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I. ABSTRACT

This thesis develops an undergraduate level understanding of quantum entanglement by expressing
its properties in three unique mediums: mathematical formalism, application in technology and
experiment. The mathematical formalism of entanglement is developed by working through
theoretical experiments that utilize the entangled polarization states of photons. Notation used to
describe entangled photon states is then used to illustrate how other types of entangled quantum
states can be used in real technology, such as is the case with quantum computing. Finally, the
theoretical predictions associated with entanglement are discussed in reference to two quantum
optics experiments.
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II. INTRODUCTION

This thesis establishes a basic understanding of quantum entanglement by discussing
three key topics: the mathematical formalism of quantum mechanics, the application of
entanglement in technological systems such as quantum computing and the results of two
quantum optics experiments which explore the interference effects of entangled two-photon
systems. Discussing the theory of quantum entanglement in the context of these three separate
topics will allow for the abstract qualities of entanglement to be continually explored and
reinforced.

A. Theory of entanglement

Quantum entanglement, in this section, will be described in reference to theoretical
optical experiments involving the polarization of light. To develop an intuitive understanding of
such experiments and the strange implications of entangled systems, this section will outline the
following subjects: the polarization state of light, how it can be expressed as quantum state, and
the difference between a mixed state and an entangled state.

1. Polarization states

The first important concept that will be discussed in this section is the idea of light having
a polarization state. Each electromagnetic wave of light has a polarization state that is defined by
the direction of the wave’s oscillating electric field and how that direction changes over time. It
is also important to note that this direction, no matter how it may be changing, will always be in
a plane perpendicular to the wave’s direction of propagation. There are four different
classifications of polarization that each account differently for a wave of light’s changing electric
field: linear, circular, elliptical, and random. The difference between these polarization types can

be visualized more easily by identifying what is called the polarization vector.



(a) The polarization vector. The polarization vector is a unit vector that combines the
directional components of a light wave’s oscillating electric field and, in doing so, defines the
polarization of the wave. To generate this vector, this paper will follow the logic laid out by the
text of Beck! which starts by looking at general expression for the electric field of a light wave
traveling in the z direction given by:

E = E,u, + E,u,
The total field, E, is broken up into x and y directional components, U, and 1i,, that each have an
associated magnitude represented by, E, and E,,, respectively. The oscillatory nature of the
electric field for both components can be observed more readily by expressing their magnitudes
in cosine form:
Ey = E,, cos(kz — wt)
Ey =E,, cos(kz — wt + Q)
E,, and E, , are the amplitudes of oscillation for each component, z is the waves position and 7 is

time. The two terms, k and w, are two inherent properties of the wave known as the wave
number and the angular frequency, and they can be found through the following relationships
involving the wavelength, A, frequency, f, and speed of light, c:

k_Zn_an_w
T X ¢ <

The last undefined term found in the two component expressions, ¢, is a term that represents a
possible phase shift which allows for the two components to oscillate out of phase from one
another.

The components of the electric field, as expressed in their cosine forms, are intuitive to

understand as they are real and describe an observable physical quantity. However, to generate



the polarization vector, it is more useful to think of these cosine terms as the real part of a
complex exponential which can be understood through Euler’s formula:
e = cos(x) + isin(x)
Applying this general relationship allows for the components of the electric field to be rewritten
in terms of a complex exponential:
E, = By, l(kz-wt)
E, = Eoyei(kz—wt+<p)
The entire expression for the whole field can now be thought of in terms of these newly defined

components:

—

E = onei(kz—wt)ﬁx e Eoyei(kz—wtﬂp)ﬁy

To get to the complete polarization vector, it is now necessary to rewrite this expression for the
field in terms of its full amplitude, E,, instead of just the components. This amplitude can be
understood by applying the general relationship between any general vector and its components

which, in this case, can be expressed in the following way:

E,= |E, 2 +E,}

The expression for the electric field can now be written in terms of its complete amplitude:

R . E E,, .
E=Feilkz—ot) [2x7 4 2 ploy
(¢] EO X Eo Yy

The expression in the brackets is defined as the polarization vector and it is associated with the
term &. This vector is a unit vector and, in its general form, is also complex when the phase shift
is positive. It provides information about the direction of the electric field as well as how a phase
shift between the field’s components effects this direction. Having developed the idea of the

polarization vector it can now be used to understand the different polarization states.
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(b) Linear polarization. Linear polarization can be understood most easily by looking at
the polarization vector in the special case where there is no phase shift between the components
of the electric field. If this is the case, then the complex term goes to one and the whole vector

becomes real:

This expression describes a single direction of oscillation that points in a straight line and thus is
why this form of polarization is considered to be linear. The angle that this line makes with the
respect to the x-axis, 0, can also be observed by implementing the simple trig relationship,

tangent, which relates the two components:

E,
9 = tan~t y]
on

(¢) Circular polarization. Circular polarization can be most easily observed by, once
again, looking at a special case. This case will involve two specific changes to the polarization
vector: a phase shift represented by setting ¢ = 7/2, and setting the components of the field equal.
Doing this generates the following relationship between the components of the fiend and the

whole field:

Eo
Eoy = on == \/—E

Extrapolating these two changes to the polarization vector results in the following expression:

e =—(Uy + iUy)

V2

This vector, unlike the case of linear polarization, contains both real and complex parts which
makes it more difficult to interpret. To understand what this equation means for the actual

observed oscillation of the field it is possible to once again return to the original component



equations for the entire field as they were expressed using cosines. Subbing the phase shift and
the known amplitudes of oscillation into these two component equations allows for the real

oscillation of the field’s components to be observed more easily:

E,
E, = —cos(kz — wt)

V2

E T 5]
E, = — cos (kz - wt + —) = — —Zsin(kz — wt)

V2 2 V2
These two expressions can now be interpreted by looking at how the components oscillate over
the course of one period, T, at a given position, z=0. When this is done, the following result is

generated:

E, E,
E. = —cos(—wt) = —cos(wt
E, E,
E., = ——sin(—wt) = —sin(wt
y =~z onwt) = sinet)

Figure 1: Original illustration of how the direction of the electric field changes for a lefi-circularly polarized wave with the
corresponding component equations, inspired by figure 2.2 in Beck!

This figure illustrates how the components combine to generate the total electric field vector at
different times. As time progresses, the field vector rotates in the counter-clockwise direction
around an axis pointing perpendicular. By the time the field has gone through one oscillation

period it has also fully rotated around the circle and returned to pointing in the original direction

10



it was at t=0. This scenario has illustrated what left-circularly polarized light looks like. As it
might be assumed, a similar but opposite form of circular polarization is right-circular which is
associated with the field vector rotating in the clockwise direction.

(c) Elliptical and random. Elliptical and random polarizations essentially encompass all
the other polarization states that cannot be categorized in either of the special cases of linear or
circular. In the case of elliptical polarization, the polarization is still well defined by its x and y
components and the phase shift between them, but this definition does not correlate with either of
the specific parameters associated with linear or circular polarization. Random polarization, as its
name would suggest, is associated with a wave whose polarization fluctuates randomly in time.
When this form of polarization is observed, the wave is said to be unpolarized and the exact
components of the fields oscillation cannot be directly observed.

To illustrate how polarization states are described in a quantum mechanical framework,
the following section will focus mostly on examples of linearly polarized light as it is the most
straightforward to work with.

2. Quantum states

Up until this point, this section has outlined the classical interpretation of the polarization
of light. To understand how polarization states can be used to describe entangled systems, it is
first necessary to represent polarization in the notation of quantum mechanics. There are three
main components of quantum mechanical notation that are necessary to understand polarization
as a quantum state: state vectors, inner products, and operators. Each of these will be discussed
in reference to an individual photon and then extrapolated to two photon systems.

(a) State vectors. The different possible linear polarizations that were discussed

previously are expressed in quantum mechanics by state vectors. How these state vectors are
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used can be visualized most easily by thinking of two familiar linear polarizations: horizontal,
0=0, and vertical, 6=90 degrees. Each of these polarizations can be expressed as a state vector by
using what is called Dirac notation. This notation involves the use of two different kinds of state
vectors, bras and kets. Initially, it will be most useful to think in terms of kets exclusively. The
general ket notation for an arbitrary quantum state is |). For the specific cases of horizontal and
vertically polarized light the ket notation is |H) and |V}, respectively. Although it might seem
obvious to compare these state vectors directly to the horizontal and vertical orientations of the
classical polarization vector, it is important to note that these two types of vectors are not the
same. The polarization vector has a physical representation and points in an observable direction.
State vectors, on the other hand, exist in an abstract mathematical space called a Hilbert space
and they don’t point in any real observable direction. Although this distinction is difficult to
interpret, it is still an important piece of information that distinguishes the quantum mechanical
interpretation of polarization from the classical.

An important feature of state vectors is that they can be used to form a basis in which
other polarization states can be represented. This new expression for a general polarization state
is expressed as a linear combination of the two |H) and |V) state vectors:

W) = culH) +cylV)
The coefficients in front of the state vectors here are complex numbers which are known as
probability amplitudes. When squared, these amplitudes give the probability of observing the
correlated basis state. Additionally, if the general state vector is said to be normalized then the
sum of the generated probabilities must add up to 1; in other words, the sum of the squares of the

complex coefficients must equal 1. This general form is useful as it can be used to describe any
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polarization state. Table 1 illustrates how this general form can be used to illustrate a series of

common polarization states:

Polarization State General Expression in |H). |V) basis
|H) |H)
V) V)
+45) [+45) = — (1H) + V)
| "z
45) |—45) = —=(|H) = [V))
| ~Vz
L) (left circul |L>—i(|H>+iIV))
|L) (left circular) =72
R) (right circular) IR) = —=(|H) — {V))
=— —1
|R) (right circular NG

Table I: Table of various polarization states and their corresponding expressions in Dirac notation, inspired by Table 3.2 in
Beck!

The idea of creating a general basis state using a linear combination of horizontal and vertical
state vectors can be extended to two particle systems as well.

(b) Type-1 parametric downconversion and two-particle systems. To observe how two
particle systems can be represented in the |H) |V) basis, this section will work through one of
possible outcomes associated with a process called parametric downconversion which will be
abbreviated as PD for the rest of this paper. PD is the process of spontaneously generating two
photons from a single photon incident on a non-linear crystal [5]. It is a process which occurs in
materials with birefringent properties such as a BBO (Beta Barium Borate) crystal. Birefringent

materials are anisotropic, which means that they have multiple indices of refraction that depend
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upon the polarization of the light passing through them relative to their optic axes [1]. The
simplest form of birefringence, and the one most pertinent to this paper, occurs in uniaxial
crystals. These crystals have a single optic axis which determines their anisotropic behavior. In a
uniaxial crystal, light that is polarized perpendicular to the optic axis will experience an index of
refraction, no, which is known as ordinary. Conversely, light polarized along the optic axis will
experience a different index, ne, which is known as extraordinary. The relationship between these
two indices can be used to classify materials into two types of birefringence. If no>ne then the
material is classified as being negatively birefringent. This means that light polarized along the
extraordinary axis will travel through the material at a faster speed than light polarized along the
ordinary axis. The reverse is true for positively birefringent materials where no<ne. The axis
associated with the lower index of refraction in a birefringent material, is often referred to as the
fast axis.

Birefringent materials with a single optic axis, interacting with an extraordinary polarized
incident pump photon, can generate two different types of PD, type-I and type-II, both of which
result in the spontaneous generation of two output photons from a single input photon [S]. The
two output photons are known as the signal and idler photon. Each of them has approximately
twice the wavelength of the input photon and it is their relative polarizations that indicates the
type of PD. If both photons emerge from the crystal polarized orthogonal to the pump photon,
then it is called type-1. On the other hand, if the photons emerge from the crystal with one
polarized along the ordinary axis and the other polarized along the extraordinary axis then this is
considered type-II [5]. Following along with Beck!’s explanation of entanglement, we will
initially only be looking at the case of type-I PD to develop and understanding of two-particle

systems. This can be done by studying the following experimental setup in Figure 2:
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Figure 2: Original illustration of a single photon being split in two through the process of type-one parametric downconversion,
inspired by the figure 8.1 in Beck!

In this setup, type-I PDC occurs when a single vertically polarized pump photon passes through a
crystal. Both the signal and idler photons emerge from the crystal polarized orthogonal to the
pump photon, which in this case means that they are horizontal. Additionally, they each have a
new angular frequency associated with them: w; for the idler and wy for the signal. The two-
photon system that is created in this example can be expressed as a direct product of the
polarization states of the signal and idler photons:

|H)s @ |[H); = |H,H)
This process can be done even if the polarization state of either the signal or idler photons are
something other than vertical or horizontal. For instance, it is possible to place an optical element
in the path of the signal photon that transforms its polarization state to be |+45). In this case the
resultant two particle system could be expressed in a similar way by using the known general
expression for a single photon polarized in the state |[+45):

1

\/E(IH)S + |V>s) ® |H)i

| + 45)s @ |H); = |+ 45,H) = |+45) =

1
= ﬁ(lH)s Q |H); +[V)s & [H);)

il
iﬁ(lH,H)+IV,H))
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This sort of process can be replicated for any two-photon system with any combination of
polarization states for the signal and idler photons. The result associated with this process is
called a product state as it can be factorized into two separate states correlated with the
individual particles. Product states are important for this paper as they indicate how ket vectors
can be used to describe the state of an idler and signal photon simultaneously. However, neither
mixed nor entangled states, although they are still two particle systems, can be written as product
states. This intriguing characteristic will be discussed later, but for the time being it is important
to understand product states as they are successful at introducing the fundamental concepts of
two particle systems.

(b) Inner product. The next crucial topic that must be outlined is the inner product. To
understand the inner product, the second half of the Dirac notation, bra state vectors, must now
be introduced. Every ket state vector has a correlated bra state vector. For example, both ket
vectors representing the H and V polarization states also have a corresponding bra state vector
which is written in the following way: (H| and (V|. Although this change may seem to be just
notational, it can be understood in a more complex way when considering the fact that each state
vector is associated with its own Hilbert space. Beck' explains the difference between the bra
and ket vectors in light of this fact: “The vector space of bras is often referred to as the dual
space to the vector space of kets.” This idea can be understood to some degree by observing how
a general ket state vector can be changed into the same basis but in bra form:

) = cylH) + cylV)  <«—» | =cy (H| + (V]
This transition involves simply switch all the kets to bras while also taking the complex

conjugate of each of the complex coefficients. Illustrating this not only shows how to change
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between bras and kets, but also is helpful for understanding how they are inherently different and
not just a change in notation.

Now that the bra state vector has been introduced, it can be used to understand the
implications of the inner product. The inner product, like the direct product, is a mathematical
operation used to combine state vectors. To form an inner product, a bra and a ket vector can be
placed besides one another to form a bracket. This combination results in a scalar which is a
complex number:

(W1l2) = ¢

Besides this general formula for an inner product there are two additional special results that will
be especially important to understand for the calculations that will be done later. The first result
is that the inner product of orthogonal vectors is equal to zero. This can be visualized most easily
by taking the inner product of horizontal and vertical polarization state vectors:

(HIV) =(VIH) =0
Additionally, the inner product of the bra and ket vectors of the same state will be equal to 1, so
long as both state vectors are normalized. This, illustrated using horizontal and vertical
polarization state vectors, looks like the following:

(HIH) = (V|V} =1
The inner product can be extended to two particle systems rather easily as well. Taking the inner
product of a two-particle system is essentially like taking the inner product of the bra and ket
state vectors for the signal and idler photons individually:

(HVIH,V) = (H[H)sx (V|V);=(1)(1) =1
Or

(H,VIV,H)= (H|V);x (V|[H);=(0)(0)=0

17



The last significant quality of the inner product is that it can be used to solve for the
complex coefficients in the expression for a general polarization state. This ability will be
illustrated by taking the inner product of (H|y) to solve for the complex coefficient in front of
|H), which is cy:

(Hiy) = (H|(cu|H) + cv|V))
= cy(H[H) + cy(H|V)
= cy (1) + ¢y (0)
= cy

Having outlined the functions of the inner product, this section can now move onto the
Jast important tool necessary for understanding the difference between mixed and entangled
states: the projection operator.

(¢) The projection operator. The projection operator is used in this paper to calculate the
probabilities of certain measurements of entangled two-photon systems. More generally the
projection operator transforms a given input state, [1), into a separate output state with some
probability. To understand this more specifically, this operator will be discussed in reference to
an arbitrary optical element which transforms a general state, |1p), into the |H) state with some
probability. The previous statement can be illustrated by the following expression:

Pyl) = cy|H)
If we assume that our general state is in the expected |H) |V) basis, then we can work out what

the projection operator, Py, will look like:

Pyly) = cylH) —» we know that cy = (H|Y) from the earlier section

= |H)cy

= |[HXH[¥)

18



Having reached this equality, it is easy to see that:
Py = |H)(H|
This specific result can be extrapolated to a more general expression for any projection operator:
Py = lhXyl
Moving forward from here, this paper can now make use of the notation developed in this
section explore the strangeness associated with entangled states.
3. Entangled vs. mixed states
(a) Entangled states. To understand the difference between entangled and mixed states it
is first important to define them individually. This can be done most efficiently by thinking about
each of them separately in reference to the hypothetical experiment illustrated in Figure 3. The
experiment depicted in Figure 3 is simply an extrapolation of the one previously observed in

Figure 2, where now instead of having one BBO, we have two:

w;

N
N

Figure 3: Original illustration of an experiment that uses two parametric downconversion crystals 1o
generate entangled photons, inspired by Figure 8.2 in Beck'

The purpose of this experiment is to prepare a system of entangled photons. This is done by
sending an input pump photon with a |4+45) polarization state into two downconversion crystals
who are positioned so that their optic axes are orthogonal: in this case aligned perpendicular to

page and parallel to the page. Positioning the crystals in such a way ensures that they will
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generate pairs of signal and idler photons with each pair being polarized orthogonally to the
other. The first crystal will convert vertically polarized pump photons into horizontal signal and
idler photons while the second crystal converts horizontally polarized pump photons into vertical
signal and idler photons. Having the pump photon be polarized at |[+45) makes each of these
actions equally likely to occur. If the crystals are sufficiently thin, then it is impossible to know
which crystal generated which photon. Additionally, it becomes impossible to determine the
polarization of the signal and idler photons without making a measurement. If this level of
indistinguishability is achieved, then the signal and idler photons can be said to be entangled.
This means that the polarization state of this two-photon system exists as a superposition of the
two possible states generated by the downconversion process and can be expressed in the
following way:

S
V2

It is important to distinguish this expression from the result achieved through the direct product

9% =—=(H,H)+[V,V))
back in this paper’s discussion of product state. The entangled expression does not allow for the
individual |H, H) and |V, V) to be thought of as two separate states. More simply, the coefficient
cannot be distributed to each individual ket vector. This is because the entangled state must be
thought of as a single combined system of the two possible states of |H, H) and |V, V). The
implications of this principle of superposition can be revealed by studying the probabilities
associated with certain polarization measurements.

The theoretical measurement that will be imposed on the previously prepared entangled
state can be described by the following question: What is the probability that the signal photon 1s

measured any polarization angle, 6, given that the idler was already measured at that same
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angle, 8; = 6,7 To answer this question, we must calculate a conditional probability. Beck'

provides the following formula for a conditional probability:

P(es' 91)
P(6;)

P(616;) =
To calculate a value using this expression, it is necessary to separately calculate the numerator
and the denominator. The numerator is a joint probability, which is equivalent to the probability
of measuring the signal and idler photons at the same polarization angle. For an entangled state,
this is calculated by finding the expectation value of the projection operator associated with the
output state of our proposed system. An expectation value can be represented by the bra of the

input state, the projection operator and the ket of the input state. Applying this logic, we can

make the following calculation:

P(65,6:) = (™| Pg,0,19™)

= (H I+ V.V 1)(18,0X6, 0D < (1H,H) + 1V, V)

- %[(m,me,a) +(V,V16,6))((6, 81H, H) + 6,81V, V)]
= %[(cose * c0S0 + sinf * sinf)(cos6 * cosO + sin * sinb)
= % [(cos?8 + sin?6)(cos?6 + sin®6)]

- W =3

The denominator can then be found similarly:
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1 1
= Z5 (L HI+ V,VD(I6); §61) = (H,H) + 1V, V)
= 2LCAHI §HIB)+ V) VIO ABIHNIH), + (8IV)IV),)

1
= E[( «(H| *cos8 + (V| *sinf)(cosO * |H)g + sinb * |V);)

1
= 5( (H|H)scos20 + ((H|V)scosBsind + ((V|H)scos8sin® + (V|V),sin?6)

- %((1)c0329 + (0) + (0) + (1)sin?6)

1

1
=3(0=3

Having found both the numerator and the denominator, the total probability can be calculated:

P(QS. HL) _

Bl = o] =
—_

What this result effectively means is that for photons prepared in the given entangled state, [p™),
if the idler photon is measured to be polarized at some angle, §;, then the signal photon will
always be measured at that same polarization angle, 6 = 6;, no matter what the angle is. This is
a unique result that doesn’t appear to intuitively make sense. It is almost as though the two
photons seemingly collude to always be measured at the same polarization angle. This strange
result will now be shown to be unique to entanglement.

(b) Mixed states. Mixed states are different from entangled states in the sense that they do
not maintain the idea that the general polarization state is a superposition of the two basis states.

Instead, mixed states assume that the polarization is randomly prepared in either one of the two
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possible states. This means that the polarization of a photon in this system is observed as being
one state or the other, each having a separate probability of occurring. Mixed states also cannot
be written as a product states, this is because they cannot be described by a single state vector. In
order to compare a mixed state to the previously examined entangled state, this section of the
paper will calculate the probability of the same measurement as before but instead of assuming a
general entangled state, [¢*), it will assume that the two-photon system has been prepared with
equal amounts of |H, H) and |V, V). Mixed state probability calculations rely on classical
probability theory: A total probability is found by multiplying the probability of getting the
desired result given one of the input states, together with the probability of that input state,
summed over all the possible input states. Implementing this sort of calculation gives us the
following results for the numerator of our probability expression:

P(6,,6,) = P(6,6;||H,H)) » P(|H,H)) + P(65,0,]|V,V)) * P(JV, V)
= 1 " 1

e (H, HIPGS,BilHlH) (E) + (V, V|P95:9i|V’ V) (E)

1

1
=5 [(cos@ * cosB)(cosB * cosh) + (sind * sinf)(sind * sinb)]
1
= (cos*8 + sin*8)

A similar approach is necessary to find the denominator:
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P(8;) = P(81|H, H)) » P(|H,H)) + P(8,]|V,V)) * P(IV, V')
= (H,H|Py,|H, H) (%) +(V,V|P |V, V) (%)
=%((H,H|9)i {OIH,H) +(V,V18); (8IV.V))

- %( {H|8): (OIH); (HIH)s+ (V18); (8IV); VIV);)

1 . 1 1
= E(cosze x (1) +sin%6 % (1)) = E(l) ok

Plugging the found numerator and denominators into the probability expression, a very

interesting result can be observed:

P(8,,6,) %(00549 + sin*®)
P(6) 1
2

P(6,16;) = = (cos*d + sin*0)

This result indicates that a mixed will be able to generate the same results as an entangled state
only if the measured angle of the idler photon is equal to either 0 or 90 degrees. For other
measured polarization angles of the idler photon, such as 45 degrees, this result asserts that the
signal photon will only be measured at the same angle half of the time. This result is vastly
different from the result asserted by the entangled state calculations. The theory behind the
unique correlation effects of entangled states, like the ones outlined in this section, will be used
later in this paper to interpret the intereference effects being tested for in the two quantum optics
experiments.

For now, however, the theory behind quantum states and entangled systems will be

reinforced in a real world setting by looking at several examples of quantum computation.
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III. APPLICATIONS OF ENTANGLEMENT
1. Qubits and quantum computing

Quantum computing is a new form of computing that utilizes quantum entanglement to
create extremely fast and powerful computing systems. To develop an understanding of how
quantum computing functions, this section will first build a theoretical model of the quantum bit,
which is the fundamental system responsible for generating computing. Entanglement can then
be introduced into the model through a discussion of various research articles that have explored
different types of quantum bits and how they are applied in real computing systems.

(a) Classical computing and probabilistic bits. Quantum computation involves a lot of
higher level mathematics and an understanding of complicated linear algebra systems. Taking
this into account, this section will closely follow the theory described in work done by Kaye et
al. as it focuses less heavily on math and more on reinforcing the intuition we have already
developed. A basic review of their work will be the basis for understanding the scientific journal
articles whose research is pushing the boundaries of the field.

The quantum mechanical model of quantum computing will be built up in a similar way
as the model of quantum states of polarization was developed in the first section: beginning in a
classical framework and slowly transitioning to a quantum one. This is because a foundational
understanding of classical computation is more intuitive and a lot of the math and logic
associated with the classical model can be useful in understanding theory of quantum
computation. Kaye’ begins by developing a circuit model of computation which can be observed

in Figure 4:
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Figure 4: A circuit diagram with four wires. The i values are input bits, o values are output bits, and G boxes are gates which
facilitate the transfer of information from an input wire to some outpul wire [7]

This model has four wires that run horizontally across the image and that pass through four gates
that are labeled with capital G. These gates are responsible for the actual computation done by
the circuit as they transfer input bits of information, displayed as i, on the left, from one wire to
another. Their presence in the circuit is what transforms the input data, in, into the output data on
the right: the oy values. The presence of gates also helps define the passing of time within this
circuit model. A time slice is defined as the time taken to implement a single gate. Additionally,
the number of time slices that exists in a circuit is defined as the depth. The other parameters
used to describe this circuit model are space (width), which is the number of wires in the circuit.
Space, depth, and the number of gates are the basic parameters for which circuits in this model
are described. The specific model illustrated in Figure 4 is a circuit of depth 4, space 4 and a total
of 4 gates. These values are a simple way of describing the complexity of any given circuit.
Kaye’ pairs the basic modeling of a circuit with the mathematical description of
computation for a classical system using vectors and matrices. To do this, focus is drawn to a
single given point on a wire in the circuit for which a single bit of information can be observed.
The state of the bit in a deterministic circuit is given as being either 1 or 0. To facilitate the move
towards quantum computation, Kaye’ instead develops the idea of a probabilistic circuit for
which a single bit, at a given time, exists as a 2-dimensional vector of probabilities such that

there are two terms, po and pi, that are used to describe the state of the bit at a given time [7]. In
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this model, po is the probability that the bit is in state O and pi is the probability that it is in state
1. Computation in this model requires that gates are understood as operators which transform the
two-dimensional probability vectors into a new output state with some probability. This form
should seem familiar as it mirrors the function of operators in quantum mechanical systems of
polarization. A simple operator used by Kaye’ to illustrate this idea is performed by a NOT gate
which, in its most simple form, acts by flipping a deterministic bit from its given value of either

1 or O to the opposite value [7]. This operator is applied to probabilistic vectors by using a matrix
that contains both possible input states of a state vector (0,1 and 1,0). The matrix itself is
necessary in this case because the probabilistic state vectors effectively contain two possible
inputs that need to be accounted for in the computation. Figure 5 illustrates how this NOT gate

can lead to the flipping of the vector of probabilities by multiplying by the matrix with the state

or (i) = [19] (o)

Figure 5: Hlustration of the NOT gate flipping a probabilistic bit. NOT gate is a matrix of the possible inputs associated with a
probabilistic bit [7]

vector:

The understanding of the probabilistic bit as a vector becomes very powerful when more
than one wire is observed at a given time. Observing two wires inherently means observing two
bits simultaneously. To successfully describe the state, in terms of probability, of these two bits
requires the implementation of the tensor product. A tensor product allows for two vector spaces
to be combined and is closely related to the direct product, which was used to combine

individual polarization states into a two-photon system. The effect of the tensor product in the
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current context is illustrated in Figure 6, where two probability vectors are combined to create a

4-dimensional vector of probabilities that describes the state of two bits at a given time.

Poqo

Poqr | _ (?10) & (qu)
P14o ™ q1
P11

Figure 6: The tensor product of two vectors describing the state of two bits in a circuit. Product is a 4-dimensional vector that
describes the total system of two bits [7]

The 4-dimensional vector of probabilities outlines all the possible combinations of the two bits
being observed at once. Understanding the formation of vectors such as these as well as what
they represent is useful for understanding more complicated forms of computation in
probabilistic settings. Developing this understanding of probabilistic classical bits and circuits
lays the groundwork for developing the model of their quantum equivalents.

(b) Theory of quantum bits. Quantum bits, also known as qubits, are individual units of
quantum information. The formation of a qubit mirrors the theory of a probabilistic classical bit.
Like a classical bit, a quantum bit can be encoded into a system that contains two levels. Some
systems that fall into this category are moving photons that can travel along one of two possible
paths, spin 2 particles such as electrons, and even electrons bound between to two distinct
energy levels [7]. Each of these systems, among others, allow for a state of O or 1 to be
associated with an observed state of the system. In a classical system, probabilities of observing
these states were given with the values of po and p1. As we know, in a quantum system, each
state is associated with a complex coefficient, which is related to probability. In this case, the
quantum state will be a linear combination of the basis states 0 and 1, each of which is associated
with a complex coefficient ag and a;. The entire system can be expressed as it is illustrated in

Figure 7:
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Figure 7: General state of a quantum bit with ao and a; being complex coefficients that are described as the amplitudes of each of
the basis states, 0 and 1 [7]

This is the most simplified form of a qubit. Much like the quantum states associated with
polarization, the basis states of 0 and 1 are associated with a Hilbert space. Combining them in
this way allows for a single vector to be defined within the Hilbert space that is associated with
state of the entire system. This complete vector form of a qubit is displayed in Figure 8. It is an
extended version of the system displayed in Figure 7 and has the coefficients ap and a; written in

their complex forms.

[4) = cos (%) |0) + ¥ sin (%) 1)

Figure 8: General vector form of a qubit [7]

The vector described by this system can be understood more thoroughly by building off the
understanding of a classical bit. The state of classical deterministic bit can be equal to either 1 or
0. A probabilistic classical bit expands upon this system and can be described by a two-
dimensional probability vector that contains the terms po and p; which represent the probability
of the bit being in either the 0 or 1 state. The vector form of a qubit can be described as a single
point on a 3-dimnsional surface called a Bloch sphere [7]. All three bits and their interpretations

can be observed in Figure 9.

ho

Figure 9: States of deterministic classical, probabilistic classical, and quantum bits [7]
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Every point on the sphere corresponds to a pure state of the system. The two basis state vectors,
0 and 1, can be observed as the vectors pointing directly up and down on the z axis. The
coefficients in front of the basis vectors determine the components of the entire state vector
while the phase shift term, ¢, rotates the vector around the sphere. Each state on the sphere,
except for the pure states of 0 and 1, represents a superposition of the two basis states. This
system allows for an infinite number of states to be generated compared to the classical bit who
only has the two states 0 and 1. With the basic form of the qubit described it is now interesting to
explore what natural phenomenon have been used to create them as well as how they can be used
in computation.

(c) Formation of real qubits. As described before, any two-level system can be used as a
qubit. Work done by Tosi'' et al. illustrates how the outermost electron and nucleus of a
phosphorus atom can be used as qubits. The electron itself is a two-state system that can be in
either a spin up or down position. The alignment of electron is controlled by applying a magnetic
field to the area surrounding it. The electron can then be flipped to the spin up state by applying a
specific amount of energy to the electron in the form of a microwave pulse. The exact frequency
of the microwave pulse is found by considering the magnetic field that the electron is placed
within. With the magnetic field known, the resonance frequency of the electron can also be
found. This frequency is what is applied to the electron to force it into the spin up state. Using
different pulses of this frequency, the electron can be placed into different superpositions
between the states of spin up and down. This setting is like the image of the Bloch sphere with
the vector representing a pure state between the basis vectors 0 and 1. The nucleus of the same
atom can also be used as qubit as it too has a spin associated with it. Reading out the values of

the spin of both of these systems is done by placing the phosphorous atom within a silicon 28
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transistor. It is also important to note that silicon 28 is necessary because it naturally does not
have any nuclear spin. The lack of nuclear spin allows for the changes in the electron system
associated with magnetic fields to be attributed solely to the experimental equipment and the
phosphorous atom itself.

To observe the spin of the electron, Tosi'' et al. observe changes in'current flowing
through the transistor. This is possible because the additional energy given to the phosphorous
electron to put it in the spin up state is enough to kick the electron out of the atom and into the
transistor leaving the phosphorous with a positive charge. The additional positive charge
effectively increases the current flowing through the transistor and is used to indicate when the
electron is in the spin up or down state. A similar technique is used to observe the spin of the
nucleus as well as the small magnetic field produced by the nucleus plays a part in determining
the resonant frequency of the electron. This means that depending on the spin of the nucleus, the
electron will either react or not to the magnetic pulses applied to it. Transitive thinking allows for
the change in the current read to additionally be used to read off the spin of the nucleus.

In addition to electrons and nuclei, work done by Fiorentino® et al. uses single photons as
a qubit. They encode information onto the photon by taking advantage of two of its properties:
the polarization and the angular momentum [6]. The two polarization states are simply defined as
horizontal and vertical while the two momentum states are related to the photon’s position within
the beam and are defined as either top or bottom. Polarization and momentum states are created
by implementing various forms of beamsplitters. To create the two polarization states, a device
called a Sagnac interferometer is placed within the path of the beam. The interferometer has a
prism that directs differently polarized light in two different directions, thus creating the two

states. Additionally, the momentum states are separated by placing a halfwave plate with its optic
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axis 45 degrees from vertical in the path of the photon beam. The photons essentially exist in a
superposition of polarization and angular momentum states. Information can be read off of these
formed qubits by sending them through an additional optical system which ends in two
coincidence detectors that are located at the end of the split beams of photons.

Having provided a few examples of the formation of real qubits it is now interesting to
understand how they can interact with gates and other qubits to generate computation.

(d) Quantum computation with entangled qubits. Computations can be done with qubits
in a similar fashion as the previously explained classical bits. In both systems input bits interact
with gates or operators to ultimately develop a different output value. In the qubit system, actions
done to the bit by an operator correspond to rotations in the axes of the Bloch sphere [7]. This
changes the output state of the system in a similar way that a NOT gate changes the state of the
classical system.

Two bit systems in a quantum framework can also be acted upon by an operator to
generate computations. The principle property of a pair of interacting qubits is their ability to
become entangled. Entangled qubits exhibit similar properties to that of entangled photons: the
state of one qubit cannot be described completely without considering the state of the entire
quantum system. This means that the states of entangled qubits are inherently correlated with one
another.

Having entangled qubits allows for more complex systems computing systems to be
created. To read off the state of these highly entangled states in full, it is necessary to have more
information to describe the entire system. This means that more information can inherently be
encoded onto a system of qubits compared to classical bits. A simple comparison can be made by

looking at two qubits versus two deterministic classical bits. To describe the system of two
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deterministic quantum bits only two numbers are needed, 0 and 1. The two-qubit system, on the
other hand, requires 4 complex coefficients to completely describe the system. Increasingly
complex systems of entangled qubits require exponentially more numbers to describe them
compared to classical bits. This translates to more potential opportunity for information to be
encoded.

The application of qubits as a powerful new tool for computation has been implemented
in select technologies, but the widespread use has been limited by the precision the settings
required for qubits to exists. Many of the substances used to create qubits, such as electrons and
photons can only be worked with in lab settings that aren’t practical for everyday use. Electrons,
for example, must be cooled to near absolute zero in order to be used as qubits as the thermal
energy present at room temperatures will destroy the two-spin state system by providing the
electron enough energy to constantly switch between states uncontrollably. Looking forward into
the future, Boykin et al.* experiment with a process of algorithmic cooling in hopes that their
findings will result in the creation of more efficient quantum computers. On a basic level,
algorithmic cooling is a phenomenon in which certain forms of computation done with a
quantum computer result in a negative entropy and thus a cooling effect. Their research is a
breakthrough in the sense that the computation they have developed involves qubits interacting
with their environment to naturally create a cooling effect. Outside of this research, interactions
with the environment normally have a disruptive effect on the qubit system like in the case of
thermal energy disrupting the spin states of an electron. Hopefully the work done by Boykin®

will allow for qubits to be created and maintained more efficiently.
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IV. EXPERIMENTS
1. Introduction and theory

To illustrate how entanglement can be observed in a lab setting, Dr. Caraher and 1
conducted two optical experiments with the intention of observing intereference effects
previously studied in entangled photons systems.

(a) Type-1I parametric downconversion. Type-II PD was desirable for our experimental
setup because the entangled signal and idler photons are polarized orthogonal to one another.
This characteristic allowed for us to manipulate the paths of the photons individually using optics
that are sensitive to polarization. In type-1I PD entanglement is generated in a different way than
type-1. Catalano® provides a useful figure which illustrates an important characteristic of type-II

PD:

Type-II Down-Conversion

Figure 10: Hlustration of type-1I parametric downconversion 5]

Figure 10 illustrates nicely how the output beams of type-II PD are constrained to be inside one
of two cones. Each cone is associated with a certain polarization. Entanglement is observed only
in the area in which the two cones intersect. This is because the polarization within that area is
uncertain, and the state of the system must once again be described as a superposition of the

possible polarization states. Additionally, it is important to note that there is an inherent 8t
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associated with type-II PD. This is caused by the birefringent nature of the uniaxial BBO crystal
as discussed earlier. One of the downconverted photons will be polarized along the fast axis
while the other is polarized perpendicular to it. This means that they will experience different
indices of refraction, and thus will move through the material at different speeds. Newlight
Photonics, the manufacturer of the BBO crystal used in this experiment, provided a calculated
delay time of approximately 96.7 femtoseconds which was found by finding the speed of light
along the fast and ordinary axes and generating a travel time for each photon based upon the
thickness of the crystal. Uncertainty in this number is due to an uncertainty in where the photons
were downconverted within the crystal.

(b) Hong-Ou-Mandel effect. The Hong-Ou-Mandel effect is an interference effect that
can be observed when detecting coincidence rates of entangled photon pairs passing through a

beamsplitter. Branning* illustrates a simple optical system which can generate such an effect:

o1

Figure 11: Simple representation of an optical system that generates the Hong-Ou-Mandel effect [4]

This system begins with a PD crystal which generates entangled signal and idler photon pairs
whose individual paths are indicated by the red lines. These photons are sent through an
undisclosed optical path so that they both come together at a beam splitter at the same time. The
photons each have an equal chance to being either reflected or transmitted at the beam splitter.
This means that there are generally four possible outcomes for the system: both are transmitted,

both are reflected, the signal is reflected and the idler is transmitted, or the idler is reflected and
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the signal is transmitted. A coincidence count is recorded when both detectors are hit with a
photon within a certain collection time window. In the case where either the idler or signal
photon is reflected and the other is transmitted, both photons will travel towards one detector and
no coincidence will be registered. It is only when both photons are either transmitted or reflected
that they will go to different detectors and a coincidence count will be recorded. Taking into
consideration the possible outcomes for this system, it is reasonable to expect to observe a
coincidence count fifty percent of the time as double reflection or transmission will statistically
occur half of the time. However, if the beamsplitter is placed in such a position where it becomes
impossible to tell if the coincidence count was the result of a double reflection or double
transmission, destructive interference occurs and the observed coincidence count rate will go to
zero. The position of the beamsplitter in this case is such that the time it takes for each photon to
either be reflected or transmitted and travel to the detector is the same. This strange intereference
effect can be observed in the plot provided by Branning in Figure 10. In this plot, coincidence
counts are recorded as a function of the travel time difference between the two photons, which in
this case is indicated by the term dt. When 8t is equal to zero the photons are indistinguishable
and there is complete destructive intereference. However, as the beam splitter is moved away
from this position, toward one detector or the other, the time it takes for a reflected photon and a
transmitted photon to reach the detector becomes increasingly distinguishable. As &t gets farther
and farther away from zero, the photons become more and more distinguishable in time, the
destructive intereference slowly goes away and the coincidence count rate returns to expected

rate of fifty percent.
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Having developed intuition about the Hong-Ou-Mandel effect and the reasoning behind
implementing type-1I PD, it is now possible to move forward to a discussion of our experimental
setups.

2. General Setup

Both of our experimental setups were essentially identical, and only differed in the way

&t was varied. To avoid repetition, this section will first go over the aspects of each setup that

remained constant in both experiments. These can be observed in the following Figure 12:
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Figure 12: Original illustration of the complete optical sysiem implemented in both of our experiments, with a general area
labeled 6t 10 account for differences in the two

The setup beings with a continuous wave laser whose wavelength was measured using an
Oceanoptics spectrometer. Figure 13 illustrates the plot of intensity versus wavelength measured

by the spectrometer for our laser:
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Figure 13: Emission spectroscopy data collected for the CW laser used in both experiments

The main peak was measured to be at approximately 401.5 nm while the small peak was around
800 nm, although the exact measurement was not crucial. To avoid flooding our system with the
unwanted 800 nm light coming from the laser, the next optic we placed in the beam path was a
shortpass filter that transmitted light only of wavelength 400 +/- 40 nm. After being filtered, the
beam then passed through a halfwave plate so that the polarization of the blue beam could be
manipulated. In our final setup, the halfwave plate was oriented so that the polarization of the
beam would be vertical.

After passing through the halfwave plate the beam was then focused onto the BBO
crystal using an achromat lens which has a constant focal length regardless of the wavelength of
light being shone through it. The BBO crystal itself was placed in a gimble mount which allowed
for it to be rotated about its center in three different directions. This gave us control over the
alignment of the fast axis of the crystal so that we could align it correctly to the polarization of
the input light being controlled by orientation of the half wave plate. Having control over these

alignment variables helped us to create a system in which PD could take place. In our setup, we
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aligned the BBO so that its fast axis was vertically oriented to match the input beam.
Additionally, the small amount of delay caused by interaction of the birefringent BBO with the
polarizations of the signal and idler photons is illustrated in Figure 12 by visibly separating the
two photon symbols.

Both the downconverted beam and the extra blue light were then collimated by a second
achromat lens which was mounted on a translation stage so that collimation could be optimized
by small adjustments in the distance between the lens and the BBO. The original blue beam was
then blocked using a longpass filter which only transmitted light of wavelength longer than 750
nm. This optic ensured that only our downconverted beam would be a part of the system.

At this point, the downconverted beam was steered into the unique optical system
responsible for controlling the time delay between the signal and idler photons. In Figure 12, this
is simply denoted as box 8t. Details about the contents of this area for each setup will be
discussed specifically in reference to the experiment in which they were used.

After passing through box 81, the beam was then steered with mirrors so that it would fly
through two irises, whose height was determined by the height of the detectors. These irises were
useful for aligning the beam as they indicated the path that the beam needed to follow so that the
photons would be focused correctly onto the detectors. Additionally, their adjustable aperture
size was helpful for controlling the amount of light passing into the final parts of the system. In
between the irises was also a mount used to place a variety of optics such as halfwave plates,
quarterwave plates and linear polarizers. This open mount provided us with the flexibility to
manipulate the beam in a variety of different ways before passing it on through the final set of

optics.
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The last system of optics was enclosed in a box made of foam boards. Enclosing this
system was important as it eliminated a significant amount of ambient light that would have
disturbed the count values registered by the detectors. The contents of this light tight box can be

observed in Figure 14:

Figure 14: Image of the opiical system used Jor detection of coincidence rates in both experinients

Once inside this box, the beam then passed through a polarizing beamsplitter cube,
which transmits either horizontal or vertical light and reflects the other. The split beams were
then each focused onto a detector using a best form lens which corrects for a different form of
aberration called spherical aberration. Spherical aberration is the improper focusing of light that
occurs due to the structure of the glass in a lens. Using these helped us achieve higher precision
when focusing the downconverted beam on the detectors.

Count data was recorded by connecting the detectors to an Altera DE2 development and

education board which was used to set the coincidence resolution. This is the maximum amount
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of time difference between single detections that is still registered as a coincidence. In both of
our experiments this was set to 7.05 +/- 0.09 nanoseconds. Count data was then collected using a
program called LabVIEW which utilizes programable virtual instruments to display and record
count data from the DE2 board.

The last element in our setup was a HeNe, helium neon, laser which was used purely for
alignment purposes. Downconverted light from our previously discussed system was infrared
and invisible to the naked eye. Matching the path of the visible HeNe laser to the path of the blue
beam allowed us to visibly approximate the path of the downconverted light. Although the paths
of the HeNe beam and the downconverted beam were most certainly not perfectly aligned,
implementing this strategy allowed us to get everything close enough so that the final alignment
could be optimized using readings from the detectors. The HeNe beam was introduced to the
system using two steering mirrors, one of which was a removable pick-off mirror that was placed
in the system when the visible laser was needed.

3. Experiment 1: Michelson interferometer

(a) Setup. The first experiment used an optical system called a Michelson interferometer

to generate delay between the signal and idler photons. Figure 15 illustrates the different

elements of the Michelson used in this experiment:
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Figure 15: Original illustration of the Michelson interferometer used in experiment I alongside a real image of the system
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The input photons enter the system with some 8t associated with type-1I PD. They pass through
a polarizing beam splitter and one is reflected and the other is transmitted, much like the system
used to send the beams to the detectors. The two photons then each pass through a quarter wave
plate which results in them becoming circularly polarized. After reflecting off of a mirror, the
photons once again pass through the quarterwave plate and become linearly polarized once
again. The process of passing through the quarterwave plate twice results in the linear
polarization being rotated 90 degrees. This means that each photon will interact with the
polarizing beamsplitter cube in the opposite way that it did the first time. The result of this
system is that the both photons emerge from output port of the beamsplitter cube polarized
orthogonally to one on another just as they were before. Time delay between the two photons is
generated in this system by placing one of the mirrors on a translation stage so that its position
relative to the cube can be controlled. Changing this distance alters the time it takes for one of
the photons to travel through the system, thus ultimately changing 8t. In our setup, we used a
translation stage powered by a ZABER motor which allowed us to make controlled adjustments
in the position of the mirror on the order of microns.

The last crucial part of this setup involved placing at halfwave plate oriented with its fast
axis 22.5 degrees away from vertical in the open mount between the two irises leading into the
detector box. This optic rotated the polarizations of both the signal and idler photons by 45
degrees so that it became uncertain how each photon would interact with the polarizing
beamsplitter cube. In theory, generating indistinguishable photons pairs in this way would lead to
destructive interference and a dip in coincidence counts similar to what was illustrated in

Branning®’s thesis.
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(b) Data and analysis. The ZABER motor utilized in the Michelson was compatible with
the LabVIEW virtual instrument TauScan3.vi programmed by Dr. Caraher. This instrument
recorded the counts registered for each detector, coincidence rates and delay times while
simultaneously controlling the position of the motor. To collect data, we set the program so that
it would place the mirror at a starting location far away from the cube and record count rates for
half of a second at each position of the mirror. After each collection, the ZABER would then
translate the mirror one step forward until it reached a target end position. Before discussing the
data being presented in this section, there are two important distinctions that must be made: the
difference between delay and 8t, and the difference between the raw coincidence rate and the
real coincidence rate.

51 is the relative delay between the signal and idler photons, and when it is equal to zero
this indicates that the photons are on top of one another. In Figures 16 and 17, delay represents
the time difference between the two arms of the Michelson. The initial position of the mirrors in
the Michelson at the start of the data run is associated with delay equal to zero. Every step of the
mirror in the translating arm increases the delay parameter by an amount determined by the size
of the translation. For both data runs, each step of the motor was associated with a 10
femtosecond increase in delay. Collecting data in this way was useful because we did not know
the position of the translating mirror that was correlated with 8t equal to zero. In sweeping
through a wide range of mirror positions we hoped to observe a dip in coincidences due to the
Hong-Ou-Mandel effect. The delay time associated with the center of this dip would allow for us
to identify the position of the translating mirror correlated with 6t equal to zero.

Figure 16(a) includes both the raw and real coincidence rates to illustrate the difference

between the two. The raw coincidence rate, as indicated by the orange series, is the number of
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simultaneous detections registered by the two detectors. This value contains within it a certain
number of expected random coincidence counts that will occur simply due to the volume of
photons hitting the detector and the size of the coincidence resolution. An estimate for the
expected random coincidences per second can be generated by multiplying the individual count
rates per second and the coincidence resolution time together. This expected random per second
rate can then be used to determine a value for the total number of expected coincidences by
multiplying by the collection time. The real rate of coincidences is indicative of downconverted
photons hitting the detectors at the same time and can be found by subtracting the calculated
pumber of randoms from the total recorded coincidence rate. All figures discussed in this paper,
aside from 16(a), will display only real coincidence rates because the interference effects we are
interested in do not affect the random coincidence rate.

Figures 16 and 17 display the results from two separate data runs. Each figure contains
two graphs, a and b, which plot real coincidence count rates versus delay and the detection rates
for the individual detectors versus delay respectively:

Coincidence Rates vs Delay (fs)
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7.00E+02
6.00E+02
5.00E+02

4.00E+02 ® Real Coincidences

3.00E+02 ® Raw Coincidences

Coincidence Counts

2.00E+02
1.00E+02

0.00E+00
0.00E+00  2.00E+04  4.00E+04  6.00E+04  8.00E+04  1.00E+05  1.20E+05

Delay (fs)

Figure 16(a). Both the raw and calculated real coincidence rates versus delay in femtoseconds
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Singles Counts vs. Delay
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Figure 16(b): Count rates for individual detectors A and B vs delay in femioseconds

Looking at the real coincidence rate versus delay in Figure 16(a) we do not observe a dip
in the real coincidence count rate correlated with the Hong-Ou-Mandel effect. This could be for
several reasons. The mutual downward trend in all the count rates indicated alignment issues in
the translating arm of the Michelson. Any alignment issue present in the mirror at the start of
collection would only be exacerbated by moving the mirror. Translating the misaligned mirror
could have steered the downconverted beam away from the desired beam path and resulted in the
decrease in count values. The striking difference in singles count values also indicated a possible
issue with the alignment of the optics in the detector box. It was possible that lens focusing the
beam onto detector B was improperly aligned, resulting in the large difference in counts
registered compared to A. Attempting to fix alignment issues in the detector box was a difficult
task because it required making adjustments inside the box while the detectors were on and
registering counts. Doing this increased the risk for the detectors to be exposed to large enough

amounts of room light to damage or even destroy them. To avoid this risk, we opted to first test
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to see if the issue was a result of faulty electronics. This was done by switching the cables

connecting the detectors to the DE2 board for the next data run to see if the ratio between counts

in A and B persisted in both runs.
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Figure 17: Data collected from our first run using the Michelson setup: plots coincidence rates vs. delay in femioseconds (top),

plots count rates for individual detectors vs delay in femtoseconds (bottom)
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Before starting the second data run, the system was realigned in an attempt to get rid of
the issues that may have been present in the first run. This was done by maximizing the raw
coincidence rate through the adjustment of the orientation of the BBO, the position of the
translating lens immediately after the BBO, the steering mirrors and the mirrors in the arms of
the Michelson. The alignment of the translating mirror in the Michelson was tested by watching
the count rates update while manually moving the mirror through its full range of positions.
Additionally, the apertures of the two irises leading into the detector box were closed down
farther in order to more precisely define the beam path.

Despite these adjustments the data collected in this similarly did not produced the desired
Hong-Ou-Mandel effect. The peaked trend in the real coincidence count rate indicated more
alignment issues with the translating arm of the Michelson. Additionally, the ratio of counts
between A and B remained the same compared to the first run, indicating that the difference in
the registered counts was not an electronic issue. The continual alignment issues stemming from
the precise nature of the Michelson led us to try a different optical setup to control dt.

4. Experiment 2: quartz plates
(a) Setup. The optical system that we used to control &t in our second experiment consisted of a
series of positive birefringent quartz crystal plates similar to the system implemented by
Sergienko'®. Each plate was marked on the edges to indicate the direction of the optic axis. For
each of the plates the optic axis was parallel to the marked edges. Being able to distinguish
between the orientations of the plates was essential as it allowed us to align the optic axes of
multiple plates to one another. Figure 18 provides an image of the quartz plates with their

markings as well as the system used to mount them in the beam path:
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Figure 18: Birefringent quariz plates used to generate delay in experiment 2 alongside the instrument used to mount them

Unlike the BBO, the amount of delay correlated with each crystal plate was not provided by the
manufacturer. To calculate this value, we found the speed of light associated with both the
ordinary and extraordinary photons and converted it to a travel time based upon the distance
traveled through the thickness of the crystal. The difference between these travel times was used
as our estimated delay for each plate.

To correctly calculate delay, we had to account for the difference between phase velocity
and group velocity. The difference between the two can be understood by looking at Figure 19:

Ve

—y

Figure 19: Ilustration of photon propagating to the right with blue dots moving at group velocity and red dot moving at phase
velocity

Figure 19 illustrates a photon that is propagating to the right. The blue dots define the boundaries
of the envelope of the wave packet while the red dot is fixed to an arbitrary peak propagating
inside the wave packet. The propagation speed of the entire envelope, as defined by the blue

dots, is known as the group velocity and it is labeled in the Figure as Vg. This speed can be
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different than the propagation speed of the individual peaks inside the wave packet, which is
known as the phase velocity, V,. Essentially this means that the red dot fixed to the peak can
eventually overtake the blue dot on the right as the wave packet propagates to the right. When
calculating the delay for each quartz crystal we were interested in the group velocity and not the
phase velocity. This is because our system relies on manipulating the travel speed of photons,
which are wave packets. Taking this into account, the following formula could be applied to
calculate the group velocity of a photon with wavelength, o, traveling through a medium with a

given index of refraction, n, where c is the speed of light in meters per second:

Before we could utilize this formula, however, we first had to find the values of the indices of
refraction associated with the ordinary and extraordinary axes and the value of the differential
term dn/8)o. These terms were found using the following sellmeier equations for crystal quartz

provided by Boston Piezo-Optics Inc.”:

n3 = 3.4269 +

1.0654 + 10'2] IO 0027611?] [ 127:2 ]
A —0.010627] A—.000974 A— 108

(Ain um)

.00844614 ] [0.00276113] [127.2]
A

2=3 557 [
5612557 + A —0.0127493] * 1A —.000974] — 108

Using these equations generated the following values for no and ne given the wavelength of the

downconverted beam was estimated to be 803 nm:
1no(.803um) = 1.502394093
n.(.803um) = 1.545569781

These values seem to make intuitive sense since crystal quartz is positively birefringent.
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To avoid having to differentiate the sellmeier equations, the differential term on/d for

both axes was estimated by calculating An/A Ao where:
An = n(lz) - n(Al) and AAO = /12 - A’l

The values of A2 and A were selected to be 808 nm and 798 nm respectively. These values
corresponded to either adding or subtracting 5 nm from the estimated wavelength of the
downconverted beam. Plugging in these values into the sellmeier equations generated the

following values for An/A A for the two axes:

Any (. 808um) — ny(.798um)

— = = 0.010760014
A .808um —.798um 010 !

An, n,(.808um) —n.(.798um)

= 0.009345185
A .808um —.798um 0 >

Having found these all of the necessary values, the group velocities could then be calculated for

each axis:

ne:  V,=201%10° _
(in m/s)

g V, = 1.95 » 10°

Taking into account the thickness of each plate being approximately .5 mm these group
velocities generated and estimated delay time of 73.9 femtoseconds per plate.

(b) Data and analysis. Data in this experiment was collected using a simpler LabVIEW
virtual instrument which recorded both the counts registered for each detector and the
coincidences given a variable collection time. Each data run consisted of nine data points that
were generated by cycling the four quartz plates in and out of the beam path at different

orientations in the following order:

V4,V3,V2, V1,0, Hl, H2, H3, H4
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In this notation, the H or V indicates the orientation of a crystal in regards to its optic axis, while
the number 0-4 indicates the number of plates included in the system at that orientation.

The small number of data points in this experimental setup meant that several data runs
could be completed in the time it took for one Michelson experiment run. This increase in
collection efficiency gave us more time to run two additional tests on top of using a halfwave
plate to look for a Hong-Ou-Mandel dip. The first new test involved placing a linear polarizer,
set at 45 degrees, in the beam path to test for the constructive intereference effect observed by
Kwiat et al.®, while the second involved testing to see if placing quarterwave plate aligned
vertically would have on the coincidence rate. Both coincidence rates and single detector rates
were recorded for each of the nine crystal systems paired with each of the three optics.
Additionally, a data set was recorded with no optic placed in the beam path in order to observe
the effect that quartz plates themselves had on the count rates. Collections times were varied for
each optic to make sure that a substantial number of counts were recorded for each. This was
especially significant for the linear polarizer, as it transmitted substantially less light than the
other two optics.

Unlike the Michelson experiment, real coincidence rates could be plotted against 6, as
both the input delay of the photons coming from the BBO and the delay associated with
individual quartz plates were known values. Figure 20 plots the recorded real coincidence rate

versus 01 for each optic and the case of no optic:
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Figure 20: Plot of real coincidence counts versus delay between the signal and idler photons in seconds for the case of no optic,
a HWP, QWP and Linear Polarizer

The data displayed in Figure 20, unfortunately, also does not show signs of much success.
Trends in the halfwave plate data show no signs of the Hong-Ou-Mandel effect, while the trend
in the quarterwave plate seems to mirror the baseline trend, revealing almost nothing about its
effect on the coincidence rate. The data associated with the linear polarizer did see
approximately a doubling of counts near 8t equal to zero, however, this is hard to take seriously
given the low number of counts and the variance in the other data points. Failure to observe the
desired interference effects could possibly have resulted from the poor quality of quartz plates
themselves. Examining the trend in the baseline count rate indicates that the plates themselves do

have a significantly negative effect on the coincidence count rates which is undesirable.
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5. Discussion and conclusions

Unfortunately, neither of the experiments run in this paper allowed for the interference
effects of entanglement to be directly observed. The Michelson experiment was disturbed by
alignment issues both in the Michelson itself and in the detection system. Given more time to
revisit this experiment I would spend more time on the alignment of both of those systems.

To ensure that the sensitivity difference in the two detectors was not the result of
misalignment, I would attempt to translate the best form lens focusing the beam onto the detector
registering less counts, while watching live updates of the count rates. Doing this would allow
me to both test for and fix any alignment issues that may have caused the observed sensitivity
1ssues.

To align the Michelson correctly, I would shine a white light source into the input port of
the Michelson and manually translate the mirror using the ZABER until I observed an
interference pattern displayed at the output port. Utilizing a white light source for alignment is
helpful in this case because it has a very short coherence length. This means that the path length
difference between the arms of the Michelson must be extremely small to produce interference
effects. Aligning the Michelson in this way would allow for 8t equal to zero to be found much
more quickly without having to sweep through the entire range of possible mirror positions.
Lessening the amount of mirror translations per data run would substantially cut down on the
total length of the data runs which would allow for more tests to be run more quickly. This could
allow for the effects of the quantum eraser and the inclusion of a quarterwave plate in the optical
system to be examined more readily.

The quartz plate experiment seemed to be disturbed by the plates themselves. I do not see

any direct way to improve the setup implemented in this paper besides making similar
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improvements in the alignment of the detector box. Additionally, I find the Michelson
experiment more worthwhile to pursue as it provides a higher quantity of data as well as a higher
Jevel of precision when attempting to measure the desired intereference effects.

Assuming that our experimental setup could be aligned properly using the Michelson
interferometer, it would also be interesting to investigate more thoroughly the role of
indistinguishability on the interference of entangled photons by implementing a more complex
delay system like the one used by Pittman® et al. Doing so would allow for our system to
illustrate that two-photon interference effects can occur even if the path lengths of the
interferometer are different and the photons arrive at the beamsplitter at different times.

V. CONCLUSION AND REFLECTION

This thesis has emphasized three important characteristics of quantum entanglement: how
it is described using the mathematical formalism of quantum mechanics, how it can be applied to
generate more efficient forms of computing and how it can be observed in the lab through
quantum optical experiments. These three topics were selected together as their collective subject
matter allowed for a strong theoretical framework of entanglement to be built while
simultaneously reinforcing difficult concepts through concrete and intuitive examples.

This project represents everything that I have learned about quantum mechanics. Before
starting this project, I had never opened a quantum mechanics textbook and I had never set foot
in a quantum optics lab. Now, having finished this project I feel confident in my ability to
understand the mathematical formalism associated with quantum entanglement to the degree that
it is discussed in this paper. I also feel like I have developed a sense for working in an optics lab.
I have learned how to align lasers to one another, how to use steering mirrors, how to align a

Michelson interferometer and many other skills that have become more natural due to the
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amount of time I spent working in the lab. Hopefully this paper has illustrated the skillset that I
have developed over the past several months and can be useful for anyone attempting to develop
a basic understanding of quantum entanglement.
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