DePauw University
Scholarly and Creative Work from DePauw University

Science Research Fellows Posters Student Work

11-2014

A Parallel Genetic Algorithm For Tuning Neural
Networks

Nathan Chadderdon
Knowx College

Ben Harsha
DePauw University

Steven Bogaerts
DePauw University

Follow this and additional works at: http://scholarship.depauw.edu/srfposters

b Part of the Computer Sciences Commons

Recommended Citation

Chadderdon, Nathan, Ben Harsha, Steven Bogaerts. "A Parallel Genetic Algorithm For Tuning Neural Networks." Poster presented at
the 2014 Science Research Fellows Poster Session, Greencastle, IN, November 2014.

This Poster is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been
accepted for inclusion in Science Research Fellows Posters by an authorized administrator of Scholarly and Creative Work from DePauw University.

For more information, please contact bcox@depauw.edu.

http://scholarship.depauw.edu?utm_source=scholarship.depauw.edu%2Fsrfposters%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.depauw.edu/srfposters?utm_source=scholarship.depauw.edu%2Fsrfposters%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.depauw.edu/studentwork?utm_source=scholarship.depauw.edu%2Fsrfposters%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.depauw.edu/srfposters?utm_source=scholarship.depauw.edu%2Fsrfposters%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.depauw.edu%2Fsrfposters%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcox@depauw.edu

DEPAUW
UNIVERSITY

LD
==

A Parallel Genetic Algorithm
For Tuning Neural Networks

Nathan Chadderdon?, Ben Harsha?, Steven Bogaerts?!

1. DePauw University Greencastle, IN

{benjaminharsha_2015, stevenbogaerts}@depauw.edu nchadder@knox.edu

2. Knox College, Galesburg, IL

Iy S - Batch Size

One challenge in using artificial neural networks is how to determine
appropriate parameters for network structure and learning. Often parameters
such as learning rate or number of hidden units are set arbitrarily or with a
general “intuition" as to what would be most effective. The goal of this project
is to use a genetic algorithm to tune a population of neural networks to
determine the best structure and parameters. This paper considers a genetic
algorithm to tune the number of hidden units, learning rate, momentum, and
number of examples viewed per weight update. Experiments and results are
discussed for two domains with distinct properties, demonstrating the
importance of careful tuning of network parameters and structure for best
performance.

Output
layer layer layer

The first stage of this
project was the creation of
a multi-layer neural
network, a common
machine learning structure
based on biological
neurons and the
connections between
them. This network was
designed to work with a
variety of domains.

Fig 1. A multi-layer Neural Network

Next, a method was required to explore which network setups performed
better. In this case a genetic algorithm, which mimics the process of
evolution, was used. Tests were run by inputting certain restraints and
allowing the genetic algorithm to optimize the networks. The best
network from each test was recorded for analysis.

Parallelism

allel for if (hidde al
i < numHidden; i++){
iden weights

#pragma om

Due to the fact that e
both neural networks -
and genetic iimp ghts
algorithms have long ~ **{3 .7
run times, parallel pias output weights
programming was
implemented using
OpenMP to increase

the speed of))
computation.

Two sections were parallelized, the first being the training calculations for the
network and the second being the creation of individuals in the genetic
algorithm. Both methods produced similar speed increases.

+= learningRate * -
< numoutputs; j++) {

* hpeltas[il;

Genetic algorithms use genes to determine the traits of the individuals
neural networks in the population. In this experiment there were four genes
describing the different network setups:

Hidden Units - the number of neurons in the hidden layer of the neural
network (Fig. 1)

Batch Size - the number of examples to be considered during a weight
update

Learning Rate - the speed at which the network learns

Momentum - the percentage of the previous weight update used in
calculation for the new weight update

&7 | 20 |

Hidden Units Batch Size

0320 |

Momentum

0306 |

Learning Rate

Fig 2. A sample genome taken from the genetic algorithm

Learning Rate vs Average Error in Cars Domain

0.1

§ 0.08 =
P

5 0.06
&

5 0.04
>
<0.02

2
Learning Rate
Fig 3. Effect of Learning Rate on Average Error

The Cars domain preferred to use higher learning rate. This contradicts
previous assumptions that small learning rates around 0.1 or 0.3 were
optimal. The Splice domain behaved as expected, and selected low learning
rates in the 0.1-0.3 range.

Hidden Units Trends in Cars Domain

Max Hidden Units Experiments Run Below 50% of Max

30 46 34
50 8 7
100 17 13
150 8 7

Fig 4. Number of Experiments that settled below 50% of their
maximum number of hidden units

The number of hidden units preferred to settle on low values relative to the
given maximums. This trend continued in the Splice domain, although the
range of values chosen in that domain was slightly larger.

Number of Hidden Units

Batch Size Trends in Cars Domain

Max Batch Size Experiments Run Below 50% of Max
50 54 40
100 17 17
150 8 7

Fig 5. Number of experiments that settled below 50% of
their maximum batch size

Batch size had a tendency to settle on values that were low relative to their
given maximums. This trend held true for both domains, with each giving
very similar values for batch size.

Momentum vs Average Error in Cars Domain

Average Error
000000000
cocooooooo®

ORNREFIAI®O
ol
L)
.

0.4 0.6 0.8 1
Momentum

o
o
)

Fig 6. Effect of Momentum on Average Error

Momentum did not affect results for either domain. The values chosen were
seemingly random and there was no trend that indicated a positive or
negative effect on the average error.

Conclusions

¢ Learning Rate — Preference for learning rate depended strongly on the
domain

* Hidden Units — Tended to settle on very low values for Cars domain, slightly
higher values for Splice domain

* Batch Size — Tended to settle on low values for both domains
* Momentum — No effect on the results

Acknowledgement

This project was funded by the National Science Foundation.
Grant number: CNS-1156893

	DePauw University
	Scholarly and Creative Work from DePauw University
	11-2014

	A Parallel Genetic Algorithm For Tuning Neural Networks
	Nathan Chadderdon
	Ben Harsha
	Steven Bogaerts
	Recommended Citation

