
Bowdoin College Bowdoin College

Bowdoin Digital Commons Bowdoin Digital Commons

Honors Projects Student Scholarship and Creative Work

2018

Real-Time Object Recognition using a Multi-Framed Temporal Real-Time Object Recognition using a Multi-Framed Temporal

Approach Approach

Corinne Alini
calini@bowdoin.edu

Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Alini, Corinne, "Real-Time Object Recognition using a Multi-Framed Temporal Approach" (2018). Honors
Projects. 99.
https://digitalcommons.bowdoin.edu/honorsprojects/99

This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work
at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator
of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu.

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/honorsprojects
https://digitalcommons.bowdoin.edu/students
https://digitalcommons.bowdoin.edu/honorsprojects?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/honorsprojects/99?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu

Real-Time Object Recognition using a Multi-Framed Temporal
Approach

An Honors Paper for the Department of Computer Science

By Corinne Taylor Alini

Bowdoin College, 2018

© 2018 Corinne Taylor Alini

Contents

Acknowledgements ii

Abstract iii

List of Figures iv

List of Tables vii

List of Algorithms vii

1 Introduction 1

1.1 Background . 1

1.1.1 Camera . 1

1.1.2 Image Format . 2

1.1.3 Processor . 2

2 The Problem 3

3 Motivation and Inspiration 5

4 Related Work 6

4.1 Static Object Classification . 6

4.1.1 Northern Bites Ball Detection System 6

4.1.2 Problems with Current Ball Detection System 7

4.1.3 Machine Learning Approach 8

4.1.4 Heuristics Approach . 8

4.2 Dynamic Object Classification . 9

4.2.1 Optical Flow . 9

i

5 Overview 12

5.1 Apparent Motion . 12

6 Image Differential 14

7 Classification 16

8 Thresholding 17

8.1 Binary Thresholding . 17

8.1.1 Results . 18

8.2 Fuzzy Threshold . 21

8.2.1 Linear Threshold . 21

8.2.2 Quadratic Threshold . 22

9 Spot Filter and Spot Detector 24

9.1 Spot Filter . 24

9.2 Spot Detector . 24

10 Results 26

10.1 Only Moving Balls . 28

10.2 Only Moving Robots . 28

10.3 Moving Robots, Moving Balls and Moving Robots near Moving Balls 29

10.3.1 Moving Robots and Moving Balls 30

10.3.2 Moving Robots near Moving Balls 30

10.4 Run-Time Analysis . 31

10.5 Summary . 32

11 Future Work 38

11.1 Run-Time Improvements . 38

ii

11.2 History of the Ball . 38

11.3 Camera movement . 39

12 Conclusion 41

Bibliography 42

iii

Acknowledgements

I would first and foremost like to thank my advisor, Eric Chown, for his valuable

advice and insight that helped guide me throughout this project. I would also like

to thank Bill Silver for his mentorship, instruction, and guidance. As teachers and

mentors, their dedication and support of this project has proven to be invaluable. I

am indebted to my colleagues for their aid and would especially like to thank Phil

Koch and James Little. I am grateful for my non-computer science friends and family

who reviewed this paper and endlessly listened to and aided with my presentation.

Lastly, I would like to thank my dogs, Ginny and Madison, for inspiring this project

with their obsession with chasing a moving ball.

ii

Abstract

Computer Vision involves the extraction of data from images that are analyzed in

order to provide information crucial to many modern technologies. Object recognition

has proven to be a difficult task and programming reliable object recognition remains

elusive. Image processing is computationally intensive and this issue is amplified on

mobile platforms with processor restrictions. The real-time constraints demanded by

robotic soccer in RoboCup competition serve as an ideal format to test programming

that seeks to overcome these challenges. This paper presents a method for ball

recognition by analyzing the movement of the ball. Major findings include enhanced

ball discrimination by replacing the analysis of static images with absolute change in

brightness in conjunction with the classification of apparent motion change.

iii

List of Figures

1.1 This is a representation of the YUV 422 image format [19]. 2

2.1 This image is an example of the ball next to the robot's foot. 3

2.2 This image is an example of the ball next to the robot's head. 3

2.3 This is a frame of a scene with multiple moving robots and a moving ball.
This image is an example of a more complicated scene that a robot may
see in a given game. .. 4

3.1 This is a frame of a ball rolling across the soccer field. This is an example
of a rather simple scene that presents a challenge in differentiating between
similar shapes of the cross on the field and the ball. .. 5

4.1 The current ball detection system falsely classified the back of a robot's
leg as a soccer ball [3]. .. 7

4.2 The current ball detection system was unable to identify any of the balls
in this image. ... 7

4.3 This is an example of how optical flow uses a vector field to find the
apparent change in motion [1]. .. 10

6.1 This is an example of a sequential scene used to test the absolute differential
method. Note that everything in the image except the leftmost ball is
moving. ... 15

6.2 This is a depiction of the difference image from two images (with a binary
threshold for visualization). ... 15

8.1 This graph demonstrates how the binary threshold sets the value. t is the
binary threshold. If the pixel value of the differential image is below this
threshold t, the value was set to zero (black), otherwise the value was set
to 1023 (white). ... 17

8.2 This is an example of a sequential scene used to test binary thresholding.
Note that both the robots and the ball are moving.. 19

8.3 This is a sample image of the output produced from binary thresholding. ... 19

8.4 This is an example of an image used to test the binary threshold with
minimum lighting. ... 20

8.5 This image is an example of an image used to test the binary threshold
with average lighting... 20

8.6 This is an example of an image used to test the binary threshold with
natural or extreme lighting. ... 20

iv

8.7 This graph demonstrates how the linear threshold sets the value. t1 is
the lower threshold and t2 is the upper threshold. If the pixel value of
the differential image is below t1,the value is set to zero (black). If the
value was greater than t2 the value is set to 1023 (white). If the pixel was
between the two values a fuzzy threshold is applied... 21

8.8 This graph demonstrates how the quadratic threshold sets the value. t is
the quadratic threshold. If the pixel value of the differential image was
below this threshold t, then the value was set to zero (black). otherwise it
was set to raw input ˚ raw input ăă value.. 23

9.1 Representation of how the constant-time filter would locate ball. 25

10.1 This is an example of the original frames. Everything but the ball in the
middle is moving. .. 27

10.2 This is a sample image of the output produced from LIN 5. 27

10.3 This is a sample image of the output produced from LIN 2. 27

10.4 This is a sample image of the output produced from QUAD 6. 27

10.5 This is a sample image of the output produced from QUAD 7. 27

10.6 This is the heatmap used in the following images. The heatmap goes from
left to right with black being the lowest pixel value and white the highest. . 28

10.7 This is an example of a sequential scene used to test the algorithm on
scenes with only moving balls. Note that only the ball is moving.................. 34

10.8 This is the output of LIN 5. .. 34

10.9 This is the output of LIN 2. .. 34

10.10 This is the output of QUAD 6. ... 34

10.11 This is the output of QUAD 7. ... 34

10.12 This is an example of a sequential scene with only moving robots. Note
that both robots are moving.. 35

10.13 This is the output of LIN 5. The algorithm unsuccessfully identified the
moving robots as balls. ... 35

10.14 This is the output of LIN 2. The algorithm did not successfully discrimi-
nate moving robots from moving balls. .. 35

10.15 This is the output of QUAD 6. The algorithm did not successfully dis-
criminate moving robots from moving balls. ... 35

10.16 This is the output of QUAD 7. The algorithm successfully did not identify
the moving robots as balls. .. 35

10.17 This is an example of a sequential scene with both robots and balls moving. 36

10.18 This is the output of LIN 5. .. 36

10.19 This is the output of LIN 2. .. 36

10.20 This is the output of QUAD 6. ... 36

v

10.21 This is the output of QUAD 7. ... 36

10.22 This is an example of a sequential scene with a moving ball next to a
moving robot.. 37

10.23 This is the output of LIN 5. The algorithm found the soccer ball in spot
#6. .. 37

10.24 This is the output of LIN 2. .. 37

10.25 This is the output of QUAD 6. The algorithm found the soccer ball in
spot #3... 37

10.26 This is the output of QUAD 7. ... 37

11.1 If the ball was found in the previous image on the left, then the algorithm
could begin the search in a smaller region of the image as demonstrated
by the red box on the right image. ... 39

11.2 This is an example of a sequential scene with the camera moving (robot
was walking), a moving ball next to a moving robot.. 40

11.3 This is the absolute differential image with spots. Note that there are false
positives on the field lines. ... 40

11.4 This is the absolute differential image with spots. Note the brightness of
the ball. .. 40

vi

List of Tables

10.1 The success rate and average number of false positives. 26

10.2 The average CPU running time and standard error. .. 32

vii

List of Algorithms

1 The algorithm for creating the differential image. 14
2 The algorithm for applying the linear threshold. 22
3 The machine instructions to compute the absolute difference for two

pixels . 31

viii

1 Introduction

One of today's most important areas in Computer Science involved achieving
human-level capabilities and one of the most challenging is developing algorithms
for computer vision. Computer vision has applications in many modern technologies
such as industrial robotics, autonomous vehicles and mobile. Computer vision is es-
sential for identification, guidance, gauging, and inspection. For example, self-driving
cars use machine vision to help with navigation, and applications like Snapchat use
machine vision to analyze images and to produce filter features.

Robots provide a good example of the challenges involved in adapting vision
algorithms to use in real world applications. With their mobile platforms, robots
often have a limited processing power, yet the image processing required for computer
vision is computationally intensive. Computer vision that performs as well as human
vision may remain elusive, but improving efficiency and performance is not.

This paper examines the problem of real-time robotic vision for the Northern
Bites RoboCup Standard Platform League (SPL) team. RoboCup is an international
robotics competition in which different teams use the Aldebaran NAO robot in soccer
matches. Using RoboCup as the platform for research, this paper will focus on real-
time object recognition using a unique multi-framed approach. The goal of the paper
is to determine if using motion for object detection is a viable option. This paper
strives to perform object recognition to find a soccer ball in motion on the field.

Section 2 discusses the problem and Section 3 discusses the motivation behind the
approach. Section 4 examines the static and dynamic applications of computer vision
as related work. Section 5 provides an overview of the research presented by this
paper. Section 6 examines the image differential portion of the new algorithm, Section
7 describes classification schema, and Section 8 describes its threshold. Section 9
focuses on the spot filter and detector. Results are presented in Section 10 with
implications for future work and conclusions in Sections 11 and 12.

1.1 Background

1.1.1 Camera

The NAO robots include two identical SOC Image Sensor cameras located on the
forehead (top camera) and mouth (bottom camera). Both cameras output images
at 1280x960 resolution. The Northern Bites vision system requests 640x480 images
from the top camera and 320x240 images from the lower camera. These images are
captured at a maximum rate of 30 frames per second and are stored in the YUV 422
image format.

1

Figure 1.1: This is a representation of the YUV 422 image format [19].

1.1.2 Image Format

When the camera from the mobile agent takes an image, the resulting measure-
ments are stored in the YUV 422 image format. The YUV 422 image format is a
2-dimensional array with each pixel formed by three channels: Y, U, and V. The Y
component represents the luma or brightness and the U and V gives the chroma, or
color. Without the U and V component, the image would be simply black-and-white.
The 422 portion indicates the number of bites per channel. In a 422 image, there
are 2 bytes of each U and V for every 4 bytes of Y. The YUV 422 image format is
depicted in Figure 1.1. The y value is used with its neighboring u and v in order to
create a colored pixel value.

1.1.3 Processor

The processing power of the NAO robot is limited when compared to the capa-
bilities of other platforms. The processor runs at 1.6 GHz meaning that it can only
execute 1.6 billion instructions a second. For an application that allocates 50% of its
computing time to vision and since both cameras get 30 frames a second, this means
that the processing power limits the application to only approximately 13 million
instructions per image. Since an image can vary from 640x480 to 320x240, this re-
sults in a maximum range of 44 to 173 instructions per pixel. Thus, there are serious
limitations to the types of algorithms that can be used in such vision system.

As a basis for comparison, the iPhone 5 has a dual-core processor that runs at
1.3 GHz. This means that each processor can run 1.3 billion instructions per second,
and therefore a total of 2.6 billion instructions per second. If NAO robots had this
processing power, then the maximum range of instructions would increase to 141
and 564 instructions per pixel. An extra GHz allows the algorithm to be slower
and therefore have more accurate prediction property. The constraints inherited
on Aldebaran's NAO robotic platform require the visual algorithm to be extremely
computationally efficient.

2

2 The Problem

While computer vision has been improved by the advent of Deep Learning Neural
Networks, real-time robotic vision remains far from solved. A robot must perform
visual processing in 1

30
th of a second per frame, finding the necessary objects in the

scene. The robot not only has to locate the soccer ball, but also has to identify goal
posts and other robots. In addition, the robot cannot commit all of its processing
power to vision, but must also walk, coordinate with other robots, and perform many
other behaviors in order to play soccer. The robot has a very limited amount of time
to spend on analyzing the image. In addition, since the SPL league dictates that the
hardware of the robot cannot be changed, the robot only has one processor to use.
This severely limits the amount of time a robot has to find the ball.

In addition to these time constraints, the robot has to be extremely accurate
with its identifications. Any mistakes in identification are devastating in RoboCup
and can cost games. False positive identification happens when the robot sees a ball
where one does not exist. This false positive results in the robot moving in the wrong
direction as well as communicating a false positive location to teammates who then
also might move to the wrong location. If a robot's identification is afalse negative, it
does not identify the ball where there is a ball. False negatives can result in a robot
continually looking for a ball rather than moving the ball towards the goal.

The identification of a ball is especially problematic for NAO robots due to similar
color and shape between these robots and soccer balls. Both soccer balls and robots
have dark area scatters across a white background as seen in Figure 2.3. Furthermore,
the goal posts, lines, and random objects in the background are also white. Color
cannot be used as a search parameter for reliable object recognition. While shape is
often used for object identification, the robotic feet, robotic heads, and soccer balls
all have a very similar curved shape. Robots often fall so their curved heads as well as

Figure 2.1: This image is an example
of the ball next to the robot's foot.

Figure 2.2: This image is an example
of the ball next to the robot's head.

3

Figure 2.3: This is a frame of a scene with multiple moving robots and a moving
ball. This image is an example of a more complicated scene that a robot may see in
a given game.

their curved feet are located on the ground in same location where other robots would
be searching for the ball. In Figure 2.2, the robot's head is very close to the soccer
ball and in Figure 2.1 the robot's feet are close to the ball. Other search parameters
need to be identified since only utilizing color and shape in searches yields many false
positive ball recognitions.

4

3 Motivation and Inspiration

If a human was asked to identify the images in Figure 3.1, they would easily
describe a soccer ball roughly in the middle of the field. They would properly identify
that the cross in the middle of the field was not the soccer ball.

Figure 3.1: This is a frame of a ball rolling across the soccer field. This is an
example of a rather simple scene that presents a challenge in differentiating between
similar shapes of the cross on the field and the ball.

Humans can accurately identify an object in 350 milliseconds [6]. A person would
not be able to identify the soccer ball if they were given the 33 milliseconds or 1

30
th

of a second [6]. They would not successfully be able to recognize the soccer ball with
the constraints of the NAO robot in RoboCup. However, humans need less than 100
ms per image if the images are presented sequentially [6]. A human would need less
time to find the soccer ball if presented with a sequence of images.

If the scenes get more complicated with more images like in Figure 2.3, even
a human would need more time to find the soccer ball. The fact that the scene
is poorly lit and there are other moving objects makes the task even more difficult.
Given that humans are more robust at object recognition than computers, computers
would need an extended length of time to find the soccer ball, time that does not
exist for a real-time application to a soccer match.

The motivation for this project is to explore the human characteristic of improved
visual recognition efficiency with sequential imagery and investigate if sequential
imagery can be applied to machine vision and exploited to improve object recognition.
This project uses human object detection as inspiration to ameliorate the speed of
computer object detection.

5

4 Related Work

For inspiration and in preparation for this research, both static (single-framed)
and dynamic (multi-framed) object detection methods were examined. Single-framed
approaches have the advantage that each identification is mutually exclusive: a false
positive identification made in a previous frame does not affect the next identification.
They also are more versatile as they can identify both moving and still objects.
However, this approach does not maintain any previous information, which can slow
down the time to find the object. Dynamic object detection provides additional
data about the object such as its movement that static approaches cannot provide.
Knowing where the object was in the previous frame narrows search parameters and
can speed up the process of object identification. This narrowing of search parameters
is a critical step in increasing speed, yet any misidentification at this step can be
devastating. False identifications in previous frames can negatively affect current
identifications as the frames are not mutually exclusive. The dynamic approach is
also limited in that it cannot identify stationary objects.

4.1 Static Object Classification

The majority of the RoboCup SPL league has adopted either a machine learning
or heuristic approach to identifying objects. The Northern Bites team utilizes a
heuristic approach, meaning the robots find candidate regions and then filter them
to further classification.

4.1.1 Northern Bites Ball Detection System

A difficult problem in robotics is how to visually identify complex objects. Ball
detection has proven to be very challenging aspect of robotic soccer. When the SPL
league switched to black and white balls, the recognition of these balls could no
longer rely upon color identification. Most objects in the robotic visual image have
the same color scheme like robots and goalposts. The uneven lighting on the field
masks black-and-white soccer balls. Shadows cast by three-dimensional objects like
robots, goal posts and referees further impede accurate ball detection.

The Northern Bites ball detection system runs the YUV image though a constant-
time spot filter that detects spots. A spot is defined as an area with a large difference
in gray-levels between that area and its surrounding region. The algorithm calculates
the color contrast between the inner and outer region to determine candidate regions.
The spot detector algorithm outputs a list of black spots and a list of white spots,
which serve as candidate regions for the heuristic analysis. (see Section 9 for further
details regarding the spot filter and spot detector).

6

Figure 4.1: The current ball detec-
tion system falsely classified the back
of a robot's leg as a soccer ball [3].

Figure 4.2: The current ball detec-
tion system was unable to identify any
of the balls in this image.

The ball detection algorithm then removes all the white spot candidates above
the horizon. It also removes any candidates that are identified as too small. The
next step is to remove robots by quantifying the amount of white below the spot and
eliminating if there is excessive white below the spot. Finally, it counts the number
of black spots inside and considers the candidate a spot if there are enough black
spots within the larger white spot.

4.1.2 Problems with Current Ball Detection System

The current ball detection system makes many mistakes in identifications and
struggles to identify soccer balls in particular scenarios. Even with the extensive
heuristic system, the robots often misidentify robot heads, jerseys, and knees as
soccer balls. The misidentification of a robot knee is seen in Figure 4.1. More
importantly, the ball detection system struggles with recognizing moving balls as
seen in Figure 4.2, which has proved fatal for Bowdoin's goalie. Since the ball is
moving constantly in an efficiently played game of soccer, the robots are unable to
find the ball a significant portion of the time.

The ball detection system of the Bowdoin RoboCup team analyzes a single image
to find the ball. All apparent motion is eliminated in this process of examining one
frame. Since the movement of a ball is much different from robots, referees, and all
other motion a robot would see, the ability to analyze motion would greatly reduce
processing time and improve ball detection accuracy. Knowing information about the
balls previous location allows the algorithm to focus its search on particular regions
of the image instead of the whole image.

7

4.1.3 Machine Learning Approach

A few RoboCup teams in the league have adopted machine learning techniques
like Convolutional Neural Networks (CNN) to find the ball [2, 9, 14]. CNN is a
supervised machine learning technique that is similar to a regular neural network
with the assumption that the inputs are images. In 2016, SQPR from Sapienza
University of Rome described their approach to ball detection using a CNN which
was independent of color variation and illumination [2]. They combined the CNN
with image region segmentation to reduce the search space. They trained against a
positive and negative training set to train their classifier.

University of Texas Austin used a hybrid approach that combined machine learn-
ing with a heuristics approach to create an effective ball detection system as described
in [13]. They use a region-of-interest filtering pipeline approach with a Deep Neural
network to create a fast object detection system that was able to detect the ball's
position with no prior knowledge. This means that their algorithm does not know
anything about the previous whereabouts of the ball to find it. Their algorithm ini-
tially applies a high-level heuristic search to quickly identify ball candidates. From
there, it uses more rigorous filters to remove false positives.

The main issue with a purely machine learning approach is that many machine
learning algorithms require thousands to millions of labeled samples to produce a
robust and accurate system. Samples need be collected and labeled manually in a
laborious and slow process. In addition, the machine learning approach itself requires
time. The neural network needs an inference time that is within the real-time con-
straint of 33 milliseconds. While algorithms do exist that are sufficiently efficient for
RoboCup implementation, the platform severely limits which neural neural network
can be used. UChile tested a variety of networks and eliminated most including
Alexnet and Darknet-CIFAR10, which had inference times of 7400 milliseconds, 4400
milliseconds respectively [5]. In fact, UChile only found two neural networks with
acceptable inference times for the RoboCup platform („ 1 milliseconds) [5].

4.1.4 Heuristics Approach

Another approach to ball recognition is to create candidate regions and then weed
out candidates.

The UChile Robotics Team from Universidad de Chile developed an algorithm
that begins by finding white regions in the image that are neither a white goal post
nor a field line [11, 12]. White regions are identified using scan lines. For each
white region, an interior point, a starting point for a vertical and a starting point
for a horizontal scan are computed. The scan stops when there is a change in color.
The white regions are then send through classification which runs the region through
numerous filters like “is the ball near the robot” and “is the current ball spot is inside
an already detected ball” [11, 12].

8

B-Human from University of Bremen and the German Research Center for Artifi-
cial Intelligence (DFKI) developed a multi-stepped heuristics approach to detect the
ball [16]. They first search for ball candidates using scan lines of different densities.
They then find the directions of the gradients through the creation of a contrast-
normalized Sobel image. From there, they look for the ball contour in the search
space and then take those with the highest response and check the ball pattern.

While computationally more efficient, the heuristics method is not general pur-
pose. This method is developed for particular tasks and is not applicable to general
object detection. Finally, this method requires more trial and error. It does not
always lend itself to an obvious simple solution and it can take years to develop a
usable algorithm.

4.2 Dynamic Object Classification

Object recognition using motion often requires a multi-framed approach. The
algorithm needs to examine the progression of time to determine which pixels cor-
respond to movement. While many of the current approaches are too slow for this
problem, they provide the general inspiration for this approach.

4.2.1 Optical Flow

Currently, motion detection in computer vision is often estimated using optical
flow. Optical flow is defined as “the apparent motion of brightness patterns in the
image” [17, 4]. It is based upon finding the apparent motion in a sequence of images.
In Figure 4.3, the vector field demonstrates how the box moves between each frame [1].
The 2D vector field demonstrates the directional change in motion.

The idea is to fuse a 2D vector field to map the displacement of an object between
frames. The goal is to estimate the pixel motion from image Ipx, y, tq to Ipx`∆x, y`
∆y, t`∆tq.

If there is a pixel with intensity Ipx, y, tq in a frame, x and y are the coordinates
of the object, t is the time interval, and I is the intensity of brightness. In the next
frame, the object moved by ∆x and ∆y taken after ∆t time. Assuming that pixel
intensities are translated from one frame to the next for the gray-scale image,

Ipx, y, tq “ Ipx`∆x, y `∆y, t`∆tq

This equation is called the Brightness Constancy Constraint Equation. To solve
this equation, take the Taylor Series Expansion of I, which results in:

Ipx`∆x, y `∆y, t`∆tq “ Ipx, y, tq `
BI

Bx
∆x`

BI

By
∆y `

BI

Bt
∆t`H.O.T

9

Figure 4.3: This is an example of how optical flow uses a vector field to find the
apparent change in motion [1].

From here, it simplifies to:

0 “
BI

Bx
∆x`

BI

By
∆y `

BI

Bt
∆t

So, using the short hand Iv “
BI
Bv

it simplifies to,

Ix∆x` Iy∆y ` It “ 0

OI ¨ p∆x,∆yq “ 0

Thus, the component of the flow perpendicular to the gradient is unknown. Since
there are two unknown variables, ∆x and ∆y, the equation cannot be solved in its cur-
rent state. Thus, the optical flow algorithm needs additional information to estimate
the actual flow. This is called the Aperture Problem [17, 4, 10]. Methods have been
developed to add additional constraints to estimate optical flow. One such method
includes the Horn-Schunck method, which introduces a smoothness constraint [10].
It begins with the assumption that there is smoothness in the flow over the whole

10

image. This allows for an estimation of the velocity field that minimizes the equa-
tion above for each pixel in the image. This iterative implementation allows for the
estimation of optical flow that has been shown to be both insensitive to brightness
levels and noise.

While this method seems appropriate to multi-framed object recognition, it is
ineffective for real-time applications. As described with the Horn-Schunck method,
the iterative relaxations require multiple passes over the image and multiple com-
putations per pixel. In such a computationally limited environment, this method
requires a large number of operations per pixel to achieve acceptable estimation ac-
curacy. As previously explained, the processor only has about 173 instructions per
pixel. Therefore, optical flow is theoretically interesting, but is too computationally
intensive and cannot handle this type of moving object recognition efficiently. For
example, Talukder et al. created a real-time optical flow algorithm for mobile plat-
form. Their algorithm runs at 6.8 frames per second on a 320x240 image on a 2.1
GHz platform [18]. This algorithm is still too slow for the RoboCup time constraints
even though it is very efficient and runs in real-time.

11

5 Overview

The goal of this work is to explore a new method for soccer ball detection. The
current object detection method does not incorporate motion, which could be used
to improve accuracy of ball detection. The paper describes a new method designed
to improve the current ball detection system that incorporates ball motion in the
processing by analyzing multiple frames at a time.

Motion can be detected by analyzing the ball's edges. When the RoboCup league
utilized a solid orange colored ball, motion would be detected by color change in
the image at the ball edges where the color in the image went from orange to the
field color green and green to orange. However, a black and white soccer ball has
the added advantage that the interior pattern has apparent motion while the ball is
rolling. Going from black to white creates high contrast from image to image, much
more than contrast in the image of a robot. The algorithm uses this theory as the
foundation for the algorithm.

There are 3 major steps to this algorithm:

1. Measuring Change.

2. Discriminating apparent changes in motion from object motion.

3. Discriminating between different moving objects.

The algorithm measures change by using an absolute value differential image
method that is not only time efficient, but also robustly recognizes spherical objects
with constant motion. As explained above, the algorithms used for RoboCup require
quick and efficient processing in order to run. The multi-framed ball detection system
works by first finding the change in brightness. This is done by taking the difference
of the Y-components of two images. The difference image demonstrates what parts
have changed from one image to the next.

The next step is to find the objects that are moving and to attenuate the effects
of other types of apparent motion. This is done through the use of a threshold - a
limit that indicates at what pixels are deemed noise.

From there, the algorithm runs the image in the spot detector and filter to produce
a list of candidate spots. This method looks at the overall image to identify objects
that are similar to the ball.

5.1 Apparent Motion

Motion vision is done by examining frame by frame changes in brightness over
time. Therefore, anything that causes a change in brightness is perceived as motion.

12

When doing image processing with motion there are four factors that produce
changes in gray-levels:

1. Object

2. Light

3. Camera Movement

4. Noise

Variation in any of these factors will cause an apparent change in motion in the
image. For example, if the only movement in the scene is an object like a ball or
robot, its movement will be depicted in the image as change in gray levels. Also,
camera movement will also induce apparent motion in the resulting image. When a
person takes an image with a camera while the camera is moving, the resulting image
is blurry. If looking for the motion of the image, it would be difficult for a computer to
differentiate this case from one in which everything in the image is moving. Finally,
changing light will also induce apparent motion. Given that motion is identified by a
change in brightness of a pixel, if the lighting changes from dark to light or vice versa
then that pixels brightness will change accordingly. This will be viewed as a change
in motion when nothing actually moved. Shadows, camera flashes, and other changes
in ambient light may be interpreted as motion since finding changes in brightness is
used to identifying motion.

Image noise affects the perceived motion of an image as well, which will be dis-
cussed in the threshold section.

13

6 Image Differential

The first step of the algorithm is to confirm that every frame taken by the robot
is consistently passed to the code. This is important, as missing frames cause chrono-
logical gaps that create incorrect identification due to inconsistencies with the time
intervals between frames.

Examining the number of frames passed from the robot to the code tested whether
or not the robot receives all the frames. If the robot were not passing every frame
then the code would see less than 60 frames a second (30 for each the top and bottom
camera). The code did receive 60 images a second and thus confirmed that the robot
does pass all 60 frames to the code.

The next step is to determine what is moving in the image. In order to improve
speed and space complexities, this was achieved by taking the difference between two
images as shown in Algorithm 1. A y-image is an image composed solely of the y
components of the original image (also called gray-levels). Y-images were chosen over
subtracting the whole image for their simplicity and reduced complexity.

Algorithm 1 The algorithm for creating the differential image.

1: procedure Differential Image
2: prev image Ð y-values of the previous image in the sequence
3: curr image Ð y-values of the current image in the sequence
4: differential image Ð Initialize the differential image
5: if prev image.widthpq ““ curr image.widthpq then
6: if prev image.heightpq ““ curr image.heightpq then
7: for each w in width do
8: for each h in height do
9: differential image Ð |prev imagerwsrhs ´ curr imagerwsrhs|.

To find the difference image, the algorithm begins by confirming that the images
are of the same size. Since the robots two cameras produce different sized images,
sequential images must come from the same camera or the size differential would be
perceived as motion.

After confirming that the images are the same size and of the same camera, the
algorithm creates a new image to store the difference image. Then it iterates through
each pixel and sets the difference image to the absolute value of the difference between
the y-values of the images. This results in a black and white image that shows the
apparent motion of the image through the depiction of the change in brightness as
seen in Figure 6.2.

14

Figure 6.1: This is an example of a sequential scene used to test the absolute
differential method. Note that everything in the image except the leftmost ball is
moving.

Figure 6.2: This is a depiction of the difference image from two images (with a
binary threshold for visualization).

15

7 Classification

The next step is to determine how to use the absolute differential image to find
the ball. Our approach uses two steps to perform classification:

1. Amplify the pixels that are part of the ball and attenuate the other pixels that
were due to apparent motion.

2. Discriminating the ball from the robot. At a given time, there can be between
0 or 9 robots in the image.

Once given the raw measurements as the absolute differential image, the algorithm
needs to make a distinction between what information is important and what is not.
The method modifies each pixel by ideally reducing the brightness of the pixels that
are not the ball and increasing the brightness of the pixels that are the ball. This is
done by looking individual pixels using thresholding.

Once the desired information is isolated from extraneous information, the next
step is to identify the soccer ball and return a result. The algorithm uses two theories
of operation about the relationship between gray-levels and the ball:

1. A moving ball has very high spatial density. This is predicated upon the idea
that a pixel's neighbors could help determine if that pixel is part of the ball.
The algorithm uses a spot filter and spot detector to find areas in the absolute
differential image where there is a lot of black surrounding a white spot of
roughly the size of a soccer ball.

2. Higher absolute differences are more likely to be a moving ball. Regions of the
image that have a ball should be brighter from our thresholding than regions
with robots. Furthermore, pixels below a certain point will convey almost no
information to help our search for the ball. These low points could be due to
noise or robot motion. Therefore, our method should not include or at least
attenuate these pixels.

Using these two ideas, different thresholding methods are applied to continue ball
classification

16

8 Thresholding

With the differential image, the algorithm needs to remove ambient noise created
from the uncertainty in the process of taking a picture. A camera takes an image by
making measurements of brightness, which results in some uncertainty. This ambient
noise could be wrongly viewed as motion between the images

Such noise is uncorrelated, as this uncertainty does not relate to a particular
region of the image or time. This lack of correlation is fortunate as the noise can
potentially be removed from the image by introducing a threshold.

The following subsections present the three thresholding methods that were
tested: binary, linear, and quadratic thresholding.

8.1 Binary Thresholding

The first method tested was a step function. Step functions change values such
that the result can either be true or false depending on its relationship to the thresh-
old. In the case of the differential image, this means that if the pixel value is less
than some threshold, the value was set to 1023 or white, otherwise it is set to zero
or black as seen in Figure 8.1. This threshold is a binary threshold as it follows the
step function logic.

Figure 8.1: This graph demonstrates how the binary threshold sets the value. t is
the binary threshold. If the pixel value of the differential image is below this threshold
t, the value was set to zero (black), otherwise the value was set to 1023 (white).

The threshold was calculated by first finding the standard deviation of a given
differential image. Thus, the noise is removed by finding which pixel values are
outliers. This was done by having the robot taking images of scenes at different
lighting conditions with no movement. The lighting conditions tested can be seen in

17

Figures 8.4, 8.5, and 8.6. The threshold is impacted on different lighting conditions.
Since the lighting conditions are not always constant at competitions, both extreme
settings were used to determine a threshold that would work for all types of situations.
From these images, the difference image was computed and the standard deviations
of gray levels (y-values) were computed.

8.1.1 Results

Overall, this thresholding method allowed for an easy way to eliminate pixels
believed to be noise. Due to its simplistic nature, using this threshold is a quick and
efficient operation that has little to no impact on the running time of the algorithm.
This method was applied using both static and dynamic thresholds. However, two
major concerns appeared regarding choosing the threshold and discriminating robots
from balls. These issues led other options being explored.

Static Binary Threshold

Static threshold method involved finding the average standard deviation between
multiple, diverse images. Out of 20 different scenes analyzed, the average of the
standard deviations was 51.57. The problem with using a static threshold became
apparent when changing lighting between different environments. RoboCup does not
have a constant brightness for their lighting, so this method did not prove effective,
as it did not allow for automatic adjustments for different lighting scenarios.

The standard deviation varied too much with varying lighting conditions and it
was too hard to robustly discriminate the robot from soccer ball using this method.

Dynamic Binary Threshold

Through dynamic threshold testing, 3 standard deviations were found to be the
most effective dynamic binary threshold to eliminate the noise. This method effec-
tively removed the noise in a series of images allowing for the movement to be clearly
seen.

Different lighting conditions were now introduced into the experiment using a
thresholding method to remove robots from the scene. Thinking that the difference
between the black and white spots of a soccer ball is more drastic than the dark and
light parts of a robot, this was tested to try an eliminate robots. This was done by
finding the standard deviation of scenes involving the movement of just robots and
just soccer balls. Testing illustrated that there is no fixed threshold that allows for
discrimination between balls and robots as demonstrated in Figure 8.3. Therefore,
the dynamic binary threshold prevented accurate discrimination between balls and
robots for the spot filter and spot detector.

Overall, binary thresholds were effective at eliminating noise from the image, but
were unable to discriminate balls from robots. The major issue with the binary

18

Figure 8.2: This is an example of a sequential scene used to test binary thresholding.
Note that both the robots and the ball are moving.

Figure 8.3: This is a sample image of the output produced from binary thresholding.

19

threshold is that it removes all discernible differences between the soccer ball and
robot. Consequently, the binary threshold did not provide an effective method for
finding just the soccer ball.

Figure 8.4: This is an example of an
image used to test the binary threshold
with minimum lighting.

Figure 8.5: This image is an example of
an image used to test the binary thresh-
old with average lighting.

Figure 8.6: This is an example of an
image used to test the binary threshold
with natural or extreme lighting.

20

8.2 Fuzzy Threshold

The other method for thresholding explored was Fuzzy Logic. Fuzzy logic allows
for a conversion from raw measurement to a value that indicates relative confidence.
Instead of being either true or false, the value can be partially true or partially false.
This concept applies to the differential image each pixel will not be black or white,
but can take on intermediate values. The raw measurements of the differential image
are the absolute gray level difference between successive frames.

8.2.1 Linear Threshold

The first type of fuzzy threshold applied was a linear threshold. This thresholding
method allowed for small changes between similar pixel values and allowed for a
more gradient approach.

Figure 8.7: This graph demonstrates how the linear threshold sets the value. t1 is
the lower threshold and t2 is the upper threshold. If the pixel value of the differential
image is below t1,the value is set to zero (black). If the value was greater than t2 the
value is set to 1023 (white). If the pixel was between the two values a fuzzy threshold
is applied.

A basic linear threshold is shown in Figure 8.7. The value is set to the smallest
value (0) if the value is less than t1, and is set to the largest value (1023) if it is
greater than t2. In between t1 and t2 then it would be scaled to a value between the
largest and smallest value according to its value. It is linear because the scaling is
done using the equation for a line.

The algorithm described in Algorithm 2 demonstrates how the linear threshold
was applied to each pixel. If the pixel was less than t1, the lower threshold then it
was set to 0. This was done to remove the lower outliers that were most likely to be
noise.

21

If it was between these two thresholds then fuzzy threshold is applied:

confidence “ slope ˚maxpraw input´ low threshold, 0q.

This equation has two unknowns, the lower threshold and the slope. Different
value combinations for lower threshold and slope were tested. The testing found that
the standard deviation of the absolute differential image produced the most accurate
results. Slope testing results can be found in Section 10.

After the equation was applied, if the confidence was greater than 1023 then it
was set to 1023. This was to confirm that that no pixel could be larger than the max
pixel value.

Algorithm 2 The algorithm for applying the linear threshold.

1: procedure Linear Thresholding on a Differential Image
2: Given: a gray-level raw input from the absolute differential image, lower

threshold, and slope.
3: if raw input ă low threshold then
4: confidence “ 0
5: else
6: confidence “ slope ˚maxpraw input´ low threshold, 0q

7: if confidence ą high threshold then
8: confidence “ 1023

8.2.2 Quadratic Threshold

A quadratic threshold was also explored and applied to each pixel. The graph of
a general quadratic threshold can be seen in Figure 8.8.

This method also attenuates low values and amplifies high ones. This thresholding
method is based on the belief that higher values should always correspond to a higher
confidence that this pixel is part of the ball. This is due to the high contrast of the
ball.

The algorithm applies the following equation to each pixel:

confidence “ raw input ˚ raw input{some value.

First, the problem with this equation is that division is an expensive operation.
Given the time constraints presented earlier in the paper, the algorithm needs to be
as fast as possible. In C++, Shift operations are significantly faster than divides.
Therefore, if a way could be devised to use a shift instead of a divide then the
efficiency of the algorithm would be improved.

22

Figure 8.8: This graph demonstrates how the quadratic threshold sets the value.
t is the quadratic threshold. If the pixel value of the differential image was below
this threshold t, then the value was set to zero (black). otherwise it was set to
raw input ˚ raw input ăă value.

Utilizing the fact that shifting by some x is the same as dividing by 2x to improve
our algorithm:

confidence “ raw input ˚ raw input ąą x.

The tradeoff for shifting is that it can only be divided by a power of 2. This
significantly limits the precision when compared to dividing.

The next step was to determine an best value for x in order to find the maximum
number of balls. Since there were only 10 values from which to choose (210 “ 1024,
our max value), x was tested on multiple images from different scenes in order to find
the best value.

23

9 Spot Filter and Spot Detector

After thresholding, the resulting differential image is left with differences that
are likely due to motion. This motion should be a result of object motion. Thus,
the algorithm takes advantage of the second theory of operation: a moving ball has
very high spatial density. The algorithm uses a spot filter and spot detector to find
candidate regions where the average of inner region is less than the average of the
outer region. The next step is to run the differential image through the spot filter.
The spot filter and spot detector are run twice to find both white and black spots.

9.1 Spot Filter

After finding the differential image, the algorithm runs it through a spot filter.
The spot filter is an algorithm that detects places in the image where central region of
values significantly greater or smaller than surrounding. Since a soccer ball is white
with black spots, then the spot detector would ideally find the difference between the
central region of the soccer ball and its surroundings. It would see that the value of
the brightness of white, which has a Y UV “ p1, 0, 0q is different than the value of
brightness of black which has a Y UV “ p0, 0, 0q.

In particular, the system uses a type of spot filter called a constant-time boxcar
filter. The boxcar filter finds the difference in brightness by running two squares,
one in the center and one that surrounds that square, along the image as seen in
Figure 9.1 For each iteration, the filter determines the difference in average of center
and surround to produce candidate bright and dark spots. This means that for each
grouping of center and surround, the y-values are averaged for each square. Then
these averages are subtracted to produce a difference in average. The spot filter
determines that this area is a potential candidate for the ball if the difference in
average is larger than a set threshold.

9.2 Spot Detector

Once the spot filter produces a different candidate, the spot detector then takes
the different candidates and tries to narrow down the candidates. The goal of the spot
detector is to remove noise by using peak detection to find the most likely candidates.
Peak detection is the process of finding local maxima in the histogram.

The spot detector begins by taking the array of candidates and organizing the
data into a histogram to perform peak detection. The spot detector first goes through
looking for peaks and rejects those that are too green. Since the field is green, peaks

24

Figure 9.1: Representation of how the constant-time filter would locate ball.

that are too green indicate that the candidate is the field rather than the ball so they
are therefore rejected.

Afterwards, the weaker overlapping peaks are rejected to produce only tallest
peaks in a particular area. This should take Opn2q, but the natural sorting of the list
allows the operation to be fast.

Since the differential image is only compromised of gray-levels, the spot detector
is skipped in differential mode.

25

10 Results

The ball detection system must be able to reliably identify the ball in multiple real-
time scenarios. The algorithm's run-time and accuracy was tested on four different
types of scenes:

1. Only balls moving.

2. Only robots moving.

3. Both robots and balls moving.

4. Balls moving near moving robots.

The first three are crucial for identification as they are the most common sce-
narios. Testing was also performed in scenes with balls moving near moving robots
to challenge the system. Each case was tested on a set of 20 randomly selected im-
ages. The number of positive identifications, false negatives, and false positives were
recorded for each scenario. False positives occurred due to the perspective projection
from the spot detector. Since the ball is assumed to be on the ground, something else
not on the ground with similar characteristics, say a robot's arm, would be considered
a candidate for the ball by the spot detector.

Each image was run through quadratic thresholding with a shift of 7 (QUAD 7)
and quadratic thresholding with a shift of 6 (QUAD 6) and linear thresholding with
a slope of 2 (LIN 2) and linear thresholding with a slope of 5 (LIN 5). These were
chosen as they were the most robust in the initial testing and provided an example
of the tradeoffs.

Linear 5 Linear 2 Quadratic 7 Quadratic 6

Only Ball Success Rate 95% 90% 90% 95%
Avg False Positives 0 0 0 0

Only Robot Success Rate 20% 100% 100% 50%
Avg False Positives 2.55 0.35 0.5 1.75

Robots and Balls Success Rate 100% 85% 85% 90%
Avg False Positives 1.85 0.35 0.45 0.95

Ball near Robot Success Rate 80% 90% 80% 80%
Avg False Positives 2.5 0.8 0.8 1.55

Table 10.1: The success rate and average number of false positives.

26

Figure 10.1: This is an example of the original frames. Everything but the ball in
the middle is moving.

Figure 10.2: This is a sample image of
the output produced from LIN 5.

Figure 10.3: This is a sample image of
the output produced from LIN 2.

Figure 10.4: This is a sample image of
the output produced from QUAD 6.

Figure 10.5: This is a sample image of
the output produced from QUAD 7.

27

Figure 10.6: This is the heatmap used in the following images. The heatmap goes
from left to right with black being the lowest pixel value and white the highest.

Figures 10.1, 10.2, 10.3, 10.5, and 10.4 are samples of the actual output from
the algorithm. The colored images used in the results section are altered from gray-
scale images to better illustrate the brightness levels. The heatmap used is shown in
Figure 10.6.

10.1 Only Moving Balls

These cases tested the thresholding methods on the simplest scenario. The only
thing on the field that was moving was the ball thus any movement must be the
ball. This scenario was chosen to confirm that the algorithm could perform the most
trivial classification with accuracy and robustness.

As demonstrated in Figures 10.8, 10.9, 10.11, and 10.10, the ball was successfully
identified with no difficulty. There were no false identifications on the cross or field
lines. The LIN 2 's result seen in Figure 10.9 had the smallest values compared to the
others. The other method's soccer balls had a lot of pixels that were at the maximum
value. These cases illustrated that LIN 5, QUAD 7, and QUAD 6 had a lot of pixels
that were at the maximum value. This could create issues when examining other
cases but these bright pixels helped identification in this situation.

When looking at the overall performance demonstrated in Table 10.1, the LIN 5
and QUAD 6 performed minimally better than their counterparts. The different
between the results came from scenarios where the ball was at a much further distance.
Further, none of the thresholding methods caused false positive identifications with
this scenario. This is significant as it means all of the thresholding algorithms were
able to discriminate object motion from noise.

10.2 Only Moving Robots

The algorithm was tested on scenes with only moving robots to test how the
different slope and shift values affect false positives. The only objects moving are
the two robots in example 10.12. Since one robot is further than the other, their

28

brightness values are lower. Thus, this scene is a great example to test how the
thresholding methods do with robots at varying differences.

With the only moving robots case, a success is defined as a lack of identification.
The scene was considered a failure even if there was only one false positive. Both
LIN 2 and QUAD 7 successfully do not identify the robots as soccer balls as seen
in Figures 10.14 and 10.16. LIN 5 and QUAD 6 incorrectly identified the robots as
candidates to be the ball; however, QUAD 6 had fewer false positives. The hypothesis
for this is that LIN 5 and QUAD 6 cause too many pixels to be the maximum value
and do not create a distinction between robots and balls. Making many non-ball
values the maximum value eliminates the first theory of operation. If many moving
pixels are the highest absolute difference, the balls cannot have a higher absolute
difference.

These results create further insight into the effects of different shifts and slopes.
With linear slopes, these results would suggest that lower-valued slope correspond to
fewer candidates. Since the graph of a linear threshold with a steeper slope is more
vertical, a linear threshold with a steep slope is more similar to a binary threshold
than its shallower sloped counterpart. Thus, the steeper slope is creating a greater
distinction between smaller and larger values of Y. This is in line with the theory of
operation as higher absolute differences are more likely to be the ball, so the lower
differences can be discarded. The same idea applies to quadratic shifts. A larger shift
should correspond to lower pixels becoming smaller than they would be with a smaller
shift. Thus, this also is in line with the same theory of operation that higher valued
pixels are more likely to be the ball. Since the theory of operation holds, there is a
tradeoff between throwing away more false positives and having a higher probability
of finding the ball. The hypothesis is that the increase in false positives is due to the
increase in maximum values. This is particularly visible when looking at the success
rates and average number of false positives in Table 10.1. In the 20 different scenes
presented, LIN 2 and QUAD 7 did not have any false positives. This implies that
these methods are good at not incorrectly identifying robots as balls. However, LIN 5
and QUAD 6 had very few instances where it was able to successfully not identify a
robot as a ball.

10.3 Moving Robots, Moving Balls and Moving

Robots near Moving Balls

These scenarios test whether or not the algorithm can discriminate balls from
robots when they are in the same image. It tests both theories of operation. If
a moving ball has a spatial density then thresholding should attenuate the wrong
pixels, so the spot filter can discriminate the robots from the ball. If higher absolute
differences are more likely to be a ball, then the ball should have a higher absolute
difference than the robots.

29

10.3.1 Moving Robots and Moving Balls

LIN 5 was successful in finding the soccer ball, but it found many false positives.
As shown in example 10.18, the ball was successfully identified in spot 4, but there
were four other false positives. This method was able to find all the balls in the
20 different examples of moving robots in the same frame as a moving ball. As
seen in Table 10.1, this method was able to find all the balls but it produced an
average of 1.85 false positives per image. Thus, this method did the poorest job at
discriminating balls from robots even though it was more likely to find the ball. This
is believed to be due to the overall increase in maximum values. This increase does
not create a distinction between the robot and ball as all the pixels are increasing,
not just the balls. Thus, the higher absolute difference might not correspond to a
ball in this scenario.

QUAD 6 was more successful as it had less false positives, but it did not find the
ball as frequently. Even though the success rate went down, it did only average 0.95
false positives per image as seen in Table 10.1. This is concurrent with Figure 10.20
as the number of false positives is half of LIN 5.

QUAD 7 has less false positives than the previous two cases. It was more suc-
cessful at discriminating the robots from the balls. When looking at Figure 10.21,
the difference in magnitude is more consistent to what is expected from the second
theory of operation. The result of 20 tests had a very low average of false positives
since this result was closer to our theory of operation seen in Table 10.1. However,
this resulted in a lower success rate.

The final method, LIN 2 's result was closest to what was expected from the
theories of operation. Even though this case did not have as many bright pixels as
the other cases, it did a better job at distinguishing the ball from the robot. Also, it
has the biggest distinction between robot and ball pixels, which follows the second
theory of operation: higher absolute differences are more likely to be a moving ball.
Figure 10.19 has the highest concentration of absolute difference in brightness at the
ball spots compared to the surrounding figures. The results of LIN 2 were most in
line with the theories of operation.

10.3.2 Moving Robots near Moving Balls

The distinction between the previous case and this case was made because scenes
with a moving ball next to a robot are inherently harder for the ball detection system.
It further tests how well the system discriminates robots from balls as they are directly
next to each other.

Like in the previous case, LIN 2 's result is closest to what is expected from the
theories of operation. It did not exceed the maximum pixel value and it separated the
robot pixels from the ball pixels. Also, the tradeoff between false positive discrimina-
tion and shift/thresholding number is present in this case. This case, however, does
have LIN 2 and QUAD 7 having false positives.

30

This scenario particularly demonstrated the differences between LIN 2 and
QUAD 7 with regards to the success rate. LIN 2 was more successful than any of
the other methods. It had the highest success rate and the smallest average number
of false positives as seen in Table 10.1.

10.4 Run-Time Analysis

In general, the total run-time is dominated by either the memory access time
or the computations. The algorithm is broken down into three parts for the run-
time analysis: taking the differential image calculation, thresholding, and running
the image through the spot filter.

Currently, the absolute difference code is not optimized nor is adapted to run on
the robot. The results of this algorithm run on a computer with a 2.2 GHz processor
is in Table 10.2. Both the spot filter and absolute differential image were run 30
times on various images from different scenes. Even though the 2.2 GHz processor
is faster than the robot's 1.6GHz processor, an estimation of the optimized run-time
can be obtained.

There are seven basic operations needed to create the absolute differential image:

Algorithm 3 The machine instructions to compute the absolute difference for two
pixels

1: procedure Absolute Differential Image Calculation for One Pixel
2: Fetch pixels from first source image
3: Fetch pixels from second source image
4: Subtract pixels from second source image
5: Absolute value
6: Store pixels to destination image
7: Decrement loop counter
8: if counter ą 0 then
9: jump back to beginning of loop

The fetch, subtract, absolute value, and store can be processed in parallel. The
robot's CPU can run 8 16-bit pixels in parallel. Six operations can be done at once
thus the algorithm does 6

8
“ 0.75 instructions per pixel. Since the robot has a 1.6GHz

CPU, it can do 1.6 billion instructions per second. If the calculation roughly estimates
to one clock tick per instruction then for the 640x480 image with roughly 300,000
pixels, the expected computational time is 144 microseconds.

31

Average Running Time Standard Error

Differential Image 213.73µs 2.54

Spot Detector 334.76µs 9.93

Table 10.2: The average CPU running time and standard error.

In comparison, Table 10.2 demonstrates the computational time difference be-
tween the spot detector and absolute image differential. Since the absolute image
differential method is much simpler than the already-optimized spot detector, the
running time is drastically quicker even before the algorithm and implementation are
optimized.

However, memory access time needs to also be accounted for to find the total
time. This algorithm will get excellent cache performance and be running at close
to the full memory bandwidth of the robot since the memory accesses are sequential.
There is a total of three memory accesses that occur: reading the pixel from the
first source image,reading the pixel from the second source image, and writing to
the destination. Therefore, the amount of memory that needs to be transferred
is p640x480q ˚ 2 bytes ˚ 3 operations “ 1, 843, 200 bytes. Assuming that the robot's
memory bandwidth is 330MB

sec
then this algorithm would need 6 milliseconds. Further

improvements can be made by only considering those pixels below the horizon and
reusing memory access from other parts of the vision algorithm.

Since 144 microseconds is less than 6 milliseconds, the total time is the memory
access time. This is a reasonable runtime for this target platform, as 6 milliseconds
gives plenty of buffer time for the other necessary operations.

10.5 Summary

When selecting between linear and quadratic threshold methods, there is a trade-
off between the number of false positives and successful identifications. In the linear
threshold method, the slope value is inversely proportional to the number of false pos-
itives and is proportional to the number of successful identification. In the quadratic
threshold method, the shift value is proportional to the number of successful identifi-
cation and is reversely proportional to the number of false positives. However, there
is a threshold such that the number of successful identifications drastically decreases
once the shift or slope passes with each of these methods.

LIN 2 was best at following the theories of operation. It did not push the pixel
values beyond the pixel limit, which allowed it to distinguish the robot from ball pixels
This is why it had the higher success rates with the lowest average false positives per
image. The result shows promise, but there is still not an acceptable success rate.
Thus, a third theory of operation would be needed to improve this ratio.

32

This algorithm was able to perform at the speeds needed for deployment in em-
bedded platforms. The simplicity of the algorithm allowed for an efficient runtime.

33

Figure 10.7: This is an example of a sequential scene used to test the algorithm on
scenes with only moving balls. Note that only the ball is moving.

Figure 10.8: This is the output of
LIN 5.

Figure 10.9: This is the output of
LIN 2.

Figure 10.10: This is the output of
QUAD 6.

Figure 10.11: This is the output of
QUAD 7.

34

Figure 10.12: This is an example of a sequential scene with only moving robots.
Note that both robots are moving.

Figure 10.13: This is the output of
LIN 5. The algorithm unsuccessfully
identified the moving robots as balls.

Figure 10.14: This is the output of
LIN 2. The algorithm did not success-
fully discriminate moving robots from
moving balls.

Figure 10.15: This is the output of
QUAD 6. The algorithm did not success-
fully discriminate moving robots from
moving balls.

Figure 10.16: This is the output of
QUAD 7. The algorithm successfully did
not identify the moving robots as balls.

35

Figure 10.17: This is an example of a sequential scene with both robots and balls
moving.

Figure 10.18: This is the output of
LIN 5.

Figure 10.19: This is the output of
LIN 2.

Figure 10.20: This is the output of
QUAD 6.

Figure 10.21: This is the output of
QUAD 7.

36

Figure 10.22: This is an example of a sequential scene with a moving ball next to
a moving robot.

Figure 10.23: This is the output of
LIN 5. The algorithm found the soccer
ball in spot #6.

Figure 10.24: This is the output of
LIN 2.

Figure 10.25: This is the output of
QUAD 6. The algorithm found the soc-
cer ball in spot #3.

Figure 10.26: This is the output of
QUAD 7.

37

11 Future Work

As demonstrated, the theories of operations do a competent job discriminating
robots from balls. Further work can be done to improve run-time, accuracy and
robustness. First, the algorithm needs to be optimized before robotic implantation.
Second, the addition of a third theory of operation could further ameliorate discrim-
ination with this method. Finally, further work could be done to eliminate false
positives created from camera motion.

11.1 Run-Time Improvements

As discussed in Section (real-time), this new algorithm is efficient with signifi-
cant room for more optimization. Additional work is necessary before utilization to
provide sufficient processing time for other required visual operations. Converting
the algorithm from C++ to assembly would gain significant processing time that
approaches parameters required for implantation.

11.2 History of the Ball

Currently, the algorithm treats a pair of images as mutual exclusive from another
pair of images. This method works well as it allows each scene to be analyzed without
any negative influence by another scene. However, there are further improvements
that need to be done to make the algorithm more robust. A third theory of operation
could be a ball's previous location to provide information about its current location.
Given that the ball does not often jump in a relatively short period of time under one
second, taking advantage of previous knowledge regarding the ball's location could
remove some false positives and speed up the run-time.

If the algorithm found the ball in the previous differential image, the runtime
could be improved by beginning the search in the area the ball was previously found.
If there is previous information regarding the ball's location, the algorithm could
be the search in current image in that area as demonstrated in Figure 11.1. If a
candidate is found in that region, then the algorithm would not have to continue.
This would drastically speed up the search, as the algorithm would not have to go
through the entire image each time.

This theory of operation would also reduce false positives. Using the history of the
ball as a filter could catch cases where the robots movements create false positives.
In Figures 10.26 and 10.24, the false positive is created by the bright lighting on
the robot's arm thus the false positive only appeared when the robot raised its arm.
Knowing that the ball was in the lower half of the field would remove this false

38

Figure 11.1: If the ball was found in the previous image on the left, then the
algorithm could begin the search in a smaller region of the image as demonstrated
by the red box on the right image.

positive, as the algorithm would not look in this part of the field unless it could not
find a ball in the lower half. Therefore, the ball would be found first and that false
positive would be excluded.

This method would also have additional benefits outside of ball recognition. It
would provide the behavior system with a way to track the ball. Tracking the ball
could provide useful information to predict and anticipate future ball movements.
For example, if the robot last found the ball on the left side of the image, it could
pan to the left to find the ball. This could help as it helps the robot find a lost ball
much quicker.

11.3 Camera movement

A robot searches for the ball by walking around and panning its head. This
causes the robot's camera to move, which makes the images blurrier. The initial
assumption made in this paper was that the camera is not moving. In reality, the
robot is walking around and panning its head; thus the camera does move in the
games. The algorithm needs to take into account that the robot's head can be
moving. The algorithm described in this paper currently finds false positives in the
lines when given a sequence of images where the camera is moving. When examining
Figure 11.3, the change in line location causes it to look like two white lines with a
dark interior. This shares unfortunate characteristics with the ball, which also white
with a dark interior. The lines are viewed as possible ball candidates.

One possible method for removing false positives on field lines is to use the line
detector that is already implemented. The algorithm could run the line detector on
both images and then remove any candidate that falls on the line. This method
would not add any additional overhead since the field line detector is already run on

39

each image. However, it would not be perfect solution, as it would discard any balls
on the field lines.

Figure 11.2: This is an example of a sequential scene with the camera moving (robot
was walking), a moving ball next to a moving robot.

Figure 11.3: This is the absolute differ-
ential image with spots. Note that there
are false positives on the field lines.

Figure 11.4: This is the absolute differ-
ential image with spots. Note the bright-
ness of the ball.

40

12 Conclusion

Current methods of ball detection find the ball with reasonable accuracy, but
are still flawed. The time constraints of the platform and general complexity of the
problem has prevented these object recognition algorithms from performing as well as
a human toddler. Using human vision as inspiration, this paper explored and tested a
theory that motion could be a viable method for ball detection. It used two theories of
operations to perform ball recognition: higher absolute differences of brightness values
are more likely to be a moving ball and a moving ball has very high spatial density in
the image. This paper discovered that there is a tradeoff between throwing away more
false positives and having a higher probability of finding the ball. It also discovered
that LIN 2 followed the theories of operation closest. The other thresholding methods
tested pushed the pixel values beyond the limit, which eliminated the benefits of
the first theory of operation. While it did well, LIN 2 's accuracy was not quite
accurate enough for effective performance in an actual RoboCup game. Thus, a third
theory of operation should be introduced to improve accuracy. Even without a third
theory of operations, this method improved reliability and provides a foundation
for future sequential algorithms. Overall, this paper concludes that incorporating
motion detection is a viable algorithm option in constrained platforms and could
improve object recognition.

41

Bibliography

[1] Gilles Aubert, Rachid Deriche, and Pierre Kornprobst. Computing opti-
cal flow via variational techniques. SIAM Journal on Applied Mathemat-
ics, 60(1):156–182, 1999. http://slipguru.disi.unige.it/readinggroup/

papers_vis/aubert99flow.pdf.

[2] Domenico Bloisi, Francesco Del Duchetto, Tiziano Manoni, and Vincenzo Suri-
ani. Machine learning for realistic ball detection in robocup spl. 2017. https:

//arxiv.org/pdf/1707.03628.pdf.

[3] Eric Chown, William Silver, and Konstantine Mushegian. Visual soccer ball
detection in robocup spl. 2016.

[4] Jason Corso. Motion and optical flow. https://web.eecs.umich.edu/

~jjcorso/t/598F14/files/lecture_1015_motion.pdf, 2014.

[5] Nicolás Cruz, Kenzo Lobos-Tsunekawa, and Javier Ruiz-del Solar. Using con-
volutional neural networks in robots with limited computational resources: De-
tecting nao robots while playing soccer. arXiv preprint arXiv:1706.06702, 2017.

[6] James J DiCarlo, Davide Zoccolan, and Nicole C Rust. How does the brain solve
visual object recognition? Neuron, 73(3):415–434, 2012. https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC3306444/#R68.

[7] Aldebaran Documentation. Motherboard. http://doc.aldebaran.com/2-1/

family/robots/motherboard_robot.html, 2011.

[8] David Fleet and Yair Weiss. Optical flow estimation. In Handbook of math-
ematical models in computer vision, pages 237–257. Springer, 2006. http:

//www.cs.toronto.edu/~fleet/research/Papers/flowChapter05.pdf.

[9] Dipl-Inf Andreas Fürtig, Jonathan Cyriax Brast, Sina Ditzel, Hans-Joachim
Hammer, Timm Hess, Kyle Rinfreschi, Jens-Michael Siegl, Stefanie Steiner, Felix
Weiglhofer, and Philipp Wörner. Team description for robocup 2017, 2017.

[10] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artifi-
cial intelligence, 17(1-3):185–203, 1981. http://image.diku.dk/imagecanon/

material/HornSchunckOptical_Flow.pdf.

[11] K Lobos, G Azócar, N Cruz, R Pérez, P Miranda, F Leiva,
C Celemın, and J Ruiz-del Solar. Uchile nao ball perceptor. 2016.
https://github.com/uchile-robotics/nao-ball-perceptor-2016/wiki#

algorithm-in-a-nutshell.

42

[12] K Lobos, G Azócar, N Cruz, R Pérez, P Miranda, F Leiva, C Celemın,
and J Ruiz-del Solar. Uchile robotics team team description for robocup
2017. 2017. https://www.robocup2017.org/file/symposium/soccer_std_

plf/Team_Description_Paper_2017.pdf.

[13] Jacob Menashe, Katie Genter Josh Kelle, Josiah Hanna, Elad Liebman, Sanmit
Narvekar, Ruohan Zhang, and Peter Stone. Fast and precise black and white
ball detection for robocup soccer. 2017. http://www.cs.utexas.edu/users/

pstone/Papers/bib2html-links/LNAI17-jmenashe.pdf.

[14] Simon O’Keeffe and Rudi Villing. A benchmark data set and evaluation of deep
learning architectures for ball detection in the robocup spl. 2017.

[15] Nicolas Pinto, David D Cox, and James J DiCarlo. Why is real-world visual
object recognition hard? PLoS computational biology, 4(1):e27, 2008. https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2211529/.

[16] Thomas Rofer, Tim Laue, Jesse Richter-Klug, and Felix Thielke. B-human
team description for robocup 2016. http://www.robocup2016.org/media/

symposium/Team-Description-Papers/StandardPlatform/RoboCup_2016_

SPL_TDP_B-Human.pdf, 2016.

[17] Sumedha Singla. Using optical flow to find direction of motion. http://www.

cs.utah.edu/~ssingla/CV/Project/OpticalFlow.html, 2015.

[18] Ashit Talukder, S Goldberg, Larry Matthies, and Adnan Ansar. Real-time de-
tection of moving objects in a dynamic scene from moving robotic vehicles. In
Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, volume 2, pages 1308–1313. IEEE, 2003.

[19] Dave Wilson. Uyvy yuv pixel format. http://www.fourcc.org/pixel-format/
yuv-uyvy/, 2011.

43

	Real-Time Object Recognition using a Multi-Framed Temporal Approach
	Recommended Citation

	tmp.1527103811.pdf.PmFoD

