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ABSTRACT 

DOWNHILL RUNNING IMPAIRS ACTIVATION AND STRENGTH OF THE ELBOW 

FLEXORS 

by 

Kyle J. Brandenberger 

Under the Direction of Dr. J. Andrew Doyle  

PURPOSE:  The aim of this study was to determine if knee extensor injury induced by 1 

h of downhill running attenuated force production in uninjured skeletal muscle (e.g., elbow 

flexors). METHODS:  Recreationally active subjects (n = 12) completed a two group (injury vs 

control) repeated measures design with the injury group running downhill for 1 h and the control 

group performing only the measurement procedures.  Strength and percent voluntary muscle 

activation were measured using an isokinetic dynamometer and electrical stimulation of the 

elbow flexors and knee extensors before and after a fatigue protocol at the following time points 

in relation to the downhill run:  15 min pre, 15 min post, 24 h post, and 48 h post.  Blood samples 

were collected at the same time points to measure IL-1β and TNF-α concentrations.  RESULTS:  

Knee extensor strength was significantly reduced by 53.5±9.9% immediately post-injury and 

remained reduced for up to 48 h in the injury group.  Elbow flexor strength was significantly 

reduced immediately and 24 h post-injury by 13.2±3.9% and 17.3±4.0% respectively in the 

injury group.  Elbow flexor electrically stimulated strength was not found to be different at any 

time point (P = 0.561).  Elbow flexor activation was significantly reduced compared to control at 



 

 

24 and 48 h post-injury by 22.9±9.1% and 13.5±5.7% respectively.  No differences were 

observed in IL-1β or TNF-α between groups.  CONCLUSION:  A 1 h downhill run significantly 

injured the knee extensors.  The elbow flexor muscles remained uninjured based on electrically 

stimulated strength, but voluntary strength of these muscles was impaired due to reduced 

activation.  This suggests an injury to the knee extensors can impair strength in uninjured 

muscles by reducing voluntary activation.  The mechanism behind this reduction remains 

undetermined. 

INDEX WORDS:  Downhill running, Muscle injury, Central nervous system, Inflammation 
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DEFINITIONS 

Adenosine Triphosphate (ATP):  A high energy molecule containing three phosphate groups 

used in various cellular processes to provide energy. 

Creatine Phosphate (PCr):  A high energy molecule used by cells to produce energy 

anaerobically. 

Cyclooxygenase (COX): An enzyme responsible for synthesizing prostaglandin E2. 

Graded Exercise Test (GXT):  An aerobic fitness test where the subject’s expired gas is 

measured for oxygen consumption.  Subjects run on a treadmill and the speed is increased at 

fixed intervals until the subject cannot maintain their speed. 

Injury:  A state of long-lasting impaired function resulting from physical damage to 

organs/tissue/cells in a biological system.  

Interleukin 1β (IL-1β):  A pro-inflammatory cytokine which binds to the IL-1 receptor. 

Interleukin 1receptor antagonist (IL-1ra): a competitive inhibitor of IL-1β which binds to the IL-

1 receptor and prevents signaling. 

Maximal voluntary contraction (MVC): A muscle contraction in which the subject voluntarily 

produces the maximum amount of force they can achieve. 



xi 

 

Nuclear Factor Kappa B (NF-κB):  A transcription factor that is sensitive to reactive oxygen 

species. 

Peak Oxygen Consumption (VO2peak):  The highest oxygen consumption observed during a 

maximal effort GXT. 

Prostaglandin E2 (PGE2):  A messenger particle synthesized by Cyclooxygenase. 

Sarcoplasmic Reticulum (SR):  An organelle within a muscle cell which stores and releases 

calcium. 

Tumor Necrosis Factor alpha (TNFα):  A pro-inflammatory cytokine. 

Twitch Interpolation (TI):  A technique used to quantify the percentage of muscle activated in a 

voluntary contraction. 

Voluntary Muscle Activation (VMA):  The percentage of muscle that can be activated by a 

subject without direct outside stimulation of the nervous system compared with activation when 

directly stimulating the target nerve. 
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CHAPTER ONE 

 

REVIEW OF LITERATURE 

Introduction 

Fatigue can be very broadly defined as a decline in force production not due to physical 

injury of the working muscle.  Numerous situations can result in fatigue, and the cause of 

declining force production is often multifactorial.  In order to more fully understand fatigue, it is 

necessary to isolate the different causes to determine why force production declines in a given 

scenario.  

Peripheral Fatigue 

Peripheral fatigue refers to a decrement in a given muscle fiber’s ability to maximally 

produce force.  Peripheral fatigue has been attributed to changes within the muscle that reduce 

the muscle fiber’s ability to produce maximal force.  The muscle fiber relies on the release of 

calcium from the sarcoplasmic reticulum (SR) as a signal to initiate muscle contraction (S Ebashi 

& Endo, 1968; Riiegg, 1988).  Sufficient calcium must be present in the muscle cytosol to bind 

to troponin C, which leads to a conformational shift, exposing the myosin binding site on actin 

(Setsuro Ebashi, Endo, & Ohtsuki, 1969).  Since calcium is crucial to the development of force 

by a muscle fiber, anything that significantly decreases SR calcium release would lead to a 

reduction in maximal force production of the individual fiber and thereby decreasing the overall 

force production capability of the muscle (Riiegg, 1988).   
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Metabolic changes 

During prolonged, intense muscle contractions, a number of metabolic changes occur in 

the muscle.  Accelerated use of ATP and depletion of the creatine phosphate (PCr) stores leads to 

increased levels of free creatine and inorganic phosphate (Pi).  While free creatine has not been 

linked to any change in force production the associated rise in Pi has been shown to have a direct 

effect on the calcium stores in the SR by causing calcium to precipitate (D. Allen & Westerblad, 

2001; Westerblad, Allen, & Lännergren, 2002).  The reduced SR calcium leads to a reduced 

calcium transient, which in turn leads to reduced force production as fewer cross bridges are 

formed (D. Allen & Westerblad, 2001; D. G. Allen, Kabbara, & Westerblad, 2002).  Early 

studies on skinned fibers suggested a significant role for acidosis on reductions in force 

production (Cooke, Franks, Luciani, & Pate, 1988; Donaldson, Hermansen, & Bolles, 1978; 

Metzger & Moss, 1987).  However, it was subsequently determined that the effects of pH on 

muscle force production become less significant at physiological temperatures (Pate, Bhimani, 

Franks-Skiba, & Cooke, 1995).  More recent research has even suggested that reductions in pH 

can preserve force production (O. B. Nielsen, Paoli, & Overgaard, 2001).   

Glycogen Depletion 

Glycogen depletion has been associated with fatigue in numerous studies (Jacobs, Kaiser, 

& Tesch, 1981; Tsintzas, Williams, Boobis, & Greenhaff, 1996; Wagenmakers et al., 1991).  It 

was originally thought that depletion of muscle glycogen caused fatigue consequent to reduced 

ATP resynthesis, but the evidence suggests that ATP concentrations are maintained even when 

glycogen is depleted (J. Nielsen, Schrøder, Rix, & Ørtenblad, 2009; Stephenson, Nguyen, & 
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Stephenson, 1999).  Some evidence now suggests that depletion of glycogen reduces calcium 

release from the ryanodine receptor through an unknown signaling mechanism (Chin & Allen, 

1997; Ørtenblad, Nielsen, Saltin, & Holmberg, 2011).  

Oxidative Stress 

 Some evidence exists that acute exercise is capable of increasing oxidative stress 

(Bloomer, Goldfarb, Wideman, McKenzie, & Consitt, 2005; M. B. Reid, Shoji, Moody, & 

Entman, 1992), and that training blunts this increase in oxidative stress by upregulating gene 

expression via Nuclear Factor Kappa B (NF-κB) signaling  (Gomez-Cabrera, Domenech, & 

Viña, 2008; Miyazaki et al., 2001).  The specific role of oxidative stress in fatigue is 

incompletely understood.  It appears that some basal level of oxidative stress is needed for 

adequate force generation (Michael B Reid, Khawli, & Moody, 1993), but increasing oxidative 

stress beyond a certain level impairs force development via reducing calcium release and 

possibly altering calcium sensitivity of the contractile proteins (Michael B Reid, 2008). 

Central Fatigue 

The role of the central nervous system in fatigue has been recognized for over a hundred 

years since it was first demonstrated that mentally challenging work could affect physical 

performance (Mosso, 1904).  Central fatigue can be defined as a transient reduction in the ability 

of the central nervous system (CNS) to voluntarily fully recruit motor units (Gandevia, 2001).  

Voluntary recruitment of motor units occurs when the motor cortex generates an action potential 

that travels down the spinal cord through alpha motor neurons to activate a muscle.  The spinal 

cord then integrates the level of stimulation from the brain with peripheral signals from muscle 
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afferents to select the appropriate level of motor unit recruitment (J. B. Nielsen, 2004).  Evidence 

suggests that CNS dysfunction can occur at the supraspinal level due to suboptimal output from 

the motor cortex (Gandevia, Allen, Butler, & Taylor, 1996; Taylor, Allen, Butler, & Gandevia, 

2000; Taylor, Todd, & Gandevia, 2006), or at the spinal level due primarily to altered afferent 

feedback from the group III and IV afferents (Amann & Dempsey, 2008; Amann et al., 2008; 

Amann, Proctor, Sebranek, Pegelow, & Dempsey, 2009) (see Figure 1.1). 

 

Figure 1.1. Central versus peripheral fatigue.  Depicting the different sites in the neuromuscular 

system necessary for force development.  Fatigue can occur due to dysfunction in any one of 

these sites leading to reduced force production (Taylor, Amann, Duchateau, Meeusen, & Rice, 

2016) 
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Supraspinal Fatigue 

The precise mechanisms that lead to development of central fatigue are not entirely 

understood at present.  The first proposed mechanism for central fatigue suggested that 

alterations in brain serotonin were responsible for reductions in force generating capability 

(Romanowski & Grabiec, 1973).  This was later expanded upon to suggest a role for free fatty 

acids displacing tryptophan from albumin and increasing brain uptake of free tryptophan which 

is converted into serotonin within the brain (Acworth, Nicholass, Morgan, & Newsholme, 1986; 

Chaouloff, Kennett, Serrurrier, Merino, & Curzon, 1986; Curzon, Friedel, Katamaneni, 

Greenwood, & Lader, 1974; Newsholme, 1987; Pardridge, 1979).  However, studies on 

serotonin’s role in central fatigue have had conflicting results, suggesting that other mechanisms 

may play a role (Roelands & Meeusen, 2010). 

There is some evidence to suggest that dopamine, another neurotransmitter plays a 

significant role in the initiation of force production.  A meta-analysis of examining dopamine 

reuptake inhibitors to treat cancer related fatigue in 2010 found a significant (effect size = 0.28) 

improvement in fatigue when measured using a subjective rating scale (Minton, Richardson, 

Sharpe, Hotopf, & Stone, 2011).  However, previous researchers have suggested that dopamine 

alterations are a downstream consequence of the inflammation occurring in the brain, with the 

proposed pathway below (see Figure 1.2) (Bower & Lamkin, 2013).  Supporting this conclusion, 

treatment with dopamine elevating medications have mixed results on reducing fatigue in 

Parkinson’s patients (J. S. Lou et al., 2003; Mendonça, Menezes, & Jog, 2007; Valko et al., 

2010). 
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Figure 1.2. Inflammation alters dopamine levels resulting in fatigue. Inflammation from systemic 

causes related to cancer can impair dopamine signaling leading to fatigue (Bower & Lamkin, 

2013). 

 

Modulating Force  

 The motor unit is comprised of the alpha motor neuron and the muscle fibers it innervates.  A 

motor unit is the lowest functional unit of the neuromuscular system capable of producing force (Taylor et 

al., 2016).  The central nervous system is capable of modulating force production via two 

approaches, both involving the activation of the motor unit (J. H. Friedman et al., 2007; 

Heckman & Enoka, 2012).  The first approach is to change the number of motor units recruited.  
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Motor units are normally recruited based on size, with the smallest motor units recruited first (J. 

H. Friedman et al., 2007; Heckman & Enoka, 2012).  Once a given motor unit is recruited, the 

force can be altered by changing the rate at which action potentials are delivered to the motor 

unit (Taylor et al., 2016).  During a brief contraction, the rate of action potentials can vary 

considerably, but functionally muscles tend to peak between 10-40 Hz of activation (Fuglevand, 

Lester, & Johns, 2015; Mottram, Heckman, Powers, Rymer, & Suresh, 2014; Taylor et al., 

2016).  During fatiguing tasks involving MVCs, motor unit firing rates have been consistently 

shown to decline (Bigland-Ritchie, Dawson, Johansson, & Lippold, 1986; Dalton, Harwood, 

Davidson, & Rice, 2010; Taylor et al., 2016; Woods, Furbush, & Bigland-Ritchie, 1987).  This 

reduction in motor unit firing rate is likely attributed to reductions in neural drive, local changes 

in the motoneurons, of inhibitory feedback mechanisms (Heckman & Enoka, 2012; Taylor et al., 

2016).  During submaximal fatiguing contractions firing rates are extremely variable with 

intensity, type of task performed, muscle location, muscle architecture, and training status 

influencing changes (Taylor et al., 2016).  Following a bout of eccentric exercise, it appears that 

rate coding increases, as the CNS attempts to compensate for losses in force (De Ruiter, Elzinga, 

Verdijk, Van Mechelen, & De Haan, 2005; Piitulainen, Holobar, & Avela, 2012). 

Motor Neuron Excitability 

 The alpha motor neurons play an integral role in the development of force, because they 

are the last link in the nervous system necessary for activation of a particular motor unit. The 

alpha motor neuron and the muscle fibers that make up the motor unit form a one to many 

relationship making the (Taylor & Gandevia, 2008) firing of the motor unit reflect the firing 
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alpha motor neuron in a one-one ratio (Taylor et al., 2016).  The excitability of the motor neuron 

is influenced by corticospinal drive, neurotransmitters, afferent nerve input and the current level 

of activation of the given motor neuron (Taylor et al., 2016) (see Figure 1.3) .  Evidence suggests 

that during fatiguing contractions the motor neurons are less responsive to excitation, which 

would reduce their firing rate leading to the recruitment of additional motor units (Carpentier, 

Duchateau, & Hainaut, 2001; Johnson, Edwards, Van Tongeren, & Bawa, 2004; Taylor et al., 

2016). 

 

Figure 1.3.  Motor unit recruitment varies with intensity.  A summary of the differences in motor 

unit recruitment for maximal versus submaximal contractions (Taylor & Gandevia, 2008). 

The role of serotonin in fatigue was previously discussed in the context of the central 

nervous system.  However, researchers have suggested that serotonin plays a complex role in the 

excitability of the motor neurons (Taylor et al., 2016).  Evidence suggests that low levels of 

serotonin increase motor neuron excitability when confined to the somatodendritic membrane, 

but when levels of serotonin are high enough to spill over onto the axonal initial segment, motor 

neuron excitability is decreased (Cotel, Exley, Cragg, & Perrier, 2013).  This likely occurs via 
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the distribution of 5-HT2 excitatory and 5-HT1A inhibitory serotonin receptors (Cotel et al., 

2013).  Studies suggest that serotonin is released in a graded response to force (Wei et al., 2014) , 

but at least during rhythmic activities of running with a sufficient time frame the level of 

serotonin release will decline, taking 30-45 minutes to recover (Fornal, Martín-Cora, & Jacobs, 

2006; Gerin, Becquet, & Privat, 1995).   

Motor neuron excitability can also be altered via afferent feedback (Enoka et al., 2011; 

Taylor et al., 2016).  The motor neuron receives input from excitatory sources (descending drive, 

and muscle spindle afferents) and inhibitory sources (Golgi tendon afferents, Renshaw cells, and 

group III/IV afferents) (Taylor et al., 2016).  Of the inhibitory sources, only the group III/IV 

afferents are thought to play a significant role in force loss during fatigue. (Amann & Dempsey, 

2008; Gandevia, 2001; Hilty et al., 2011; P. G. Martin, Smith, Butler, Gandevia, & Taylor, 2006; 

Pettorossi, Torre, Bortolami, & Brunetti, 1999; Woods et al., 1987).  The muscle spindle 

afferents promote motor neuron excitation.  During a sustained contraction, there is a decline in 

muscle spindle activity, leading to reduced motor unit excitation (Macefield, Hagbarth, Gorman, 

Gandevia, & Burke, 1991).  From studies of the short latency H-reflex, comprising a spinal loop, 

there is evidence to suggest that muscle spindle firing primarily leads to changes at the spinal 

level that in turn lead to presynaptic inhibition of the motor neuron pool (Duchateau, Balestra, 

Carpentier, & Hainaut, 2002; Duchateau & Hainaut, 1993).  In contrast there is a differential 

response on the long latency reflex, with no change during maximal efforts, but a decline at 

submaximal efforts (Duchateau et al., 2002) (see Figure 1.4).  
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Figure 1.4. Motor Neuron excitability.  Depicting the different factors affecting motor neuron 

excitability (Taylor et al., 2016). 

Group III and IV Afferents 

Sensory nerves that innervate skeletal muscle can be activated by contractions.  These sensory 

nerves are classified based on function, and physical properties into group I, II, III or IV.  The 

group III and IV afferent nerves are thought to play an important role during fatiguing 

contractions.  The group III afferents are largely responsive to mechanical stimulation from 

muscle contraction, and the group IV afferents are sensitive to metabolites (Taylor et al., 2016).  

These group III/IV afferents play a significant role in relaying information to the central nervous 

system for the regulation of cardiopulmonary response to exercise.  Evidence suggests that these 

afferents influence the rapid increase in cardiopulmonary output during exercise (Amann et al., 

2010; Kaufman & Forster, 1996).  Since O2 delivery to the working muscles limits development 

of fatigue in the working muscles (Amann & Calbet, 2008), the faciliatory effects of  group 

III/IV afferents on the cardiopulmonary system could be thought to reduce peripheral fatigue 
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(Taylor et al., 2016).  Additional studies suggest that fatiguing byproducts, such as hydrogen and 

Pi, can activate group III and IV which alter spinal function and reduces motor unit recruitment 

to possibly avoid the development of severe peripheral fatigue (Amann & Dempsey, 2008; 

Amann et al., 2008; Amann et al., 2009).  It is thought that group IV afferents can alter central 

motor drive since the information from group IV afferents is communicated to the brain (Amann, 

2011; Gandevia, 2001).  This inhibition can also affect recruitment of distant limbs (Sidhu et al., 

2014).  A 2004 study suggests that intramuscular inflammation due to skeletal muscle injury can 

sensitize group IV afferents leading to reduced voluntary muscle activation within the same 

muscle (Marqueste et al., 2004) (see Figure 1.5). 

 

Figure 1.5.  Muscle afferents interactions. Depicting the complex role of group III and IV 

afferents in the development of central and peripheral fatigue (Taylor et al., 2016). 

Central vs Peripheral Fatigue 

As the previous sections illustrate, fatigue likely occurs through a combination of overlapping 

mechanisms that include both peripheral factors intrinsic to the individual muscle fibers, and 

central factors involving the brain, spinal cord and alpha motor neurons.  While the cellular 

environment of a muscle cell can be altered through exhaustive exercise and lead to a loss of the 

intrinsic force production of the muscle (Fitts, 1994), The central nervous system also clearly 
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plays a role in determining the level of motor unit recruitment.  Peripheral mechanisms also do 

not explain the loss of force observed in submaximal exercise below thresholds thought to 

produce excessive fatiguing byproducts, which is distinguished by a decrease in voluntary 

muscle activation (V. Martin et al., 2010).   The interplay between peripheral mechanisms of 

fatigue and central factors is complex, and the extent to which each mechanism contributes to the 

overall development of fatigue depends on the task and conditions of the performance (Taylor et 

al., 2016).   

Measuring Fatigue 

Previous researchers have suggested that measuring fatigue is difficult because the very 

concept of fatigue is difficult to define (Eidelman, 1979; Muscio, 1921). Despite this difficulty, 

there are a number of methods used to measure fatigue.  One of the earliest methods developed 

to study fatigue involved a subjective rating scale based on subject observation and feedback 

(Krupp, LaRocca, Muir-Nash, & Steinberg, 1989; Pearson, 1957; Pearson & Byars Jr, 1956; 

Yoshitake, 1971).  While useful, these rating scales are subjective and lack the precision needed 

to determine either the cause or magnitude of any fatigue present.   In spite of the drawbacks, 

fatigue rating scales are still employed in numerous studies (Barsevick et al., 2004; Given, 2002; 

Jean‐Pierre et al., 2010; Lower et al., 2009) to assess fatigue.  Despite the apparent subjectivity 

of fatigue, there are more objective measures commonly used to quantify the magnitude of 

fatigue present in subjects.   

Numerous studies have examined fatigue using tests to fatigue, where a subject performs 

an exercise at a constant work rate until they can no longer maintain the desired work rate (E. 
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Coyle et al., 1983).  The benefit to this type of measurement is that it mimics competitive 

activities and is easily translatable to performance.  It has been used extensively to examine 

metabolism and fuel utilization (Coggan & Coyle, 1987; E. Coyle et al., 1983; E. F. Coyle, 

Coggan, Hemmert, & Ivy, 1986).  This method has also been used to study the effects of 

inflammation on fatigue in animal models (Carmichael et al., 2006).  Unfortunately, the 

drawback to this method is its inability to determine whether the fatigue occurs in the peripheral 

muscle or the central nervous system. 

Another method of measuring fatigue is to measure maximal voluntary contraction 

(MVC).  Measuring force production during a MVC has advantages when studying central 

fatigue because, force generated during an MVC involves the entire pathway from the brain to 

the skeletal muscle (Taylor & Gandevia, 2008).  The drawback to this procedure is that the 

results of any changes in MVC strength may not directly translate into functional/performance 

applications since movements in daily activity or sport rarely involve MVC type of muscle 

action.  However, and MVC remains the best way to test both the peripheral muscle and the 

central nervous system.  Therefore, an MVC can be used to assess the function of the entire 

nervous system from brain to the alpha motor neurons.   

Measuring Activation 

The relationship between muscle activation and electrical current has been known for 

several centuries (Galvani & Aldini, 1792).  The first recorded EMG were reported in 1849 (Du 

Bois-Reymond, 1849), and subsequently, the technique has been refined through the use of 

various technology to record an analyze the small electrical signals due to the movement of ions 
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involved in muscle contraction (Fridlund & Cacioppo, 1986; Kamen & Caldwell, 1996).  

Measurements of activation relying on EMG signals suffer from two major drawbacks.  First, the 

voltages recorded are very small in the μV range, making them highly susceptible to interference 

from outside sources which would need to controlled (Fridlund & Cacioppo, 1986).  Second, 

there is no way to ascertain based on the voltage of the muscle whether the there is any portion 

that remains inactive. Third, the reliability of EMG measurements decreases with increasing 

intensities of exercise, making them unreliable for measurements during a maximal voluntary 

contraction (Dankaerts, O’Sullivan, Burnett, Straker, & Danneels, 2004; Mathur, Eng, & 

MacIntyre, 2005; Yang & Winter, 1983). 

Twitch interpolation is a technique used to quantify the amount of muscle voluntarily 

activated during a contraction (Shield & Zhou, 2004).  During a maximal contraction, a stimulus 

is applied to the either the nerve innervating the muscle, or directly to the muscle belly with 

surface electrodes.  The additive force of the twitch is then compared to a twitch induced during 

relaxation from the MVC, known as a control twitch.  The following equation is then used to 

estimate the percentage of voluntary muscle activation during the maximal contraction (Shield & 

Zhou, 2004). 

Voluntary Activation percentage = (1 – Superimposed Twitch Torque / Control Twitch Torque) 

X 100 (G. Allen, Gandevia, & McKenzie, 1995). 

The control twitch torque in conjunction with the superimposed twitch torque can be used to 

quantify the level of dysfunction/fatigue within the muscle (Park et al., 2008).  The 

superimposed twitch torque represents the amount of muscle not activated during the voluntary 



 

15 

 

contraction (Shield & Zhou, 2004).  Combining these measures can be used to determine how 

much of the fatigue is due to central activation or changes within the muscle.   

This technique can be applied to muscle injury to determine the relative contribution of 

central and peripheral mechanisms to the force loss associated with injury.  Changes in the 

control twitch torque would represent changes intrinsic to the muscle fiber.  Whereas, changes in 

the superimposed twitch torque relative to the control twitch torque would represent changes in 

central activation.  If the injury is broadly affecting motor unit recruitment, then the ratio of 

superimposed twitch torque to control twitch torque will be increased in uninvolved limbs.  

Questions remain of whether the muscle injury is communicated into the brain producing 

widespread changes, and what is the most likely mechanism for this communication?  

Inflammation and Signaling 

Inflammation is most commonly diagnosed and defined by the symptoms: redness, 

swelling, heat, and pain (A. Scott, Khan, Cook, & Duronio, 2004).  It has been shown that these 

symptoms are the result of chemical messengers that broadly activate immune processes 

throughout the body (Rocha e Silva, 1978).  There are a variety of different chemical messengers 

employed in this process that have both redundant and differential effects (Watkins, Maier, & 

Goehler, 1995).  Tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) are secreted 

early in the inflammatory process and are referred to as “pro-inflammatory” cytokines because of 

their role in upregulating inflammatory mediators such as nitric oxide and matrix 

metalloproteinases (Pedersen et al., 2001).  Interleukin 6 is also secreted early in the 

inflammatory response, but appears to have both pro-inflammatory and anti-inflammatory effects 
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(Barton, 1997).    Another set of cytokines including interleukin 1 receptor antagonist (IL-1ra), 

soluble TNF-α receptors, TGFβ, interleukin 4, interleukin 10, and interleukin 13 have anti-

inflammatory effects (Cannon & Pierre, 1998; Pedersen et al., 2001). 

Inflammation Communication across the Blood Brain Barrier 

Originally it was thought that the brain was relatively immune privileged (Pachter, de 

Vries, & Fabry, 2003), meaning that the blood brain barrier protected the brain from 

experiencing the effects of inflammation.  However, recent research in mice and humans has 

provided good evidence that peripheral inflammation induced in mice via downhill running 

(Carmichael et al., 2010), in human fetuses  via lipopolysaccharide (Lee, Liu, Dickson, Brosnan, 

& Berman, 1993), and various models of human disease (Gabay, Lamacchia, & Palmer, 2010), 

can communicate across the blood brain barrier to induce inflammation in the brain itself.  This 

process is thought to be activated by inflammatory signaling of the molecule IL-1β which can 

bind to the IL-1 receptor activating brain microglial cells, which then secrete prostaglandin E2 

(PGE2) (Carmichael et al., 2010; Gabay et al., 2010; Harrington, 2012; Lee et al., 1993).  It is 

also thought that prolonged signaling through the IL-1 receptor can result in dysfunction of the 

blood brain barrier itself and lead to infiltration of immune cells and inflammatory signaling 

molecules directly into the brain.   Evidence for this comes from an in-vitro model of endothelial 

cells (Labus, Häckel, Lucka, & Danker, 2014).   

Cerebral Inflammation and Sickness Behavior 

Cerebral inflammation has been shown in mice to induce a variety of behavior changes 

(fatigue, loss of appetite, reduced work capacity, etc...) often referred to collectively as sickness 
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behavior.  These behavior changes tend to peak 2-6 h following an inflammatory stimulus in 

mice (Dantzer, O'Connor, Freund, Johnson, & Kelley, 2008), which matches the time frame 

observed in studies of IL-1β signaling inhibition in humans showing a reduction in feelings of 

fatigue after inhibiting IL-1 signaling (Fitzgerald, LeClercq, Yan, Homik, & Dinarello, 2005; 

Verbsky & White, 2004).   

Role of IL-1β in Fatigue 

Studies have shown that IL-1 signaling impairs voluntary activity and time to fatigue in 

mice following a bout of downhill running (Carmichael et al., 2005; Carmichael et al., 2006).  

This concept is also supported by studies of voluntary activity after injection with an immune 

stimulating substance in the absence of any injury, which have shown that reductions in 

voluntary activity are strongly correlated with Il-1β levels in the brain (W. Sheng, Hu, Ding, 

Chao, & Peterson, 2001; W. S. Sheng, Hu, Lamkin, Peterson, & Chao, 1996).  Taken together, 

these studies indicate that brain inflammation is communicated from the periphery in both injury 

and sickness, and this brain inflammation causes a form of fatigue in mice.  This phenomenon 

has been linked specifically to brain macrophage like cells, which appear to be key in the 

reduction of time to fatigue in treadmill running following eccentric exercise induced muscle 

injury in mice (Carmichael et al., 2010).  This phenomenon has then been applied to human 

clinical fatigue, feelings of fatigue associated with sickness and disease that is associated with 

inflammation, but without clear, direct evidence that this pathway is conserved in humans.   

The evidence for IL-1β’s role in fatigue in humans largely comes from clinical studies of 

conditions that involve elevated systemic inflammation.  Numerous studies have shown that 
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conditions associated with inflammation including:  Multiple sclerosis (Leocani et al., 2001; Ng, 

Miller, Gelinas, & Kent‐Braun, 2004; Sheean, Murray, Rothwell, Miller, & Thompson, 1997), 

rheumatoid arthritis (Bearne, Scott, & Hurley, 2002; O’Reilly, Jones, Muir, & Doherty, 1998), 

fibromyalgia (Nørregaard, Bülow, Vestergaard-Poulsen, Thomsen, & Danneskiold-Samsøe, 

1995), and chronic fatigue (Schillings et al., 2004; Siemionow, Fang, Calabrese, Sahgal, & Yue, 

2004), have a diminished capacity to voluntarily recruit motor units.  While these studies do not 

clearly show a causative effect of inflammation on reduced voluntary motor unit recruitment, 

they do suggest that such an effect may occur, which other reviewers have suggested (Zwarts, 

Bleijenberg, & Van Engelen, 2008).  The work of T.D. Noakes suggests that the brain can 

integrate numerous signals including, inflammation, temperature, blood glucose and 

psychological factors  to alter motor cortex function and ultimately affect motor unit recruitment 

(Noakes, 2011).  If inflammation can induce these behavior changes in humans, it will likely 

affect motor unit recruitment, and maximal force production.   

Force Loss after Muscle Injury 

Skeletal muscle injury often occurs following novel eccentric muscle actions.  This injury 

can lead to functional deficits in the muscle which are disproportionate to the extent of physical 

damage within the muscle fiber (Warren, Ingalls, Lowe, & Armstrong, 2002).  It is generally 

accepted that muscle injury leads to a loss of force production due to physical disruptions within 

the cell of the force generating structures, and the structures involved in transmitting signals 

from the nerve into the interior of the cell, also known as excitation contraction (E-C) uncoupling  

(Warren et al., 2002).  E-C uncoupling accounts for most of the early force loss (0-3 days) after 

injury, whereas a frank loss of contractile proteins becomes more prominent 3-28 days after 
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injury (Warren et al., 2002).  There is evidence that skeletal muscle injury results not only in a 

reduced intrinsic force producing capability, but also in what is classically thought to be central 

fatigue.  While Marqueste et al., 2004 dealt with the effects of intramuscular inflammation, the 

literature suggests that prolonged eccentric exercise results in elevated plasma levels of IL-1β, 

IL-6 and TNF-α (Moldoveanu, Shephard, & Shek, 2001; Peake, Nosaka, & Suzuki, 2005) which 

might further impair muscle force production at the central level.  A few studies have already 

suggested that muscular function is partly related to IL-1β at the peripheral level (Marqueste et 

al., 2004) and the central level (Carmichael et al., 2005; Carmichael et al., 2006) following 

muscle injury.  

Fatigability after Muscle Injury 

There is also evidence that exercise induced muscle injury increases the fatigability of the 

injured muscle (Asp, Daugaard, Kristiansen, Kiens, & Richter, 1998; Doncaster & Twist, 2012). 

Although this increased fatigability has been thought to be attributed primarily to alterations in 

the metabolic properties of the muscle after injury (Asp et al., 1998), this would not explain the 

progressive decline in EMG signal observed in other studies during fatiguing contractions 

(Hedayatpour, Falla, Arendt-Nielsen, & Farina, 2008).  Interestingly, this same phenomenon has 

been documented in patients with multiple sclerosis (Sheean et al., 1997).  One of the factors 

contributing to fatigue in multiple sclerosis is increased systemic inflammation (Gold & Irwin, 

2009; Heesen et al., 2006; Trapp & Nave, 2008).  Studies also suggest that inflammation induced 

by the exercise protocols may affect the basal ganglia, which contain the brain’s reward centers 

(Calabrese et al., 2010; Tellez et al., 2008).   
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Inflammation Alters the Brain Reward Centers 

One possible explanation for increased fatigability is that inflammation may alter the 

function of the Substantia Nigra, known as the reward center, of the brain and thereby alters the 

incentive to endure the pain associated with fatigue.  This alteration has been observed in 

humans during MRI scans of people after receiving a typhoid fever vaccine, a method of 

inducing inflammation (Brydon, Harrison, Walker, Steptoe, & Critchley, 2008).  Interestingly, 

the subjects in that study also displayed psychomotor slowing, a possible sign of fatigue.  This 

interaction with the brain reward center has been shown in numerous other studies (Croisier, 

Moran, Dexter, Pearce, & Graeber, 2005; Herrera, Tomas-Camardiel, Venero, Cano, & 

Machado, 2005), and this region has also been linked to motor dysfunction as a result of 

enhanced IL-1β signaling (Ferrari et al., 2006).  Reviewers have even suggested that IL-1β 

signaling is key to the pathophysiology of Parkinson’s Disease (Godoy, Tarelli, Ferrari, Sarchi, 

& Pitossi, 2008; Nagatsu, Mogi, Ichinose, & Togari, 2000).  Parkinson’s is also associated with 

abnormal central fatigue, defined as the inability to initiate physical tasks (J. Friedman & 

Friedman, 1993; J. H. Friedman et al., 2007; Karlsen, Larsen, Tandberg, & Jørgensen, 1999; J. S. 

Lou, Kearns, Oken, Sexton, & Nutt, 2001).  Alterations in the Substantia Nigra have been shown 

to reduce integrated force during a 30 second fatiguing contraction via a loss of motor unit 

recruitment (J.-S. Lou, 2005).  Reducing the brain’s perceived reward from performing a painful 

sustained contraction leads to a progressive loss in motor unit recruitment, 
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Exercise Induced Muscle Injury Leads to Elevated IL-1β 

While some researchers suggest that most of the IL-1β generated due to eccentric muscle 

injury is retained within the injured muscle (J. Peake et al., 2005), the levels of IL-1β in plasma 

are necessarily much smaller than those of other inflammatory cytokines because it becomes 

cytotoxic above picomolar concentrations (Moldoveanu et al., 2001).  This means the circulating 

levels of IL-1β remain close to the detection threshold (Moldoveanu et al., 2001).  Due to this, 

results in the literature concerning  IL-1β plasma concentrations following exercise have been 

inconsistent (Moldoveanu et al., 2001; Suzuki et al., 2002).  That some studies have shown 

elevated plasma IL-1β levels following marathon running (Ostrowski, Rohde, Zacho, Asp, & 

Pedersen, 1998), 5k runners (Netea et al., 1996) cycling (Haahr et al., 1991; Lewicki, 

Tchorzewski, Majewska, Nowak, & Baj, 1988), and eccentric cycling (Evans et al., 1986) 

suggests there may be small significant elevations in IL-1β following higher intensity (>75% 

VO2max) exercise.  As pointed out previously in the literature (Nieman et al., 1998),  while IL-

1β is difficult to measure in plasma, its elevation in both muscle (Cannon et al., 1989; Fielding et 

al., 1993) and urine (Sprenger et al., 1992) post injury suggests elevated levels are present in the 

blood.   
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Endurance Exercise Leads to Elevations in Pro-Inflammatory Cytokines  

Most studies have shown that prolonged endurance exercise (≥60 min) results in elevated 

plasma TNFα (Brenner et al., 1999; Dufaux & Order, 1989; Espersen et al., 1990; Moldoveanu, 

Shephard, & Shek, 2000; Ostrowski, Rohde, Asp, & Pedersen, 1998; Rokitzki, Logemann, & 

Keul, 1994; Sprenger et al., 1992)  Shorter protocols tend to not illicit elevated plasma TNFα 

levels (Brenner et al., 1999; Der Meer, 1998; Natelson et al., 1996), but one study using a 5 km 

run was able to detect levels of TNFα after administration of lipopolysaccharide (Netea et al., 

1996).  Studies of the effects of endurance exercise on circulating IL-6 are more consistent, with 

studies showing consistent elevations in IL-6 of exercise ≥ 30 min (Brenner et al., 1999; 

Moldoveanu et al., 2000; Ostrowski, Rohde, Asp, et al., 1998; Ostrowski, Rohde, Zacho, et al., 

1998; Ullum et al., 1994), with eccentric exercise resulting in significantly more IL-6 

(Bruunsgaard et al., 1997; Nieman et al., 1998).  Increases in IL-6 (25 to 100 fold increases) tend 

to be larger than increases in either TNFα or IL-1β (~2.5 fold increase) (Ostrowski, Rohde, Asp, 

et al., 1998) making it a more easily detectable marker of overall inflammation. 

Detecting systemic IL-1β in Plasma and Urine 

In order to circumvent the detection problem, it may be beneficial to test for IL-1β in the 

urine because the concentrations would be higher and thus easier to detect.  Studies of plasma 

IL-1β have found basal levels < 10 pg/mL and post injuries levels typically below 100 pg/mL 

(Ostrowski, Rohde, Zacho, et al., 1998; L. L. Smith et al., 2007), while studies of urine yield 

results in the 100 – 300 pg/mL (Sprenger et al., 1992).   In urine there is a delay in the time that 
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significant levels are detected.  The literature seems to indicate that a delay of 3 h following the 

onset of exercise is needed before significant levels of IL-1β appear in the urine (se  Figure 6.6).   

 

Fig 1.6. Concentration of IL-1β detected in urine from the start of a 2 h run.  Levels of IL-1β 

were assessed in urine before, immediately after (2h) and at the other time points indicated 

(Sprenger et al., 1992). 

Exercise Intensity, and Training Status Influences IL-1β levels 

Evidence suggests that higher intensity exercise produces significantly more 

inflammation than moderate or low intensity exercise of the same duration (J. M. Peake, K. 

Suzuki, M. Hordern, et al., 2005).  In support of this, studies employing a race format with 

subjects attempting to achieve the fastest time possible tend to produce significant levels of IL-6 

(Ostrowski, Rohde, Zacho, et al., 1998; Sprenger et al., 1992).  Evans et al., 1986 found that 

untrained men had significantly more inflammation than trained men; however, the workload 

between groups was a fixed 200 W, making it difficult to determine whether changes in relative 

work rate were responsible for the reduced inflammation in the trained group (Evans et al., 
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1986).  It is likely that the results of Evans et al., 1986 reflect the importance of relative intensity 

on the inflammatory response.  Most studies showing significant elevations in IL-1β used 

relative work intensities between 75-80% of VO2max (Cannon et al., 1989; Pournot et al., 2011; 

J. P. Scott et al., 2013).  Therefore, any study attempting to induce a uniform inflammatory 

response should scale the intensity to a percentage of maximal effort instead of a fixed work rate.   

Exercise Duration influences IL-1β levels 

Cox et al., 2007 performed a series of trials with 18 well trained males.  There was a 30 

min trial at 60% VO2max, a 60 min trial at 65% VO2max, and an interval trial with 6 sets of 3 

min running at 90% VO2max.  The long trial was found to increase IL-6 by 527.1% compared to 

65.1% (interval trial) and 42.8% (30 min trial) (Cox, Pyne, Saunders, Callister, & Gleeson, 

2007).  This would suggest that duration is a key determinant in the level of inflammatory 

response.  A number of studies have attempted to induce inflammation using a short duration (2-

5 min) plyometric workout, but have failed to show any significant increases in IL-1β 

(Chatzinikolaou et al., 2010; Isaacs, 2012; Tofas et al., 2008).  The magnitude of injuries in these 

plyometric studies is often very small and in some cases fails to significantly alter muscle 

function (Chatzinikolaou et al., 2010; Tofas et al., 2008).  Studies with longer injury protocols, 

from 45 min (Cannon et al., 1989; Evans et al., 1986; Pournot et al., 2011), 60 min (Haahr et al., 

1991; J. P. Scott et al., 2013), and longer (Ostrowski, Rohde, Zacho, et al., 1998; Sprenger et al., 

1992) have shown significant elevations in IL-1β suggesting that longer protocols may induce 

more inflammation.  However, results have been inconsistent with manipulating duration alone 

with other studies showing no change after an hour of downhill running (L. L. Smith et al., 
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2007).  The literature as a whole suggests that longer duration protocols tend to produce 

significant elevations of plasma IL-1β, but shorter protocols do not. 

Differential effects of whole body vs single joint exercise on IL-1β levels 

Isolated single joint exercises produce significantly less inflammation than whole body 

endurance exercise protocols (J. M. Peake, K. Suzuki, M. Hordern, et al., 2005; J. M. Peake, K. 

Suzuki, G. Wilson, et al., 2005; Petersen et al., 2001; L. Smith et al., 2000; Thompson et al., 

2004).   Taken together, these studies suggest that the amount of muscle mass involved in the 

injury is important to the magnitude of the inflammatory response.  Specifically, the greater the 

amount of muscle involved in the injury, the larger the inflammatory response will be (see Table 

1.1). 

Table 1.1.  Summary of different injury protocols and their resultant inflammatory markers 

 

Study Protocol Time Length training status Sample size MVC Change IL-6 IL-1β

Sprenger et al., 1992 20 km run (95-120 min) 95-120 min

trained (large 

range) n = 22

3 fold peak increase in plasma 

returned to baseline in 24 hours

Urine levels elevated 3, 7 and 24 hrs 

post exercise

Chatzinikolaou et al., 2010 50 hurdle jumps, 50 drop jumps short 52.1±6.4 n = 12

No significant change 

detected 2 fold increase at 24 hours

Undetectable expect immediately post 

exercise

Tofas et al., 2008 96 hurdle jumps, 96 box jumps 2-5 min untrained n = 18

No significant change 

detected

Isaacs AW, 2012 10 sets of 10 high jumps short untrained n = 39 Slight significant increase

Pournot et al., 2011

Simulated Trail run up to 80% 

VO2max 45 min 62±1.18 n = 8 Significantly elevated 1 h post exercise

Cannon et al., 1989

45 min downhill run 16% incline 

75% VO2max 45 min n = 5

Elevated intramuscular levels up to 5 

days

Smith et al., 2007 60 min downhill run 13.5% incline 60 min 47.1±3.6 n = 10 Up to 29 pg/mL No change detected

Evans et al., 1986 45 min eccentric cycling 250 W 45 min

Elevated 3h post exercise in untrained 

males

Ostrowski et al., 1998

Copenhagen Marathon run time 

3:17:03 ± 00:07:39 ~197±7min 58.8 n = 16

Significant increase from 

1.5±0.7 pg/mL to 94.4±12.6 

pg/mL

Significant increase from 0.61±0.24 

pg/mL to 0.92±0.26 pg/mL 

immediately post exercise

Haahr et al., 1991 200W for 60 min 60 min 43.1-59.7 n = 10 Significantly elevated 2h post exercise

Vyver et al., 2013 12X5 min 15km/h 10% grade 60 min 50.7±1.1 n = 18 2 fold increase for 4 hours No Change detected

Scott et al., 2013

60min @ 60% run to exhaustion 

@ 75% ~2 hrs 67.9-55.5 n = 10 2.5 fold increase end of exercise
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Mechanism of Fatigue in an Uninjured Muscle Following Eccentric Injury of Another Muscle 

Group 

 The studies above provide evidence that eccentrically biased exercise of sufficient 

duration and intensity could be communicated to the central nervous system via inflammation.  

Prior studies suggest that longer duration, high intensity exercise can lead to elevated circulating 

pro-inflammatory cytokines.  There is evidence that acute inflammation is communicated to the 

central nervous system via two avenues:  sensitization and activation of group IV afferents, and 

activation of brain macrophage like cells which in turn secrete inflammation directly into the 

brain.  Sensitization of the group IV afferents can lead to a reduction in MVC by reducing the 

number of recruited motor units.  The areas of the brain affected involve the cortex and 

subcortical regions which may also affect motor unit recruitment by altering the excitability of 

the motor cortex.  The evidence also suggests that the Substantia Nigra, or the reward center of 

the brain is specifically activated and may sensitize the brain to fatigue.  Taken together, it is 

possible that inflammation from exercise induced muscle injury results in decreased peak torque 

and voluntary activation for 24-48 h post injury, but these ideas have never been directly tested.  

Two key questions need to be addressed.  First, is the CNS’s ability to activate uninjured muscle 

affected after an acute muscle injury?  If the answer to this question is yes, the second question 

that needs to be addressed is whether inflammatory cytokines are related to any changes 

observed in CNS function?  This review suggests that such information could be communicated 

via circulating pro-inflammatory cytokines. 
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CHAPTER TWO 

INTRODUCTION 

Skeletal muscle injury often occurs following novel or intense eccentric muscle actions.  

This injury can lead to functional deficits in the muscle which are disproportionate to the extent 

of physical damage within the muscle fiber (Warren, Ingalls, Lowe, & Armstrong, 2002).  It is 

generally accepted that muscle injury leads to a loss of force production due to physical 

disruptions of the force generating structures within the cell, and the structures involved in 

transmitting signals from the nerve into the interior of the cell, also known as excitation 

contraction (E-C) uncoupling  (Warren et al., 2002).  In a mouse model of muscle injury, E-C 

uncoupling accounts for most of the early force loss (0-3 days) after injury, whereas a frank loss 

of contractile proteins becomes more prominent 3-28 days after injury (Warren et al., 2002).   

The strength of a given muscle depends upon the size of the muscle, the number of 

actomyosin cross bridges, and the level of activation from the central nervous system (Frontera 

& Ochala, 2015), among other factors. There is evidence that skeletal muscle injury results not 

only in a reduced intrinsic force producing capability, but also impairment of activation of the 

injured muscle (Behrens, Mau-Moeller, & Bruhn, 2012; Deschenes et al., 2000; Komi & 

Viitasalo, 1977).  This suggests that information of the injury is communicated to the central 

nervous system (CNS), which then alters motor unit recruitment or rate coding.  This information 

could be transmitted to the central nervous system via two separate mediums.  

The first medium capable of transmitting this information is blood.  Muscle injury results 

in the release of numerous intracellular proteins into systemic circulation (McKune, Semple, & 
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Peters-Futre, 2012).  This is thought to result in elevated pro-inflammatory cytokines in the 

systemic circulation (Nieman et al., 1998; Suzuki et al., 2002).  Previous studies suggest that pro-

inflammatory cytokines in circulation can communicate exercise-induced muscle injury to the 

brain, resulting in reduced CNS function (Carmichael et al., 2005; Carmichael et al., 2006).  

Since this medium would not convey the specific location of the injury to the central nervous 

system, any effects would likely be widespread throughout the body. 

The second medium that could transmit information of muscle injury to the central 

nervous system is afferent nerves.  Group III/IV afferent nerves have been shown to relay 

information of muscle fatigue to the central nervous system, resulting in reduced activation of 

both the working muscle (Amann & Dempsey, 2008; Amann, Proctor, Sebranek, Pegelow, & 

Dempsey, 2009), and muscles distant from the site of fatigue (Sidhu et al., 2014).  Group IV 

afferent nerves are thought to be sensitized following muscle injury by pro-inflammatory 

cytokines retained within the injured muscle (Marqueste et al., 2004).   

This study had three main objectives.  The first objective was to determine whether 

exercise-induced muscle injury could affect the strength of a muscle distant from the site of 

injury.  The second objective was to determine whether any dysfunction in the distant muscle 

was due to reductions in CNS function, and the third was to examine whether plasma cytokines 

were related to any changes observed.  Answering these questions improves our understanding of 

the CNS’s role following muscle injury, and could lead to insights of mechanisms contributing to 

widespread neuromuscular dysfunction. 
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PROCEDURES 

Study Design   

The overall design of this study was to induce injury in leg muscles with a downhill 

running protocol in a set of subjects, and to determine whether injury of the knee extensors 

affected subsequent function of uninjured elbow flexor muscles.  Measurements of strength and 

activation of knee extensors and elbow flexors were taken before, 15 min, 24 h, and 48 h after 

downhill running.  Subjects then performed a fatigue protocol with the knee extensor and elbow 

flexor muscles to examine how strength and activation following muscle injury are impacted in a 

fatigued state. Urine and blood samples were taken pre, post, 24 h post, and 48 h post injury to 

assess markers of inflammation.  A control group did not undergo the injury protocol, but 

provided strength and activation measurements of the knee extensors and elbow flexors over the 

same time period for comparison (Warren, Hermann, Ingalls, Masselli, & Armstrong, 2000).  For 

a summary of the procedures see Figure 2.1. 

 

Fig 2.1.  An outline of the testing protocol. KE IT refers to the Knee Extensor Interpolated 

Twitch. EF IT refers to the Elbow Flexor Interpolated Twitch.  Urine and blood samples were 

stored and measured for IL-1β content. 
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Subjects   

Recreationally active subjects who were not specifically training for running were 

recruited for this study.  Based on a health history form, subjects who either failed to meet the 

ACSM guidelines for low risk (Thompson, Gordon, & Pescatello, 2009), ran more than 10 miles 

per week, or participated in plyometric training were excluded from testing.  A power analysis 

was performed using G-power 3.1 (Universitat Kiel, Germany) for a repeated measures ANOVA 

on biceps MVC peak force.   The effect size was estimated at .2, and the correlation of repeated 

measures estimated at .9 giving an estimated sample size of 14.  The measured effect in the 

elbow flexors was larger than estimated (ղ2 ≥ 0.241) allowing for a smaller sample size of 12 

subjects, while maintaining statistical power.  For a summary of subject characteristics see Table 

2.1. 

 

Table 2.1 Subject Characteristics 

 Injury (n = 6) Control (n = 6) 

VO2peak (ml/kg/min) 49.2 ± 12.18 44.2 ± 6.98 

Height (cm) 175.6 ± 6.05 174.4 ± 12.28 

Weight (kg) 80.2 ± 5.44 73.3 ± 13.66 

Age (yr) 27.3 ± 7.69 27.6 ± 8.48 

Values are mean ± SD. 
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Screening Trial   

Subjects reported to the Applied Physiology Lab for testing.  Subjects first provided their 

informed consent, and then filled out a health history form to ensure all subjects were low risk 

according to the ACSM risk stratification procedures (Thompson et al., 2009).  Subjects were 

then escorted to a separate lab containing a Kin-Com III (Chattecx:  Chattanooga, TN) and asked 

to perform a practice set of the twitch interpolation and fatigue inducing procedures for the knee 

extensors and elbow flexors.  Subjects that failed to demonstrate an ability to adequately perform 

the twitch interpolation procedure were excluded from further testing.  Subjects were then 

weighed without shoes and asked to perform a graded exercise test (Appendix 5).  Gas exchange 

variables were measured throughout the test using a True Max 2400 Metabolic Measurement 

System (Parvomedics:  East Sandy, UT).  The highest 15 second average of VO2 was used as the 

subject’s VO2peak.  Subjects were then scheduled for the remaining testing sessions.  The injury 

protocol took place within 1-2 weeks of the subject’s screening trial.  

 

 

Injury Protocol   

Subjects were asked to run downhill on a treadmill for one hour to injure the knee 

extensor muscles.  A downhill run at 10% grade for 60 minutes at a speed equivalent to 75% of 

VO2peak at 0% grade was selected to induce injury because this protocol resulted in a significant 

injury, produced a large inflammatory response, and could be employed with untrained subjects 

(McKune, Smith, Semple, Mokethwa, & Wadee, 2006; Smith et al., 2007).   
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Twitch Interpolation Protocol  

Twitch interpolation was used to quantify changes in voluntary muscle activation to 

determine whether changes in strength were due to the inability to maximally activate skeletal 

muscle, ie., central fatigue.  A constant current, high voltage Digitimer DS7AH stimulator 

(Digitimer:  Hertfordshire, UK) was used to stimulate the elbow flexor and knee extensor 

muscles.  To test the elbow flexor muscles, the subjects were seated in a CB-6 Arm Curl Bench 

(Valor Fitness:  St. Petersburg, FL) in close proximity to a Kin-com III set up to measure torque 

at 90° of elbow flexion.  To test the knee extensors, subjects were seated in a Kin-com III set up 

in the standard configuration to measure knee extensor torque (Manual) with 110⁰ of hip flexion 

and 70⁰ of knee flexion.  The subject’s leg, chest, and waist were strapped down for knee 

extensor measurements.  The placement of the seat, lever arm and servo-motor were recorded to 

standardize within subject measurements between trials.  A constant current, high voltage 

Digitimer DS7AH stimulator (Digitimer:  Hertfordshire, UK) was used to stimulate the knee 

extensors and elbow flexors.   Stimulation electrodes (UniPatch 6696SS, Wabasha, MN) were 

placed over the proximal belly and the distal tendon of the biceps for elbow flexor measurements 

(Magnus, Barss, Lanovaz, & Farthing, 2010).  Stimulation electrodes (UniPatch 617SB, 

Wabasha, MN) for the knee extensors were placed over the distal vastus medialis muscle and the 

proximal vastus lateralis muscle near the anterosuperior iliac spine.  For continuity, the position 

of the electrodes was outlined in permanent marker (Park et al., 2008).   A series of control 

twitches was delivered to the muscle starting at 60mA for the elbow flexors, 100mA for the knee 

extensors, and increased by 20 mA, until two consecutive increases in amperage failed to 

increase the peak torque of the twitch.  This current was recorded and used throughout the trial to 

stimulate the muscle.  (Magnus et al., 2010; Park et al., 2008).   
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The subjects were asked to perform a 3 second maximal voluntary contraction (MVC), 

and an electrical stimulation was applied 2.5 seconds into the contraction.  Two paired stimuli 

were then applied to the muscle at 2 and 4 seconds after the MVC; the resultant torque was 

averaged and used for analysis.  The subjects performed this procedure six times, with 1 minute 

of rest between contractions.  The three interpolated twitch measurements with the highest force 

were selected and averaged to determine resting voluntary activation.   Voluntary activation was 

estimated using the following equation:  Voluntary Activation percentage = (1 – Superimposed 

Twitch Torque / Control Twitch Torque) X 100 (Allen, Gandevia, & McKenzie, 1995).  The 

interpolated twitch technique is depicted graphically in Figure 2.2. 

 

 

 

Figure 2.2. A visual representation of the interpolated twitch procedure.  Representative force 

tracing shows a 3 second MVC with twitch interpolation procedure.  The resultant twitch height 

during the MVC contraction is compared the twitch height while the muscle is relaxed to 

determine the level of activation in the muscle.   
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Fatigue Protocol   

A procedure to fatigue the elbow flexors and the knee extensors was conducted in a 

similar fashion to the procedure described previously in the literature (Collier, Hardy, Millard-

Stafford, & Warren, 2015).  Subjects performed five sets of 10 isotonic concentric contractions 

of the knee extensors or elbow flexors on a KinCom III dynamometer.  Subjects were given 5 s 

of rest between contractions and 20 s of rest between sets.  For elbow flexor testing, the 

concentric action was done at 30⁰/s over a 75⁰ range beginning at maximal extension (Hansen, 

1967).  For knee extensor testing, the concentric action was done at 30⁰/s over a 45⁰ range 

beginning at 90⁰ flexion.  The isotonic load was set at 55% of peak force for each day.  The 

subject was required to complete each contraction, and if unable to complete a contraction the 

researchers provided the minimum amount of assistance needed to complete the contraction.   

Urine Samples   

Urine samples were collected prior to other pre-injury measurements, 2 h post injury, 24 

h post injury, and 48 h post injury.  The time frame of the urine samples was chosen based on 

previous research showing that IL-1β has a delayed appearance in the urine of 3 h after the start 

of exercise (Sprenger et al., 1992).  Immediately after collection, a 5 ml sample of the urine was 

centrifuged at 1,000g for 10 min at 4⁰ C to remove leukocytes and debris (de Reijke, de Boer, 

Kurth, & Schamhart, 1996; Thomas, Sexton, Benson, Sutphen, & Koomen, 2010).  The 

centrifuged urine samples were then apportioned into 1.5 ml aliquots for freezing and storage at  

-80 ⁰ C for later analysis.   
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Blood Samples   

Blood samples were collected via venipuncture prior to other pre-injury measurements, 

immediately post injury, 24 h post injury, and 48 h post injury.  Blood samples were drawn into 

4 mL Vacutainers (BD: Franklin Lakes, NJ) treated with 7.2 mg of EDTA.    The blood was 

centrifuged under refrigeration at 2,000 x g for 15 minutes.  The plasma sample was then 

transferred to a clean tube and apportioned into 1.5 mL aliquots for storage at -80⁰ C for future 

analysis (Smith et al., 2007). 

 

Determination of Plasma IL-1β content   

IL-1β levels were measured in plasma samples using an ultra-sensitive ELISA kit (Life 

Technologies Corp.:  Frederick, MD) with a range of 0.3 to 20 pg/mL and a sensitivity of < 1 

pg/mL.   The following procedure was used for quantifying IL-1β content:  50 μL of incubation 

buffer was added to each well, except for chromogen blank wells.  Researchers added 100 μL of 

samples or controls to their appropriate wells.  The plate was then covered and allowed to 

incubate at room temperature for 3 h.  The liquid in the wells was then removed and each well 

was washed 4 times.  Then 100 μL of biotin conjugate was added to all wells except the 

chromogen blanks.   The plate was then covered and allowed to incubate at room temperature for 

1 h.  The liquid in the wells was then removed and each well was washed 4 times.  Then 100 μL 

of Streptavidin-HRP working solution was added to each well except the chromogen blanks.  

The plate was then covered and allowed to incubate for 30 min at room temperature.  The liquid 

in the wells was then thoroughly removed and washed 4 times.  Researchers added 100 μL of 
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stabilized chromogen to each well, which began to turn blue in color.  The plate was then 

incubated for 30 min.  Then 100 μL of stop solution was added to each well and the color 

changed from blue to yellow.  The absorbance was read using a 450 nm filter after blanking the 

plate reader against the chromogen blanks.  The absorbance of the standards was used to create a 

standard curve, which was used to determine the IL-1β concentrations for the unknown samples.  

Determination of Plasma TNF-α content   

TNF-α levels were measured in plasma samples using an ultra-sensitive ELISA kit (Life 

Technologies Corp.:  Frederick, MD) with a range of 0.5 to 32 pg/mL.   The following procedure 

was used for quantifying TNF-α content:  Either 100 μL controls or 50 μL of standard diluent 

buffer and 50 μL of sample was added to the appropriate wells, except for chromogen blank 

wells.  Then 50 μL of biotin conjugate was added to each well except the chromogen blanks.  

The plate was then covered and allowed to incubate at room temperature for 3 h.  The liquid in 

the wells was then removed and each well was washed 4 times.  Researchers added 100 μL of 

Streptavidin-HRP working solution to each well except the chromogen blanks.  The plate was 

then covered and allowed to incubate for 30 min at room temperature.  The liquid in the wells 

was then removed and the plate was washed 4 times.  Then 100 μL of stabilized chromogen was 

added to each well, which began to turn blue in color.  The plate was then allowed to incubate 

for 30 min.  Researchers added 100 μL of stop solution to each well and the color changed from 

blue to yellow.  The absorbance was read using a 450 nm filter after blanking the plate reader 

against the chromogen blanks.  The absorbance of the standards was used to create a standard 

curve, which was used to determine the TNF-α concentrations for the unknown samples.  
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Measuring Subjective Pain 

Subjects were given two visual analog scales labeled “Thigh Pain” and “Upper Arm 

Pain”.  Then subjects were asked to rate their current level of pain at rest using a tick mark to 

indicate on a scale of 0-100 mm.  A score of 0 mm was labeled as “No Soreness” and a score of 

100 mm was labeled as “Very, Very Sore”.  The tick marks were then measured and recorded for 

future analysis (Cleather & Guthrie, 2007). 

Upper Arm and Thigh Circumference 

Sites for standard upper arm and thigh circumference measurements were located on the 

subjects based the ACSM guidelines (Thompson et al., 2009).   A standard Gulick Measurement 

tape was used for all measurements.   Circumferences were then recorded in cm.  Three 

measurements were taken at each site during every trial (pre-injury, immediate post-injury, 24 h 

post-injury, and 48 h post-injury).  The average of these three measurements was used for data 

analysis. 

Statistics   

All statistical analysis was performed using SPSS version 24 (IBM:  Armonk, NY) with a 

significance level of 0.05.  Values in the results are reported as means ± SEM.  A set of two-way 

repeated measures ANOVAs were conducted for both the resting conditions on the following 

variables:  knee extensors strength, knee extensors voluntary activation, knee extensors 

electrically evoked force, elbow flexors strength, elbow flexors voluntary activation, elbow 

flexors electrically evoked force, plasma IL-1β, plasma TNF-α, thigh pain, thigh circumference, 
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upper arm pain, and upper arm circumference with 4 within factor measurements (pre, post, 24 h 

post and 48 h post) and a between factor (injury vs control).  separate two-way repeated 

measures ANOVAs were conducted for both the resting and fatigued conditions on the following 

variables:  knee extensors strength, knee extensors voluntary activation, knee extensors 

electrically evoked force, elbow flexors strength, elbow flexors voluntary activation, elbow 

flexors electrically evoked force with 4 within factor measurements (pre, post, 24 h post and 48 h 

post) and a between factor (rested vs fatigued).  If the assumptions of sphericity were violated, 

then a Huynh-Feldt correction was applied.  When significant interactions were detected a simple 

main effects test with a Benjamini & Hochberg false discovery rate correction was used to 

determine where the differences lay.   
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RESULTS 

Subjects 

A total of 12 subjects completed the research protocol.  One additional subject completed the 

entire procedure but was later excluded from the results due to an inability to complete the 

downhill running protocol.   

Overall Findings 

 Knee extensor strength was significantly reduced by 53.5 ± 9.9%, 46.0 ± 7.0% and 44.6 ± 8.1% 

immediately, 24h and 48h after 1 h of downhill running, respectively (P ≤ 0.006).   Knee extensor 

electrically stimulated strength was significantly reduced 49.7 ± 7.7%, 30.8 ± 6.3%, and 27.4 ± 6.8%, 

immediately, 24h and 48 h after the downhill run, respectively.  There was a 23.4 ± 7.9%, 25.8 ± 8.8% 

and 24.5 ± 7.9% change in activation of the knee extensors immediately, 24h and 48 h after the downhill 

run, but these changes were not significant (P ≥ 0.075).  Elbow flexor strength was significantly reduced 

by 13.2 ± 3.9%, 17.3 ± 4.0%, and 9.0 ± 3.3% immediately, 24h and 48h after the downhill run (P = 

0.019).   Elbow flexor activation was reduced by 16.2 ± 5.1%, 20.9 ± 6.7%, and 12.9 ± 4.5% in the injury 

group, but these changes were only different when compared to the control group (P = 0.045).  

Electrically stimulated force was not impaired in the elbow flexors following the downhill run (P = 

0.631).  Plasma IL-1β (P = 0.235) and TNF-α (P = 0.456) were not different in the injury group when 

compared with the control group. 

MVC Strength of the Knee Extensor Muscles 

Knee extensor strength prior to the fatiguing protocol was not different at rest between the control 

and injury groups (P = 0.533).  In the control group, there was no significant change in knee extensor 
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strength from baseline at any timepoint (P > 0.394).  After 1 h of downhill running, the injury group 

experienced an immediate decline in strength relative to the preinjury values (P < 0.001).  Strength in the 

injury group was significantly reduced below baseline for 48 h (P < 0.001).  Decline in force for 48 h 

after the downhill run indicates muscle injury.  The changes in knee extensor strength are depicted below 

in Figure 2.3.  
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Figure 2.3.  Knee extensor force in relation to an injury inducing downhill run.  Subjects (n = 12) 

performed MVCs at the indicated time points in relation to a 1 h lower body injury inducing 

downhill run.  Strength was normalized to pre-injury values.  Knee extensor force was found to 

be significantly reduced at all time points after injury (P < 0.05) when compared to control.  

Significant effects are denoted with (*).   
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In the control group, knee extensor strength was compared in the rested and fatigued 

states.  Overall, there was a 17.3 ± 9.8% change in strength following the fatigue protocol, but 

this change was not found to be significant (P = 0.108).   No significant changes in strength 

occurred over time (P = 0.762).  The changes in control group knee extensor strength are 

depicted in Figure 2.4.  
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Figure 2.4.  Knee extensor strength normalized to non-fatigued pre-injury values of the control 

group before and after a fatiguing protocol in relation to an injury inducing downhill run.  

Subjects (n = 6) performed MVCs immediately after a fatiguing protocol at the indicated time 

points in relation to a 1 h lower body injury inducing downhill run.  Knee extensor force was not 

found to be significantly different based on fatigue within the control group (P = 0.108).  Values 

are reported as mean ± SEM. 
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In the injury group, knee extensor strength was compared in the rested and fatigued 

states.  Overall, there was a significant 45.3 ± 5.7% change in strength following the injury 

protocol, which persisted for up to 48 h (P < 0.001). Compared with the rested values, there was 

an overall change of 9.7 ± 4.9% following the fatigue protocol, but this change was not 

significant (P = 0.075).  The changes in control group knee extensor strength are depicted in 

Figure 2.5.  
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Figure 2.5.  Knee extensor strength of the injury group before and after a fatiguing protocol in 

relation to an injury inducing downhill run.  Subjects (n = 6) performed MVCs immediately after 

a fatiguing protocol at the indicated time points in relation to a 1 h lower body injury inducing 

downhill run.  Strength was normalized to non-fatigued pre-injury values.  Knee extensor force 

was found to be significantly lower than pre-injury values at all time points post-injury (P < 

0.025).  Significant effects are denoted with (*).  Values are reported as mean ± SEM. 
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Twitch Force of the Knee Extensor Muscles 

 Knee extensor electrically stimulated strength was not different between the control and 

injury groups prior to the downhill run (P = 0.549).  There was no change across any time point 

in electrically stimulated force over time relative to the pre-injury values for the control group (P 

≥ 0.293).   The electrically evoked strength relative to the pre-injury values was significantly 

reduced immediately (P = 0.010) and 24 h post-injury (P = 0.022), but the strength loss was no 

longer significantly reduced by 48 h post-injury (P = 0.091). The changes in knee extensor 

electrically stimulated force are depicted in Figure 2.6.   
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Figure 2.6.  Knee extensor electrically stimulated force at rest in relation to an injury inducing 

downhill run normalized to pre-injury twitch force at rest.  Knee extensor electrically stimulated 

force was measured in subjects (n = 11) immediately prior to a fatiguing protocol was performed 

using the interpolated twitch technique at the indicated time points in relation to a 1 h lower body 

injury inducing downhill run.  Strength was normalized to pre-injury values.  Knee extensor 

electrically stimulated force at rest was found to be significantly reduced at 24 h post-injury (P = 

0.010) and 48 h post-injury (P = 0.022) compared to control.  Significant effects are denoted with 

(*).  Values are reported as mean ± SEM. 
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In the control group, knee extensor electrically simulated strength was compared between 

the rested and fatigued states.  Overall, there was a 1.3 ± 7.7% change in electrically stimulated 

strength following the fatigue protocol, but this change was not found to be significant (P = 

0.872).   Significant changes in electrically stimulated strength occurred over time (P = 0.004), 

but post-hoc testing did not detect differences at any time point.  There was no significant 

interaction (P = 0.841).  The changes in knee extensor electrically stimulated force following a 

fatiguing protocol are depicted below in Figure 2.7.    
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Figure 2.7.  Knee extensor electrically stimulated strength between the rested and fatigued state 

in the control group in relation to an injury inducing downhill run normalized to pre-injury 

twitch force at rest.  Subjects (n = 6) performed the interpolated twitch technique at the indicated 

time points in relation to a 1 h lower body injury inducing downhill run before and after a 

fatiguing protocol.  Strength was normalized to non-fatigued pre-injury values.  Knee extensor 

electrically stimulated strength was found to be significantly affected by time (P = 0.004), but 

post-hoc testing failed to find any differences (P > 0.125).  Values are reported as mean ± SEM. 
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In the injury group, knee extensor electrically simulated strength was compared between 

the rested and fatigued states.  Values were normalized to the rested pre-injury measurements.  

Overall, there was a 2.5 ± 6.7% change in electrically stimulated strength following the fatigue 

protocol, but this change was not found to be significant (P = 0.721).   Significant changes in 

electrically stimulated strength occurred over time (P = 0.004), but with no significant interaction 

(P = 0.841).  Overall, the twitch strength declined significantly immediately post-injury 43.2 ± 

5.6%.  Twitch strength partially recovered at 24 h to a 26.2 ± 6.8% and remained only partially 

recovered at 48 h.  The changes in knee extensor electrically stimulated force following a 

fatiguing protocol are depicted below in Figure 2.8.    
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Figure 2.8.  Knee extensor electrically stimulated force between the rested and fatigued state in 

the injury group in relation to an injury inducing downhill run normalized to pre-injury twitch 

force at rest.  Subjects (n = 5) performed the interpolated twitch technique at the indicated time 

points in relation to a 1 h lower body injury inducing downhill run before and after a fatiguing 

protocol.  Strength was normalized to non-fatigued pre-injury values.  Knee extensor electrically 

stimulated force was found to be significantly reduced overall immediately at all time points 

after the injury (P < 0.030).  Significant between group effects are denoted with (*).  Values are 

reported as mean ± SEM. 
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Voluntary Activation of the Knee Extensor Muscles 

 Knee extensor voluntary activation measured prior to a fatiguing protocol was found to 

have a significant interaction (P = 0.047) but post-hoc testing failed to detect any significant 

differences.   One subject was excluded from this analysis due to an inability to tolerate current 

stimulations above 200 mA.  The knee extensor activation prior to a fatiguing protocol over time 

is depicted below in Figure 2.9.     
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Figure 2.9.  Knee extensor activation in relation to an injury inducing downhill run.  Subjects (n 

= 11) performed the interpolated twitch technique to measure voluntary activation at the 

indicated time points in relation to a 1 h lower body injury inducing downhill run.  Knee extensor 

activation was found to be significantly reduced overall based on time (P = 0.049), but post-hoc 

analysis failed to detect any differences.  Values are reported as mean ± SEM. 
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In the control group, knee extensor voluntary activation was compared between the rested 

and fatigued states.  Overall, there was a significant 13.7 ± 4.9% change in electrically 

stimulated strength following the fatigue protocol (P = 0.019).   No significant changes occurred 

in activation over time (P = 0.986).  The changes in knee extensor electrically stimulated force 

following a fatiguing protocol are depicted below in Figure 2.10.    
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Figure 2.10.  Knee extensor activation between the rested and fatigued state in the control group 

relation to an injury inducing downhill run.  Subjects (n = 6) performed the interpolated twitch 

technique to measure voluntary activation at the indicated time points in relation to a 1 h lower 

body injury inducing downhill run.  Knee extensor activation was found to be significantly 

reduced overall based between the rested and fatigued states (P = 0.019), but no changes 

occurred over time (P = 0.986).  Values are reported as mean ± SEM. 
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Knee extensor voluntary activation was compared between the rested and fatigued states 

in the injury group.  Overall, there was a 13.2 ± 11.5% change in activation following the fatigue 

protocol, but this was not found to be significant (P = 0.285).  Significant changes occurred in 

activation over time (P = 0.003), but there was no significant interaction (P = 0.648).  The 

changes in knee extensor electrically stimulated force following a fatiguing protocol are depicted 

below in Figure 2.10.    
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Figure 2.11.  Knee extensor activation between the rested and fatigued state in the injury group 

in relation to an injury inducing downhill run.  Subjects (n = 5) performed the interpolated twitch 

technique to measure voluntary activation at the indicated time points in relation to a 1 h lower 

body injury inducing downhill run.   Knee extensor activation was found to be significantly 

reduced immediately post-injury (P = 0.023).  Significant effects are denoted with (*).  Values 

are reported as mean ± SEM. 



 

63 

 

MVC Strength of the Elbow Flexor Muscles 

Prior to the downhill run there was no significant difference in resting elbow flexor 

strength between the injury and control groups (P = 0.715).  There were no significant changes 

from pre-injury strength in the control group, but the injury group was significantly reduced 

immediately, and 24 h post-injury.  For a summary of results, see Figure 2.12.  

 
Figure 2.12.  Elbow flexor force normalized to pre-injury values in relation to an injury inducing 

downhill run.  Subjects (n = 12) performed MVCs at the indicated time points in relation to a 1 h 

lower body injury inducing downhill run.  Strength was normalized to pre-injury values.  Elbow 

flexor force was found to be significantly reduced in the injury group immediately, and 24 h 

post-injury.  Significant between group effects are denoted with (*).  Values are reported as mean 

± SEM. 
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In the control group, elbow flexor MVC strength was compared between the rested and 

fatigued states.  Overall, there was a significant 27.4 ± 4.1% reduction in strength following the 

fatigue protocol (P < 0.001).   No significant changes occurred in strength over time (P = 0.451).  

The changes in elbow flexor MVC strength are depicted below in Figure 2.13.    
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Figure 2.13.  Elbow flexor force normalized to non-fatigued pre-injury values between rested 

and fatigued states in the control group in relation to an injury inducing downhill run.  Subjects 

(n = 6) performed MVCs immediately after a fatiguing protocol at the indicated time points in 

relation to a 1 h lower body injury inducing downhill run.  Strength was normalized to non-

fatigued pre-injury values.  Elbow flexor force was significantly lower in the fatigued state 

compared to the rested state (P < 0.001), but no significant changes occurred over time (P = 

0.451).  Values are reported as mean ± SEM. 
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Elbow flexor muscle MVC strength was compared between the rested and fatigued states 

in the injury group.  Overall, there was a significant 23.7 ± 4.2% reduction in strength following 

the fatigue protocol (P < 0.001).   No significant changes occurred in strength over time (P = 

0.154).  The changes in elbow flexor MVC strength are depicted below in Figure 2.14.    
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Figure 2.14.  Elbow flexor force normalized to non-fatigued pre-injury values between rested 

and fatigued states in the injury group in relation to an injury inducing downhill run.  Subjects (n 

=12) performed MVCs immediately after a fatiguing protocol at the indicated time points in 

relation to a 1 h lower body injury inducing downhill run.  Strength was normalized to non-

fatigued pre-injury values.  Elbow flexor force was significantly lower after the fatiguing 

protocol (P < 0.001), but no significant changes occurred over time (P = 0.154).  Values are 

reported as mean ± SEM. 
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Elbow Flexor Electrically Stimulated Force 

Prior to the downhill run, there was no difference in electrically stimulated force 

measured prior to a fatigue protocol between the control and injury groups (P = 0.820).  No 

significant changes occurred in elbow flexor electrically stimulated force relative to pre-injury 

values over time (P = 0.539).   No changes were observed in electrically stimulated force 

between the injury and control groups (P = 0.187). The elbow flexor electrically stimulated force 

at rest data is depicted below in Figure 2.15. 
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Figure 2.15.  Elbow flexor electrically stimulated force at rest in relation to an injury inducing 

downhill run normalized to pre-injury twitch force at rest.  Subjects (n = 12) performed the 

interpolated twitch technique at the indicated time points in relation to a 1 h lower body injury 

inducing downhill run to measure elbow flexor electrically stimulated force immediately prior to 

a fatiguing protocol.  Elbow flexor electrically stimulated force was not found to be significantly 

different at any time point (P ≥ 0.268).  Values are reported as mean ± SEM. 
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In the control group, elbow flexor muscle electrically simulated strength was compared 

between the rested and fatigued states.  Overall, there was a 15.4 ± 9.4% change in electrically 

stimulated strength following the fatigue protocol, but this change was not found to be 

significant (P = 0.131).   No significant changes in electrically stimulated strength occurred over 

time (P = 0.095), and there was not a significant interaction (P = 0.771).  The changes in elbow 

flexor muscle electrically stimulated strength in the control group are depicted below in Figure 

2.16.    

NormEFTwitchControlFvsNF

Pre-Injury Post-Injury 24 h Post-Injury 48 h Post-Injury

F
o

rc
e

 (
%

)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Rested

Fatigued

 
Figure 2.16.  Elbow flexor electrically stimulated force between the rested and fatigued states in 

the control group in relation to an injury inducing downhill run normalized to pre-injury twitch 

force at rest.  Subjects (n = 6) performed the interpolated twitch technique at the indicated time 

points in relation to a 1 h lower body injury inducing downhill run to measure elbow flexor 

electrically stimulated force immediately prior to a fatiguing protocol.  Elbow flexor electrically 

stimulated force was not found to be significantly different at any time point (P ≥ 0.095).  Values 

are reported as mean ± SEM. 
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Elbow flexor muscle electrically simulated strength was compared between the rested 

and fatigued states in the injury group.  Overall, there was a significant 24.4 ± 7.2% change in 

electrically stimulated strength following the fatigue protocol (P = 0.007).   No significant 

changes in electrically stimulated strength occurred over time (P = 0.798), and there was not a 

significant interaction (P = 0.704).  The changes in elbow flexor muscle electrically stimulated 

strength in the injury group are depicted below in Figure 2.17.    
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Figure 2.17.  Elbow flexor electrically stimulated force between the rested and fatigued states in 

the injury group in relation to an injury inducing downhill run normalized to pre-injury twitch 

force at rest.  Subjects (n = 6) performed the interpolated twitch technique at the indicated time 

points in relation to a 1 h lower body injury inducing downhill run to measure elbow flexor 

electrically stimulated force immediately prior to a fatiguing protocol.  Elbow flexor electrically 

stimulated strength was overall reduced in the fatigue measurements (P = 0.007).  Values are 

reported as mean ± SEM. 
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Elbow Flexor Activation 

Voluntary activation in the elbow flexors prior to a fatiguing protocol was not different 

between the control and injury groups prior to the downhill run (P = 0.682).  Activation did not 

significantly change over time in the control group.  Immediately post-injury there was a 16.2 ± 

5.1% change in voluntary activation in the elbow flexors, but this was not found to be 

significant.  By 24 h the elbow activation had declined to 20.9 ± 6.7%, and remained 

significantly reduced at 48 h post-injury when compared to controls.  The changes in voluntary 

activation over time by group are depicted below in Figure 2.18.   
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Figure 2.18.  Elbow flexor activation in relation to an injury inducing downhill run.  Elbow 

flexor voluntary activation was measured using the interpolated twitch technique at the indicated 

time points in relation to a 1 h lower body injury inducing downhill run.  Elbow flexor activation 

was found to be significantly reduced 24 h (P = 0.030) and 48 h (P = 0.039) post-injury when 

compared to control.  Significant effects are denoted with (*).  Values are reported as mean ± 

SEM. 
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Voluntary activation of the elbow flexor muscles was compared between the rested and 

fatigued states in the control group.  Overall, there was a significant 10.8 ± 3.3% reduction 

between rested and fatigued states (P = 0.009).  However, there was not found to be significant 

time (P = 0.551) or interaction effects (P = 0.143).  Voluntary activation of the elbow flexors in a 

fatigued state is depicted below in Figure 2.19.   
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Figure 2.19.  Elbow flexor activation between rested and fatigued states in the control group in 

relation to an injury inducing downhill run.  Subjects (n = 12) performed the interpolated twitch 

technique to measure elbow flexor activation before and after a fatiguing protocol at the 

indicated time points in relation to a 1 h lower body injury inducing downhill run.  Elbow flexor 

activation was found to be significantly reduced in the fatigued state compared to the rested state 

(P = 0.009).  Values are reported as mean ± SEM. 
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Voluntary activation of the elbow flexor muscles was compared between the rested and 

fatigued states in the injury group.  Overall, there was a significant 13.6 ± 9.5% change in 

activation between rested and fatigued states, but this was not found to be significant (P = 0.184).  

There was not found to be significant time (P = 0.291) or interaction effects (P = 0.092).  

Voluntary activation of the elbow flexors in a fatigued state is depicted below in Figure 2.20.   
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Figure 2.20.  Elbow flexor activation between rested and fatigued states in the injury group in 

relation to an injury inducing downhill run.  Subjects (n = 12) performed the interpolated twitch 

technique to measure elbow flexor activation before and after a fatiguing protocol at the 

indicated time points in relation to a 1 h lower body injury inducing downhill run.  Elbow flexor 

activation was not found to be significantly reduced in the fatigued state compared to the rested 

state (P = 0.184).  Values are reported as mean ± SEM. 
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Inflammatory Cytokines 

Plasma IL-1β concentrations remained unchanged for both groups at all time point 

observed (P > 0.235).  For the majority of subjects tested, concentrations remained below the 

threshold of detection (.3 pg/ml).  The reliability of the assay was examined using a bivariate 

correlation between the duplicate measures (R = 0.999, P < 0.001).  Only 9 subjects were 

included in this analysis due to availability of useable samples.  Urine samples were not analyzed 

due to a lack of funding.  Plasma IL-1β concentrations over time are depicted below in Figure 

2.21.   
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Figure 2.21.  Plasma IL-1β concentrations in relation to an injury inducing downhill run.  

Subjects (n = 9) had blood drawn and measured using an ultra-sensitive ELISA kit at indicated 

time points in relation to a 1 h lower body injury inducing downhill run.  IL-1β was not found to 

be significantly different between groups at any time points measured (P > 0.235).  Values are 

reported as mean ± SEM. 
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There was no significant difference in plasma TNF-α concentrations between the control 

and injury groups at any time point tested (P = 0.456).  Compared with the pre-injury levels, 

TNF-α concentrations were found to be significantly reduced in both groups immediately (P = 

0.002) and 24 h post-injury (P = 0.048).  Concentrations returned to baseline by 48 h (P = 0.702).  

The reliability of the assay was examined using a bivariate correlation between the duplicate 

measures (R = 0.991, P < 0.001).  Only 5 subjects were included in this analysis due to 

availability of useable samples.  Urine samples were not analyzed due to a lack of funding.  

TNF-α concentrations over time are depicted below in Figure 2.22.     
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Figure 2.22.  Plasma TNF-α concentrations in relation to an injury inducing downhill run.  

Subjects (n = 5) had blood drawn and measured using an ultra-sensitive ELISA kit at indicated 

time points in relation to a 1 h lower body injury inducing downhill run.  TNF-α was found to be 

significantly lower overall immediately (P = 0.002) and 24 h post-injury (P = 0.046) compared to 

the pre-injury concentrations.  Significant overall effects are denoted with (†).  Values are 

reported as mean ± SEM. 
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Limb Pain 

Thigh pain was not found to be different between the groups prior to the downhill run (P = 

0.217).  After the downhill run, thigh pain was significantly elevated in the injury group at all time points 

measured (P ≤ 0.001).  Only 10 subjects were included in this analysis due to missing data.  The thigh 

pain between groups over time is depicted below in Figure 2.23.   
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Figure 2.23.  Thigh pain in relation to an injury inducing downhill run.  Subjects (n = 10) 

estimated their thigh pain using a visual analog scale at indicated time points in relation to a 1 h 

lower body injury inducing downhill run.  Thigh pain was found to be significantly elevated in 

the injury group at all time point (P < 0.001) when compared to control.  Significant between 

group effects are denoted with (*).  Values are reported as mean ± SEM. 
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Arm pain was not significantly different between the injury and control groups at any time point 

(P ≥ 0.092).  There was a significant time effect on Pain at 24 h (P = 0.049), but not at other time points 

(P ≥ 0.077).  Only 10 subjects were included in this analysis due to missing data.  The upper arm pain 

between groups over time is depicted below in Figure 2.24.   

 
Figure 2.24.  Upper arm pain in relation to an injury inducing downhill run.  Subjects (n = 10) 

rated their upper arm pain using a visual analog scale at indicated time points in relation to a 1 h 

lower body injury inducing downhill run.  Upper arm pain was found to be significantly elevated 

overall at 24 h post-injury (P = 0.049), with no differences between injury and control groups (P 

> 0.05).  Significant overall effects are denoted with (†).  Values are reported as mean ± SEM. 
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Limb Circumference 

Thigh circumference was significantly larger in the injury group at all time points compared with the 

control group (P = 0.041).  However, there were no changes in thigh circumference over time (P = 0.407).  

The thigh circumference data is depicted in Figure 2.25.   Thigh Circumference
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Figure 2.25.  Thigh circumference in relation to an injury inducing downhill run.  Subject (n = 

10) thigh circumference was measured at indicated time points in relation to a 1 h lower body 

injury inducing downhill run.  Thigh circumference was not found to be significantly different at 

any time point (P > 0.05). 
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Arm circumference was not significantly different between the injury and control groups (P = 

0.590), and did not change over time (P = 0.331).  The upper arm circumference data is depicted in Figure 

2.26.   Arm Circumference
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Figure 2.26.  Upper arm circumference in relation to an injury inducing downhill run.  Subject (n 

= 10) upper arm circumference was measured at indicated time points in relation to a 1 h lower 

body injury inducing downhill run.  Upper arm circumference was not found to be significantly 

different at any time point (P > 0.05). 
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DISCUSSION 

 Running downhill for one hour resulted in injury to the knee extensor muscles of recreationally 

active individuals, impairing function for up to 48 h.  This leg muscle injury was associated with a 

reduction in elbow flexor strength immediately, and 24 h post injury (P = 0.010).  These impairments 

were not due to intrinsic changes of the elbow flexor muscles since no changes occurred in electrically 

stimulated force (P = 0.539), but can be attributed to changes in elbow flexor activation beginning 24h (P 

= 0.030) after the injury, with significant deficits in activation lasting up to 48 h (P = 0.039).  No changes 

were found in plasma IL-1β (P = 0.235) or plasma TNF-α (P = 0.456) when compared with the control 

group, which suggests that the impairment of function was not mediated by an inflammatory response.   

Knee Extensor Muscle Strength 

In the downhill running group, strength of the knee extensors was reduced by 46.49 ± 

6.55% immediately post-injury, and failed to significantly recover at 24 h or 48 h (p < 0.05).  

This reduction is larger than what other studies have shown in quadriceps strength following a 

bout of downhill running (Martin, Millet, Martin, Deley, & Lattier, 2004; Rowlands, Eston, & 

Tilzey, 2001) which showed a 14 – 17% and  21 – 27% decline in force, respectively.   The 

larger force loss observed in this study is likely indicative of the longer duration of downhill 

running, 1 h in the current study vs 15 min in Martin et al. 2004, and 30 min in Rowlands et al. 

2001.  Some of the force loss observed in the initial post injury measurement may be due to 

fatigue from the metabolic disruption due to the downhill run.  The persistent loss of force 

observed in the injury group at 24 h and 48 h is confirmation that the subjects were significantly 

injured by the downhill run.  In support of this, previous studies have shown that downhill 

running injures the knee extensor muscles (Byrnes et al., 1985; R. Eston, Lemmey, McHugh, 
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Byrne, & Walsh, 2000; R. G. Eston, Mickleborough, & Baltzopoulos, 1995; Malm et al., 2004). 

The absence of significant strength loss in the knee extensors for the control group (P > 0.05) 

provides evidence that the strength assessment procedures did not significantly injure the KE 

muscles.   

Measurements of knee extensor muscle strength in the control group following a fatigue 

protocol were 17.3 ± 9.8% lower than rested measures, but this change was not significant (P = 

0.108).  In the injury group, the fatigue protocol only led to a loss of 9.7 ± 4.9% which was also 

not significant (P = 0.075).  It was originally hypothesized that a bout of fatiguing contractions 

would lead to a further reduction in strength, however, the 46.49 ± 6.55% reduction in strength 

following the downhill run may have made it impractical to produce enough force with the knee 

extensor muscles to achieve fatigue.  Even when the resistance of the contraction was quite low 

(55% of 53.5% of original strength) the subjects required considerable help to perform the 50 

contractions.   

Knee Extensor Twitch Strength 

The knee extensors electrically stimulated strength measured prior to the fatiguing 

protocol in the injury group was reduced by 49.66 ± 6.79% immediately post-injury, and 30.81 ± 

14.24% 24 h post-injury.  By 48 h post-injury the electrically stimulated force had recovered to 

the point that there was no longer a significant difference between the control and injury group.  

This would suggest that changes within the muscle account for most of the force loss 

immediately after injury, but other factors may become more important throughout recovery.     
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Twitch strength in the knee extensor muscles following the fatigue protocol was not 

significantly affected.  In the control group there was only an overall 1.3 ± 7.7% reduction, and 

in the injury group there was only an overall reduction of twitch strength of 2.5 ± 6.7% 

compared to rested measures.  It appears that the fatigue protocol was not of sufficient intensity 

to induce peripheral muscle fatigue within the knee extensor muscles. 

Voluntary Activation of the Knee Extensor Muscles 

This study found a significant interaction effect on knee extensor voluntary activation 

prior to the fatiguing protocol (P = 0.047), but post-hoc analysis did not detect any significant 

differences, suggesting that this study was underpowered for the voluntary activation measures 

in the knee extensor muscles.  This might make sense because subject number projection was 

based on the effect size for the elbow flexor muscle MVC.  Knee extensor MVC and voluntary 

activation have been found to be reduced after a 30-km running race (Millet, Martin, Lattier, & 

Ballay, 2003), and a 24 h treadmill run (Gimenez, Kerhervé, Messonnier, Féasson, & Millet, 

2013).  This failure to detect differences reflects the low power, which may be due to the large 

amount of variation in knee extensor voluntary activation in this study.  Two of the injury group 

subjects experienced < 10% decline in activation at 24 and 48 h post injury, while the remaining 

subjects had a mean decline in voluntary activation of 44% and 48% respectively over the same 

period.  Despite this weakness, when taken in context with the electrically evoked force of knee 

extensors, it appears most of the force loss after injury may be attributed to changes in the 

skeletal muscle.   
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Measurements after the fatiguing protocol showed a significant 13.7 ± 4.9% change in 

voluntary activation for the control group, without any significant changes in voluntary 

activation over time (P = 0.986).  In the injury group, there was an overall 13.2 ± 11.5% change 

in measurements after the fatiguing protocol, but these changes were not significant (P = 0.285), 

however, activation did change over time in the injury group (P = 0.003).  While the fatigue 

protocol was able to reduce voluntary activation in the control group, it appears the overall 

decline in activation from the downhill run prevented the fatigue protocol from lowering 

activation further in the injury group.  The low amount of work performed following the injury 

protocol, and the fact that the control group did not suffer this reduction make interpreting these 

results difficult. 

Strength of the Elbow Flexor Muscles 

Elbow flexor MVC strength in the injury group was found to be significantly reduced in 

the injury group after 1 h of downhill running, immediately post-injury, and 24 h post-injury, but 

not in the control group.  The magnitude of the decline was 13.2 ± 3.9% immediately post-injury, 

and 17.3 ± 4.0% 24 h post-injury.  At 48 h post injury, there was a 9.0 ± 3.3% change, but this 

was no longer significant.  These changes suggest that the downhill run led to a decline in elbow 

flexor MVC strength.   

The fatigue protocol significantly reduced strength by 27.4 ± 4.1% in the control group 

and 23.7 ± 4.2% in the injury group.  In both cases, there were no significant changes over time.  

While the amount of strength lost due to the protocol seems relatively constant across time points 

in both the control and injury groups, this result is difficult to interpret because subjects in the 
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injury group required considerable help to complete the 50 contractions.  If this study were 

performed again, it would be interesting to record the subjects’ rating of perceived exertion 

during the fatigue protocol to examine whether the perception of effort changes as a result of the 

downhill run. 

Currently, there do not appear to be any published studies demonstrating that exercise-

induced injury to the leg muscles alters MVC strength in the elbow flexors.  Some evidence 

suggests that fatiguing the legs produces a small (6.8%) reduction in strength of the elbow 

flexors due to inhibitory signals from the group III/IV afferent nerves (Sidhu et al., 2014).  This 

is in contrast to findings from another study that showed no effect of single leg high intensity 

cycling on the uninvolved limb (Elmer, Amann, McDaniel, Martin, & Martin, 2013).  The mean 

MVC strength loss in the elbow flexors at 24 h in this study was 2.5 times higher than that 

previously observed in leg fatigue protocols (Sidhu et al., 2014).      

Twitch Force of the Elbow Flexor Muscles 

 No significant changes occurred in twitch force of the elbow flexors when comparing the 

control and injury groups over time (P > 0.187).  This suggests that the elbow flexor muscles 

were not significantly injured by the downhill run.  The fatigue protocol led to an overall 

reduction of 15.4 ± 9.4% in the control group, which was not significant.  The injury group 

experienced a significant 24.4 ± 7.2% reduction in twitch force of the elbow flexors. 
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Elbow Flexor Voluntary Activation 

Elbow flexor activation was found to be significantly reduced in the injury group at 24 h 

(P = 0.030) and 48 h (P = 0.039) compared with controls.  The magnitude of the reductions at 24 

h (22.96 ± 9.096) are larger than the force reductions observed in the elbow flexors (17.7 ± 

5.6%).  Since there was no change in the electrically stimulated strength in the elbow flexors (P 

> 0.05) at any time point, all the force loss observed can be attributed to changes in voluntary 

activation.  This suggests that the central nervous system’s ability to activate peripheral muscle 

was reduced, but due to limitations in the study design, the exact site (brain or spinal cord) of the 

dysfunction cannot be determined.  It may be possible to examine specific sites of the CNS to 

determine where the dysfunction occurs by testing the motor cortex silent period, and h-reflex 

(Fuhr, Agostino, & Hallett, 1991; Triggs et al., 1993). 

Measurements of elbow flexor activation taken after the fatiguing protocol showed no 

differences in activation.  This suggests that immediately after a set of fatiguing contractions the 

deficit in elbow flexor strength are eliminated when peripheral fatigue is present.  However, it is 

also possible that the large variation present in the elbow flexor voluntary activation 

measurements (see Figure 2.12) after the fatiguing contraction may have obscured any effect 

present, making it difficult to identify whether peripheral muscle fatigue is altering voluntary 

activation in the elbow flexors. 

One previous study has shown that fatiguing the knee extensors led to a small decline in 

force of the elbow flexors.  An intrathecal injection of fentanyl prevented this loss of force from 

the elbow flexor muscles suggesting the effect was due to the activation of group III/IV afferent 
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nerves, but the changes observed in the current study exceed the 6.86% change observed 

previously (Sidhu et al., 2014) suggesting other mechanisms may have played a role.  Previous 

evidence suggests that the pro-inflammatory cytokines retained within the muscle are capable of 

sensitizing the group III/IV afferent nerves (Hoheisel, Unger, & Mense, 2005).  Whether pro-

inflammatory cytokines are present in the muscle after 1 h of downhill running would need to be 

examined through muscle biopsies.  One possible explanation for the greater force loss observed 

in this study is that afferent nerve activation was much greater than previously observed due to 

the sensitization by pro-inflammatory cytokines.  To test for this, future studies should examine 

force loss in the elbow flexors using a similar injury protocol to this study with the additional 

application of intrathecal fentanyl to determine the role of afferent nerves in the force loss 

observed. 

Since there are significant differences between the control group elbow flexor muscle 

activation and the injury group in activation, but not in twitch force, it follows that the force 

losses observed were likely due to a decline in activation, not in peripheral changes within the 

muscle.  This excludes the possibility that significant injury or fatigue occurred at 24 h in the 

elbow flexors due to the downhill run.  This reduction in elbow flexor strength was mostly 

recovered by 48 h post-injury based on the lack of significant differences in elbow strength 

between the control and injury groups at the 48 h time point.   

Pro-inflammatory Cytokines 

Prior to conducting this experiment, it was hypothesized that 1 h of downhill running 

would significantly elevate TNF-α and IL-1β.  This study did not find any evidence that pro-
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inflammatory cytokines were elevated after 1 h of downhill running.  IL-1β levels remained 

below the detectable limit (0.3 pg/ml) for most subjects.  TNF-α was detected, but the 

concentrations in blood declined post-injury, and remained reduced for at least 24 h post-injury 

for both groups (see Figure 2.16).  The measurements of pro-inflammatory cytokines should be 

interpreted with caution since the overall number of usable samples obtained for testing was low 

for IL-1β (n =9) and TNF-α (n = 5).   

Measuring IL-1β has been a recurring challenge, as noted throughout the literature, with 

some studies showing muscle injury increased IL-1β (Evans et al., 1986; Haahr et al., 1991; 

Ostrowski, Rohde, Asp, & Pedersen, 1998; Pournot et al., 2011; Scott et al., 2013; Sprenger et 

al., 1992), and other showing no change (Smith et al., 2007; Van de Vyver, 2013).  The 

physiological concentrations in blood are very low, femtomolar to picomolar concentration, 

making its detection difficult (Moldoveanu, Shephard, & Shek, 2001).  It is also possible that 

something in the circulation interferes with the test measurement.  The results from TNF-α 

testing are more interpretable.  While changes were observed in TNF-α over time, these changes 

occurred uniformly across groups.  This likely means that TNF-α in the blood played no role in 

the communication of the injury of the knee extensors to the central nervous system, as 

previously described.   However, the manufacturer of the ELISA kits used in this study reported 

that soluble inhibitors or anything bound to the cytokines would likely interfere with the test.  It 

is also possible that elevations of the cytokines in question occur outside the measurement time 

points of this experiment.   
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The decline in TNF-α across both groups in the post measurements (see Fig 2.16) 

suggests that the exercise associated with the fatiguing protocol and the interpolated twitch 

procedure led to a decrease in measurable plasma TNF-α.  This decrease could have occurred 

either due to increased metabolism of the cytokine, the uptake TNF-α by some other tissue, or 

increased secretion of endogenous soluble TNF inhibitors. Moderate exercise has been shown to 

increase glomerular filtration in the kidneys leading to increased urinary protein after exercise 

(Bellinghieri, Savica, & Santoro, 2008; Poortmans, 1985).  Previous research suggests that 

exercise increases the urinary excretion of lipoxin A 4, another cytokine (Gangemi et al., 2003).  

If funding becomes available, the urine samples should be used to confirm whether urinary 

excretion of TNF-α or IL-1β was elevated after exercise.   

Role of the Central Nervous System in MVC Strength Loss after Muscle Injury 

This study demonstrated that a 1 h downhill run at 75% VO2max can reduce both knee 

extensor and elbow flexor strength for up to 48 hours.  Strength loss in the knee extensors results 

primarily from the injury associated with eccentric contractions as described by previous 

reviewers (R. G. Eston et al., 1995).  Without an external load being applied to the elbow flexors, 

it is unlikely that injury occurred in these muscles.  In support of this, no changes were found in 

elbow flexor electrically stimulated strength.  Changes in strength were observed in the 

immediate post measurements for both control and injury groups that suggest immediate changes 

may be due to fatigue from the testing procedures.  The time frame associated with these 

measurements was approximately 5 h, and may have contributed to a loss in strength.  However, 

significant reductions in MVC strength were also observed at 24 h post injury, after MVC 

strength reductions were resolved in the control group.  Some mechanism(s) likely exist to 
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transmit the information of muscle injury from the injured muscle to the central nervous system 

to achieve this effect.  Based on the evidence obtained in this study, that mechanism is likely not 

circulating pro-inflammatory cytokines.   

CNS Dysfunction Possibly Due to the Perception of Pain 

 This study found that downhill running compared with control significantly elevated pain 

in the knee extensors (P < 0.05).  In the injury group, there was a change in the elbow flexors of 

47.2 ± 15.0 mm immediately post-injury, 45.6 ± 12.7 mm 24 h post-injury, and 30.5 ± 9.5 mm 

48 h post-injury but this change was not significant (p > 0.05).  It is possible that this 

measurement was under powered due to a small sample size (n = 10).  It is unclear why there 

would be any change in pain in the elbow flexor muscles since the twitch force measurements 

suggest there was no injury present in the elbow flexor muscles.  The timing of the pain is 

uncharacteristic of an exercise induce muscle injury, which typically results in significant 

widespread pain 24 h following the injury (Cheung, Hume, & Maxwell, 2003).  Instead, there is 

an immediate 87.8 ± 9.3 mm increase in pain following the downhill run that failed to increase 

further at 24 h post-injury.   

Previous studies suggest that experimentally inducing pain can have varied effects at 

submaximal intensities, with some studies showing increased muscle activity (Del Santo, Gelli, 

Spidalieri, & Rossi, 2007; Svensson, Houe, & Arendt-Nielsen, 1997), others showing decreased 

muscle activity (Del Santo et al., 2007; Farina, Arendt-Nielsen, & Graven-Nielsen, 2005) or no 

change (Farina, Arendt-Nielsen, Merletti, & Graven-Nielsen, 2004).  The differences in these 

studies may be due to the intensity at which force is measured.  Maximal force and voluntary 
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activation have been shown to be reduced by experimentally induced pain (Graven-Nielsen, 

Svensson, & Arendt-Nielsen, 1997; Graven‐Nielsen, Lund, Arendt‐Nielsen, Danneskiold‐

Samsøe, & Bliddal, 2002).  This suggests that some of the force loss may be attributed to pain, 

but pain would have to be experimental manipulated to confirm this possibility.   

CNS Dysfunction and the Inflammatory Response 

First, the inflammatory particles TNF-α and brain derived neurotrophic factor, retained 

within the injured muscles have been shown to sensitize group IV afferent nerves making them 

discharge at lower force thresholds (Hoheisel et al., 2005).  If the group IV afferents were 

affected in this manner, it would likely reduce maximal force production, since the spinal cord 

would likely reduce motor unit recruitment once they are activated (Amann, 2011; Amann & 

Dempsey, 2008; Amann et al., 2008).  Future studies should take muscle biopsies to determine 

whether pro-inflammatory cytokines from the injured muscle can cross into uninjured muscles, 

since an attenuation of inflammatory pathways has been noted in response to eccentric exercise 

in both the injured and uninjured muscles (Hubal, Chen, Thompson, & Clarkson, 2008). 

Second, the pro-inflammatory cytokines secreted by the injured muscle could cross the 

blood brain barrier as demonstrated in other studies (Carmichael et al., 2010; Gabay, Lamacchia, 

& Palmer, 2010; Lee, Liu, Dickson, Brosnan, & Berman, 1993) and alter the function of the 

substantia nigra (Brydon, Harrison, Walker, Steptoe, & Critchley, 2008; Ferrari et al., 2006; 

Herrera, Tomas-Camardiel, Venero, Cano, & Machado, 2005), which leads to a reduced ability 

to initiate/activate muscle for a physical task (Brydon et al., 2008; Godoy, Tarelli, Ferrari, 

Sarchi, & Pitossi, 2008).  The results from this study do not support a role for circulating IL-1β 
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and TNF-α following 1 h of downhill running.  The search may need to broadened in the future 

to include other circulating proteins since other circulating proteins could contribute to brain 

dysfunction as recently demonstrated in models of Parkinson’s disease (Mulak & Bonaz, 2015). 

   

Practical Application of Findings 

 The demonstration that muscle injury can affect neuromuscular function of an uninjured 

muscle group suggesting that the central nervous system senses the injury through some 

signaling mechanism and reduces force generation of skeletal muscle by lowering activation.  

Other muscle groups would need to be tested to determine whether this effect is global, or 

particular to the knee extensors and elbow flexors.  It must be understood that the injury model 

used may determine whether such a widespread effect would occur.  

The benefits to this mechanism are three-fold.  First, from an evolutionary perspective, 

activity following a muscle injury would be significantly lower reducing exposure to possible 

predators during the recovery period.  Second, the reduction in overall activity preserves energy 

that can be used to recover from the injury.  Third, having an overall reduction instead of 

targeted reduction in voluntary activation would simplify the circuitry in the brain, lowering the 

energy needed to interpret signals of peripheral energy.   

From a functional standpoint, the loss of strength in the uninjured muscle should be taken 

into account on days following muscle injury, and may affect joint stability, as previous studies 
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have shown that loss of force due to fatigue can impair joint stability (Gribble, Hertel, Denegar, 

& Buckley, 2004; Johnston 3rd, Howard, Cawley, & Losse, 1998; Yaggie & McGregor, 2002).  

This decreased joint stability may increase the probability of injury, and it may be necessary to 

develop recommendations for exercise that limit high risk activities in the uninjured muscles 

following an injury to another muscle group.  In the present study, 1 h of downhill running in 

untrained subjects was sufficient to reduce force in the uninvolved elbow flexor muscles.   

It is possible that more severe injury models, such as occur from surgical procedures 

could also produce widespread neuromuscular dysfunction, which is seen in ICU acquired 

weakness (Haas & Herridge, 2015; Na & Koh, 2011) where suppressed neuromuscular function 

can lead to life-threatening conditions.  From a methodological standpoint, researchers should be 

aware that injury may affect neuromuscular function at locations distant from the injury, and not 

assume that a given injury model only affects the targeted muscles. 

Conclusion 

In summary, 1 h of downhill running was sufficient to induce injury in the knee 

extensors, reducing strength for up to 48 h.  The injury of the leg muscles resulted in reduced 

strength and activation of the elbow flexors 24 h after the downhill run.  This demonstrates that 

muscle injury can affect strength in other muscles distant from the site of injury by impairing 

voluntary activation of the uninjured muscle.  The mechanism behind this reduced voluntary 

activation remains undetermined. 
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 APPENDIX B:  INSTITUIONAL REVIEW BOARD LETTER OF APPROVAL 
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APPENDIX C:  INSTITUTIONAL REVIEW BOARD AMENDMENT ONE LETTER OF 

APPROVAL
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APPENDIX D:  INSTITUTIONAL REVIEW BOARD AMENDMENT TWO LETTER OF 

APPROVAL 
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APPENDIX E:  INSTITUTIONAL REVIEW BOARD AMENDMENT THREE LETTER OF 

APPROVAL 
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APPENDIX F:  SUBJECT RECRUITMENT FLYER 

 

Have you ever wondered whether inflammation can cause muscle fatigue?   

Researchers at Georgia State University, department of Kinesiology are 

attempting to answer this question and would like you to volunteer!  Participation 

in this study involves having your strength tested, and running downhill on a 

treadmill.  The study may cause moderate to severe muscle soreness and other 

injuries associated with running downhill.  This study will require 7 hours of your 

time over 5 separate days.  During those 5 days, we will ask you not to do any 

exercise other than the exercise for the research. You must also have properly 

fitting running shoes. 

Reasons to Volunteer: 

• You are a University Student between the ages of 18-44.    

• Get first-hand experience in research as a subject. 

• Learn about the field of exercise physiology. 

 

Signup today by contacting Kyle Brandenberger Today! 

Kbrandenberger1@gsu.edu , The Sport Arena G01. 

mailto:Kbrandenberger1@gsu.edu
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APPENDIX G:  CONTROL GROUP INFORMED CONSENT FORM 
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APPENDIX H:  DOWNHILL RUNNING GROUP INFORMED CONSENT FORM 
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APPENDIX I:  HEALTH HISTORY QUESTIONNAIRE 
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APPENDIX J:  TREADMILL VO2MAX PROTOCOL 
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APPENDIX K:  DATA COLLECTION FORM 

 

Subject ID ______________  Trial__________________ 

Thigh Circumference   

 

 

  

Upper Arm Circumference 

 

 

  

Knee Extensor Force Curve 

 
Resting Knee Extensor:  Peak Torque Prior to Twitch 

 

 

     

Resting Knee Extensor:  Activation 

 

 

     

Fatiguing Knee Extensor:  Peak Torque Prior to Twitch 

 

 

     

Fatiguing Knee Extensor:  Activation 

 

 

     

Elbow Flexor Force Curve 

 
Resting Elbow Flexors:  Peak Torque Prior to Twitch 

 

 

     

Resting Elbow Flexors:  Activation 

 

 

     

Fatiguing Elbow Flexors:  Peak Torque Prior to Twitch 

 

 

     

Fatiguing Elbow Flexors:  Activation 

 

 

     

 

100 mA 120 mA 140 mA 160 mA 180 mA 200 mA 220 mA 240 mA 260 mA 280 mA 300 mA 320 mA 340 mA 360 mA 380 mA 400 mA 420 mA 440 mA 460 mA 480 mA 500 mA

60 mA 80 mA 100 mA 120 mA 140 mA 160 mA 180 mA 200 mA 220 mA 240 mA 260 mA 280 mA 300 mA 320 mA 340 mA 360 mA 380 mA 400 mA 420 mA 440 mA 460 mA
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APPENDIX L:  MUSCLE SORENESS SCALE 

 

Rating of Exercise Induced – Muscle Soreness 

Visual Analogue Scale:  100 mm 
 

Subject #  

Date  

Time  

Trial/Step # (1-4)  

Soreness Score (mm)  

 

 

 

 

 
 

               0            100 

    No Soreness              Very, Very Sore 
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APPENDIX M:  TREADMILL SPEED VALIDATION 

Displayed Speed 

(mph) 

Mean Measured Speed 

(mph) 

5 5.041699 

6 5.8024802 

7 6.8587684 

8 7.7832249 

9 8.630705 

10 10.2839551 

11 11.8254628 

Speeds were measured in duplicate using a standard stopwatch.  The mean of these two 

measurements is shown above.
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APPENDIX N:  KNEE EXTENSOR STRENGTH DATA 

 

KNEE EXTENSOR STRENGTH AT REST FOR EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 1.00 0.95 1.08 1.05 

2 1.00 1.44 1.30 1.39 

3 1.00 0.53 0.80 0.78 

4 1.00 1.07 0.98 1.02 

5 1.00 0.94 0.88 0.84 

6 1.00 0.80 1.13 1.14 

7 1.00 0.70 0.38 0.30 

8 1.00 0.34 0.33 0.43 

9 1.00 0.48 0.60 0.70 

10 1.00 0.24 0.57 0.56 

11 1.00 0.52 0.78 0.77 

12 1.00 0.51 0.58 0.57 

Mean 1.00 0.71 0.78 0.80 

SD 0.00 0.34 0.30 0.32 

     

 

KNEE EXTENSOR STRENGTH AFTER A FATIGUING PROTOCOL FOR EACH 

MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 0.82 0.89 0.94 0.85 

2 0.92 1.17 1.12 1.28 

3 0.90 0.55 0.61 0.49 

4 0.66 0.77 0.65 0.89 

5 0.96 0.85 0.82 0.98 

6 0.49 0.73 0.75 0.87 

7 0.80 0.66 0.42 0.37 

8 0.72 0.34 0.27 0.37 

9 0.95 0.35 0.49 0.58 

10 0.83 0.25 0.35 0.49 

11 0.74 0.68 0.49 0.72 

12 0.92 0.43 0.42 0.38 

Mean 0.81 0.64 0.61 0.69 

SD 0.14 0.27 0.26 0.29 
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APPENDIX O:  KNEE EXTENSOR VOLUNTARY ACTIVATION DATA 

 

KNEE EXTENSOR VOLUNTARY ACTIVATION AT REST FOR EACH MEASURED TIME 

POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 79.92 77.15 73.90 83.82 

2 47.58 84.39 51.72 59.03 

3 84.07 71.66 69.33 55.56 

4 67.19 71.44 74.22 88.16 

5 67.30 59.08 63.90 69.07 

6 88.83 70.35 96.45 87.84 

7 86.84 38.48 23.78 37.89 

8 97.89 75.53 50.24 58.77 

9 68.17 50.12 55.25 56.53 

10 56.72 39.61 53.17 38.47 

11 95.13 83.78 93.27 90.36 

12 - - - - 

Mean 76.33 65.60 64.11 65.95 

SD 16.13 16.44 20.72 19.33 

     

KNEE EXTENSOR VOLUNTARY ACTIVATION AFTER A FATIGUING PROTOCOL FOR 

EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 65.87 70.81 79.78 69.50 

2 51.97 70.67 48.33 48.10 

3 82.27 47.89 58.24 36.31 

4 40.32 44.31 48.23 69.60 

5 54.69 48.69 57.15 61.51 

6 52.02 64.80 67.88 72.53 

7 55.11 38.99 12.91 16.22 

8 98.60 62.28 33.84 44.99 

9 57.80 35.11 39.83 45.24 

10 38.05 39.09 29.69 39.04 

11 77.63 77.39 67.80 75.94 

12 42.10 45.00 25.36 26.07 

Mean 59.70 53.75 47.42 50.42 

SD 18.35 14.58 19.84 19.42 
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APPENDIX P:  KNEE EXTENSOR ELECTICALLY STIMULATED STRENGTH DATA 

 

KNEE EXTENSOR ELECTRICALLY STIMULATED STRENGTH AT EACH MEASURED 

TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 1.00 0.50 0.68 0.70 

2 1.00 0.95 1.02 0.96 

3 1.00 0.61 0.92 0.87 

4 1.00 0.99 0.97 0.93 

5 1.00 0.96 0.89 0.90 

6 1.00 1.02 1.07 1.05 

7 1.00 0.54 0.56 0.47 

8 1.00 0.50 0.68 0.70 

9 1.00 0.59 0.87 0.99 

10 1.00 0.41 0.80 0.79 

11 1.00 0.47 0.55 0.68 

12     

Mean 1.00 0.69 0.82 0.82 

SD 0.00 0.24 0.18 0.17 

     

 

KNEE EXTENSOR ELECTRICALLY STIMULATED STRENGTH AT EACH MEASURED 

TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 0.73 0.54 0.64 0.71 

2 1.16 0.92 1.10 1.09 

3 0.97 0.82 0.95 0.79 

4 0.97 0.97 0.95 0.96 

5 1.04 0.98 0.93 1.01 

6 0.98 0.97 1.07 1.07 

7 0.66 0.61 0.74 0.29 

8 0.73 0.54 0.64 0.71 

9 1.06 0.65 0.90 0.98 

10 0.99 0.44 0.73 0.81 

11 1.11 0.48 0.46 0.60 

12 - - - - 

Mean 0.95 0.72 0.83 0.82 

SD 0.17 0.22 0.20 0.24 
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APPENDIX Q:  ELBOW FLEXOR STRENGTH DATA 

 

ELBOW FLEXOR STRENGTH AT REST FOR EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 1.00 0.86 1.00 0.99 

2 1.00 0.92 0.97 1.00 

3 1.00 1.10 1.16 1.03 

4 1.00 0.88 0.99 1.01 

5 1.00 0.93 0.99 1.03 

6 1.00 0.90 0.92 0.96 

7 1.00 0.87 0.86 0.89 

8 1.00 1.00 0.70 0.92 

9 1.00 0.92 0.95 1.10 

10 1.00 0.71 0.71 0.87 

11 1.00 0.93 0.95 0.91 

12 1.00 0.79 0.79 0.77 

Mean 1.00 0.90 0.92 0.96 

SD 0.00 0.10 0.13 0.09 

     

     

ELBOW FLEXOR STRENGTH AFTER A FATIGUING PROTOCOL FOR EACH 

MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 0.50 0.41 0.64 0.68 

2 0.93 0.74 0.76 0.72 

3 0.81 0.81 0.85 0.78 

4 0.66 0.75 0.64 0.74 

5 0.65 0.81 0.73 0.65 

6 0.65 0.73 0.69 0.71 

7 0.78 0.81 0.86 0.81 

8 0.67 0.62 0.66 0.65 

9 0.89 0.69 0.60 0.40 

10 0.46 0.53 0.64 0.67 

11 0.56 0.52 0.74 0.77 

12 0.70 0.67 0.62 0.64 

Mean 0.69 0.67 0.70 0.68 

SD 0.15 0.13 0.09 0.11 
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APPENDIX R:  ELBOW FLEXOR ACTIVATION DATA 

 

ELBOW FLEXOR VOLUNTARY ACTIVATION AT REST FOR EACH MEASURED TIME 

POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 96.42 95.34 97.54 92.99 

2 96.51 75.64 91.27 98.45 

3 94.93 99.54 96.62 91.90 

4 87.81 81.10 96.08 95.49 

5 94.38 93.62 94.65 86.95 

6 100.00 100.00 97.60 99.44 

7 81.63 64.17 52.27 69.62 

8 93.48 96.05 90.29 82.00 

9 89.26 77.30 93.30 97.56 

10 98.22 60.38 51.91 73.75 

11 99.01 95.65 94.73 94.80 

12 100.00 70.85 53.52 66.57 

Mean 94.30 84.14 84.15 87.46 

SD 5.57 14.29 19.18 11.71 

     

 

ELBOW FLEXOR VOLUNTARY ACTIVATION AFTER A FATIGUING PROTOCOL FOR 

EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 94.95 92.52 94.78 84.37 

2 88.05 73.27 65.19 70.41 

3 95.25 87.88 90.15 91.65 

4 74.00 93.60 80.17 81.69 

5 72.03 87.85 82.61 60.74 

6 79.69 88.76 85.38 79.29 

7 74.17 77.54 68.12 64.26 

8 74.24 74.53 87.72 64.22 

9 88.33 69.13 82.92 88.42 

10 10.69 57.46 13.89 34.02 

11 88.22 64.85 96.32 77.39 

12 65.85 70.16 76.13 51.05 

Mean 75.46 78.13 76.95 70.63 

SD 22.52 11.81 22.00 16.77 
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APPENDIX S:  ELBOW FLEXOR ELECTICALLY STIMULATED STRENGTH DATA 

 

ELBOW FLEXOR ELECTRICALLY STIMULATED STRENGTH AT REST FOR EACH 

MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 1.00 1.00 1.57 1.15 

2 1.00 0.93 0.85 1.15 

3 1.00 0.74 0.96 0.71 

4 1.00 0.67 0.71 0.86 

5 1.00 0.48 1.15 0.58 

6 1.00 1.19 1.21 0.99 

7 1.00 0.96 0.96 0.77 

8 1.00 1.00 1.57 1.15 

9 1.00 0.97 0.93 0.91 

10 1.00 1.26 0.71 1.12 

11 1.00 0.81 0.97 0.90 

12 1.00 0.88 0.96 0.97 

Mean 1.00 0.91 1.05 0.94 

SD 0.00 0.22 0.28 0.19 

     

 

ELBOW FLEXOR ELECTRICALLY STIMULATED STRENGTH AFTER A FATIGUING 

PROTOCOL FOR EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 0.60 0.65 1.22 0.98 

2 1.04 0.98 0.95 1.10 

3 0.47 0.77 0.72 0.55 

4 0.83 0.56 0.61 0.88 

5 0.76 0.31 1.08 0.35 

6 0.73 1.19 1.06 0.78 

7 0.91 1.10 0.83 0.78 

8 0.60 0.65 1.22 0.98 

9 0.66 0.65 0.78 0.75 

10 0.52 1.00 0.50 0.76 

11 0.53 0.37 0.52 0.59 

12 0.75 0.78 0.82 0.90 

Mean 0.70 0.75 0.86 0.78 

SD 0.17 0.27 0.25 0.21 
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APPENDIX T:  SERUM IL-1Β DATA 

 

SERUM IL-1β AT EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 - - - - 

2 - - - - 

3 0.00 0.00 0.00 0.00 

4 0.00 0.07 0.00 0.00 

5 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 

7 - - - - 

8 0.56 0.48 0.36 0.21 

9 0.00 0.01 0.00 0.00 

10 0.00 0.00 0.00 0.00 

11 0.00 0.00 0.00 0.52 

12 0.00 0.18 0.00 0.00 

Mean 0.06 0.08 0.04 0.08 

SD 0.19 0.16 0.12 0.18 
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APPENDIX U:  SERUM TNF-Α DATA 

 

SERUM TNF-α AT EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 - - - - 

2 - - - - 

3 3.64 1.81 3.11 2.23 

4 3.79 - 1.47 1.93 

5 3.08 - 2.60 0.96 

6 3.70 1.77 2.00 0.90 

7 - - - - 

8 5.28 2.49 3.46 3.27 

9 3.21 - 1.97 1.16 

10 3.57 1.36 1.97 1.71 

11 3.75 1.26 1.89 4.81 

12 3.57 - 1.42 1.52 

Mean 3.73 1.73 2.21 2.06 

SD 0.63 0.48 0.70 1.27 
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APPENDIX V:  UPPER ARM PAIN DATA 

 

UPPER ARM PAIN AT EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 - - - - 

2 0.00 11.50 65.50 44.50 

3 0.00 63.00 6.00 5.00 

4 0.00 3.00 6.00 2.00 

5 0.00 5.50 6.50 0.00 

6 0.00 19.00 3.00 11.00 

7 0.00 97.00 85.50 15.00 

8 - - - - 

9 13.00 16.00 31.50 41.00 

10 0.00 36.00 64.00 49.50 

11 7.00 97.00 52.00 66.00 

12 2.00 12.00 17.00 3.00 

Mean 2.20 36.00 33.70 23.70 

SD 4.39 36.60 30.64 24.12 
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APPENDIX W:  THIGH PAIN DATA 

 

 THIGH PAIN AT EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 - - - - 

2 0.00 0.00 23.00 7.50 

3 0.00 58.00 2.00 12.00 

4 1.00 9.00 5.00 2.00 

5 0.00 5.50 8.50 0.00 

6 1.00 42.00 3.00 12.00 

7 0.00 98.00 82.50 64.00 

8 - - - - 

9 12.50 88.00 90.50 80.00 

10 1.00 100.00 100.00 100.00 

11 3.00 71.50 79.50 85.50 

12 1.00 99.00 65.00 82.00 

Mean 1.95 57.10 45.90 44.50 

SD 3.82 40.68 40.98 40.93 
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APPENDIX X:  UPPER ARM CIRCUMFERENCE DATA 

 

UPPER ARM CIRCUMFERENCE AT EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 - - - - 

2 22.83 22.80 23.27 23.23 

3 28.53 28.20 28.50 28.33 

4 31.00 31.87 30.97 31.77 

5 28.17 29.17 28.53 29.53 

6 28.73 28.90 29.27 28.83 

7 29.40 29.80 29.97 30.03 

8 - - - - 

9 31.40 30.20 30.50 30.70 

10 28.20 28.40 29.20 28.73 

11 32.50 32.50 32.23 32.23 

12 24.43 24.23 24.40 24.83 

Mean 28.52 28.61 28.68 28.82 

SD 2.99 3.04 2.81 2.85 
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APPENDIX Y:  THIGH CIRCUMFERENCE DATA 

 

THIGH CIRCUMFERENCE AT EACH MEASURED TIME POINT 

 

 

Subject 

Immediate Pre-

Injury 

Immediate 

Post-Injury 

24 h Post- 

Injury 

48 h Post 

Injury 

1 - - - - 

2 49.97 49.63 48.77 48.33 

3 49.90 50.20 51.20 50.87 

4 53.13 53.77 52.97 53.27 

5 47.90 47.20 47.03 48.97 

6 48.97 48.30 51.07 48.13 

7 56.37 56.70 56.50 54.00 

8 - - - - 

9 59.57 57.73 56.57 56.17 

10 52.37 49.70 54.23 52.67 

11 52.17 52.07 53.20 55.20 

12 51.50 48.53 50.93 50.60 

Mean 52.19 51.38 52.25 51.82 

SD 3.53 3.61 3.09 2.87 
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