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The remarkable ability of the heart to regenerate has been demonstrated in the zebrafish and giant danio, two
fish members of the cyprinid family. Here we use light and electron microscopy to examine the repair response
in the heart of another cyprinid, the goldfish (Carassius auratus), following cautery injury to a small portion of its
ventricular myocardium.We observed a robust inflammatory response in the first twoweeks consisting primar-
ily of infiltrating macrophages, heterophils, and melanomacrophages. These inflammatory cells were identified
in the lumen of the spongy heart, within the site of the wound, and attached to endocardial cells adjacent to
the site of injury. Marked accumulation of collagen fibers and increased connective tissue were also observed
during the first and second weeks in a transition zone between healthy and injured myocardium as well as in
adjacent sub-epicardial regions. The accumulation of collagen and connective tissue however did not persist.
The presence of capillaries was also noted in the injured area during repair. The replacement of the cauterized
region of the ventricle by myocardial tissue was achieved in 6 weeks. The presence of ethynyl deoxyuridine-
positive cardiac myocytes and partially differentiated cardiac myocytes during repair suggest effective cardiac
myocyte driven regeneration mechanisms also operate in the injured goldfish heart, and are similar to those
observed in zebrafish and giant danio. Our data suggest the ability for cardiac regeneration may be widely
conserved among cyprinids.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Cardiovascular disease is the primary cause of death in the Western
world. Replacement of cardiac tissue loss followingmyocardial infarction
in humans is an area of intense research. Recently, regeneration of the
ventricularmyocardiumwas documented following resection and ische-
mic myocardial infarction in neonatal mouse heart (Porrello et al., 2011;
Porrello et al., 2013). While a number of studies report regeneration in
the adult mammalian ventricular myocardium (Leferovich et al., 2001;
van Amerongen et al., 2008; Ellison et al., 2013), the general consensus
is that regeneration of the adult mammalian heart is severely limited
(Laflamme and Murry, 2011). Various levels of cardiac myogenesis and
cardiac myocyte turnover have been reported in the adult human

(Kajstura et al.; Bergmann et al., 2009; Mollova et al., 2013) and
mouse (Soonpaa and Field, 1997; Walsh et al., 2010; Senyo et al.,
2013). However, the extent of inherent hyperplastic growth appears
insufficient to support regeneration and recovery after significant loss
of cardiac myocytes. Two main observations provide the basis for this
limited regenerative capacity in adult mammals. The first is the appar-
ent terminally differentiated state of ventricular cardiac myocytes past
the neonatal stage, and their limited ability to proliferate. The second
is the complex compensatory ventricular remodeling that cumulates
in fibrosis and refractory scar formation which limits the regenerative
potential.

Semi-aquatic and aquatic vertebrates such as newts (Bader and
Oberpriller, 1979;Witman et al., 2011; Piatkowski et al., 2013), axolotls
(Flink, 2002; Vargas-Gonzalez et al., 2005), and teleosts such as the
zebrafish (Poss et al., 2002) and giant danio (Lafontant et al., 2012)
have been studied as models for cardiac injury, repair, and regenera-
tion. Unlike mammals, significant adult heart regeneration has been
documented in these species. Ventricular myocardial regeneration is
particularly robust in the zebrafish and the giant danio, two closely
related fish species. Because of its genetic tractability, the zebrafish has
become an important model for studying the molecular mechanisms
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orchestrating heart regeneration (Kikuchi and Poss, 2012). Following
resection, or cryoinjury, or cautery injury, the zebrafish and the giant
danio display the hallmarks of cardiac remodeling seen in adult mam-
mals. However, an important distinction is the replenishment of the
injured area by proliferating cardiac myocytes which mitigates the
development of fibrosis and results in robust ventricular regeneration
(Chablais et al., 2011; Gonzalez-Rosa et al., 2011; Schnabel et al.,
2011). Despite these studies our understanding of the phylogenic distri-
bution of heart regeneration in vertebrates remains incomplete. Both
zebrafish and giant danio are minnows (Danioninae) that belong to
the large and diverse cyprinid family of freshwater teleost fish (Meyer
et al., 1993; Vidal et al., 2004). Whether heart regeneration is an attri-
bute that extends beyond danionins to other members of the cyprinid
family is not known.

The goldfish (Carassius auratus) is one of the most commonly kept
aquarium fish species; it belongs to the true carp (Cyprininae) subfam-
ily. The goldfish has historically served as an important model organism
in physiological, behavioral, immunological and molecular evolutional
studies (Ge et al., 1993; Hodgkinson et al., 2012; Huntingford, 2012).
The goldfish can regenerate various organs and tissues including scale,
fins, intramembranous bone, hair cells, optic nerve and spinal cord
(Birnie, 1947; Caskey and O'Brien, 1948; Bernstein, 1964; Matsukawa
et al., 2004; Smith et al., 2006; Thamamongood et al., 2012). The gold-
fish has also been used in cardiac physiology studies (Busselen, 1982;
Ganim et al., 1998). Similar to the zebrafish (Hu et al., 2000) and giant
danio, the goldfish possesses a type II heart that consists of a relatively
thin vascularized compact heart and an extensive avascular spongy
heart. However the ventricular morphologies of these fish aremarkedly
different, with the zebrafish and giant danio having a more pyramidal
shaped heart, while the goldfish displays a more saccular shaped
heart, perhaps reflecting their specific ecological physiology. Exploring
the link between ecological physiology and the regenerative potential
of organs in closely related species is important because itmay lend sup-
port to the concept of regeneration as an evolutionary variable (Brockes
et al., 2001; Bely and Nyberg, 2010). The current study was designed to
characterize the injury response of the common goldfish heart and
ascertain its regenerative potential. The data show that despite
displaying characteristics of early cardiac remodeling, the goldfish was
able to regenerate its heart following cautery injury of a small portion
of its ventricular myocardium.

2. Material and method

2.1. Aminals

Goldfish averaging 9.0 mg in heart mass, 3.4 g in body mass and
46.8 mm in standard length were obtained from a local provider,
and maintained in 40 L tanks, with 10 to 15 fish per tank, at 25 °C on
14/10 h day/night cycles for two to three weeks prior to experiments.
Experimental procedures were approved by the Committee for the
Care and Use of Laboratory Animals at DePauw University.

2.2. Surgery and ventricular cautery

These procedureswere previously described (Lafontant et al., 2012).
Briefly, goldfishwere anesthetizedwith 0.02%MSTricaine for one to two
minutes and placed ventral side up in a slit cut in a wet rectangular-
shaped sponge block. Using a Leica ZOOM 2000 dissecting microscope
(Leica Microsystems, Bannockburn, IL, USA) a pair of fine forceps was
used to remove the scales above the thoracic cage; then the skin and
the pectoral muscles were gently dissected midline, and occasionally
fine scissors where used to create a 4 to 5 mm opening that revealed
the beating heart. The ventricular apex could not be easily and consis-
tently identified in situ. Conversely the base of the bulbus that could
be easily located throughout the cardiac cycle, because of its prominence
and its translucency, was used as a guide to target the ventral aspect of

the ventricle. In one set of studies a nichrome wire with a flat tip
0.455 mm diameter (24 gauge) was used to create a relatively small
injury. In another set of experiments the nichrome wire was bent to
increase the area of contact with the ventricular tissue to achieve
approximately twice the size an injury. In both sets of experiments the
wire was heated on an open flame Bunsen burner for 5 s, and left to
cool for 3 s, then the tip of the wire was gently applied to the ventricular
myocardium and left to cool for an additional 3 to 5 s before removal
from the heart surface. The fish were returned to a new freshwater
tank. Control fish (n = 17) and injured fish were sacrificed at 1, 3, 7,
14, 21, 30, and 45 days (n = 9, 18, 28, 17, 11, 4, 14, respectively) using
0.2% MS Tricaine. Once all body and opercula movements had ceased,
the heart was removed by grasping and pulling the aorta proximal to
the bulbus arteriosus. Heart weight, body weight and standard length
were measured prior to further processing, except for ex-vivo cell
cycle studies, and immunohistochemistry when the hearts were trans-
ferred directly into a 30% sucrose (Sigma-Aldrich, St Louis, MO, USA)
solution for cryoprotection and later fixation.

2.3. Measurements and characterization of injury by histochemistry

The hearts were removed and fixed in 4% paraformaldehyde at 4 °C
overnight. The next day the hearts were cryoprotected in 30% sucrose,
and placed in 13-mmdiameter aluminum seal cups (Wheaton,Millville,
NJ, USA), that were then filled with freezing medium (Tissue-Tek OCT,
Torrance, CA, USA) and kept at −80 °C prior to sectioning. The hearts
were exhaustively sectioned sagittally on a Leica CM 1900 cryostat
(Leica Microsystems, Bannockburn, IL, USA). Sections from the middle
of each heart were then stained and analyzed.

To assess the amount connective tissue indicative of the injury size
at 7, 14 and 45 days, 10 μm sections from the middle of the heart
were stainedwith fast green and picrosirius red. Sectionswere observed
on a Nikon SMZ 1000 dissecting microscope (Nikon Instruments Inc.,
Melville, NY, USA) equipped with a Spot Insight QE camera (Diagnostic
Instruments Inc., Sterling Heights,MI, USA). Images were projected on a
Dell 17-inch monitor and overlaid with a 20 mm × 15 mm point-
counting grid (20 × 14 point-intercepts) with 280 equidistant point-
intercepts. Using the point-counting method the fraction of point
intercepts landing randomly on connective tissue (pale green and red)
and myocardial tissue (green) was calculated and expressed as volume
density (%).

To assess the deposition of collagen, Masson's trichrome stain-
ing was performed according to the manufacturer's protocol (Sigma-
Aldrich) with some modifications. Briefly, slides were rinsed in
deionized water and incubated in preheated Bouin's solution at
room temperature overnight. Slides were stained with acid hema-
toxylin solution for 5 min, and then washed in running tap water
for 12 min. Next they were stained in 0.1% Biebrich scarlet-0.1%
acid fuchsin in 1% acetic acid for 5 min, and then incubated in 10%
phosphotungstic–phosphomolybdic acid solution for 5 min, then in
2.4% aniline blue solution for 5 min, followed by 1% acetic acid. Slides
were dehydrated through graded alcohol, cleared in xylene and
mounted using Permount Mounting Medium (Electron Microscopy
Sciences, Hatsfield, PA, USA). Stained sections were visualized and
imaged on a Nikon Optiphot (Nikon Instruments Inc.).

2.4. Characterization of injury and regeneration in plastic section and by
transmission and scanning electron microscopy

For studies of the myocardium in plastic sections and by transmis-
sion electron microcopy, hearts were fixed in 2.5% fresh glutaraldehyde
in 100mMcacodylate buffer overnight at 4 °C. The hearts were washed
the next day in cacodylate buffer and stored at 4 °C for later processing.
Hearts were post-fixed in 1% tannic acid and transferred to 1% osmium
tetroxide and then embedded in EMbed-812 Resin (Electron Microsco-
py Sciences, Hatsfield, PA, USA) following dehydration in acetone. Two-
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micron sagittal sections were cut and stained with Toluidine Blue O for
light microscopy analysis. For electron microscopy analysis, ultra-thin
sections 100 nm thick were cut, set on a single slot or 200-mesh copper
or nickel grids and imaged on a Tecnai G2 Spirit BioTWIN electron
microscope (FEI Company, Hillsboro, OR, USA).

For scanning electronmicroscopy the hearts were fixed in 2.5% fresh
glutaraldehyde in 100 mM cacodylate buffer overnight at 4 °C. The

hearts were washed the next day in cacodylate buffer sectioned sag-
ittally and dehydrated in alcohol gradients. Alcohol was then
substituted with increasing concentrations of hexamethyldisilizane
(HMDS, Sigma-Aldrich) in alcohol in a fume hood. After three
exchanges in 100% HMDS, the hearts were allowed to dry overnight
before coating with 80% palladium-20% gold using a Polaron E5100
sputter coater (Quorum Technologies Ltd, UK) and imaged on a
JEOL 5800LV at 15 kV (JEOL USA, Peabody, MA, USA).

2.5. Histochemical detection of inflammatory and endothelial cells

Cryosections 10 μm thick were stained for the detection of inflam-
matory activity using Peroxidase (Myeloperoxidase) Leukocyte Kit,
according to themanufacturer's protocol (Sigma-Aldrich). Briefly, slides
were washed in gently running tap water and allowed to air dry in the
dark. One vial of peroxidase indicator reagent and 200 μL of 3% hydro-
gen peroxide were added to 50 mL pre-warmed trizmal buffer. The
slides were incubated in the peroxidase indicator reagent solution for
30 min in the dark at the 37 °C. Following incubation, the slides were
washed in gently running tap water for 15–30 s and allowed to air dry.
The slides were counterstained with eosin, dehydrated in an alcohol-
xylene series, air-dried and coverslipped using Permount. MPO positive
cells were enumerated in two to three fields from 3 sections of
each heart at 20× and averaged. For histochemical detection of
endothelial cells, 10 μm sections were stained with FITC-labeled
Bandeiraea simplicifolia (BS) lectin (Sigma-Aldrich) in Hepes buffer
(10mMHepes, 0.15MNaCl, 0.1 M CaCl2, pH 7.5), overnight. Sections
were washed the next day and cell nuclei where stained with
Hoechst stain (Invitrogen, Eugene, OR, USA) prior to visualization.

2.6. Cell cycle activity by 5-ethynyl-2-deoxiuridine incorporation and
identification of cardiac myocytes

In order to identify heart cells that have entered the cell cycle and
progressed to S-phase, we studied the incorporation of 5-ethynyl-2-
deoxyuridine (EdU) using the Click-iT EdU kit (Invitrogen-Molecular
Probes, Eugene, OR, USA). EdU was diluted in L-15 Leibovitz media
without serum (Hyclone, Logan, UT, USA). Each experimental and
control heart was excised and transferred into 400 μL of EdU solution
(50 μM) in a 96 well plate pre-warmed at 25 °C in an incubator. After
six hours in the incubator the hearts were removed from the L-15
Leibovitz solution containing EdU, washed in PBS and fixed in FA-
ethanol. EdU detection was performed on 10 μm thick sagittal sections
following the manufacturer's protocol and was visualized with Alexa
Fluor 647. For cardiac myocytes identification following Click-iT EdU
reaction, sections were immunoreacted overnight with anti-myosin
heavy chain-1 (MYH1) antibody (Santa Cruz Biotechnology Inc., Santa
Cruz, CA, USA), followed by FITC conjugated anti-mouse secondary
antibody (Sigma-Aldrich). Lastly, sectionswere also stainedwithHoechst
and coverslipped using PermaFluor mounting media (Thermo Scientific,
Fremont, CA, USA), visualized and imaged on a Nikon Optiphot (Nikon

Fig. 1. Reconstitution of goldfish ventricle following cautery injury. A set of small injury (SI)
and large injury (LI)were produced in the goldfish ventricle (A); subsetmeasured at 24 h.
LI resulted in low survival rate in contrast to the high survival rate in SI (B). Grossmorphol-
ogy of goldfish heart ex vivo (C), and scanning electron micrograph (D) of uninjured
sagittally sectioned heart showing intact compact heart (co) and trabeculae (tr). Gross
appearance of the goldfish ventricle (E) with injury highlighted by dashed ellipsoid, and
of a sagittally sectioned heart (E′) one day post-cautery injury (dpci). Scanning electron
micrograph of sagittally sectioned injured ventricle showing a complete loss of compact
cardiac myocytes and trabeculae in the injured area (F). Representative plastic sections
of the ventral aspect of uninjured heart (G)with intact compact and spongymyocardium,
in plastic section of seven days heart after injury (H) with the border zone on the upper
right, and necrotic injured area on the lower right, with absence of myocardial tissue,
and high density of nuclei. Plastic sections of injured ventricle 14 dpci (I) showing granu-
lation tissuewith the presence of new cells and extracellularmatrix, and plastic section on
injured area 30 dpci (J) with myocardial tissue approximating the uninjured ventricle.
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Instruments Inc.). EdU incorporation was estimated using two to three
fields in a middle section under a 20× objective.

2.7. Statistical analysis

Data are means and ±S.E.M. statistical analysis included one way
ANOVA followed by Student–Newman–Keuls post-test (Figs. 2 and 3)
and Student's t-test (Figs. 1 and 7). Differences were considered signif-
icant at p ≤ 0.05.

3. Results

3.1. Morphological characteristic of wound repair in the goldfish
myocardium

Cauterization of the goldfish heart leads to myocardial tissue loss of
approximately one ninth of the ventriclewhich resulted in a 90% surviv-
al rate. However cauterizing injury to achieve myocardial tissue loss
comparable to that reported in zebrafish and giant danio (20–25%)
resulted in markedly low survival rate (Fig. 1A, B). Thus we studied
the repair response to small injuries in the goldfish heart. The uninjured
goldfish heart appeared more saccular and less pyramidal than the
zebrafish and giant danio (Fig. 1C). Scanning electron microscopy
(SEM) showed the expected thin compact heart and the extensive
trabeculation of the spongy heart of the goldfish ventricular chamber
(Fig. 1D). Cauterization of the ventral aspect of the ventricle resulted
in thermal ablation of the region (Fig. 1E, E′). SEM studies confirmed
extensive damage to the compact heart, the adjacent trabeculae of the
spongy heart, as well as the loss of the intact myocardial tissue pattern
(Fig. 1F).

Histologic observation of the heart in uninjured control and at 7, 14,
30 days post-cautery injury (dpci) showed progression of wound repair
and the progressive emergence of new myocardial tissue in the injured
area. More specifically, while the uninjured heart displayed an intact
compact and spongy heart (Fig. 1 G), at 7 dpci, the injured area
consisted of necrotic tissue, with a clear border zone separating the
distal injury area from the adjacent proximal cardiac myocytes of
the spongy heart (Fig. 1H). This clear border zone was also observed
by SEM (not shown). Through the first week, the injured area was
devoid of clearly identifiable cardiac myocytes; instead it consisted
primarily of amorphous tissue infiltrated by numerous inflammatory
cells. By 14 dpci however, the site of injury appeared to be populated
by a mixture of non-myocyte and myocyte cell profiles (Fig. 1I). By
30 dpci the previously injured compact and spongy heart appeared
mostly reconstituted (Fig. 1J). To further evaluate the repair response
and estimate the injury size up to 45 dpci, volume densitieswere deter-
mined for the connective tissue using fast-green and picrosirius red
stained cryosections. There was little connective tissue in the uninjured
heart (Fig. 2A). The connective tissue area which occupied 13% of the
ventricle by 7 dpci (Fig. 2B), decreased to 9% by 14 dpci (Fig. 2C), and
3% by 45 dpci (Fig. 2D). The connective tissue was progressively
resorbed (Fig. 2E) and appeared to be replaced by myocardial tissue,
suggesting the goldfish in addition to possessing the ability to repair
ventricular tissue may also be able to reconstitute small portions of its
ventricular myocardium.

3.2. Inflammatory response in the injured goldfish myocardium

Inflammatory cells infiltrated not only the injury area but also the
border zone of the injury. Heterophils displaying phenotypes of activa-
tion and migration could be seen adjacent to and in direct contact with
border zone endocardium (Fig. 3A, B). To ascertain the extent and
progression of the inflammatory response, myeloperoxidase (MPO) —
positive cells in the control and injured hearts were quantified. The
uninjured goldfish heart contained few MPO-positive cells in the ven-
tricular lumen or the vessels of the compact heart (Fig. 3C). However

by 3 dpci a significant number of MPO-positive inflammatory cells had
accumulated within the injured area (Fig. 3D). The number of MPO-
positive cells was markedly decreased at 14 dpci (Fig. E), and had
returned to baseline levels at 45 dpci (Fig. 3F), suggesting the inflamma-
tory response had subsided (Fig. 3G).

Since MPO may identify different subsets of inflammatory cells, the
phenotypic diversity of this cell populationwas determined. In addition
to heterophils and macrophages, numerous inflammatory cells with
phenotypic characteristics of melanomacrophages could be identified
at 14 dpci (Fig. 4A). Transmission electron microcopy (TEM) confirmed
that these melanomacrophages were present within the repairing
tissue and in adjacent lacunae between trabeculae (Fig. 4B). These
cells contained electron dense granules and were also found in close
apposition to the endocardial cell lining, suggestive of an adhesive
interaction (Fig. 4C, C′).

3.3. Angiogenesis in the injured goldfish myocardium

FITC-labeled Bandeiraea simplicifolia (BS)-lectin binding in the
goldfish ventricle was used in an attempt to ascertain and quantify
a possible angiogenic response in the heart following the injury. In

Fig. 2. Regression of connective tissue and replenishment of myocardial tissue in the goldfish
heart. Representative fast green and picrosirius red section of uninjured hearts (A) con-
taining myocardial tissue with structurally intact compact and trabeculae structure. At
7 dpci (B), stained section with connective tissue (pale green) occupying the injured
area; the dashed line delineates the border between injured (below) and non-injured
areas (above). At 14 dpci (C) injured area (below line) consisting primarily of cellularized
connective tissue (pale green) and fine extracellular filamentous fibers (red). At 45 dpci
(D) section with further regression of connective tissue and reconstitution of the compact
heart and of trabeculae. Volume density of the connective tissue (E) in the injured heart.
(Scale bar, 50 μm). Please refer to theweb version of this article for interpretation of refer-
ences to color in the figure legend.
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control ventricles, lectin binding was relatively low and primarily
associated with endocardial cells lining the borders of the luminal
trabeculae. Compact heart endothelial cells were also poorly labeled,
as a result compact heart capillaries could not be observed (Fig. 5A).
At 7 and 14 dpci lectin binding increased in the area of injury, but the
patchy nature of the binding prevented the identification of the cel-
lular source of fluorescence (Fig. 5B, C). However, by 14 dpci, capil-
laries were readily observed in the repairing heart (Fig. 5D), as well
as in sections prepared for TEM (Fig. 5E). These findings are consis-
tent with a robust angiogenic response in the repairing goldfish
ventricle.

3.4. Collagen accumulation and structure in the repairing myocardium

To determine the extent of collagen accumulation in the injured
ventricle sections spanning the course of repair were collected and
stained with Masson's trichrome. In the uninjured heart the presence
of collagen fibers was minimal (Fig. 6A). Aniline blue-stained filamen-
tous collagen fibers were evident within the connective tissue of the
injured area. While collagen staining was diffuse at 7 dpci (Fig. 6B, B′),
the filamentous nature of the collagen and the increased level of organi-
zation were more apparent at 14 dpci (Fig. 6C, C′). The decrease in
collagen staining paralleled the regression in connective tissue and the
reconstitution of the cardiac myocardium. TEM at 14 days confirmed
the presence of ordered but sparse filamentous collagen bundles
(Fig. 6D) and the presence of numerous fibroblasts (Fig. 6E) within
the injured area. The fibroblasts displayed abundant rough endoplasmic
reticulummembranes consistentwith the interpretation that these cells
were actively engaged in protein synthesis (Fig. 6F).

3.5. Cardiac myocytes and cell cycle activity in the repairing goldfish
myocardium

The reconstitution of the lost myocardial tissue suggests the goldfish
possesses a regenerative capacity in the heart. To determine whether
cell cycle activity underlies this ability, ethynyl deoxyuridine (EdU)
incorporation was evaluated in the goldfish myocardium. EdU incorpo-
ration in cell nuclei was relatively low in control ventricles (Fig. 7A), and
was increased in the injury area at 3 dpci (Fig. 7B), 7 dpci (Fig. 7C), and
at 14 dpci (Fig. 7D). EdU-positive nuclei could be found throughout the
injured area, and within the boundaries of MYH1 stained cells (Fig. 7 C′
and D′). EdU incorporation in all cells increased approximately 4-fold at
14 dpci as compared to control (Fig. E), while EdU incorporation in
nuclei of MYH1-positive cardiac myocytes increased approximately

Fig. 3. Inflammation in the cauterized goldfish heart. Representative plastic section micro-
graphs of inflammatory cells in the injury border zone 24 h post-injury showing an
activated heterophil (A, arrow) in the lumen, another heterophil (B, arrow) and another
(B, arrowhead) adhering to the endocardium. Myeloperoxidase (MPO) reactivity in
inflammatory cells (black) in control heart section (C), at 7 dpci (D), 14 dpci (E), and
45 dpci (F). Kinetics of MPO-positive cells infiltrating the injured goldfish heart (G).

Fig. 4. Melanomacrophages in the cauterized goldfish ventricle. Representative images of
toluidine blue stained area of goldfish ventricle at 14 dpci (A) infiltrated with numerous
inflammatory cells with phenotypic characteristics ofmelanomacrophages (MM, arrows).
TEM of a MM (B) in the injured area interstitium of goldfish ventricle 14 dpci. TEM of a
MM attached to the endocardium in the border zone of the injury (C, C′-higher magnifica-
tion of round electron dense granules).
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two-fold (F). Attempt at further identifying cardiac myocytes nuclei
with myocyte enhancer factor-2C (MEF-2C) antibody using a variety
of protocols was unsuccessful (data not shown). EdU incorporation in
cell nuclei with weak MYH1 cytoplasmic immunoreactivity was also

observed in the repairing heart particularly at 14 dpci, suggesting
the possibility of de-differentiated or partially differentiated cardiac
myocytes contributing to the reconstitution of the injured ventricle.
Ultrastructural characteristics of the repairing heart at 14 dpci revealed

Fig. 5.Angiogenesis in the cauterized goldfish ventricle. BS lectin-FITC in control heart (A) does not outline vessels in the compact heart andpoorly stains luminal endocardium. BS lectin-FITC
staining at 7 (B) and 14 dpci (C) is present in diffused clusters within thewound. A representative plastic section of the injured ventricular area 14 dpci (D) demonstrating numerous cap-
illary profiles (arrows). A capillary profile at 14 dpci within the injured area visualized by TEM (E).

Fig. 6. Collagen accumulation in the injured goldfish heart. Representative trichrome-stained section of uninjured goldfish heart (A) showing barely detectable presence of collagen fiber. At
7 dpci (B) aniline blue stain showsminimal presence of collagen (pale blue). At highermagnification (B′) the collagen appear as sparse and diffuse. At 14 dpci, collagen appears organized
into filaments (C, C′-higher magnification). Representative TEM at the injured ventricle 14 dpci showing parallel filamentous collagen fibers in the interstitial space (D), and numerous
activated fibroblasts (E) with extensive endoplasmic reticulum with abundant ribosomes (F). (Scale bar, A–C, 50 μm). Please refer to the web version of this article for interpretation of
references to color in the figure legend.
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a population of cardiac myocytes with marked reduction in actin
myosin filaments, and less organized sarcomeres (Fig. 7G, G′, G″). The
phenotype of these myocytes was in contrast to those with abundant

and well organized sarcomeres found in uninjured heart or in cardiac
myocytes distal to the injury in the cauterized heart (Fig. 7H, H′).
These observations were consistent with the notion that the ongoing

Fig. 7. Cardiac myocytes cell cycle activity and ultrastructure in goldfish regenerating myocardium. EdU incorporating cells (red) andMYH1 immunoreactivity (green) in uninjured heart (A),
and at 3 dpci near the border zone and the injured area devoid of MYH1 staining (B). EdU-positive cells in 7 dpci ventricle (C) with EdU-positive and MYH1-positive cells (C′, higher
magnification, arrow), and EdU-positive cells in 14 dpci ventricle (D) with EdU-positive and MYH1-positive cells (D′, higher magnification, arrow). Measurement of cell cycle activity
by EdU incorporation in all cells (E) and MYH1-positive cardiac myocytes (F). TEM of myocardium at 14 dpci in the regenerating area of the goldfish ventricle (G) containing partially
differentiated cardiac myocytes with sparse and less organized sarcomeres. Higher magnification of the cardiac myocyte (G′) in the upper left quadrant of panel G, with sarcomeric
component (arrows), and mitochondria (arrowheads). Higher magnification of the cardiac myocyte (G″) in the lower right quadrant of panel G, displaying low sarcomeric density and
an electron dense intercalated disk connecting it to the organized sarcomere of an adjacent partially differentiated cardiac myocyte. TEM of myocardium away from the site of injury
at 14 dpci (H) with myocytes containing high density and well organized sarcomeres, and well-ordered Z bands (H′, higher magnification). (Scale bar, 50 μm, A–D). Please refer to the
web version of this article for interpretation of references to color in the figure legend.

7J. Grivas et al. / Comparative Biochemistry and Physiology, Part C xxx (2014) xxx–xxx

Please cite this article as: Grivas, J., et al., Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart, Comp. Biochem. Phys-
iol., C (2014), http://dx.doi.org/10.1016/j.cbpc.2014.02.002

http://dx.doi.org/10.1016/j.cbpc.2014.02.002


replenishment of myocardial tissue was attributable in part to the
reappearance of cardiac myocytes albeit of a lesser differentiated
phenotypes.

4. Discussion

This study establishes that myocardial regenerative capacity, albeit
less robust than that reported in the zebrafish and the giant danio, is
nonetheless present in the goldfish ventricle; hence, cardiac regenera-
tive ability extends beyond the danionins, and into the diverse family
of cyprinids. It also demonstrates the cellular basis for ventricular regen-
eration is analogous to that seen in other fish, where reconstitution of
resected or ablated myocardial tissue is supported by partially differen-
tiated or dedifferentiated cardiac myocytes. Moreover, the early and
intermediate responses to the injury involve inflammation, collagen
accumulation and angiogenesis, and these processes are orchestrated
in a manner that supports or permits regeneration.

In the goldfish, injuries were produced on the ventral aspect of the
ventricle as opposed to the injuries in the danios where the pyramidal
morphology of the ventricles facilitates targeting of the apical region
(Poss et al., 2002; Raya et al., 2003; Lafontant et al., 2012). In our
hands the more saccular appearance of the goldfish ventricle in vivo
made the targeting of the apical region challenging. Moreover our
attempt at producing injury sizes comparable to that achieved in the
zebrafish and giant danio resulted in remarkably low survival. As a
result, we were limited to relatively small injuries that were exacted
at the mid-ventral aspect of the ventricle. Whether the location and/or
the extent of injury were responsible for the low survival rate in larger
injuries could not be ascertained.

The ventricularmorphology of fish ventricles reflects their particular
functional characteristics and ecological physiology (Cimini et al., 1977;
Greco and Tota, 1981; Santer, 1985; Agnisola and Tota, 1994). For exam-
ple, the thickness of the compact heart in fish not only correlates with
age, but also with the level of natural activity or athleticism of the fish.
Indeed, fish with pyramidal shaped ventricles display higher active
physical activity than fish with saccular ventricles. A recent study in
the goldfish concluded that its ventricle performs as a volume rather
than a pressure pump, and that the goldfish may have limited cardiac
functional reserve capacity (Garofalo et al., 2012). A comparative age-
matched or developmentally-matched study of cardiac performance in
these fish has not been reported. However based on our observations,
we speculate that the inability of the goldfish to sustain injuries of sim-
ilar magnitude as the zebrafish and giant danio may be related to lesser
cardiac functional reserve compared to the danios.

In our studies, cauterization produced an area of necrosis that elicit-
ed inflammatory cell recruitment, collagen deposition and neovascular-
ization during repair and regeneration. These three temporally
overlapping processes were previously documented in the giant danio
(Lafontant et al., 2012), and in part noted in zebrafish (Lien et al.,
2006; Parente et al., 2013). The effect of inflammation in fish heart
regeneration is unclear although a recent report in the zebrafish showed
the attenuation of the inflammatory response by glucocorticoids was
coupled with impaired cardiac repair and regeneration (Huang et al.,
2013). The robust inflammatory response in the goldfish involves in-
flammatory cell infiltrations of various subtypes into the necrotic injury
site, as well as adjacent myocardial areas that were not directly injured.
The subtypes include heterophils, macrophages, and a population of
melanomacrophages. The presence of melanomacrophages has not
been reported in the zebrafish, giant danio, or the goldfish heart.
However, in the goldfish kidney and spleen they act as phagocytes
(Herraez and Zapata, 1986, 1991). It had been suggested that their
melanin-containing granules decrease oxidative stress by contribut-
ing to neutralization of reactive oxygen species (Zuasti et al., 1989).
Melanomacrophages also play a key role in the process of tail resorp-
tion in tadpoles duringmetamorphosis (Divya et al., 2010). The pres-
ence of melanomacrophages in the goldfish heart during repair and

regeneration suggests an important role in injury response and cardiac
remodeling in this species. Whether the presence of these cells and
their involvement in repair and regeneration is observed in other fish
species warrants further study.

Within the temporalwindow explored, the accumulation of connec-
tive tissue and collagen, and the emergence of vessels in the wounded
area, appears to be concurrent. Collagen and other extracellular matrix
proteins provide not only a scaffold for the reconstruction ofmyocardial
tissue, but they also act as a substrate that defines themechanical prop-
erties of the wound as well as providing cryptic matricellular signaling
molecules that regulate cell migration and proliferation (Zamilpa and
Lindsey, 2010). In the goldfish, collagen accumulation is associated
with the presence of activated fibroblasts in the repairing tissue. The
accumulated connective tissue is subsequently resorbed, but not to
the level found in uninjured ventricles. Various degrees of residual
collagen and connective tissue have been reported in different types
of injuries in fish (Chablais et al., 2011; Gonzalez-Rosa et al., 2011;
Schnabel et al., 2011; Lafontant et al., 2012). Removal of residual con-
nective tissue and collagen may extend beyond the regeneration
phase in fish, ormay only be reduced to a level thatminimally impinges
on normal cardiac function. Still it appears that in these fish effective
turnover of collagen during repair favors myocardial regeneration in
contrast to the regeneration-restrictive fibrosis manifest in mammalian
models (Borchardt and Braun, 2007). In the goldfish, vascularization of
the wounded area parallels that observed in the danios (Kim et al.,
2010; Lafontant et al., 2012). Neovascularization also recedes as the
myocardial tissue is reconstituted. We speculate that the angiogenic
response facilitates heart repair, but whether it is required for regener-
ation is unclear and warrants further study.

The cellular and molecular basis of cardiac regeneration is an active
area of scientific pursuit. Hyperplastic growth has long been reported in
adultfish (Clark andRodnick, 1998). In each of thedanio species studied
thus far, regeneration is primarily, or at least partially supported by
cardiac myocyte proliferation. The current lack of specific cardiac-
restricted nuclei markers for goldfish cardiac myocyte makes it diffi-
cult to unambiguously identify these specific nuclei and evaluate
their cell cycle index. The caveats and limitations in identifying cardiac
myocyte nuclei in tissue have been amply discussed (van Amerongen
and Engel, 2008; Soonpaa et al., 2013). Indeed, in 10 μm cryosections,
the possibility of erroneously attributing the cell cycle activity of neigh-
boring myocardial fibroblasts, endothelial cells, smooth muscle cells, or
inflammatory cells to cardiac myocytes remains an important issue.
However, the presence of partially differentiated cardiac myocytes in
the repairing wound at 14 days in areas previously devoid of cells, and
the replenishment of cardiacmyocytes in the injured area strongly sup-
port the notion that cardiac myocyte proliferation contributes to the
reconstitution of the ablated myocardial tissue in the goldfish. It is
also possible that cardiac regeneration may involve additional mecha-
nisms. Indeed a role for progenitor cells has been reported (Lepilina
et al., 2006) and recently a role for atrial cardiac myocytes has been
demonstrated (Zhang et al., 2013). Whether these mechanisms are
also involved in goldfish heart regeneration is unknown.

In conclusion, while the zebrafish remains the primary model to
study the cellular and molecular underpinnings of heart regeneration,
comparative studies with other fish can provide valuable insight into
the conserved mechanisms of heart regeneration in vertebrates. The
rapid advances inwhole genome sequencing and geneticmanipulations
in other fish including the goldfish (Du et al., 1992; Wang et al., 1995),
may facilitate more mechanistic comparative studies and could lead to
better understanding of the evolutionary processes that determine the
extent, maintenance or loss of capacity for regeneration. While our
study used goldfish with closely related standard lengths and body
sizes, the age of the fish were undetermined. For comparative studies
across fish species that lead to a broad understanding of regenerative
capacities, future studies must consider controlling parameters such as
age, developmental stage of the fish, as well as the method, location,
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and extent of the injury. A recent report describing the in vitro fertiliza-
tion and developmental staging in goldfish will facilitate such studies
(Tsai et al., 2013). Findings thus far suggest cardiac regeneration sup-
ported by adult cardiacmyocyte hyperplastic growthmay be conserved
in fish. Regeneration in the goldfish myocardium, similar to the giant
danio and zebrafish (Jopling et al., 2010; Kikuchi et al., 2010), appears
to be supported at least in part by dedifferentiated or partially differen-
tiated cardiac myocytes. Thus understanding the mechanisms of adult
cardiac myocyte dedifferentiation and its relationship to robust cardiac
myocyte cell cycle re-entry and progression is a potentially fruitful
avenue for promoting cardiac regeneration in mammals.
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