= (m1 −R1)µ− (τ2 + τ3 + γ)R1 + β(1− c1)XR1

+σβ[(c12 − c1)R12 + (c2 − c1)R2 − c1S]R1

dR2

dt
= (m2 −R2)µ− (τ1 + τ3 + γ)R2 + β(1− c2)XR2

+σβ[(c12 − c2)R12 + (c1 − c2)R1 − c2S]R2

dR12

dt
= (m12 −R12)µ− (τ3 + γ)R12 + β(1− c12)XR12

−σβ[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12

dX
dt

= (mX −X)µ+ (τ1 + τ2 + τ3 + γ)S

+(τ2 + τ3 + γ)R1 + (τ1 + τ3 + γ)R2 + (τ3 + γ)R12

−βX[S + (1− c1)R1 + (1− c2)R2 + (1− c12)R12].

(2.3)
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2.3 The Targeted Drug Model

In the previous model, the Random Drug Model, we assumed that everyone

within the hospital could receive the third drug, because it was readily available to

physicians for prescription. The Targeted Drug Model assumes the new drug is only

used to target one group of patients, namely patients colonized with bacteria

resistant to both drugs 1 and 2. As with both of the previous models, the Targeted

Drug Model keeps the total proportion of patients being treated, T , fixed with

T = τ1 + τ2 + τ3; however, within the Targeted Drug Model, we are not making the

assumption that the three drugs are given at the same rate. In this model, we are

assuming that τ1 = τ2, therefore, drug 1 and drug 2 are given at the same rate per

day. However, the rate at which drug 3 is given, τ3, depends on the proportion, p,

we assume can be identified, by either testing or through treatment failure of drugs

1 and 2, as carrying the dual resistant strain. All those identified can then be

treated with the new antibiotic. Thus, τ3 = pR12 is a function of time, because R12

changes across time. It is intuitive that if the proportion of patients we can identify

increases, the treatment rate of drug 3 will also increase. Figure 2.3 depicts the

schematic for the Targeted Drug Model “. . . where the parameter δ = 1/day is

introduced only to help distinguish between the proportion of patients colonized

with dual resistance who are identified and treated, RT = pR12 (dimensionless

quantity), and the actual treatment rate with drug 3, τ3 = δpR12 (units 1/day)” [13].
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Figure 2.3: Schematic of the Targeted Drug Model

The system of differential equations describing the Targeted Drug Model are as

follows:

dS
dt = (mS − S)µ− (τ1 + τ2 + γ)S + βXS + βσ(c1R1 + c2R2 + c12R12)S

dR1
dt = (m1 −R1)µ− (τ2 + γ)R1 + β(1− c1)XR1 + σβ[(c12 − c1)R12 + (c2 − c1)R2 − c1S]R1

dR2
dt = (m2 −R2)µ− (τ1 + γ)R2 + β(1− c2)XR2 + σβ[(c12 − c2)R12 + (c1 − c2)R1 − c2S]R2

dR12
dt = (m12 −R12)µ− (δp+ γ)R12 + β(1− c12)XR12

−σβ[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12

dX
dt = (mX −X)µ+ (τ1 + τ2 + γ)S + (τ2 + γ)R1 + (τ1 + γ)R2 + (δp+ γ)R12

−βX[S + (1− c1)R1 + (1− c2)R2 + (1− c12)R12].

(2.4)

2.4 Numerical Simulation Results

Results of numerical simulations are given in Figure 2.4 for each of the three

the models given parameter values in Table 2.3. Figure 2.4 also shows simulated
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results for a model not explained in this paper, namely the Isolation Model. This

model is shown for comparison purposes and was first introduced by Chow et. al.,

[9] and then further discussed by the author in [12]. In this model, patients

colonized with the dual resistant bacteria are isolated from the other patients at a

rate η. The theory is that patients will be less likely to spread the dual resistant

strain when isolated.

The simulations indicate that if there are no protocols for treatment of the

patients colonized with dual resistance, i.e. the Base Model, then on average across

100 days approximately 70% of the hospital population will become colonized with a

resistant strain. This proportion is only slightly reduced when isolation is practiced.

On the other hand, for the Random Drug Model, i.e., when a new antibiotic is used

at the same rate as the existing antibiotics and each patient is equally as likely to

receive drug 3 as drugs 1 or 2, the total proportion of the hospital colonized with a

resistant strain drops to 35%. This is a significant reduction from the 70% level for

the Base Model. The last plot in Figure 2.4 shows the state variables for the

Targeted Drug Model, using a value of p = .30. Recall, the value p is the percentage

we assume are able to be identified as being colonized with bacteria resistant to

drugs 1 and 2. Therefore, if one were able to identify and treat 30% of those

patients in the hospital who are colonized with bacteria resistant to both drugs, we

could lower the total proportion of patients colonized with any type of resistant

bacteria by an additional 3% over the Random Drug Model.

Figure 2.5 shows a comparison of the total resistance for each model while

varying p in the Targeted Drug Model. Since the Targeted Drug Model depends on

the proportion of patients carrying the dual resistant strain who can be identified, it

is necessary to analyze how varying the parameter p effects the total proportion of

patients colonized with a resistant strain in the hospital. If we cannot identify any
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Table 2.3: Values of Model Parameters for the Deterministic Models [13]

Parameters Base Model Random Drug Targeted Drug
β 1/day 1/day 1/day
σ 0.25 0.25 0.25
γ 0.03/day 0.03/day 0.03/day
µ 0.10/day 0.10/day 0.10/day
mS 0.70 0.70 0.70
m1 0.05 0.05 0.05
m2 0.05 0.05 0.05
m12 0.04 0.04 0.04
mX 0.16 0.16 0.16
c1 0.05 0.05 0.05
c2 0.05 0.05 0.05
c12 0.15 0.15 0.15
τ1 0.39/day 0.26/day 1

2
(T − τ3)/day

τ2 0.39/day 0.26/day 1
2
(T − τ3)/day

τ3 - 0.26/day pR12/day
T - - 0.78/day

Figure 2.4: Comparison of All of the State Variables for Each Model

of the patients colonized with resistant bacteria (p = 0), the model is equivalent to

the Base Model. On the other hand, if p = 1, we assume we are able to identify and

treat all of the patients colonized with dual resistance. This scenario is unrealistic
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since hospitals do not test for resistance upon admittance. However, if we can

identify and treat approximately 25% or more of the patients colonized with the

dual resistant bacteria, the Targeted Drug Model is the best way to administer the

new drug. This method of administration could result in a reduction of total

resistance by approximately 40% over the Base Model!

Figure 2.5: Comparison of the Total Resistance for Each Model
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CHAPTER 3

STOCHASTIC MODELING OF ANTIBIOTIC RESISTANCE

In the previous chapter, we focused on deterministic models for the spread of

resistant bacteria within a hospital. In general, “deterministic models predict an

outcome with absolute certainty, whereas stochastic models provide only the

probability of an outcome” [2]. Stochastic models incorporate randomness into the

model. Each time a solution for a stochastic model is simulated, called a realization,

it is slightly different than another realization. However, as the population size of

our system becomes large, the mean of all the realizations of the stochastic model

approach the solution of the deterministic model. There are a variety of methods

and techniques used to formulate stochastic models based on the specific

application. In this paper, we will develop stochastic models which are based on

stochastic processes continuous in time with discrete state space in Z5. These are

called continuous-time Markov chain (CTMC) models [2]. Therefore, we can assume

that colonization occurs in units of whole individuals (discrete state space) but the

occurrence of events is a probabilistic process. The formal definition for a stochastic

process is given by Definition 3.0.1 [2].

Definition 3.0.1. A stochastic process is a collection of random variables

{Xt(s) : t ∈ T, s ∈ S}, where T is some index set and S is the common same space

of the random variables. For each fixed t, Xt(s) denotes a single random variable

defined on S. For each fixed s ∈ S,Xt(s) corresponds to a function defined on T that

is called a sample path or a stochastic realization of the process [2].

CTMC models are governed by the Markov property

Prob{X(tt+1) = in+1|X(t0) = i0, X(t1) = i1, . . . , X(tn) = in} =
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Prob{X(tn+1) = in+1|X(tn) = in}

which simply indicates a “memoryless property”, i.e., the probability of an event

occurring depends only on the previous time step.

3.1 The Stochastic Base Model

To derive the Stochastic Base Model, which can be modified to obtain the

Stochastic Random Drug Model and the Stochastic Targeted Drug Model, we

consider the state variables to be the number of patients in a given compartment as

opposed to the proportion of the total population in that compartment as consider

in the deterministic models. We denote the new state variable as

XN = (XN
1 , X

N
2 , X

N
3 , X

N
4 , X

N
5 )T ,

where N denotes the total population and the random variables i = 1, 2, . . . , 5 are

described in Table 3.1.

Table 3.1: The Modified Definitions of Model Variables

Variables Description
XN

1 (t) Number of patients colonized
with bacteria sensitive to both drugs

XN
2 (t) Number of patients colonized

with bacteria resistant to drug i, i = 1
XN

3 (t) Number of patients colonized
with bacteria resistant to drug i, i = 2

XN
4 (t) Number of patients colonized

with bacteria resistant to both drugs
XN

5 (t) Number of patients uncolonized

For the stochastic model, some of the parameters need to be modified from

the deterministic models in order to represent the number of patients accurately.

For example, β is replaced with βN = β
N

. In general it is assumed that an average

patient makes β = βNN adequate contacts with an infective per unit time, that is,
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contacts sufficient to lead to colonization [23]. For example, the probability that a

random contact with an uncolonized patient leads to a new colonization in unit time

is given by the proportion of patients uncolonized. Thus the number of new

colonizations is given by

βX = βNNX = βNN
XN

5

N
= βNXN

5 .

Thus, the rate of new colonizations with sensitive bacteria is now given by

βNXN
5 X

N
1 . See Table 3.2 for the other modified parameters; all other parameters

are left unchanged and are described in Table 2.2.

Table 3.2: The Definition of Modified Parameters

Parameters Description Units
βN Per capita primary transmission rate = 1/N times the 1

individuals·day
colonization rate

mN
S Number of admitted patients Individuals

colonized with sensitive bacteria
mN
i Number of admitted patients Individuals

colonized with bacteria resistant to drug i, i = 1, 2
mN

12 Number of admitted patients Individuals
colonized with bacteria resistant to both drugs

For small time intervals of length ∆t, we assume {XN(t), t ≥ 0} jumps from

the state xN to xN + vj with probability λj(x
N)∆t + o(∆t), i.e.,

Prob{XN(t+ ∆t) = xN + vj|XN(t) = xN} = λj(x
N)∆t+ o(∆t), j = 1, 2, . . . , l,

xN = (xN1 , x
N
2 , x

N
3 , x

N
4 , x

N
5 )T ∈ Z5 and λj is the transition rate for reaction j, where l

denotes the number of transitions [5]. The probability of transitioning from one

state to another state during a small time interval ∆t = dt is described by the

equations (3.1) to (3.20) where the variables SN , RN
1 , RN

2 , RN
12, and XN are given by

SN = xN1 = N · S,
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RN
1 = xN2 = N ·R1,

RN
2 = xN3 = N ·R2,

RN
12 = xN4 = N ·R12,

XN = xN5 = N ·X

where S, R1, R2, R12, and X are the variables from the deterministic model. For

example, (3.1) describes the probability that in time dt, one individual will enter the

sensitive compartment while one individual leaves the “resistant to drug 1”

compartment. Recall that we assume a constant population, thus if an individual is

added to one compartment, an individual must also be subtracted from a different

compartment. In Figure 2.1, we notice it is not possible to have a direct transition

from R1 compartment to the S compartment. Thus, the only way for one individual

to enter S while an individual leaves R1 is if one is discharged from the hospital

from the R1 compartment, and at the same time one is admitted to the hospital.

We further note that to simplify the stochastic models, we do not consider the effect

of secondary colonization in these models. Hence, transitions involving σ in Figure

2.1 are neglected.

P{SN(t+ dt) = i+ 1, RN
1 (t+ dt) = j − 1, RN

2 (t+ dt) = k,RN
12(t+ dt) = l,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
1 m

N
S dt+ o(dt),

(3.1)

P{SN(t+ dt) = i+ 1, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k − 1, RN
12(t+ dt) = l,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
2 m

N
S dt+ o(dt),

(3.2)
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P{SN(t+ dt) = i+ 1, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k,RN
12(t+ dt) = l − 1,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
12m

N
S dt+ o(dt),

(3.3)

P{SN(t+ dt) = i+ 1, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k,RN
12(t+ dt) = l,

XN(t+ dt) = m− 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µXNmN
S dt+ βNSNXNdt+ o(dt),

(3.4)

P{SN(t+ dt) = i− 1, RN
1 (t+ dt) = j + 1, RN

2 (t+ dt) = k,RN
12(t+ dt) = l,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µSNmN
1 dt+ o(dt),

(3.5)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j + 1, RN

2 (t+ dt) = k − 1, RN
12(t+ dt) = l,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
2 m

N
1 dt+ o(dt),

(3.6)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j + 1, RN

2 (t+ dt) = k,RN
12(t+ dt) = l − 1,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
12m

N
1 dt+ o(dt),

(3.7)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j + 1, RN

2 (t+ dt) = k,RN
12(t+ dt) = l,

XN(t+ dt) = m− 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µXNmN
1 dt+ βN(1− c1)RN

1 X
Ndt+ o(dt),

(3.8)

P{SN(t+ dt) = i− 1, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k + 1, RN
12(t+ dt) = l,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µSNmN
2 dt+ o(dt),

(3.9)
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P{SN(t+ dt) = i, RN
1 (t+ dt) = j − 1, RN

2 (t+ dt) = k + 1, RN
12(t+ dt) = l,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
1 m

N
2 dt+ o(dt),

(3.10)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k + 1, RN
12(t+ dt) = l − 1,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
12m

N
2 dt+ o(dt),

(3.11)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k + 1, RN
12(t+ dt) = l,

XN(t+ dt) = m− 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µXNmN
2 dt+ βN(1− c2)RN

2 X
Ndt+ o(dt),

(3.12)

P{SN(t+ dt) = i− 1, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k,RN
12(t+ dt) = l + 1,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µSNmN
12dt+ o(dt),

(3.13)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j − 1, RN

2 (t+ dt) = k,RN
12(t+ dt) = l + 1,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
1 m

N
12dt+ o(dt),

(3.14)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k − 1, RN
12(t+ dt) = l + 1,

XN(t+ dt) = m|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
2 m

N
12dt+ o(dt),

(3.15)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k,RN
12(t+ dt) = l + 1,

XN(t+ dt) = m− 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µXNmN
12dt+ βN(1− c12)RN

12X
Ndt+ o(dt),

(3.16)
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P{SN(t+ dt) = i− 1, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k,RN
12(t+ dt) = l,

XN(t+ dt) = m+ 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µSNmN
Xdt+ (τ1 + τ2 + γ)SNdt+ o(dt),

(3.17)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j − 1, RN

2 (t+ dt) = k,RN
12(t+ dt) = l,

XN(t+ dt) = m+ 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
1 m

N
Xdt+ (τ2 + γ)RN

1 dt+ o(dt),

(3.18)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k − 1, RN
12(t+ dt) = l,

XN(t+ dt) = m+ 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
2 m

N
Xdt+ (τ1 + γ)RN

2 dt+ o(dt),

(3.19)

P{SN(t+ dt) = i, RN
1 (t+ dt) = j, RN

2 (t+ dt) = k,RN
12(t+ dt) = l − 1,

XN(t+ dt) = m+ 1|SN(t) = i, RN
1 (t) = j, RN

2 (t) = k,RN
12(t) = l, XN(t) = m}

= µRN
12m

N
Xdt+ γRN

12dt+ o(dt).

(3.20)

The transition rates and reactions are summarized in Table 3.3 where

ei(j) =

 1 j = i

0 j 6= i,

and where ↓ is the decrease of an individual out of a given compartment and ↑

means an increase of an individual to a given compartment. The increase ↑ and

decrease ↓ may be by direct transfer from one compartment to another (such as

colonization of an individual previously uncolonized, i.e., from X → S) or by a

discharge and corresponding admittance of a patient to two separate compartments.

In order to simulate a single realization of the stochastic model, the standard

Gillespie algorithm [5] (referred to the Stochastic Simulation Algorithm (SSA)) was

used; however, we wanted to determine the effect of the population size, N , on the
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Table 3.3: Transition rates λj(x
N) as well as the corresponding state changes vj for

the Stochastic Base Model, j = 1, 2, . . . , 5.

Event Transition Rate vj
↓ XN

2 ↑ XN
1 λ1 = µxN2 m

N
S e1 − e2

↓ XN
3 ↑ XN

1 λ2 = µxN3 m
N
S e1 − e3

↓ XN
4 ↑ XN

1 λ3 = µxN4 m
N
S e1 − e4

↓ XN
5 ↑ XN

1 λ4 = µxN5 m
N
S + βNxN1 x

N
5 e1 − e5

↓ XN
1 ↑ XN

2 λ5 = µxN1 m
N
1 −e1 + e2

↓ XN
3 ↑ XN

2 λ6 = µxN3 m
N
1 e2 − e3

↓ XN
4 ↑ XN

2 λ7 = µxN4 m
N
1 e2 − e4

↓ XN
5 ↑ XN

2 λ8 = µxN5 m
N
1 + βN(1− c1)xN2 x

N
5 e2 − e5

↓ XN
1 ↑ XN

3 λ9 = µxN1 m
N
2 −e1 + e3

↓ XN
2 ↑ XN

3 λ10 = µxN2 m
N
2 −e2 + e3

↓ XN
4 ↑ XN

3 λ11 = µxN4 m
N
2 e3 − e4

↓ XN
5 ↑ XN

3 λ12 = µxN5 m
N
2 + βN(1− c2)xN3 x

N
5 e3 − e5

↓ XN
1 ↑ XN

4 λ13 = µxN1 m
N
12 −e1 + e4

↓ XN
2 ↑ XN

4 λ14 = µxN2 m
N
12 −e1 + e4

↓ XN
3 ↑ XN

4 λ15 = µxN3 m
N
12 −e3 + e4

↓ XN
5 ↑ XN

4 λ16 = µxN5 m
N
12 + βN(1− c12)xN4 x

N
5 e4 − e5

↓ XN
1 ↑ XN

5 λ17 = µxN1 m
N
X + (τ1 + τ2 + γ)xN1 −e1 + e5

↓ XN
2 ↑ XN

5 λ18 = µxN2 m
N
X + (τ2 + γ)xN2 −e2 + e5

↓ XN
3 ↑ XN

5 λ19 = µxN3 m
N
X + (τ1 + γ)xN3 −e3 + e5

↓ XN
4 ↑ XN

5 λ20 = µxN4 m
N
X + γxN4 −e4 + e5

total resistance across several realizations to obtain an average of the expected

outcome. The value of N effects the computational time required [5]; therefore, as

done in [5], we implemented the modified explicit tau-leaping method summarized

next (full details on implementation of this method can be found in [5] and the

references therein). The main difference between the standard Gillespie Algorithm

(SSA) and the explicit tau-leaping method is in the time step taken. In the SSA

Algorithm, incremental steps are taken in time, keeping track of X(t) at each step;

whereas the explicit tau-leaping method leaps from one interval to the next by a

value of τ . Thus it is necessary to approximate the number of times a transition λj

occurs within the time interval [t, t+ τ ]. The choice of the leap value τ is
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determined by requiring relative changes in Xi to be bounded. As explained by the

author in a previous paper [5],

Let ∆Xi = Xi(t+ τ)− xi with xi being the ith component of x,
i = 1, 2, . . . , n and ε be an error control parameter with 0 < ε� 1.
In the given τ -selection procedure, τ is chosen such that

∆Xi ≤ min

{
ε

gi
xi, 1

}
, i = 1, . . . , n,

which evidently requires the relative change in Xi to be bounded by
ε
gi

except that Xi will never be required to change by an amount
less than 1. The value of gi is chosen such that the relative changes
in all the transitions rates will be bounded by ε. For example, if the
transitions rate λj has the form λj(x) = cjxi with cj being a
constant, then the reaction j is said to be first order and the
absolute change in λj(x) is given by

∆λj(x) = λj(x + ∆x)− λj(x) = cj(xi + ∆xi)− cjxi = cj∆xi.

Hence, the relative change in λi(x) is related to the relative change

in Xi by
∆λj(x)

λj(x)
= ∆xi

xi
, which implies that if we set the relative

change in Xi by ε (i.e., gi = 1), then the relative change in λj is
bounded by ε. If the transition rate λj has the form λj(x) = cjxixr
with cj bein a constant, then the reaction j is said to be second
order and the absolution change in λj(x) is given by

∆λj(x) = cj(xi+∆xi)(xr+∆xr)−cjxixr = cjxr∆xi+cjxi∆xr+cj∆xi∆xr.

Hence, the relative change in λj(x) is related to the relative change
in Xi by

∆λj(x)

λj(x)
=

∆xi
xi

+
∆xr
xr

+
∆xi
xi

∆xr
xr

which implies that if we set the relative change in Xi by ε
2

and the
relative change in Xr by ε

2
(i.e., gi = 2, gr = 2), then the relative

change in λj is bounded by ε to the first order approximation [5].

For our model, it is necessary to determine gi for each state variable

Xi, i = 1, . . . , 5. Let ∆λi(x) = λi(x + ∆x)− λi(x) with ∆x being the absolute

changes in the state variables, i = 1, 2, . . . , 20. We can see that several transitions
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are first order, because the transition only takes into account one of the state

variables. However, we must examine transitions λ4, λ8, λ12, λ16, λ17, λ18, λ19, and

λ20 because they depend on more than one state variable. Recall from Table 3.3

that transition λ4 is given by

λ4 = µx5mS + βx1x5.

Therefore,

∆λ4 = µ(x5 + ∆x5)mS + β(x1 + ∆x1)(x5 + ∆x5)− µx5mS − βx1x5

= µ∆x5mS + βx1∆x5 + β∆x1x5 + β∆x1∆x5

which implies that

∆λ4

λ4

=
µ∆x5mS + βx1∆x5 + β∆x1x5 + β∆x1∆x5

µx5mS + βx1x5

.

Using the triangle inequality and the positiveness of the state variables, we have the

following inequality

|∆λ4|
λ4

≤ |∆x5|
x5

+
|∆x5|
x5

+
|∆x1|
x1

+
|∆x1∆x5|
x1x5

≤ |∆λ4|
λ4

≤ 2|∆x5|
x5

+
|∆x1|
x1

.

If we choose

|∆x1| <
ε

2
x1 and |∆x4| <

ε

4
x5,

then the absolute relative change in λ4 is given by

|∆λ4|
λ4

< 2
( ε

4

)
+
ε

2
= ε.

If, in addition, we choose

|∆x2| <
ε

2
x2, |∆x3| <

ε

2
x3 and |∆x4| <

ε

2
x4,

we also have the following reactions will all be bounded by ε:
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Reaction 17:
|∆λ17|
λ17

≤ |∆x1|
x1

+
|∆x1|
x1

< ε

Reaction 18:
|∆λ18|
λ18

≤ |∆x2|
x2

+
|∆x2|
x2

< ε

Reaction 19:
|∆λ19|
λ19

≤ |∆x3|
x3

+
|∆x3|
x3

< ε

Reaction 20:
|∆λ20|
λ20

≤ |∆x4|
x4

+
|∆x4|
x4

< ε.

Given these bounds on each transition, we need to set gi = 2, i = 1, . . . , 4 and

g5 = 4. Using these values of gi and the parameter values in Table 3.4, we have

plotted one realization for six different population sizes (N = 10, 25, 50, 100, 200,

and 300 patients) in Figure 3.1 using the Explicit Tau-Leaping algorithm for the

Stochastic Base Model. On each graph we have also plotted the corresponding

solution for the deterministic model. For each population size, we notice that the

majority of patients are colonized with the dual resistance (in red) similar to the

results for the deterministic model.

Table 3.4: The Values of Model Parameters for the Stochastic Base Model

Parameters Values for SSA & Explicit Tau-Leaping
βN 1

N

σ 0
γ 0.03
µ 0.10
mN
S 0.70*N

mN
1 0.05*N

mN
2 0.05*N

mN
12 0.04*N

mN
X 0.16*N
c1 0.05
c2 0.05
c12 0.15
τ1 0.39
τ2 0.39



31

Figure 3.1: Results for the Stochastic Base Model where N = 10, 25, 50, 100, 200,
300 compared to the corresponding deterministic results (the straight lines)
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To obtain an average result across numerous realizations (as each realization is

different), we ran 500 realizations for each of the following populations: 10, 25, 50,

100, 200, and 300 patients and compared these averages to the deterministic model.

Table 3.5 gives the average proportion of the population colonized with resistant

bacteria over one year, tf = 365 days, across the m=500 realizations, calculated

using Equations (3.21) and (3.22).

1

m

 m∑
i=1

 1

tfN

tf∫
0

[
XN

4 (t)i
]

dt

 (3.21)

1

m

 m∑
i=1

 1

tfN

tf∫
0

[
XN

2 (t)i +XN
3 (t)i +XN

4 (t)i
]

dt

 (3.22)

Table 3.5: Average Proportion of Population Colonized with Resistant Bacteria over
1 Year with varying Population sizes for the Stochastic Base Model vs. Deterministic
Base Model

Base Model Population 10 25 50 100 200 300 Deterministic
Proportion - Dual Resistance .89 .78 .74 .72 .72 .72 .72
Proportion - Total Resistance .93 .82 .77 .75 .75 .75 .75

Table 3.5 shows that the proportion of patients colonized with the dual

resistant strain is .89 when N = 10 compared to .72 for the deterministic model.

(Note that when we increase a resistant group by one patient when N = 10, we

increase the proportion by 10% whereas when we increase the resistant group by

one patient when the population size is 100, we only increase the proportion by 1%.)

Hence, for the deterministic model, it is estimated that on average across one year,

approximately 75% of the hospital population will be colonized with bacteria

resistant to both drugs. We note that the results of the deterministic model is not

dependent on the total population size, as we only consider proportions in the

deterministic model. This is an under approximation of what is simulated to occur

in a unit of a hospital where N = 10. In this case it is estimated that 89% of the
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population will be colonized with resistant bacteria. This can be seen in Figure 3.1.

When N = 10 the deterministic solution for R12 is consistently below the stochastic

model realization for R12. This results in a change in the total resistance as well.

The stochastic model indicates that on average the total proportion of patients

colonized with some type of resistant bacteria when N = 10 is approximately .93;

however, the deterministic model significantly underestimates this proportion at .75.

Once the value for N reaches approximately 100 patients or more, the two models

being to look similar. This is further evidenced in Figure 3.1 where the results of

the deterministic model are close to the realization for the stochastic model; it

appears neither below or above the stochastic model for the given realization.

3.2 Stochastic Random Drug Model

Most of the terminology used in deriving the Stochastic Base Model is the

same for the Stochastic Random Drug Model with the exception of the addition of

the third drug to this model. The term representing the addition of the new

antibiotic is found in transitions λ17, λ18, λ19, and λ20, where τ3 is the per capita

treatment rate of drug 3. Using similar probabilities of transitioning from one state

to another state as in (3.1) - (3.20), we obtain the corresponding transitions in

Table 3.6.

As done in the Stochastic Base Model, we need to calculate appropriate values

of gi for this system. All of the transitions are the same as the Stochastic Base

Model except λ17, λ18, λ19, and λ20. However, calculations (not shown here) show

values of gi can be chosen the same.

The parameter values for the Stochastic Random Drug Model are the same as

in Table 3.4 with the exception of τ1, τ2, and τ3 which are all set to 0.26. One

realization for the Stochastic Random Drug Model with population sizes of N = 10,
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Table 3.6: Transition rates λj(x
N) as well as the corresponding state changes vj for

the Stochastic Random Drug Model, j = 1, 2, . . . , 5.

Event Transition Rate vj
↓ XN

2 ↑ XN
1 λ1 = µxN2 m

N
S e1 − e2

↓ XN
3 ↑ XN

1 λ2 = µxN3 m
N
S e1 − e3

↓ XN
4 ↑ XN

1 λ3 = µxN4 m
N
S e1 − e4

↓ XN
5 ↑ XN

1 λ4 = µxN5 m
N
S + βNxN1 x

N
5 e1 − e5

↓ XN
1 ↑ XN

2 λ5 = µxN1 m
N
1 −e1 + e2

↓ XN
3 ↑ XN

2 λ6 = µxN3 m
N
1 e2 − e3

↓ XN
4 ↑ XN

2 λ7 = µxN4 m
N
1 e2 − e4

↓ XN
5 ↑ XN

2 λ8 = µxN5 m
N
1 + βN(1− c1)xN2 x

N
5 e2 − e5

↓ XN
1 ↑ XN

3 λ9 = µxN1 m
N
2 −e1 + e3

↓ XN
2 ↑ XN

3 λ10 = µxN2 m
N
2 −e2 + e3

↓ XN
4 ↑ XN

3 λ11 = µxN4 m
N
2 e3 − e4

↓ XN
5 ↑ XN

3 λ12 = µxN5 m
N
2 + βN(1− c2)xN3 x

N
5 e3 − e5

↓ XN
1 ↑ XN

4 λ13 = µxN1 m
N
12 −e1 + e4

↓ XN
2 ↑ XN

4 λ14 = µxN2 m
N
12 −e1 + e4

↓ XN
3 ↑ XN

4 λ15 = µxN3 m
N
12 −e3 + e4

↓ XN
5 ↑ XN

4 λ16 = µxN5 m
N
12 + βN(1− c12)xN4 x

N
5 e4 − e5

↓ XN
1 ↑ XN

5 λ17 = µxN1 m
N
X + (τ1 + τ2 + τ3 + γ)xN1 −e1 + e5

↓ XN
2 ↑ XN

5 λ18 = µxN2 m
N
X + (τ2 + τ3 + γ)xN2 −e2 + e5

↓ XN
3 ↑ XN

5 λ19 = µxN3 m
N
X + (τ1 + τ3 + γ)xN3 −e3 + e5

↓ XN
4 ↑ XN

5 λ20 = µxN4 m
N
X + (τ3 + γ)xN4 −e4 + e5

25, 50, 100, 200, and 300 patients is given in Figure 3.2.

As with the Stochastic Base Model, 500 realizations for each of the following

populations: 10, 25, 50, 100, 200, and 300 patients were averaged and compared to

the deterministic model. The results are given in Table 3.7.

Table 3.7: Average Proportion of Population Colonized with Resistant Bacteria over
1 Year with varying Population sizes for the Stochastic Random Drug Model vs.
Deterministic Random Drug Model

Random Drug Model Population 10 25 50 100 200 300 Deterministic
Proportion - Dual Resistance .21 .28 .31 .33 .34 .34 .35
Proportion - Total Resistance .30 .35 .37 .38 .39 .39 .39

Table 3.7 shows that the average proportion of patients colonized with the

dual resistant strain will be approximately .21 when N = 10 compared to the
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Figure 3.2: Results for Stochastic Random Drug Model where N = 10, 25, 50, 100,
200, 300 compared to the corresponding deterministic results (the straight lines)
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estimated value of .35 given by the deterministic model. Hence, the deterministic

model estimates that on average across one year approximately 35% of the hospital

population will be colonized with bacteria resistant to both drugs. Therefore, the

Deterministic Random Drug Model underestimates the impact of the new drug on

the reduction of the overall resistant population for smaller populations.

Introduction of the new drug appears to be quite effective for reducing the average

proportion of the hospital who will be colonized with dual resistant bacteria across

one year. Furthermore, in comparing Tables 3.5 and 3.7, on average the

introduction of a new drug may reduce the total level of resistance by approximately

40-63% for small hospital units of less than 50.

3.3 Stochastic Targeted Drug Model

As with the Stochastic Random Drug Model, the transitions modified by the

addition of the new antibiotic are λ17, λ18, λ19, and λ20, where τ3. Table 3.9 shows

the transitions for the Stochastic Targeted Drug Model.

As previously done in the Stochastic Base Model and the Random Drug

Model, we calculate the appropriate values of gi for the use in the explicit

tau-leaping method. Focusing on transitions λ17, λ18, λ19, and λ20, if we choose

|∆x1| <
ε

5
x1, |∆x2| <

ε

5
x2, |∆x3| <

ε

5
x3, |∆x4| <

ε

5
x4, |∆x5| <

ε

3
x5,

we can bound the relative change in each transition by ε:

Reaction 17:
|∆λ17|
λ17

≤ |∆x1|
x1

+
|∆x1|
x1

+
|∆x1|
x1

+
|∆x4|
x4

< ε

Reaction 18:
|∆λ18|
λ18

≤ |∆x2|
x2

+
|∆x2|
x2

+
|∆x2|
x2

+
|∆x2|
x2

+
|∆x4|
x4

< ε

Reaction 19:
|∆λ19|
λ19

≤ |∆x3|
x3

+
|∆x3|
x3

+
|∆x3|
x3

+
|∆x3|
x3

+
|∆x4|
x4

< ε

Reaction 20:
|∆λ20|
λ20

≤ |∆x4|
x4

+
|∆x4|
x4

+
|∆x4|
x4

< ε.
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Table 3.8: Transition rates λj(x
N) as well as the corresponding state changes vj for

the Stochastic Targeted Drug Model, j = 1, 2, . . . , 5.

Event Transition Rate vj
↓ XN

2 ↑ XN
1 λ1 = µxN2 m

N
S e1 − e2

↓ XN
3 ↑ XN

1 λ2 = µxN3 m
N
S e1 − e3

↓ XN
4 ↑ XN

1 λ3 = µxN4 m
N
S e1 − e4

↓ XN
5 ↑ XN

1 λ4 = µxN5 m
N
S + βNxN1 x

N
5 e1 − e5

↓ XN
1 ↑ XN

2 λ5 = µxN1 m
N
1 −e1 + e2

↓ XN
3 ↑ XN

2 λ6 = µxN3 m
N
1 e2 − e3

↓ XN
4 ↑ XN

2 λ7 = µxN4 m
N
1 e2 − e4

↓ XN
5 ↑ XN

2 λ8 = µxN5 m
N
1 + βN(1− c1)xN2 x

N
5 e2 − e5

↓ XN
1 ↑ XN

3 λ9 = µxN1 m
N
2 −e1 + e3

↓ XN
2 ↑ XN

3 λ10 = µxN2 m
N
2 −e2 + e3

↓ XN
4 ↑ XN

3 λ11 = µxN4 m
N
2 e3 − e4

↓ XN
5 ↑ XN

3 λ12 = µxN5 m
N
2 + βN(1− c2)xN3 x

N
5 e3 − e5

↓ XN
1 ↑ XN

4 λ13 = µxN1 m
N
12 −e1 + e4

↓ XN
2 ↑ XN

4 λ14 = µxN2 m
N
12 −e1 + e4

↓ XN
3 ↑ XN

4 λ15 = µxN3 m
N
12 −e3 + e4

↓ XN
5 ↑ XN

4 λ16 = µxN5 m
N
12 + βN(1− c12)xN4 x

N
5 e4 − e5

↓ XN
1 ↑ XN

5 λ17 = µxN1 m
N
X + (T − pxN4

N
+ γ)xN1 −e1 + e5

↓ XN
2 ↑ XN

5 λ18 = µxN2 m
N
X + (1

2
(T − pxN4

N
) + γ)xN2 −e2 + e5

↓ XN
3 ↑ XN

5 λ19 = µxN3 m
N
X + (1

2
(T − pxN4

N
) + γ)xN3 −e3 + e5

↓ XN
4 ↑ XN

5 λ20 = µxN4 m
N
X + (p+ γ)xN4 −e4 + e5

Therefore, we set gi = 5, i = 1, . . . , 4 and g5 = 3. Figures 3.3, 3.4, and 3.5

illustrate one realization for p = .15, p = .30, and p = .45 respectively. Recall p is

the total proportion of patients which can be identified as colonized with bacteria

resistant to both drugs.

Table 3.9 summarizes the average results for p = .30. If we compare the

deterministic model to the stochastic model with different population values, we can

see that the deterministic model again under estimates the effect of the addition of

the new antibiotic within a small unit of a hospital. Furthermore, comparison of

Tables 3.5 and 3.9 indicate the new drug may effectively reduce the total proportion

of patients resistant to some antibiotic on average by 44-62% over no treatment
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Figure 3.3: Results for Stochastic Targeted Drug Model where N = 10, 25, 50,
100, 200, 300 with p = .15 compared to the corresponding deterministic results (the
straight lines)
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Figure 3.4: Results for Stochastic Targeted Drug Model where N = 10, 25, 50,
100, 200, 300 with p = .30 compared to the corresponding deterministic results (the
straight lines)
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Figure 3.5: Results for Stochastic Targeted Drug Model where N = 10, 25, 50,
100, 200, 300 with p = .45 compared to the corresponding deterministic results (the
straight lines)
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when 30% of those dual resistant patients can be identified.

Table 3.9: Average Proportion of Population Colonized with Resistant Bacteria over
1 Year with varying Population sizes for the Stochastic Targeted Drug Model vs.
Deterministic Targeted Drug Model

Targeted Drug Model Population 10 25 50 100 200 300 Deterministic
Proportion - Dual Resistance .10 .12 .12 .13 .14 .14 .14
Proportion - Total Resistance .31 .34 .33 .34 .35 .35 .34

3.4 Comparison Between Stochastic Random Drug Model and

Stochastic Targeted Drug Model

If we want to compare the Stochastic Random Drug Model (SRDM) and the

Stochastic Targeted Drug Model (STDM), we see that for a small value of N , there

is a very small difference on the effect of the resistant population under different

administration protocols. Table 3.10 summarizes the average proportion of the

population colonized with a resistant strain in small population units when varying

the prescription administration protocol. When the population size is small, for

example, in an ICU where N = 10, giving the three drugs at the same rate but

randomly to patients, might even do a slightly better job of lowering the total

resistance than when we target only the dual resistant population. This does not

hold for larger populations in our model where using a targeted approach seems to

help more in the overall reduction of resistance.

Table 3.10: Total Resistance of Stochastic Models for Small Populations

Model N = 10 N = 25
SRDM Proportion .30 .35
STDM Proportion .31 .34
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CHAPTER 4

INVERSE PROBLEM

In Chapters 2 and 3, we developed both deterministic and stochastic models

to describe the spread of bacteria within a hospital. Given specified parameter

values for the deterministic and stochastic models, we illustrated the potential

trajectory for the state variables across time. The process of solving for state

variables given parameter values is known as the “forward problem”. However,

these parameter values were estimates based on literature or a “rule-of-thumb”

approach. In order to more accurately describe the spread of bacteria within a given

hospital and to assure accuracy of the model, it is necessary to assign parameter

values dependent on data measured within a hospital. Determining the parameter

values given data for the state variables is know as the “inverse problem”. Banks,

et. al. [4] say “[that] [f]inding the solutions to an inverse problem is, in general,

nontrivial because of non-uniqueness difficulties that arise. This undesirable feature

is often due to noisy data and insufficient number of observations.”

In this section, we only set up the inverse problem for solving for a select

number of parameters, which we call ~q, for the Base Model. The inverse problem

can be described by the following.

Given data, yi
d, we seek to estimate

~q = [q1, q2, . . . , qn]

such that

J(~q) =
Nt∑
i=1

|ym(ti; ~q)− yid|
2

is minimized where ym(ti; ~q) is the solution to the Base Model at time ti for i = 1, 2,

. . . , Nt, given the parameter ~q and yi
d is data collected at time ti. Actual data is
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not readily available; therefore, we determine the likelihood of obtaining accurate

parameter estimates by using simulated data. We simulate data by first running

simulations to the Base Model discussed in Section 2.1 using a given set of

parameters. We then add noise to the solution using the equation:

ŷdi = ym(ti, ~q) + nl · randi

where nl represents a given noise level and randi is normally distributed random

numbers with zero mean and variance 1.0 [4]. Figure 4.1 shows the simulated noisy

data at a noise level of 1%.

Using the exact parameters and initial guesses given in Table 4.1, we try to

estimate only the parameters

~q = [β,mS,m1,m2]

at a 1% noise level initially to obtain a baseline for variability in the parameters

estimates given relatively “good” data. These parameters were chosen based on the

sensitivity analysis found in Joyner et. al. [13]. In an actual hospital setting, we

assume we may only have a limited amount of data on the type of bacteria present

at a given time. For example, if a hospital had collected data on the whole

population and fairly accurately knew the proportion colonized with each type of

bacteria, i.e., S, R1, R2, and R12 then we might obtain a different estimate for

parameter values that if we only had data on the proportion of the population

colonized with just dual resistance for instance. Therefore, we analyzed the possible

outcomes for ~q given only specified data and calculated the relative error for each

estimate. The results are given in Table 4.2. Notice that in many instances the

relative error is extremely large. These results indicate that it is necessary to search

for other techniques and/or algorithms to obtain better estimates for parameter

values. Further analysis is beyond the scope of this thesis.
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Table 4.1: Exact Parameter Values for the Base Model Inverse Problem

Parameters Exact Values Initial Guesses
β 1 1.05
mS 0.7 0.735
m1 0.06 0.063
m2 0.05 0.0525

Table 4.2: Inverse Problem - Approximate q-values & Percent Relative Error

Type ~q = [β,mS,m1,m2] % Relative Error
S, R1, R2, R12 q=[1.0006, 0.7004, 0.0603, 0.0492] r=[0.06, 0.06, 0.47, 1.69]
R1, R2, R12 q=[0.9583, 0.6510, 0.0602, 0.0491] r=[4.17, 6.10, 0.27, 1.83]
R1, R2 q=[1.8151, 1.5172, 0.0621, 0.0506] r=[81.51, 116.74, 3.46, 1.28]
R12 q=[0.8005, 0.4805, -.1380, 0.2172] r=[19.95, 31.35, 330.08, 334.48]
R1 q=[2.4463, 1.4980, 0.0618, 0.1110] r=[144.63, 114.00, 3.02, 121.96]
R2 q=[3.8465, 1.2619, 0.3355, 0.0512] r=[284.65, 80.27, 459.17, 2.41]

R1 +R2 q=[1.7711, 1.5040, 0.1372, -0.0244] r=[77.11, 114.86, 128.61, 148.76]
R1 +R2 +R12 q=[0.8315, 0.4627, 0.0628, 0.0229] r=[16.85, 33.90, 4.70, 54.27]
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Figure 4.1: Simulated Data for Each State Variable for the Base Model at a 1% Noise

Level
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CHAPTER 5

CONCLUSION

In this thesis we sought to understand how adding a new antibiotic to the

regimen affected antibiotic resistance. We began by adapting a deterministic model

from Chow, [9], to create a model of a hospital containing two groups of patients

colonized with bacteria resistant to a single antibiotic and one group colonized with

bacteria resistant to both antibiotics. This model, the Base Model, was used for

comparison purposes. With no treatment protocols, approximately 70% of the

patients within the hospital were colonized with bacteria resistant to some drug.

To incorporate the third drug, we constructed the Random Drug and Targeted

Drug Models. In the Random Drug Model, the probability of using any of the three

drugs was equal. Using this treatment protocol, the total resistance in the hospital

was reduced to 35% of the patients within the hospital colonized with some type of

resistance. The last deterministic model, the Targeted Drug Model, only allowed

treatment with the new drug on a proportion of the dual resistant patients. We ran

the model with three different proportions and results indicated that if one could

accurately identify and treat 30% of the dual resistant patients, the total resistance

drops to 32% of the patients within the hospital having some type of resistance.

Next, we developed corresponding stochastic models to more accurately model

the effects of treatment on small population sizes, such as units within a hospital.

We used continuous-time Markov Chains and the explicit tau-leaping method to

determine the average effect of the new drug for 500 realizations across one year.

We concluded that the deterministic models greatly underestimated the positive

effects of the new drug in reducing the overall proportion of patients colonized with
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resistant bacteria in small units. Furthermore, for small units there does not appear

to be a significant benefit of using one administration protocol over another.

Lastly, we gave some background and set up the inverse problem for the Base

Model. The results indicated additional techniques were needed to accurately

determine the parameters given a data set. This is considered future work.
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