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Abstract
Particle Swarm Optimization (PSO) is a widely-used nature-inspired optimization technique in

which a swarm of virtual particles work together with limited communication to find a global min-
imum or optimum. PSO has has been successfully applied to a wide variety of practical problems,
such as optimization in engineering fields, hybridization with other nature-inspired algorithms, or
even general optimization problems. However, PSO suffers from a phenomenon known as prema-
ture convergence, in which the algorithm’s particles all converge on a local optimum instead of the
global optimum, and cannot improve their solution any further.

We seek to improve upon the standard Particle Swarm PSO algorithm by fixing this premature
convergence behavior. We do so by storing and exploiting increased information in the form of
past bests, which we deem enhanced memory.

We introduce three types of modifications to each new algorithm (which we call a GEM-PSO:
Particle Swarm Optimization, Guided by Enhanced Memory, because our modifications all deal
with enhancing the memory of each particle). These are procedures for saving a found best, for
removing a best from memory when a new one is to be added, and for selecting one (or more) bests
to be used from those saved in memory. By using different combinations of these modifications,
we can create many different variants of GEM-PSO that have a wide variety of behaviors and
qualities.

We analyze the performance of GEM-PSO, discuss the impact of PSO’s parameters on the
algorithms’ performances, isolate different modifications in order to closely study their impact on
the performance of any given GEM-PSO variant, and finally look at how multiple modifications
perform. Finally, we draw conclusions about the efficacy and potential of GEM-PSO variants, and
provide ideas for further exploration in this area of study. Many GEM-PSO variants are able to
consistently outperform standard PSO on specific functions, and GEM-PSO variants can be shown
to be promising, with both general and specific use cases.
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1 Introduction
In this section we introduce the Particle Swarm Optimization algorithm and its applications,

and provide motivation for studying and improving this algorithm.

1.1 Why Study Particle Swarm Optimization?

Particle Swarm Optimization (PSO) is a nature-inspired stochastic optimization algorithm. We
will discuss the nature-inspired component in the following sections and dedicate this section to
the idea of optimization and its applications. Much of the usefulness of this algorithm stems from
its versatility in applications and adaptability for various problems. At an abstract level (details of
the algorithm will be discussed in the following section), we may consider a simple function

f (x1,x2, · · · ,xn) = y (1)

with a value y to be minimized, which is also dependent upon several parameters

x1,x2, · · · ,xn. (2)

Each parameter xi can take a value within a certain range; in this scenario, optimization is the
problem of finding the best assignment of these xi values in order to minimize y. In this problem,
Particle Swarm Optimization can be applied to f to determine an assignment of the parameters.
Through this abstraction, it is clear that there are a myriad of problems that can be reduced, restated,
or adapted to be solved with Particle Swarm Optimization. For example, general mathematical
functions with multiple variables and single outputs can all be optimized with PSO. Additionally,
many problems in fields such as engineering have optimization problems that can be reduced to
parameter assignment. These areas are where PSO can be most effectively applied. Furthermore,
there are many variants of PSO adapted to solve functions with multiple outputs, which increases
its functionality and usefulness.

It is important to note that PSO is stochastic. This is the antithesis of deterministic algorithms,
which given the same inputs, will yield the same output. In a stochastic algorithm, probabilistic
components are utilized, and therefore the solution found can (and often will) be different among
different runs. However, this is often a desirable behavior. Some problems (such as those PSO
is usually applied to) cannot be directly solved efficiently, or even at all. A stochastic algorithm
makes no guarantee on finding the optimal solution, and doesn’t guarantee a specific error bound
for the solution. However, in many general use cases, the algorithm almost guarantees a solution
of a certain quality, in a reasonable amount of time.

One may question what makes Particle Swarm Optimization an ideal candidate for a given
problem compared to other nature-inspired or stochastic algorithms. It has been found that PSO
is very inexpensive - it is not computationally expensive compared to many other algorithms (for
example, Ant Colony Optimization or Genetic Algorithms), it is not memory-intensive (space
complexity is linear, in relation to the number of particles in the swarm, and linear at worst in
relation to the number of variables being optimized), and it has relatively few algorithm parameters
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to adjust. Ultimately, Particle Swarm Optimization is a powerful algorithm that can be applied
efficiently in terms of time, space, and solution quality.

Of course, this algorithm is not without room for improvement. In the following sections we
will explore some shortcomings of Particle Swarm Optimization and introduce our improvements
(in the form of utilizing past bests) to increase the power and versatility of this algorithm.

2



2 Particle Swarm Optimization
Particle Swarm Optimization has had an extensive developmental history since its initial de-

velopment in 1995 [3]. In this section, we will explore the origins of this algorithm and develop it
chronologically, highlighting important improvements, until we reach the recognizable, accepted
behaviors for a standard Particle Swarm Optimization algorithm.

2.1 Particle Swarm Optimization by Eberhart and Kennedy
This nature-inspired optimization technique was first developed by Russell Eberhart and James

Kennedy - their original paper [3] provides the foundation for PSO as well as its inspiration. De-
riving inspiration from the idea of limited communication between individuals in a group, particles
in a particle swarm search for an optimal location in the solution space both individually and based
on group-derived information. The algorithm consists of a swarm of particles, where each particle
is free to move around within an n-dimensional space and has a particular position and velocity.
These particles form the basis for the particle swarm, in which each particle manages and updates
their position and velocity, and keeps track of a personal best, which is the best solution found
by that individual particle so far. Particles communicate between each other in the swarm, and
we refer to population as the entire swarm of particles as well as denoting the specific number of
particles in the swarm. Particle Swarm Optimization relies on 5 basic principles.

1. Proximity principle: the population should be able to carry out simple space and time com-
putations.

2. Quality principle: the population should be able to respond to quality factors in the environ-
ment.

3. Principle of Diverse Response: the population should not commit its activities along exces-
sively narrow channels.

4. Principle of Stability: the population should not change its mode of behavior every time the
environment changes.

5. Principle of Adaptability: the population must be able to change behavior mode when it is
worth the computational price to do so.

In more formal and concrete terms, the Proximity principle defines the space in which the
particles reside (i.e. storing the position and velocity of any given particle in a particle swarm
optimization). The Quality principle determines the existence of a function evaluation at any given
point in the search space. There are many well-defined test functions [6] to measure the quality
and performance of a PSO algorithm, such as Sphere, Ackley, Rosenbrock, and Rastrigin. To
evaluate the fitness of a given position in the search space, we evaluate the function given the n-
dimensional coordinate of that position. The principle of Diverse Response states the necessity
for stochasticity in the algorithm - we are meant to understand the “excessively narrow channels”
as deterministic algorithms (for example, having a swarm always produce the same output given

3



the same inputs). This would be unacceptable in Particle Swarm Optimization and as we will see,
there are stochastic “kicks” that prevent this from happening. Principles 4 and 5 (Stability and
Adaptibility) are particularly interesting in that they represent the oft-quoted exploration versus
exploitation trade-off that is exhibited in so many optimization and search algorithms. Stability
pushes us towards not deviating greatly from what could be an optimal solution, while Adaptibility
urges the algorithm to explore nearby spaces and change its behavior in order to find potentially
better solutions.

In the original PSO algorithm, the limited communication between individual particles is fa-
cilitated through the personal best (kept track of by each individual particle), and the global best,
which is determined through examining the personal best of all the particles at any given time. Ad-
ditionally, each particle has a velocity whose update is determined by a stochastic factor multiplied
by the vector from the particle’s position towards the particle’s personal best position (influencing
the velocity vector) and another stochastic factor multiplied by the vector from the particle’s posi-
tion towards the swarm’s global best position. The update equation can be expressed as follows,

(3)vi = vi + 2.05 ·U(0,1) · (pbesti − xi) + 2.05 ·U(0,1) · (gbest − xi)

Where xi represents the position of the particle i. We see the beginnings of a current standard
PSO algorithm in this velocity update equation. In this equation, U(0,1) represents a vector of
dimension equal to the dimension of the problem space, with each index of the vector having a
random value between 0 and 1, and vi denotes the velocity of particle indexed i. The 2.05 ·U(0,1)
factors found on the pbest and the gbest components of this equation ultimately becomes the φ1
and φ2 components of the regular velocity update equation, dictating the power and influence of
the personal and neighborhood best components, respectively. The assignment of 2.05 for φ1 and
φ2 is an empirically determined value. Significant deviation from this value for the parameters has
been shown to lead to divergent behavior [7]. The pbesti is the personal best location of particle i,
and the gbest variable represents the best location found by the entire swarm.

A natural extension to this algorithm is to change the influence of the limited communication
factor in PSO. In the original, we have the gbest component acting as the communication among
particles in the swarm. However, we can change this communication; for example, limiting the
gbest of any given particle i to just the best solution found by the particles (i, i− 1, i+ 1), for all
the particles, causes the communication to occur among different groups and changes the way the
information of personal bests is spread throughout the algorithm. Along with this change comes
a renaming of variables, instead of using a gbest we use an nbest, denoting a neighborhood best.
The group (i−1, i, i+1) is therefore referred to as the neighborhood of particle i.

In our work, we implement and experiment with the global, ring, and Von Neumann neigh-
borhoods. Global neighborhoods are the same as the original standard PSO’s concept of global
bests. All particles belong to one neighborhood and the neighborhood best is equivalent to the
global best. The Ring neighborhood can be constructed by creating a circle of all the particles and
enumerating them from 1 to n. The neighborhood of particle i is thus itself and the particles to
the left and right of it, corresponding to (i− 1, i, i+ 1). Extending this idea to a two-dimensional
grid with wrap-around, we can construct a Von Neumann neighborhood, in which any particle’s
neighborhood consists of itself and the particles above and below it, as well as those to the left and
the right.

4



One paper [5] describes Inertia Weighted PSO and Constriction PSO - two tools used by the
basic Particle Swarm Optimization algorithm to stop the velocities of a particle from becoming too
large (and disrupting the searching of the swarm) or for the swarm system to break down over time.
We first examine the inertial version. This adds a sort of “friction” to the velocity. In the original
PSO we have the vi = vi + · · ·, but now we multiply the vi by an inertia weight, which yields ω · vi,
where ω is the inertia weight. After this weight is applied, the rest of the velocity update proceeds
as normal, taking in the personal best and neighborhood best influences on the velocity. In this
equation, ω acts as an inertial restriction component (ω is the percentage of the velocity kept for
the next iteration). Additionally, φ1 and φ2 take on lower values (around 1.49618). The result of
inertial PSO is somewhat similar to the constriction PSO, but the lowering of the φ values has a
non-negligible influence on the impact of different factors of the PSO update equation.

The other version of PSO, constriction PSO, is the one we use in our work. Instead of using the
inertial weighting which applies to only the previous velocity, the constriction coefficient applies
to the velocity update by being multiplied with the velocity after the rest of the original velocity
update equation (with the personal and neighborhood bests) has already been applied. The con-
striction coefficient is determined according to a formula using φ1 and φ2, the influence strength
coefficients. We use a variable χ to denote the constriction coefficient, where

χ =
2

φ−2+
√

φ2−4φ
(4)

[5]. Additionally, we utilize the (previously found) specific constraint of φ = φ1 + φ2 > 4 to
achieve optimal behavior. In the usual assignment of parameters here, φ = 4.1,φ1 = φ2 = 2.05,
and χ = 0.7298. We may choose also to limit the maximum and minimum attainable velocity (and
sometimes limit the position as well, if we wish to bound the search space strictly) in order to
confine our search to a reasonable range and reduce the speed (and therefore increase the level of
detail when searching) of each particle.

PSO has another important variant called fully informed particle swarm (FIPS). This is an
algorithm in which each particle is affected by all of its neighbors. The velocity update equation
for a given particle i is as follows:

vi = χ

(
vi +

1
Ki

Ki

∑
n=1

U(0,φ)⊗ (pbestnbrn− xi)

)
(5)

[5] where Ki is the number of neighbors for particle i and nbrn is i’s nth neighbor. FIPS sometimes
finds better solutions in fewer iterations than regular PSO but is more dependent on population
topology. We ultimately decided not to experiment with this method, as its population topology
dependence is tangential to the aspects of PSO we seek to improve, but it certainly has potential
for future work.
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2.2 PSO and Pseudocode

Algorithm 1: Standard PSO
input : f , function to be minimized with dim dimensions

numIter, the number of iterations to be performed
pop, the number of particles in the particle swarm

output: x, a vector representing the final position of the minimum value found in f
f (x), the minimum value found in f

for i = 1 to pop do
Initialize particle i with a random position and velocity

end
for iter = 1 to numIter do

for each particle do
Update particle i’s velocity, vi
Update particle i’s position, xi
Calculate f (xi), the fitness value for particle i’s position
if f (xi)> besti then

Set pbesti = f (xi)
end
if f (xi)> nbesti then

Set nbesti = f (xi)
end

end
end
return best solution found over all particles i
This is an accepted, current, standard form of PSO, which we will refer to as standard PSO

throughout this study. i represents the particle index, pbesti indicates the personal best value found
over all iterations so far, and nbesti indicates the best value found over all iterations so far by
particle i’s neighborhood. It utilizes the following positional and velocity update equations, re-
spectively:

xi(iter) = xi(iter−1)+ xi(iter) (6)

(7)vi(iter) = χ [vi(iter − 1) +U(0,φ1) · (xi(iter − 1)− pbesti(iter − 1)) +U(0,φ2)
· (nbesti(iter − 1)− xi(iter − 1))]

Here, (iter) denotes the iteration at which we are looking at the value. This helps differentiate
the new velocity and position in the update equation from the velocities and positions used in the
previous iteration used to calculate the new iteration values. Again, vi represents the velocity of
particle i, xi is the position of particle i, iter is the iteration that the PSO run is currently at, χ is the
constriction coefficient discussed earlier, and φ1 and φ2 represent the personal influence component
and the neighborhood influence component, respectively. pbesti is the personal best coordinates
found by particle i, and nbesti is the best solution coordinates found by the neighborhood of particle
i.
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2.3 Issues and Improvements
One of the most important issues in a stochastic optimization algorithm is the problem of pre-

mature convergence as it relates to the exploration-exploitation duality. If the exploration is too
large, an algorithm may never converge on a near-optimal solution, but it will fail to search more
thoroughly in better potential solution candidate spaces in favor of searching more randomly over
larger areas. If we exploit our known solutions more strongly, we can end up with premature
convergence, i.e. the swarm ends up all converging on a sub-optimal solution. Our work centers
around the problem of premature convergence in Particle Swarm Optimization. Our approach -
modify the way the algorithm uses bests, by accounting for past personal bests and past neighbor-
hood bests as well as the regular bests. Along with this we need to determine how to store these
bests, how to remove the bests, and how to actually use them.

Section 3 explores the literature and research related to this area of improvement for PSO,
Section 4 discusses the techniques we decided to combine and implement, and Section 5 explains
our high-level testing methodology and goals. Sections 6-9 are dedicated to our detailed data
collection, testing, results analysis, conclusions, and outlines goals for further research and analysis
in this area.
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3 Related Work

In this section we describe related work. Each of the articles mentioned explores a different
aspect of incorporating past bests, ranging from determining the best method for using multiple
bests to the selection of various bests to store in memory, to other advanced modifications to dif-
ferent variants of PSO.

Yin, Glover, and Manuel [9] modify Particle Swarm Optimization by merging it with adap-
tive memory programming techniques. Their algorithm uses a generated reference set (akin to our
idea of using past bests), and systematically selects subsets of the reference set to generate new
solutions. It also implements path re-linking, inspired by the idea of treating one given solution
as an initiating solution (which strongly influences other solutions) and the others as guiding solu-
tions (which influence other solutions less strongly, i.e. guiding). The paper draws on intelligent
learning provided by scatter search and path re-linking. One specific concept applied to increase
exploration of PSO used in the paper was tabu search, which strongly weights a particle’s velocity
and position in order to push against revisiting the same solutions/spaces. In the end, the paper uses
the particle’s best, the swarm’s best, and the particle’s second best. Weightings are varied among
three methods: equal weighting, fitness weighting, self-weighting. The paper also explores the
relationship between this weighting and dynamic neighborhoods, and uses the Minimum Diversity
Strategy, which adds a new solution y in place of x if and only if the solution quality of y is better
than that of x (i.e. the function evaluation of y is lower than that of x), and if the minimum distance
between y and other members satisfies a specific threshold, which can be dynamic or static. This
final idea is one of the key “adding” processes we used that will be discussed in Section 4.

Shin and Kita [8] focus specifically on the implementation of the “second best” particle influ-
encing the PSO algorithm. Their algorithm looks at two types of second best particles, one being
the personal second best for each particle, and one being the neighborhood second best for each
neighborhood. Ultimately, they find a behavior of reducing convergence toward the optimal (which
is, as we have discussed, a favorable behavior of the algorithm).

(8)vi(iter + 1) = ωvi(iter) + c1 ·U(0,1) · (pbesti(iter)− xi(iter)) + c2 ·U(0,1)

· (gbest1(iter)− xi(iter)) + c3 ·U(0,1) · (gbest2(iter)− xi(iter))

describes the new update equation with a second global best. In this equation, ω is the inertia
weight, c1,c2,c3 are acceleration coefficients, with c1,c2 determining relative pull of pbest, gbest1,
and gbest2, respectively. These constants are experimentally determined to be c1 = c2 = 1.5. iter
is the current iteration number, and U(0,1) is randomly distributed and functions as the stochastic
element of the algorithm. Each instance of U is independently randomly generated. This can
be easily adapted to a second neighborhood best for each neighborhood which is a specific topic
we will adapt further in our study. The equation for the second personal best is quite similar to
the previous, with c4 replacing c3 and the inclusion of a second factor in the personal influence
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component of the velocity update equation:

(9)vi(iter + 1) = ωvi(iter) + c1 ·U(0,1) · (pbesti,1 − xi(iter)) + c2 ·U(0,1)
· (gbest − xi(iter)) + c4 ·U(0,1) · (pbesti,2 − xi(iter))

Here, ω is once again inertia weight, and c1,c2,c4 are the acceleration coefficients. t is iteration
time, and the random variable U(0,1) is uniformly randomly distributed. Each instance of U is
independently randomly generated.

Broderick and Howley [1] conducted a study with a focus on the best utilization technique
given multiple stored past bests. The algorithm presented in their paper uses a specific type of
weighting: the contribution of each neighbor is weighted by previous fitness. It is an improvement
built upon a Fully Informed Particle Swarm algorithm called Ranked FIPS, which itself uses a
ranking system to weight the influences of all the past bests. This algorithm, named PSO EMP,
incorporates particles that selectively remember some best positions; the personal influence factor
of the velocity update equation is replaced with a new EMP-specific term:

(10)vi(iter + 1) = χ ∗ (vi(iter) +U(0,1) · EMPterm +U(0,1) · c2 · (gbesti − xi(iter)))

This new equation can split the personal influence component φ1 into N equal parts, where N
represents the number of remembered positions (akin to the equal weighting idea in the previous
paper). Alternatively, it can weight the bests according to a power law distribution where a saved
best coordinate with a rank of n is weighted twice as heavily as a best coordinate with a rank of
n+1. Of course, there is a third and arguably easiest-implementation option, namely just picking
a random best from the saved bests. Two clean conclusions can be derived from their testing
data and analysis. First, too many remembered past best positions hinders convergence, but using
two particles yields good results. More than three guiding solutions blurs the total guidance of
the information provided by the bests and ultimately degrades performance. Second, the paper
found that roulette selection (fitness-based selection of a best) appeared to yield the best overall
performance. These conclusions are all derived in the framework of exploration/exploitation -
the solutions approach a balance between increasing diversity without overly hindering overall
convergence.

Another interesting PSO variant, Simple Adaptive Cognition PSO, makes these modifications
to the position and velocity updates:

ẍt+1 = φpU⊗ (pt− xt)+φgU⊗ (gt− xt) (11)
ẋt+1 = ωẋt + ẍt+1 (12)
xt+1 = xt + ẋt+1. (13)

[4] Here, φp,φg are the cognitive and social coefficients (in our terminology, personal and neigh-
borhood influence weights), and ω acts as a momentum coefficient, set between 0.4 and 1.0. This
momentum coefficient functions as an alternative to the constriction coefficient normally used in
constriction PSO. This value is not unlike that used in standard inertial PSO. Simple Adaptive Cog-
nition (SAC) recognizes and exploits the tendency of particles to “periodically jump far outside of
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the current region of exploration” (which they dub “bursts of outliers”). The paper briefly criti-
cizes the idea of linearly decreasing momentum ω over a PSO run, despite other papers pointing
to its success. It argues instead that the linearly-decreasing momentum methodology’s success has
“more to do with the fact that they happen to pass through good values during an optimization run
[4].” This is also the first article to discuss the importance of a best-related statistic the authors call
“information age.” Essentially, if a particle hasn’t updated its personal best in a long time then it
inhabits a region of the function that does not warrant further explanation. The solution: decay the
magnitude of vectors toward locations in proportion to how long ago they were discovered with a
simple coefficient. Thus, the new acceleration update equation reads:

(14)ẍt+1 = φpγ
t−tpU ⊗ (pt − xt) + φgγ

t−tgU ⊗ (gt − xt)

where γ ∈ (0,1) is the adaptation weight, starting at close to 1. tp records the time of last update of
pt , the personal best, and tg is the time of the last update of g, the global (which can be modified to
work on neighborhoods as well). Every time a particle updates its own pt , it sets tp = t, and every
time the neighborhood updates the gt , it sets tg = t. If we have no decreased weighting towards
older solutions, we set γ = 1 and the behavior of the algorithm exactly matches regular PSO. This
is one of the more unique articles because it doesn’t directly apply the influence of the past-best in
the velocity update equation so much as it interprets the age of the past best. This procedure only
adds one parameter, γ, and requires very little additional memory. This can be easily incorporated
in conjunction with other methods which use multiple past bests. It also introduces the idea of
keeping at least 1 past best, but keeping more only if they are found within x maximum time-frame
(i.e. if they get too old then drop the best).

PSO has been combined with other search techniques to improve performance. In particular,
evolutionary operators have been used to select best particles, increase diversity, and improve
ability to escape local minima. There also exists collision avoidance mechanisms that attempt to
prevent local minima convergence. This final paper uses all particles’ pbests to update velocity of
any one particle. Let the superscript d denote a specific index in the overall vector for velocity and
position of a particle [10]. The algorithm uses the equation

(15)vd
i = w ∗ vd

i + crandd
i ∗ (pbestd

fi(d) − xd
i )

where fi defines which particles’ pbests the particle i should follow. This algorithm also uses
tournament selection to learn from another particle’s pbest with probability Pc:

• Randomly choose two particles out of the population which excludes particle whose velocity
is updated

• Compare fitness of the pbests and select the better one.

• Use the winner’s pbest as an exemplar to learn from that dimension. If all exemplars of a
particle are its own pbest, randomly choose one dimension to learn from another particle’s
pbest’s corresponding dimension.
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While we ultimately do not use this tournament selection to learn from other pbests, we do
implement tournament selection on the particle’s own selection of a pbest in order to increase
diversity without decreasing quality of solutions.

Ultimately, the most important techniques and results we derive from these articles is a distance-
based metric for increasing diversity, ideas for how to utilize a second past best in conjunction or in
lieu of a standard personal or neighborhood best, and borrowing genetic-algorithm inspired tech-
niques for applications in Particle Swarm Optimization. Some shortcomings of these studies are
their narrowed range of focus. Our ideas, which will be discussed in the following section, focus
on synthesis, expansion of some of the basic ideas proposed in these articles, and developing a
clearer structuring of how the algorithm interacts with its Past Best information.
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4 GEM-PSO
In this section, we discuss our approach to incorporating past bests in the PSO algorithm. In

our methodology, we break this process into three components: adding bests to memory, removing
bests from memory, and selecting a best from memory to use. The following sections cover these
three components, providing our motivation to select our specific methods, as well as how they
function. When we combine these 3 modifications into a single PSO algorithm, we call the result-
ing algorithm a GEM-PSO variant. PSO stands for Particle Swarm Optimization, and GEM stands
for Guided by Enhanced Memory - since our algorithm stores and uses Past Bests, we consider it
to have enhanced memory.

4.1 Adding Bests
In traditional PSO, the initial pbest of each particle is the particle’s initial position. Our initial-

ization process is the same, but because we are using multiple past bests, our general best adding
mechanism must be different. We introduce three different methods to determine when a particle
or a neighborhood will add a new best to the memory. For our first adding mechanism, we draw
inspiration directly from standard PSO, in which a best with a greater fitness (i.e. a lower function
evaluation) replaces a best with a lesser fitness. Therefore, this modification simply saves a best
when it has a greater fitness than any existing saved best in the memory.

One difficulty is that if a particle is trapped near a local optimum, or if a neighborhood was
already mostly converged on a local optimum, then the adding-best modification could potentially
populate the entire memory for the particle or the neighborhood with a plethora of “bests” all
originating from roughly the same location. In doing so, selecting different bests from the memory
would not increase diversity - they would all influence velocities toward the same local optimum
location.

We developed two strategies to counter this behavior. The first is simply to only store bests
based upon a random factor. Given the previously mentioned problematic situation, saving with a
random probability would reduce the number of past-bests saved from that local optimum, which
would additionally provide a better chance for older, more diverse past bests to remain in the
memory (and not get pushed out by our newly found bests).

The other way to deal with this issue is a distance-based metric [9]. In this modification, we
only save a best that resides more than a certain distance from the other bests. As discussed, this
ensures that we have a good amount of variation in our past bests memory and directly negates the
possibility of multiple bests being saved from a single local optimum location.

This yields our three adding modifications: saving the best (i.e. best fitness), saving with
probability, and saving with a minimum distance. We will refer to these modifications with the
abbreviations save-best, save-prob, and save-distance, respectively.

4.2 Removing Bests (and Cache Replacement Policies)
Caches can give us some insight into how we should approach the problem of saving n past

bests. Consider the standard PSO algorithm. Instead of treating the process of updating the pbest
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or nbest as a single step, we may consider the process as adding a second best to the memory,
removing one of the bests based on a removal mechanism, and then being left with the new pbest
or nbest. In the original PSO, the lesser fitness solution is removed and the greater fitness solution
remains. We may adapt this policy for multiple past bests by removing the best with the lowest
fitness. This is precisely the framework for our first removal modification: Remove Worst.

Studying cache replacement policy yields three ideas for removal modifications. Two of the
most straightforward cache replacement policies are LIFO (Last In, First Out) and FIFO (First In,
First Out). LIFO is incompatible in ideology with our algorithm. If we were to use LIFO, we
would essentially remove the newest-found best (which, due to convergence is more likely to have
better fitness), while holding onto an array of bests that becomes older, and therefore very likely
comparatively worse in quality over time. FIFO, however, is compatible. We can adapt it to our
algorithm and implement a policy of removing the oldest found solution. On a high level, this
seems reasonable - though there is no guarantee (because of stochastic behavior), a best found in
a previous iteration is more likely to be worse than a best found in a later iteration as convergence
occurs. This forms the basis for our second removal modification, Remove Oldest.

In cache replacement, a strong objective is to optimize the contents such that they are the most
frequently accessed (and therefore save the most time by being saved). The policy that corresponds
to this is referred to as Least Recently Used (LRU). If we pair this idea with weighted or tournament
selection style where we are selecting better bests more often, then we would ostensibly remove
less useful bests. However, frequency of use may not pair well with our selection mechanisms
(discussed in the next subsection). On the other end of policies, we have MRU (most recently
used). This seems like an apt choice; we may not want to use the same bests too often and end
up with premature convergence again. In order to avoid this, we should artificially diversify our
past bests in order to continually have access to varying influences from our past bests, increasing
exploration. This forms the basis for another policy, which we call Replace Last Used.

Finally, we may want to artificially increase diversity by injecting additionally stochasticity
into our algorithm. This directly corresponds to removing a best at random when the memory
is full, to accommodate a new best. This policy has no bias toward either bests with higher or
lower fitness - it adds stochastic behavior evenly. We call this final removal modification Replace
Randomly.

We decided upon four modifications after studying cache replacement policy, namely Replace
Worst, Replace Oldest, Replace Last Used, and Replace Randomly. We refer to these modifications
in the rest of the study as replace-worst, replace-oldest, replace-last-used, and replace-randomly,
respectively.

4.3 Using Bests

In this paper we strongly emphasize the breaking down of the velocity update equation into two
components, which are the “personal influence,” and the “neighborhood influence” components.
Each of the four selection ideas we are testing can be applied to either the personal influence
component, the neighborhood influence component, or both components of the velocity update
equation.
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In standard PSO, we simply select the only current pbest or nbest and use it, for both the
personal and neighborhood influences, respectively. This still serves as a valid method for us to
use in our new PSO. It is important to keep in mind that because of the adding and removing
modifications we discussed previously, selecting the past best with the greatest fitness from the
past bests saved in the memory does not necessarily yield the location of the past best found. For
example, that best could have been removed because it was recently used, or removed randomly, or
it could have not been added because of our save-distance modification. We call this Select Best.

For our other selecting modifications, we also have random selection, in which a random best
is selected from those available in the memory. Again, this is a potentially desirable modification
because it introduces more stochasticity (and therefore, more exploration) to the algorithm. We
call this modification Select Randomly.

We also use a concept introduced in a previously mentioned article [1] by including equal
weighting-based selection. In this modification, two bests are selected, and the influence compo-
nent (φ1 for personal, φ2 for neighborhood) is split evenly between the two particles. That is, if we
applied this modification when using personal past bests, instead of a U(0,φ1) · pbest, we would
have U(0,φ1/2) · pbest1 +U(0,φ1/2) · pbest2. Notice that the two U(0,φ1/2) terms are indepen-
dently generated and not identical. We named this modification Select with Equal Weighting.

Finally, we added a tournament selection paradigm, inspired by genetic algorithms. Simply
put, this modification selects two bests at random without replacement from the past bests stored
in the memory. It then compares the two past bests and returns the one with better fitness (lower
function evaluation). This modification balances weighting towards bests with higher fitness (as
in Select Best) and random selection (as in Select Randomly). This modification is referred to as
Select with Tournament Selection.

Thus, our final four selection modifications are Select Best, Select Randomly, Select with Equal
Weighting, and Select with Tournament Selection. We refer to these modifications with the abbre-
viations select-best, select-random, select-equal-weighting, and select-tournament, respectively.
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5 Experimental Methodology

Given all of our changes to the standard PSO algorithm that we would like to test, the simplest
testing paradigm is to try each combination of the saving, removing, and utilization methods, as
well as varying the memory size (i.e. the number of past bests saved per particle) in our preliminary
testing. We settled on these different modifications for our three different modification components
(enumerated for easy reference further on).

Adding/Saving Replacing/Removing Selecting/Using
0 - Save Best (Standard) 0 - Replace Oldest 0 - Select Best (standard)
1 - Save with Probability 1 - Replaced Last-Used 1 - Select Random

2 - Save with Distance Metric 2 - Replace Worst (standard)
2 - Select 2 Past Bests
with Equal Weighting

3 - Replace Random
3 - Select with
Tournament Selection

Additionally, we need to take into account that some of these combinations may not perform
optimally under standard PSO parameters, but may outperform standard PSO under other param-
eter assignments. Therefore, we need to vary some of PSO’s base parameters as well.

We aim to quantitatively judge our GEM-PSO combinations by the time taken for the code to
find its ultimate solution, the number of iterations it runs through before it stops improving, and
the quality of the best found solution.

Table 1: Additional PSO Parameter Variation

Parameter Possible Values
# of Past Bests 2, 3, 4

Dimensions 30, 50
Swarm Size 30, 50

Function
Rastrigin, Ackley, Griewank, Penalized Function 1,
Penalized Function 2, Sphere, Rosenbrock

Neighborhood Topology Global, Ring, Von Neumann
Table 2: List of all modifications, enumerated

In this paper, we will often refer to a specific set of modifications by an ordered triplets of
numbers within brackets, particularly when labeling graphs or discussing many different versions
of PSO with modifications. For example, standard PSO can be written as [0,2,0], and [1,2,3] would
correspond to a GEM-PSO with the modifications save-prob, replace-worst, and select-tournament.
This GEM-PSO that saves past bests with a certain probability, selects from the saved past bests
the one with the highest fitness (minimum), and applies tournament-selection to determine which
best to use.
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5.1 Functions

In this subsection, we take a look at the seven different generalized n-dimensional functions
that we will apply to our modifications. These functions are commonly used as benchmarks [2] to
test the performance of optimization functions and algorithms.

Because all functions can be generalized to n dimensions, we are able to construct both a 30-
dimensional and 50-dimensional variant for our data collection procedure.

5.1.1 Generalized Rastrigin’s Function

f (X) =
n

∑
i=1

[
x2

i −10cos(2πxi)+10
]

(16)

Minimum location: xi = 0∀i.
Minimum value: f (min) = 0.

Rastrigin is a common and challenging benchmark function for optimization testing. The over-
all behavior of the function is parabolic (bowl-shaped), with a minimum occurring around the
center of the function. However, due to the cosine term, there are many local minima around the
global minimum that have a tendency to cause premature, local convergence.

Figure 1: 3-dimensional rendering of Rastrigin with n = 2
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5.1.2 Ackley’s Path Function

f (X) =−20exp(

(
−0.2×

√
1
n

n

∑
i=1

x2
i

)
)− exp(

[
1
n

n

∑
i=1

cos(2πxi)

]
)+20+ e(1) (17)

Minimum location: xi = 0∀i.
Minimum value: f (min) = 0.

Ackley’s Path Function (also known as Ackley’s Function No. 1) is another standard test func-
tion for benchmarking optimization algorithms. This function initially appears similar to Rastrigin,
but differs in that while the previous function’s slope becomes more gradual when approaching the
optimum, Ackley becomes progressively steeper, resembling a more conical shape. Again, the
local behavior is oscillatory which creates many local optimum, presenting an opportunity for
premature convergence.

Figure 2: 3-dimensional rendering of Ackley with n = 2
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Figure 3: 3-dimensional rendering of Ackley (zoomed in) with n = 2

5.1.3 Generalized Griewank’s Function

f (X) =
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos
(

xi√
i

)
+1 (18)

Minimum location: xi = 0∀i.
Minimum value: f (min) = 0.

The Generalized Griewank’s Function is a slightly less commonly used, but still well-known
benchmark function. It resembles Rastrigin except the local optima are much more densely packed
in the function in comparison - meaning more local optima but a smaller radius of strong “pull”
for any given particle around that minimum coordinate.
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Figure 4: 3-dimensional rendering of Griewank with n = 2

Figure 5: 3-dimensional rendering of Griewank (zoomed in) with n = 2
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5.1.4 Generalized Penalized Function No. 01

f (X) =
π

n
×

{
10sin2 (πy1)+

n−1

∑
i=1

(yi−1)2 [1+10sin2 (πyi+1)
]
+(yn−1)2

}
+

n

∑
i=1

u(xi,a,k,m)

(19)
Minimum location: xi =−1∀i.
Minimum value: f (min) = 0.

The Generalized Penalized Function No. 01 has a markedly different appearance from the
previous few functions. It is the juxtaposition of increasing-magnitude peaks and troughs when
viewed in the positive x direction, with increasing-magnitude peaks and troughs when viewed in
the positive y direction as well. This presents entire lines of points of local convergence that present
difficulties for optimization algorithms to “escape” (and explore outside). Note that the optimum
location is where xi =−1, rather than at 0 like the previous functions.

Figure 6: 3-dimensional rendering of Penalized Function 1 with n = 2

20



5.1.5 Generalized Penalized Function No. 02

(20)
f (X) = 0.1×

{
sin2 (3πx1) +

n−1

∑
i=1

(xi − 1)2 [1 + sin2 (3πxi+1)
]

+ (xn − 1)2 [1 + sin2 (2πxn)
]}

+
n

∑
i=1

u(xi,a,k,m)

Minimum location: xi = 1∀i.
Minimum value: f (min) = 0.

The Generalized Penalized Function No. 02 is similar to No. 01 in that it has entire lines of
troughs (following a parabolic structure when viewed in an xz plane slice). The large-scale behavior
of the function is also parabolic, resulting in a bowl-shape and many local optimum which fall on
a parabolic shape as well.

Figure 7: 3-dimensional rendering of Penalized Function 2 with n = 2

5.1.6 Sphere Model

f (X) =
n

∑
i=1

x2
i (21)
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Sphere Model (also known as Spherical Contours, Square Sum, Harmonic, 1st De Jong’s, or
Schumer-Steiglitz’s Function No. 01), is a relatively simple function. Its large scale behavior looks
similar to Rastrigin or Griewank, but this function differs greatly in that it has no local minima.
This benchmark is a basic litmus test for optimization. If an optimization algorithm (particularly
one of our PSO modifications) were to fail to converge on Sphere, we can say with a high degree of
confidence that the algorithm is not viable and almost certainly strictly worse than standard PSO.

Figure 8: 3-dimensional rendering of Sphere Model with n = 2

5.1.7 Generalized Rosenbrock’s Valley

f (X) =
n−1

∑
i=1

[
100

(
xi+1− x2

i
)2

+(xi−1)2
]

(22)

The Generalized Rosenbrock’s Valley (also known as Rosenbrock’s Banana Function, or The 2nd
De Jong’s Function) is the final generalized function we use for testing.

Rosenbrock is perhaps unique in our testing benchmarks. The function’s optimal point is lo-
cated in a narrow, parabolic valley. For n= 2,3, this function only has one minimum. For n= 4−7,
there are exactly 2 minima (one being local and the other global), and the number is unknown for
higher n.

What makes Rosenbrock a particularly interesting function to test with is that despite having
no local minima in the search region, this function is nevertheless surprisingly difficult to optimize.
The parabolic valley in which the global minimum resides is demonstrably very “easy” for an opti-
mization algorithm to converge to. However, converging upon the global minimum after reaching
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this valley is difficult. Essentially, one may think of it as testing for an opposite extreme case as
Griewank and Ackley.

Figure 9: 3-dimensional rendering of Rosenbrock’s Banana Function with n = 2

Our overall combination of these 7 different testing functions provides a significant range of
different challenges to better discern specific function behaviors and determine the usefulness and
performance of our GEM-PSO variants.
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6 Results

In this section we detail our data collection process, as well as our results, broken down by
single parameter variation performance, isolated modification performance, and combined modifi-
cation performance, across different PSO parameters, memory size, and function. Single parameter
variation refers to the parameters of the standard PSO algorithm, such as dimension of the function
to optimize, population of the swarm, and the neighborhood type of the swarm. In the isolated
modification section, we look at GEM-PSO variants with only one deviation from the standard-
PSO algorithm, i.e. only one adding or one selecting or one removing modification. Finally, the
combined modification performance covers our GEM-PSO variants with multiple modifications
applied at the same time.

6.1 Early Testing and Filtering Techniques

Preliminary testing indicated that applying modified improvements to both personal and neigh-
borhood bests strongly hindered convergence to the point that most runs on any arbitrary combina-
tion of PSO parameters and functions ended up diverging. Therefore, we limited our early testing
methodology to varying only personal or neighborhood past best utilization methods.

We performed 30 runs of every combination of adding, selection, and removal mechanism
applied to either neighborhood or personal combinations, crossed our varied parameters for di-
mension, swarm population, function number, and neighborhood type, as well as the number of
past bests to save. Iterations was fixed at 1000, as the nature of the functions we were working with
guaranteed that this was more than sufficient for convergence to take place for standard PSO, and
though a worse-performing modified algorithm may not converge as quickly, we were interested in
finding modifications that improved behavior (so a function that did not manage to converge within
1000 iterations was likely to be an unsuitable combination). Our total number of unique settings is
therefore

30×3×4×4×2×2×7×3×3 = 362880.

We wanted to perform a per-100 iteration statistical and numerical analysis on the best-performing
modification combinations. This would be far more costly than our preliminary testing in terms
of both space and time requirements, so we needed to filter the viable combinations down much
further from this initial quantity. The simplest filtration we could perform was to take a baseline
PSO solution average for each given combination of PSO parameters (with no personal or neigh-
borhood modifications). We call this value sbase, and filtered all solutions by checking, for each
combination of modifications, whether there was at least one occurrence of a solution (call it s2)
which satisfied

s2 < (sbase +1)∗10.

This eliminated all solutions that were beyond an order of magnitude worse than the baseline
regular PSO, and also accounted for instances where the solution’s order of magnitude could be
very small (for instance, in sphere, directly checking for an order of magnitude would require
solutions better than 0.00001, which we decided was overly strict).
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After the elimination process for personal modifications and neighborhood modifications, we
were left with only 14 viable personal modifications and 14 (not the same) viable neighborhood
modification combinations, down from the original 32 possible combinations. We use the enumer-
ated modifications (Table 5) to concisely list the viable combinations.

Personal [010] [012] [020] [022] [030] [031] [032]
[110] [112] [120] [122] [130] [131] [132]

Neighborhood [020] [021] [022] [023] [030] [032] [033]
[120] [121] [122] [123] [130] [132] [133]

Table 3: Combinations Passing First Filter

One may notice that these are not the same 14 combinations. However, this initial filtering is
not sufficient to guarantee our remaining modification combinations are worth further exploring.
It is enough of a reduction in quantity, though, to apply more detailed analysis.

We then performed testing of 10 runs (recording the solution quality at each 100 iterations)
for each remaining personal or neighborhood modification (varying all PSO parameters as before),
along with 10 runs of a benchmark with the same PSO parameters, computed a Mann-Whitney U
Test and a Student T Distribution Test on each 100 iterations’ data. Using a p-value cutoff of 0.05,
we performed one last filtration of data by requiring either the p-value found by Mann-Whitney
or the t-test to be above 0.05 for at least one combination of PSO parameters, or for the average
solution quality to be better than the benchmark solution average. After this final filter, we were left
with exactly 11 personal modification combinations and only 6 viable neighborhood modification
combinations, allowing us to concentrate on this data.

Personal [0, 1, 0] [0, 1, 2] [0, 2, 0] [0, 2, 2] [0, 3, 0] [0, 3, 2]
[1, 1, 0] [1, 2, 0] [1, 2, 2] [1, 3, 0] [1, 3, 2]

Neighborhood [0, 2, 0] [0, 2, 2] [0, 2, 3] [0, 3, 0] [0, 3, 2] [0, 3, 3]

Table 4: Combinations Passing Second Filter

Here we re-print the legend of enumeration corresponding to different modifications for ease
of understanding.

Adding/Saving Replacing/Removing Selecting/Using
0 - Save Best (Standard) 0 - Replace Oldest 0 - Select Best (standard)
1 - Save with Probability 1 - Replaced Last-Used 1 - Select Random

2 - Save with Distance Metric 2 - Replace Worst (standard)
2 - Select 2 Past Bests
with Equal Weighting

3 - Replace Random
3 - Select with
Tournament Selection

Table 5: Enumerated list of all modifications, again
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It is worth noting that in this final set of possible modification combinations that not a single
combination utilizing replace-oldest (removing the earliest-found past best), in either personal
or neighborhood modifications, was able to pass our defined filter, which strongly suggests that,
similar to save-distance, this modification is likely to decrease performance quality. Therefore, it
should be discarded.

This process of filtering, performing more detailed analysis, filtering again, and using the fi-
nal viable data was a key component of our ability to conduct enough testing runs to verify that
any behavior we noticed was statistically significant and that we could be reasonably certain our
modifications were at least not statistically worse than the benchmark PSO.

As an additional point of interest, we computed the frequency with which a modification com-
bination (averaged over 10 runs) yielded a better result than the benchmark PSO. The frequencies
of these calculations are presented in the tables below.

Modifications (Personal) Frequency of Best Performance
Save with Probability,

Select with Equal Weighting 8

Replace Randomly,
Select with Equal Weighting 3

Save with Probability,
Replace Last Used 9

Replace Randomly 4
(No Modifications) 21

Select with Equal Weighting 25
Save with Probability 7
Save with Probability,
Replace Randomly,

Select with Equal Weighting
2

Replace Last Used 5

Table 6: Personal Modifications Frequency

Modifications (Neighborhood) Frequency of Best Performance
(No Modifications) 30

Select with Equal Weighting 23
Select with Tournament Selection 30

Replace Randomly 1

Table 7: Neighborhood Modifications Frequency

From these tables, it is reasonable to conclude that these modifications hold significant poten-
tial. At the very least, it establishes that the standard, benchmark PSO does not directly outperform
all possible modifications we have created.
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6.2 Impact of PSO Parameters

First, we observe the general impact of PSO’s parameters on the performance of our GEM-PSO
variants.

6.2.1 Dimension and Population

Extensive comparison of PSO performance across dimension and population shows that the
performance of each algorithm is relatively consistent across all 4 combinations (30 or 50 dimen-
sions in the test function, and 30 or 50 particles in the swarm).

The graphs below demonstrate selected examples of this consistency of behavior across dif-
ferent functions. Figure 10 shows personal modification PSOs run on Rosenbrock, and Figure 11
shows neighborhood modification PSOs run on Rastrigin.

Figure 10: Dimension and Population Combinations for Personal-Modified PSO, 4 Past Bests, in Rosen-
brock
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Figure 11: Dimension and Population Combinations for Neighborhood-Modified PSO, 4 Past Bests, in
Rastrigin

The [a,b,c,d,e] subtitle labels are created because of space constraints. These can be in-
terpreted as [dimension, population, total number of iterations, function number, neighborhood
type]. The function numbers and neighborhood numbers can be found in Table 9 and Table 10,
respectively.

One may notice that three of the neighborhood PSO modifications seem to not be converging
on even a near-optimal solution. Specifically, the modifications [0, 3, 0], [0, 3, 2], and [0, 3, 3]
exhibit this undesirable behavior. They share in common the modification replace-random, and it
turns out this observed behavior in our neighborhood modifications can be directly attributed to
replace-random’s influence. We will discuss replace-random in a separate section about the impact
of specific, isolated modifications on GEM-PSO performance.

The consistency in each algorithm’s behavior across dimensions persists across different neigh-
borhood types, different functions, and even whether the modifications are applied to personal or
neighborhood components in the algorithm. However, it is important to note that there exists an
exception, when using 50 dimensions and 50 particles, in the relative performance between bench-
mark PSO and GEM-PSO variants. For example, consider this diagram, which shows personal-
modified PSOs run on Penalized Function No. 01. Standard PSO tends to perform decently but

28



does yield significantly superior results to other modified PSOs except when using 50 dimensions
and 50 particles.

Figure 12: Dimension and Population Combinations for Personal-Modified PSO, 4 Past Bests

As one can see from Figure 12, when using 50 dimensions and 50 population size, standard
PSO performs significantly better than the other modifications, while it does not do so for every
other tested combination of dimension and population. This supports our analysis that while the
impact of dimension and population on the performance of our GEM-PSO variants is similar to its
impact on standard PSO, the magnitude of the impact may be greater on our variants, which results
in standard PSO’s better performance on this specific setting.

We believe that the consistency and frequency of this behavior suggests that standard PSO may
scale more effectively when matching dimensions to particle size. However, one would need to
construct many additional tests to fully understand the underlying cause for this behavior, and this
falls outside the scope of our study.

6.2.2 Neighborhood Type

We know that the performance of standard PSO is quite different when applied to different
functions (simply because convergence and exploration are highly dependent upon function topol-
ogy), and our GEM-PSO algorithms are no different. It is more reasonable to compare the dif-
ference in performance between GEM-PSO variants held constant in all parameters except for
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neighborhood topology. The figures below demonstrate the effect of neighborhood topology, us-
ing a representative figure with personal-modified GEM-PSO variants applied to Griewank and
Rosenbrock, with 4 past best memory.

Figure 13: Varying Neighborhood Topologies for Personal-Modified PSO, 4 Past Bests, on Griewank

Figure 14: Varying Neighborhood Topologies for Personal-Modified PSO, 4 Past Bests, on Rosenbrock
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In order from left to right, top to bottom, we have Global, Ring, and Von Neumann neighbor-
hoods, for both sets of diagrams. One may note some variation (Global converges fastest, followed
by Von Neumann, and finally Ring topology), but we can see the influence of neighborhood topol-
ogy on the performance of our GEM-PSO variants is quite similar to its influence on standard
PSO (as shown by the variation on the benchmark line). This is an expected behavior - neigh-
borhood topology doesn’t have nearly as much impact on our modifications here because these
modifications are only applied to the personal influence component.

This of course raises the question: what is the influence of neighborhood topology on our
neighborhood-based modifications? Below are graphs demonstrating this effect, applied to neighborhood-
modified GEM-PSO variants, tested on Griewank and Rosenbrock, holding all other parameters
constant.

Figure 15: Varying Neighborhood Topologies for Neighborhood-Modified PSO, 4 Past Bests, on Griewank
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Figure 16: Varying Neighborhood Topologies for Neighborhood-Modified PSO, 4 Past Bests, on Rosen-
brock

Now we see a far more striking impact. When using global neighborhoods, some of our GEM-
PSO variants completely fail to converge within 1000 iterations (if we were to let the program
continue to run, it is possible judging by the graph that convergence could be achieved, but would
take far too many iterations to be viable). Those same swarms converge (although still too slowly
to be comparable to the three swarms on par with benchmark) when using Von Neumann neigh-
borhood topology, and converge far more quickly when using Ring topology. However, the better
these two swarms perform, the worse the other 3 swarms perform. This behavior can be attributed
to a fundamental difference our modification has introduced - with the 3 successful swarms (stan-
dard PSO, [0, 2, 2], [0, 2, 3]), introducing more past bests increases the neighborhood best solution
fitness, because they share the remove-worst feature. The more particles are in a neighborhood, the
more likely the solution quality is greater. The greater level of exploitation thus directly translates
to faster convergence. On the other hand, the two swarms that fail to converge ([0, 3, 0] and [0, 3,
3]) use replace-random. The more particles are in a neighborhood, the more dilute and random the
neighborhood best becomes. And therefore, nbest introduces more exploration, which depending
on the neighborhood size, can hinder convergence too strongly. These functions therefore exhibit
this opposite behavior we observed.
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6.3 Isolated Modifications
Let’s observe our results for GEM-PSO variants with single modifications (i.e. only changing

one of our 3 different modification types).

6.3.1 Personal Modifications

After our two levels of filtering, we are left with 4 GEM-PSO variants that use a single mod-
ification. They are [0, 3, 0], [0, 2, 2], [1, 2, 0], and [0, 1, 0], corresponding to replace-random,
select-equal-weighting, save-probability, and replace-last-used, respectively.

Let’s look at save-probability versus save-best (benchmark). Extensive testing (example graphs
done with Rastrigin for consistency below) demonstrates that save-probability performs better with
fewer past-bests.

Figure 17: Varying Neighborhood Topologies for [1, 2, 0] , 2 Past Bests

No discernable difference was found for varying the number of past bests saved (which is a
reasonable behavior given we are selecting the past best with the highest fitness, meaning that more,
likely less fit past bests will not influence our algorithm). However, to draw distinct conclusions
about save-probability’s impact on performance, we refer to a different kind of graph, a line-plot
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of Mann-Whitney tests performed at each 100 iterations on 10 independent solutions generated by
benchmark and our GEM-PSO.

Figure 18: Mann-Whitney Analysis of [1, 2, 0] on Rastrigin, 3 Past Bests

We can see from the graph on the left a significant improvement (roughly by 100 units of solu-
tion quality), but because this is an average of 10 values, the argument could be made that this may
not be a significant improvement, or could be due to natural variation from a stochastic algorithm.
Once we apply Mann-Whitney U Test, however, it becomes clear that our [1, 2, 0] function’s results
are significantly different from the behavior of standard PSO, and therefore represents a significant
improvement.

Because these behaviors are most strongly observed when using Ring topology, a neighborhood
that is small (size 2) and therefore less computationally expensive to maintain, this function would
be more desirable/better applied in scenarios where neighborhood computations are costly and
ideally avoided as much as possible.

Now we analyze [0, 2, 2], corresponding to select-equal-weighting. This is a very promising
modification to PSO, as judging by our frequency lists from earlier, this PSO was the best PSO
possible for more different parameters than standard PSO was. In essence, it has potential to either
outperform standard PSO in specific, specialized cases, or it could be a generally better-performing
algorithm.

Preliminary testing shows that this modification exhibits some of the same behaviors as [1, 2,
0], such as being optimal under Ring topology, and generally performs better under smaller past-
best memory. It consistently outperforms standard PSO on Griewank and Sphere, and performs
almost exactly the same on Rosenbrock. These figures demonstrate performance and statistical
significant with 2 past best memory.
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Figure 19: Mann-Whitney Analysis of [0, 2, 2] on Griewank

Figure 20: Mann-Whitney Analysis of [0, 2, 2] on Sphere

Figure 21: Mann-Whitney Analysis of [0, 2, 2] on Rosenbrock

35



Applied to Griewank, the algorithm improves sharply (to a point where at 400-700 iterations it
performs distinctly better than standard PSO. Eventually, after 700 iterations, standard PSO catches
up (because this is where [0, 2, 2] has achieved convergence).

Applied to Sphere, the algorithm is near-consistent with PSO until iteration 400, where again
it establishes itself as converging on a much higher quality than standard PSO. In reality, stan-
dard PSO and [0, 2, 2] converge upon optimal at roughly the same amount of time, but because
Mann-Whitney U Test does not take into account magnitude of difference, and because Sphere can
be continually optimized more and more strongly (approaching the origin), standard PSO never
overtakes our GEM-PSO in terms of fitness and therefore iterations 400-1000 are all interpreted as
significantly different by the Mann-Whitney U Test.

On Rosenbrock, this algorithm exhibits some unusual behavior (perhaps not fully represen-
tative of the behavior of the function. It outperforms standard PSO numerically at every single
iteration when taking the average of 10 runs’ values, but the spread of the values is such that at
iterations 500-700, this statistical test cannot determine with a reasonable confidence level that the
algorithms’ behaviors are significantly different. After and before this region, it is clear that [0, 2,
2] outperforms standard PSO.

Overall, it seems that select-equal-weighting seems to perform similarly or better than stan-
dard PSO after 400 iterations, and therefore is another modified GEM-PSO that is worth further
consideration.

Finally, we explore the two modifications [0, 1, 0] and [0, 3, 0], corresponding to select-random
and select-tournament, respectively.

Our testing surprisingly demonstrated that [0, 1, 0] and [0, 3, 0] perform best under Von Neu-
mann neighborhood topology. [0, 1, 0] is optimal with 4 past bests - quite opposite to the previously
discussed modified algorithms, and [0, 3, 0] is optimal with 3 past bests, which doesn’t quite fit
with our previously established patterns as well.

Figure 22: Mann-Whitney Analysis of [0, 1, 0] on Ackley, 4 Past Bests
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Figure 23: Mann-Whitney Analysis of [0, 3, 0] on Ackley, 3 Past Bests

However, upon more careful analysis, these two modifications only outperformed standard PSO
on Ackley. All the PSO and variants we tested did not achieve optimal (instead converging around
200) with 50 dimension and 50 particles, so the improvement, although statistically significant,
is not really important. At the very least, they are not as promising as the previous 2 studied
GEM-PSO variants.

6.3.2 Neighborhood Modifications

We now analyze our results for isolated modifications for the neighborhood influence compo-
nent.

Referencing figures in Section 6.2.1 regarding Neighborhood-Modified PSO performance, we
can draw some immediate conclusions here. Most notably, [0, 3, 0], [0, 3, 2], and [0, 3, 3] all
share the modification of replace-random. Additionally, in this graph all three swarms fail to
converge quickly enough to be viable, and even after optimization of parameters (by using Ring
neighborhood topology, 30 dimensions, 30 population), they are considerably worse performing
than standard PSO. Therefore, for our study, we will not analyze these functions further.

Instead, we can direct our focus toward [0, 2, 2] and in particular, [0, 2, 3], which correspond
to select-equal-weighting and select-tournament, respectively.

Our collected data demonstrates surprisingly that not only does [0, 2, 3] match the benchmark
on nearly every function, it significantly outperforms both [0, 2, 2] and the benchmark on most
functions, but only for early iterations (less than 300 iterations). The overall performance ends up
being significantly worse on average. We use Penalized Function 2 to illustrate an example of this
behavior (and additionally incorporate the percent improvement graphs because the line graphs
begin at too large of a magnitude to properly see the end solutions).
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Figure 24: Mann-Whitney Analysis of [0, 2, 2] and [0, 2, 3] on Penalized Function 2, 4 Past Bests

Despite the [0, 2, 3] solution quality being nearly 60 times worse than that of standard PSO,
and [0, 2, 2] being only about 15 times worse, Mann-Whitney tells us that there is a significant
difference (p-value < 0.05) between [0, 2, 2] and standard PSO in terms of solution quality, while
the p-value calculated for [0, 2, 3] is far from being able to call the two function significantly
different. We posit that this must be due to a large variance in solution quality - though the average
solution fitness is much higher, if the spread of solutions is large enough, and there is significant
overlap in the solutions calculated for [0, 2, 3] and those calculated by standard PSO, then Mann-
Whitney will be unable to differentiate them.

Unfortunately, after this full analysis, we come to the conclusion that [0, 2, 3] may be situa-
tionally useful for problems where one needs to use fewer iterations (perhaps because iterations
are computationally expensive or require a large amount of space), but in a general setting, these
modifications do not seem promising.

6.3.3 Isolated Modification Observations

Some individual modifications we created can be directly ruled out through this first analysis.
For example, replace-old (which we discussed earlier) did not appear in any valid combinations
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of modifications after the first filtering. Additionally, after the second filtering, select-random no
longer appears in either personal or neighborhood modification combinations. This suggests that
the behavior of select-random is simply not beneficial as a modification.

Another thing to note is that select-tournament is not ruled out by the 2 filterings, but is never
the best possible algorithm for any combination of parameters. This is not to say that it is an
invalid/unviable algorithm. The fact that it passed the two filters demonstrates that it performs at
least as well as standard PSO. It just happens to never perform better than that.

In the neighborhood side, through our analysis of single modifications, and our ruling out of
[0, 3, 0], [0, 3, 2], [0, 3, 3], we have covered every single neighborhood modification and drawn
our conclusions about them. The rest of the results section deals primarily with multiple combined
modifications in personal-modified GEM-PSO variants.

6.4 Overall Modification Performance
Besides the previously mentioned isolated modifications in personal-modified GEM-PSO vari-

ants, we also have 4 more algorithms to discuss. They are [1, 2, 2], [0, 3, 2], [1, 1, 0], and [1, 3, 2],
with the last one being the only algorithm passing both filters to have all three modifications.

Initial data analysis demonstrates that with the exception of [1, 2, 2] and 50-dim-50-pop behav-
iors, none of these modification combinations manages to consistently outperform standard PSO
on Rastrigin, Penalized Function No. 01, and Rosenbrock. [1, 2, 2] acts as an exception in that it
only manages to outperform standard PSO on Rastrigin and Penalized Function No. 01 only under
the condition of having 4 past bests.

In order to study the desirable behaviors of these algorithms on the functions they do man-
age to outperform standard PSO in, we create the following graphs, showing these algorithms’
performance on Ackley and Griewank, using 2 past bests for standardization (and easier cross
comparison between these GEM-PSO variants).

Figure 25: Percent-Improvement Graphs, 2 Past Bests

Not pictured, but important to note, is that [1, 1, 0] and [1, 3, 2] sometimes do not converge
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on sphere but rather diverge. This is a critically undesirable behavior, as any basic optimization
algorithm should converge on sphere. It is highly likely that the combination of save-probability
with a modified removal scheme drastically lowers the quality of past-bests, hindering convergence
so much that the algorithm never exploits more optimal information (i.e. bests found with higher
fitness).
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7 Further Work
Our results give us some understanding of which GEM-PSO variants are successful in full

(outperforming PSO consistently), successful within or after a certain number of iterations, or
just on-par with (statistically not significantly different from) standard PSO. However, we need a
better understanding of the underlying reasons behind these behaviors. By discovering the precise
mechanisms underlying our algorithms’ behaviors, we can understand on a more intuitive level
what changes might be advantageous for improvement of the algorithm.

Because of our code structure, GEM-PSO can be easily modified to include new mechanisms
for adding, selecting, or removing past bests. Therefore, one promising area of exploration is
implementing more mechanisms and testing. Coupled with our previous future work goal, if we
were to understand the underlying reasons for different modifications’ behaviors, we could create a
modification tailored to pair with different existing modifications in order to increase performance.
For example, in our research we determined that remove-random as a neighborhood modification
seemed to introduce too much randomness and hindered convergence. Here we understand the
underlying reason for the lack of convergence. Knowing this, we could create a modification to
increase exploitation, and thus balance the amount of exploration and exploitation. Additionally,
we could experiment with other stand-alone modifications. For example, in our study we found
that using two past bests with equal weighting yielded promising results. We could further explore
this modification by giving the past bests unequal weighting with a wide variety of weighting
mechanisms. We could also increase the number of past bests in conjunction with weighting
mechanisms, creating many new GEM-PSO variants.

More fine-tuned variation of parameters could potentially help us derive additional conclusions
about the behavior of these modifications. Using additional functions with specific shapes and
different challenges could help us understand more situations in which to apply GEM-PSO, as
well as understand the reasons for certain observed behaviors. Finally, by collecting more data
for the parameter combinations we have, we can draw stronger statistical conclusions about the
difference in behaviors of GEM-PSO - our Mann-Whitney U Tests were conducted on data sets of
size 10, which was sufficient to eliminate most outlier data, but with a size 30 data set it becomes
highly unlikely that using the Mann-Whitney U Test would draw an incorrect conclusion based on
regular deviations and larger ranges in GEM-PSO performances.

Finally, we would like to expand our modifications to different types of Particle Swarm Opti-
mization. Our research dealt exclusively with standard PSO, which generally optimizes a single
valued function. However, we could apply the same modification concepts and modularization
to variations such as Fully Informed Particle Swarms (FIPS), or even adapt our mechanisms to
multi-objective optimizing Particle Swarms.
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8 Conclusions
In our research, we analyzed the principles, behavior, and algorithm of standard PSO, as well

as highlighting its shortcoming of premature convergence. We developed and tested GEM-PSO, a
modification of PSO that sought to increase performance by utilizing past best memory. We tested
various GEM-PSO variants over a wide array of initialization parameters for PSO, and on a variety
of different benchmark functions to observe different behaviors and test our algorithm.

Through our results and subsequent analysis, it is apparent that although no algorithm reliably
outperforms standard PSO in every scenario and set of parameters, the modifications we introduced
to create GEM-PSO yield significant differences in behavior that may work to the user’s favor. In
particular, isolated modifications seem particularly effective and can often outperform standard
Particle Swarm Optimization. Some combined modifications also can match the performance of
standard PSO and may have more nuanced behaviors. One may gain a significant range of benefits
from these modifications. Some GEM-PSO variants are not strongly sensitive to PSO parameters
(which makes them more applicable in different optimization problems). Others yield better solu-
tions in similar amounts of iterations on specific functions, which may indicate they exploit these
functions’ properties and may be more specialized for different problems. Still other GEM-PSO
variants may outperform standard PSO in early numbers of iterations, which may be highly desir-
able if many iterations cannot be run, or time/space are constrained. All of these behaviors have
potential to positively impact the quality of solutions, time required for finding solutions, and ease
of finding solutions.

Because our modifications are relatively inexpensive computationally, and are straightforward
in implementation, we believe these successful isolated modifications as well as certain combined
modifications are worth exploring further. The framework we have created, in which we break
the usage of past best and enhanced memory into three different components, is a useful design
paradigm for the modularization of GEM-PSO, and lends itself to additional modifications and
relatively easy construction of entirely new combinations.

We hope that this research and analysis may serve as a solid foundation upon which to continue
exploring methods to increase diversity, or to incorporate and exploit past best information to
improve Particle Swarm Optimization. This field clearly has much more to offer and explore, and
by doing so we may discover some crucial and fascinating improvements.
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Appendix

Adding/Saving Replacing/Removing Selecting/Using
0 - Save Best (Standard) 0 - Replace Oldest 0 - Select Best (standard)
1 - Save with Probability 1 - Replaced Last-Used 1 - Select Random

2 - Save with Distance Metric 2 - Replace Worst (standard)
2 - Select 2 Past Bests
with Equal Weighting

3 - Replace Random
3 - Select with
Tournament Selection

Table 8: List of all modifications, enumerated

Function Function Number
Generalized Rastrigin’s Function 1

Ackley’s Path Function 2
Generalized Griewank’s Function 3

Generalized Penalized Function No. 01 4
Generalized Penalized Function No. 02 5

Sphere Model 6
Generalized Rosenbrock’s Valley 7

Table 9: Benchmark functions, enumerated

Neighborhood Neighborhood Number
Global 0
Ring 1

Von Neumann 2

Table 10: Neighborhoods, enumerated
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Black and White Versions of Color Figures

3-Dimensional Test Function Renderings

Figure 26: 3-dimensional rendering of Rastrigin with n = 2
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Figure 27: 3-dimensional rendering of Ackley with n = 2

Figure 28: 3-dimensional rendering of Ackley (zoomed in) with n = 2
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Figure 29: 3-dimensional rendering of Griewank with n = 2

Figure 30: 3-dimensional rendering of Griewank (zoomed in) with n = 2
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Figure 31: 3-dimensional rendering of Penalized Function 1 with n = 2

Figure 32: 3-dimensional rendering of Penalized Function 2 with n = 2
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Figure 33: 3-dimensional rendering of Sphere Model with n = 2

Figure 34: 3-dimensional rendering of Rosenbrock’s Banana Function with n = 2
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GEM-PSO Results

Figure 35: Dimension and Population Combinations for Personal-Modified PSO, 4 Past Bests, in Rosen-
brock

Figure 36: Dimension and Population Combinations for Neighborhood-Modified PSO, 4 Past Bests, in
Rastrigin

50



Figure 37: Dimension and Population Combinations for Personal-Modified PSO, 4 Past Bests
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Figure 38: Varying Neighborhood Topologies for Personal-Modified PSO, 4 Past Bests, on Griewank

Figure 39: Varying Neighborhood Topologies for Personal-Modified PSO, 4 Past Bests, on Rosenbrock
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Figure 40: Varying Neighborhood Topologies for Neighborhood-Modified PSO, 4 Past Bests, on Griewank

Figure 41: Varying Neighborhood Topologies for Neighborhood-Modified PSO, 4 Past Bests, on Rosen-
brock
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Figure 42: Varying Neighborhood Topologies for [1, 2, 0] , 2 Past Bests

Figure 43: Mann-Whitney Analysis of [1, 2, 0] on Rastrigin, 3 Past Bests
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Figure 44: Mann-Whitney Analysis of [0, 2, 2] on Griewank

Figure 45: Mann-Whitney Analysis of [0, 2, 2] on Sphere

Figure 46: Mann-Whitney Analysis of [0, 2, 2] on Rosenbrock
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Figure 47: Mann-Whitney Analysis of [0, 1, 0] on Ackley, 4 Past Bests

Figure 48: Mann-Whitney Analysis of [0, 3, 0] on Ackley, 3 Past Bests
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Figure 49: Mann-Whitney Analysis of [0, 2, 2] and [0, 2, 3] on Penalized Function 2, 4 Past Bests

Figure 50: Percent-Improvement Graphs, 2 Past Bests
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