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Abstract

Particle Swarm Optimization (PSO) is often used for optimization
problems due to its speed and relative simplicity. Unfortunately, like many
optimization algorithms, PSO may potentially converge too early on local
optima. Using multiple neighborhoods alleviates this problem to a certain
extent, although premature convergence is still a concern. Using dynamic
topologies, as opposed to static neighborhoods, can encourage exploration of
the search space at the cost of exploitation. We propose a new version of
PSO, Dynamic-Static PSO (DS-PSO) that assigns multiple neighborhoods to
each particle. By using both dynamic and static topologies, DS-PSO
encourages exploration, while also exploiting existing knowledge about the
search space. While DS-PSO does not outperform other PSO variants on all
benchmark functions we tested, its performance on several functions is
substantially better than other variants.
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1 Introduction

Swarm intelligence algorithms involve several simple agents working together to
search for the optimal solution to a problem. Particle Swarm Optimization (PSO) –
an algorithm introduced by Kennedy and Eberhart [2, 5] – simulates the flocking of
birds or schooling of fish. Particles are initialized at random positions in the search
space, then travel in different directions to search for an optimal solution – typically,
a minimum – of a given function. Solutions are judged based on their fitness, or how
close they are to the optimal solution. In the canonical version of PSO, a particle will
adjust its velocity based on the personal best solution it has found so far (pbest) and
the best solution that has been found by any of the particles in its neighborhood. This
current best solution is a neighborhood best (nbest) if the neighborhood is a subset of
the entire swarm and a global best (gbest) if the neighborhood is the entire swarm. At
every iteration of the algorithm, particles will perform function evaluations, updating
their personal bests and neighborhood bests if appropriate.

Because particles exploit current knowledge about promising areas of the search
space when deciding where to search next, PSO is considered to be an exploitative
algorithm. While this means PSO is potentially much more efficient than other
algorithms, this exploitative property also may cause PSO to suffer from premature
convergence on local optima. This is especially true for gbest versions of PSO, in
which all particles are biased towards the current global best solution. Versions of
the algorithm that have multiple neighborhoods and use nbests instead of gbests
mitigate this problem to an extent, but can still converge prematurely. One way of
addressing premature convergence in PSO is to use dynamic topologies. Instead of
using static neighborhoods that remain the same throughout all iterations of the
algorithm, PSO can be made to use topologies that change over time. This
approach encourages exploration of the search space and prevents early convergence,
although introducing too much change too rapidly may significantly reduce the
exploitative nature of PSO.

To encourage both exploration and exploitation, we propose a new PSO algorithm,
Dynamic-Static Particle Swarm Optimization (DS-PSO), in which each particle is
influenced by both dynamic and static neighborhoods. By introducing additional
randomness and changing the velocity equation such that each particle considers two
topologies instead of one, our algorithm builds upon several other studies to create
an entirely new type of PSO algorithm. This new algorithm proved to be effective
at solving several benchmark functions, and may be a promising starting point for
future studies.

The PSO algorithm is described in Section 2. Section 3 describes past studies
done on PSO, particularly concerning dynamic topologies and the use of multiple
topologies. Section 4 describes our algorithm, DS-PSO. Details of our experimental
design, including the functions we used for testing, are provided in Section 5. Our
results are detailed in Section 6. Section 7 explains the significance of our findings.
Finally, possible future directions for research are discussed in Section 8.
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2 Standard PSO

In the standard PSO algorithm, a swarm of particles is initialized in the search
space. Each particle is assigned a random position; velocity; and subset of the swarm,
or neighborhood, of particles to keep track of. At each iteration of the algorithm, each
particle performs a function evaluation at its current position. If the fitness of the
current solution is better than the current pbest, then the current position becomes
the new pbest of the particle. The particle’s velocity and position are then updated
according to Equations 1 and 2, shown below. Pseudocode for standard PSO is
provided in Algorithm 1.

Algorithm 1: Standard PSO

1 Inputs:
2 n, the size of the swarm
3 f , the function to be optimized (minimized)
4 maxIterations, the maximum number of iterations
5 Outputs:
6 ~x∗, the position of the minimum function value found
7 f(~x∗), the value of the function at that position
8 for i = 1, · · · , n do
9 Initialize particle i with a random position and velocity

10 while number of iterations < maxIterations do
11 for i = 1, · · · , n do
12 ~pi = position of best solution particle i has found so far
13 ~ni = position of best solution found by particle i’s neighborhood so far
14 ~vi = velocity of particle i updated from Equation 1
15 ~xi = position of particle i updated from Equation 2
16 Calculate f(~xi) and update ~pi, ~ni, and ~x∗

17 return ~x∗ and f(~x∗)

~vi(t) = χ[~vi(t−1)+φ1·rand[0, 1](~pi(t−1)−~xi(t−1))+φ2·rand[0, 1](~ni(t−1)−~xi(t−1))]
(1)

~xi(t) = ~xi(t− 1) + ~vi(t) (2)

In the above equations, ~vi(t) and ~xi(t) represent the velocity and position,
respectively, of particle i at iteration t. ~pi(t) and ~ni(t) are the personal and
neighborhood best solutions found so far, respectively, of particle i at iteration t. χ
is a constriction coefficient to prevent velocities from exploding, typically set to
about 0.7298438. φ1 and φ2 are acceleration coefficients that scale the attraction of
particle i to ~pi and ~ni, respectively. Typical PSO implementations have equal
acceleration coefficients that sum to 4.1, meaning φ1 and φ2 are both 2.05 for
standard PSO. Each position component of the velocity equation is multiplied by a
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vector of random numbers, each in the range [0, 1], to encourage exploration. To
keep particles within the search space, each component of ~vi is kept within a range
[Vmin, Vmax], where Vmin and Vmax are the minimum and maximum values of the
search space.

Many variations of the standard PSO algorithm exist. We base our standard PSO
algorithm on the algorithm implemented by Bratton and Kennedy [1], which includes
a constriction factor and local topology, rather than a global topology.

2.1 Topologies

Topology structure can have a profound impact on the performance of PSO.
Including too many particles in each neighborhood can have a negative impact on
exploration and may lead to premature convergence. Three of the most commonly
used topologies in nbest versions of PSO are the Ring, von Neumann, and Moore
topologies. Illustrations of the Ring, von Neumann, and Moore topologies are shown
in Figures 1, 2, and 3, respectively.

Figure 1: Ring topology.

Figure 2: von Neumann topology. Figure 3: Moore topology.

For all three of the above topologies, particles are assigned an index from 1 to
n, where n is the number of particles. In the Ring topology, particle i is assigned
two neighbors: particle i − 1, and particle i + 1. In the von Neumann topology,
the particles are arranged in a grid, such that each particle has the particles above,
below, to the left, and to the right as its neighbors, wrapping around if necessary. The
Moore topology is much like the von Neumann topology, but with diagonal neighbors
included as well.
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3 Related Work

3.1 Premature Convergence

Kennedy and Eberhart’s original PSO uses a gbest model, in which all particles
are attracted to the current global best solution [2]. While this version of the
algorithm is simple to implement compared to other variations of PSO, it runs into
the problem of premature convergence. When all particles are attracted to a single
position in the search space, there is less exploration of the search space. As such,
gbest implementations of PSO are particularly susceptible to being trapped at local
optima. To combat this, Eberhart and Kennedy also developed an nbest PSO
algorithm that assigns smaller neighborhoods to each particle, such that each
particle is only influenced by other particles in its neighborhood. They
experimented with both a Ring topology and a six-neighbor topology, in which
neighborhoods consist of the three particles to the left and three particles to the
right of a particle. The nbest version of the algorithm, although less prone to
premature convergence than the gbest version, still may suffer from premature
convergence on local optima.

3.2 Dynamic Topologies

One explanation for why premature convergence is a problem for traditional
versions of PSO, even for nbest implementations, is that the neighborhoods stay the
same for the duration of the algorithm. When neighborhoods are static, less
information is exchanged between different groups of particles [6]. In the extreme
case, in which neighborhoods are completely disjoint, the swarm essentially turns
into several smaller swarms, all of which are performing their own less-informed
PSO searches in parallel. To address this concern about particle isolation, one
possibility is to change neighborhoods over time.

Suganthan introduced the idea of using a neighborhood operator in the PSO
algorithm [10]. In this version of the algorithm, each particle starts with only itself
in its neighborhood. As the algorithm goes through more iterations, the size of the
neighborhoods gradually increases until all particles are included. In essence,
Suganthan’s PSO algorithm starts as an nbest implementation, then gradually shifts
to a gbest implementation. Suganthan found that this modified PSO algorithm
outperformed the standard PSO algorithm in many cases. He also found that his
algorithm performed best with different combinations of parameters for different
functions.

Several studies have been done in which topologies are structured based on
small-world models [3, 7]. In such models, nodes are connected mostly to close
neighbors, with a few connections with nodes that are farther away. Many
real-world networks, including social networks and biological networks, are
structured in this fashion. Gong and Zhang [3] also implemented a version of PSO
in which neighborhoods are based on small-world networks. Once particles stagnate
and no longer find better solutions, topologies are restructured to encourage further
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exploration. Gong and Zhang found that their algorithm was more efficient and
robust than standard PSO implementations. Liu et al. [7] also implemented a
small-world PSO algorithm, in which the clustering coefficient and population are
used to dynamically determine which particle to use as the exemplar for the
particles in each network. The goal of their research was to improve the quality of
solutions for multimodal functions. Their algorithm proved to be particularly
effective for multimodal functions, which have multiple local optima. On the other
hand, their algorithm performed significantly worse than other PSO algorithms on
unimodal functions.

Liang and Suganthan [6] experimented with a PSO algorithm in which the
swarm is split into several small, disjoint subswarms. Because the particles are split
into smaller topologies, exploration of the search space is encouraged. Every R
generations, all neighborhoods are replaced with new, randomly generated
topologies. This frequent restructuring of topologies results in information being
exchanged among the swarms, which encourages exploitation of knowledge. This
algorithm performed better than other PSO variants when used on multimodal
functions.

There are several approaches to how topologies can be dynamically restructured.
One method is to completely reinitialize all topologies from scratch, as done in the
study conducted by Liang and Suganthan. Another approach is to randomly swap
out particles over time, or “migrate” edges in the graph, so the neighborhood stays
roughly the same after being restructured. Mohais et al. [9] performed experiments
using both methods of random neighborhood restructuring. Both methods
significantly improved upon standard PSO on several benchmark functions,
although the complete restructuring method was slightly better on average than the
migration method.

3.3 Multiple Topologies

Of course, the use of dynamic topologies is only one approach to improving the
performance of PSO. Another possibility is to change how topologies influence particle
velocities, instead of focusing on which topology to use. In FIPS-PSO, an extreme
variation of PSO developed by Mendes, Kennedy, and Neves [8], every particle is able
to influence every other particle in the swarm. That is to say, rather than considering
only a single best particle, all particles are “fully informed” – they are affected by
all other particles in the swarm. In some sense, this means all particles have many
different neighborhoods, since all personal bests affect each particle. A more complex
variant of FIPS-PSO adjusts the weights of particles based on fitness, although the
extra computation time required to do this may not be worth the slight increase in
solution quality. Both FIPS versions of PSO have been shown to perform better than
standard PSO on several benchmark functions.

The idea of multiple neighborhoods can also be used in a hybrid version of PSO.
In this PSO variation created by Hamdan [4], each particle has three different
neighborhoods: one based on star toplogy, one based on ring topology, and one
based on the Von Neumann topology. When the velocity of a particle is being
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adjusted, all of these topologies are considered, and the one with the best fitness is
used. As such, different particles consider different types of topologies when
deciding how to proceed through the search space. On many benchmark functions,
this approach performs considerably better than standard PSO.
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4 DS-PSO

Our algorithm, DS-PSO, combines aspects of both the dynamic and hybrid
variations of PSO that have built upon the standard algorithm. Similar to
Hamdan’s hybrid PSO algorithm, DS-PSO assigns multiple topologies to each
particle. Unlike particles in hybrid PSO, however, particles in DS-PSO are affected
by nbests from each of their topologies, not just the topology with the best fitness.
In this sense, DS-PSO is similar to FIPS-PSO.

DS-PSO is very similar to standard PSO. The main difference is that DS-PSO
assigns two neighborhoods to each particle: one static and one dynamic. The
influence of static neighborhoods preserves the exploitative characteristic of
standard PSO that is absent in some dynamic versions of the algorithm. The
addition of dynamic topologies is meant to encourage exploration of the search
space and avoid premature convergence. Dynamic topologies are randomly
restructured as the algorithm executes.

While the position equation for DS-PSO is identical to that of standard PSO, the
equation for updating particle velocities incorporates an acceleration component for
the dynamic neighborhood best:

~vi(t) = χ[~vi(t− 1) + φ1 · rand[0, 1](~pi(t− 1)− ~xi(t− 1))

+ φ2 · rand[0, 1](~si(t− 1)− ~xi(t− 1))

+ φ3 · rand[0, 1](~di(t− 1)− ~xi(t− 1))]

(3)

Instead of being influenced by a single neighborhood best ~ni, particle i is biased
towards both ~si and ~di, the current best solutions found by the static and dynamic
topologies of particle i, respectively. Furthermore, because each particle is attracted
to a personal best, static best, and dynamic best, there are three acceleration
coefficients instead of the two used for standard PSO. φ1, φ2, and φ3 are all set to
4.1
3

, in keeping with traditional PSO implementations in which acceleration
coefficients sum to 4.1. Algorithm 2 provides pseudocode for DS-PSO.

7



Algorithm 2: DS-PSO

1 Inputs:
2 n, the size of the swarm
3 f , the function to be optimized (minimized)
4 maxIterations, the maximum number of iterations
5 probD, the probability of restructuring dynamic neighborhoods
6 Outputs:
7 ~x∗, the position of the minimum function value found
8 f(~x∗), the value of the function at that position
9 for i = 1, · · · , n do

10 Initialize particle i with a random position and velocity

11 while number of iterations < maxIterations do
12 for i = 1, · · · , n do
13 ~pi = position of best solution particle i has found so far
14 ~si = position of best solution found by particle i’s static neighborhood

so far
15 ~di = position of best solution found by particle i’s dynamic

neighborhood so far
16 ~vi = velocity of particle i updated from Equation 3
17 ~xi = position of particle i updated from Equation 2

18 Calculate f(~xi) and update ~pi, ~si, ~di, and ~x∗

19 if randomDouble < probD then
20 Restructure dynamic neighborhoods

21 return ~x∗ and f(~x∗)

8



5 Experimental Design

5.1 PSO Variations

To provide a basis of comparison for DS-PSO, we performed experiments using
three variants of PSO: Static PSO (S-PSO), in which all particles have one static
topology; Dynamic PSO (D-PSO), in which all particles have one dynamic topology;
and Dynamic-Static PSO (DS-PSO), in which all particles have both a dynamic
topology and a static topology. The velocity and position equations for D-PSO and
S-PSO are identical. The only difference between the two is that topologies are
probabilistically reinitialized in D-PSO.

For all variants of PSO, we ran experiments for 10,000 iterations. 50 trials were
done for each experiment. For D-PSO and DS-PSO, we experimented with a variety
of restructuring probabilities, ranging from 0.0 to 1.0 in intervals of 0.05. Based on
the findings of Mohais et al. [9], we decided to completely restructure topologies,
rather than migrate specific edges. For S-PSO and DS-PSO, we experimented with
three types of static topologies: Ring, von Neumann, and Moore.

5.2 Benchmark Functions

We tested our variants of PSO on six functions: Sphere, Ackley, Griewank,
Rosenbrock, Rastrigin, and the Penalized P8 function. These functions are
commonly used as benchmark functions to test the effectiveness of optimization
algorithms. All functions we used for testing are generalizable to D dimensions. In
keeping with conventions from many other studies, we used 30 dimensions for our
testing.

As is common practice when testing optimization algorithms, we shifted all
functions by a random distance in each dimension. The purpose of this shifting is to
make it more difficult to solve functions with global optima in the center of the
search space. In our experiments, each function could be shifted by ±10 in each
dimension. For example, a shifted version of the function f(x1, x2) = 5x1 + 8x2
could be fs(x1, x2) = 5(x1 − 0.3) + 8(x2 + 8.1).

5.2.1 Sphere Function

f(~x) =
D∑
i=1

x2i

Unlike most other functions that are typically used for testing optimization
algorithms, the Sphere function is a unimodal function – it only has one optimum.
It is also convex, meaning solutions continually improve in the direction of the
global optimum. As such, the Sphere function is relatively easy to solve. In any
number of dimensions, the Sphere function has a minimum of 0 at ~x = ~0. The
two-dimensional version of the Sphere function is shown in Figure 4.

9



For the Sphere function, initial particle positions are often restricted to the
hypercube −5.12 ≤ xi ≤ 5.12 for i = 1, · · · , n. Because we did not want the
function to be too easy to solve, we dramatically increased the search space and
made the search space asymmetrical by restricting initial positions to the hypercube
−100 ≤ xi ≤ 50 for i = 1, · · · , n.

Figure 4: Sphere function in two dimensions.

5.2.2 Ackley Function

f(~x) = −20 exp

(
− 0.2

√√√√ 1

D

D∑
i=1

x2i

)
− exp

(
1

D

D∑
i=1

cos(2πxi)

)
+ 20 + exp(1)

The Ackley function, shown in two dimensions in Figure 5, is traditionally quite
difficult for optimization algorithms to solve because of its many local optima. The
main feature of the Ackley function is a rather large “hole” in the center of the search
space surrounded by many local optima. This function has a global minimum of 0 at
~x = ~0.

For our experiments, we restricted initial positions to the hypercube −32.768 ≤
xi ≤ 32.768 for i = 1, · · · , n, as is common practice.
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Figure 5: Ackley function in two dimensions.

5.2.3 Griewank Function

f(~x) = 1 +
1

4000

D∑
i=1

x2i −
D∏
i=1

cos

(
xi√
i

)
Although the general trend of the Griewank function appears to be convex from

a distance, there are numerous local optima in the search space of the Griewank
function. This can be seen in Figure 7, which shows a close-up of the Griewank
function in two dimensions. The global minimum of the Griewank function is 0 at
~x = ~0.

As is standard practice, we restricted initial positions of particles to the hypercube
−600 ≤ xi ≤ 600 for i = 1, · · · , n.

Figure 6: Griewank function in two dimensions.
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Figure 7: Close-up of Griewank function in two dimensions.

5.2.4 Rosenbrock Function

f(~x) =
D−1∑
i=1

(
100(xi+1 − x2i )2 + (xi − 1)2

)
The Rosenbrock function, commonly known as Rosenbrock’s Valley or the Valley

function, is a unimodal function with an interesting property: the global optimum of
0 at ~x = ~1 is located in a narrow “valley.” While it is rather easy to locate the valley,
finding the optimum within the valley is incredibly difficult.

We used traditional initial particle positions on the hypercube −2.048 ≤ xi ≤
2.048 for i = 1, · · · , n for our experiments.

Figure 8: Rosenbrock function in two dimensions.
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5.2.5 Rastrigin Function

f(~x) = 10D +
D∑
i=1

(
x2i − 10 cos(2πxi)

)
The Rastrigin function is similar to the Sphere function, but with a cosine term

added to create regularly distributed local optima. Due to its many local maxima
and minima, the Rastrigin function is traditionally very difficult for optimization
algorithms to solve. The global minimum of 0 is located at ~x = ~0.

In our experiments, we initialized particles on the hypercube −5.12 ≤ xi ≤ 5.12
for i = 1, · · · , n.

Figure 9: Rastrigin function in two dimensions.

5.2.6 Penalized P8 Function

f(~x) =
π

D

(
10 sin2(πy1) +

D−1∑
i=1

(
(yi − 1)2(1 + 10 sin2(πyi+1)

))
+ (yD − 1)2

)

+
D∑
i=1

µ(xi, 10, 100, 4)

yi = 1 +
1

4
(xi + 1)

µ(xi, a, k,m) =


k(xi − a)m xi > a

0 −a ≤ xi ≤ a

k(−xi − a)m xi < −a

The Penalized P8 function is characterized by a large “basin” with a steep drop-
off and somewhat flat bottom, shown in two dimensions in Figure 10. As shown in

13



Figure 11, the flat portion of the search space is characterized by many ridges. The
global optimum is 0 at ~x = ~−1.

We initialized particles on the hypercube −50 ≤ xi ≤ 50 for i = 1, · · · , n

Figure 10: Penalized P8 function in two dimensions.

Figure 11: Close-up of Penalized P8 function in two dimensions.
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6 Results

Results of our experiments are described below. Comparisons between the best
versions of each PSO variant on each function are described in Section 6.1. Because we
experimented with many different versions of D-PSO and DS-PSO on each function,
Section 6.2 explains the results for those two algorithms in more detail.

6.1 Best Mean Errors

Function S-PSO D-PSO DS-PSO

Ackley

Mean error 7.12e-15 6.20e-15 1.07
Standard deviation 1.54e-15 1.72e-15 0.73

S. topology Ring von Neumann
D. topology size 7 2

Restructure prob. 0.1 0.55

Griewank

Mean error 0.0017 0.0019 0.0060
Standard deviation 0.0046 0.0048 0.012

S. topology Ring Moore
D. topology size 2 4

Restructure prob. 0.15 1.0

Penalized P8

Mean error 0.0083 3.26e-32 0.019
Standard deviation 0.035 1.65e-32 0.061

S. topology Ring Ring
D. topology size 4 2

Restructure prob. 0.25 0.45

Rastrigin

Mean error 63.81 27.43 31.34
Standard deviation 16.86 10.52 15.19

S. topology Moore von Neumann
D. topology size 2 2

Restructure prob. 0.05 0.55

Rosenbrock

Mean error 0.77 0.95 0.00015
Standard deviation 1.26 1.73 0.00038

S. topology Moore von Neumann
D. topology size 7 2

Restructure prob. 0.0 0.0

Sphere

Mean error 1.58e-32 0 0
Standard deviation 1.10e-31 0 0

S. topology Ring Ring
D. topology size 2 2

Restructure prob. 0.1 0.05

Table 1: Summaries of the experiments that led to the lowest mean errors for each
function for each PSO variant.
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Function S-PSO vs. D-PSO D-PSO vs. DS-PSO DS-PSO vs. S-PSO

Ackley
U = 1575 U = 492 U = 1917
p = 0.0029 p = 6.32e-08 p = 1.11e-06

Griewank
U = 1226.5 U = 907 U = 1615.5
p = 0.80 p = 0.0036 p = 0.0017

Penalized P8
U = 194 U = 1241.5 U = 2321

p = 6.80e-15 p = 0.95 p = 2.22e-15

Rastrigin
U = 2426 U = 1087 U = 172.5

p = 5.26e-16 p = 0.26 p = 1.12e-13

Rosenbrock
U = 1197 U = 2500 U = 0.0
p = 0.71 p = 7.07e-18 p = 7.07e-18

Sphere
U = 1275

All trials equal
U = 1275

p = 0.33 p = 0.33

Table 2: Results of two-tailed Mann-Whitney tests between the best versions of S-
PSO, D-PSO, and DS-PSO for each function.

For each type of PSO, we ran multiple experiments for each function, varying the
static topology type, dynamic topology size, and probability of restructuring dynamic
topologies when appropriate. The results reported in Table 1 are the lowest mean
error and corresponding standard deviation for each PSO variant on each function.
Also included in the table are the corresponding static topology type for S-PSO and
DS-PSO and dynamic topology size and restructure probability for D-PSO and DS-
PSO. To compare the overall performance of each PSO variant on each function, we
applied two-tailed Mann-Whitney tests for each pair of PSO variants. The results of
these Mann-Whitney tests are reported in Table 2.

On the Ackley function, S-PSO performed best in terms of mean error. Mann-
Whitney tests indicate that D-PSO performed better than S-PSO, since a majority
of D-PSO trials had smaller errors than the S-PSO trials. Although the difference
between S-PSO and D-PSO was significant at the 0.01 level (p = 0.0029), the mean
errors for S-PSO and D-PSO were of the same order of magnitude as one another.
DS-PSO, on the other hand, performed much worse than both S-PSO and D-PSO on
the Ackley function.

S-PSO also performed best on the Griewank function, although the difference
between S-PSO and S-PSO was statistically insignificant at the 0.01 level (p = 0.08).
While the mean error for DS-PSO was of the same order of magnitude as those of
S-PSO and D-PSO, the mean DS-PSO error was more than three times greater than
those of S-PSO and D-PSO.

The results for the Penalized P8 function were rather interesting. Based on the
mean errors alone, it seemed that D-PSO significantly outperformed both S-PSO and
DS-PSO. Furthermore, DS-PSO appeared to be worse than S-PSO, since the mean
error for DS-PSO was an order of magnitude larger than the mean S-PSO error. The
Mann-Whitney tests, however, tell a different story. According to the Mann-Whitney
tests, the difference between D-PSO and DS-PSO was not significant at all (p = 0.95).
This suggests that D-PSO and DS-PSO had roughly the same level of performance
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on the Penalized P8 function. Although the mean error for DS-PSO was relatively
large on the Penalized P8 function, the majority of trials had errors on the same
order of magnitude as the mean D-PSO error. Additionally, many of the DS-PSO
trials had smaller errors than D-PSO trials. Only several DS-PSO trials had relatively
large errors, which explains the high standard deviation for DS-PSO. Furthermore,
the low U -value obtained when comparing S-PSO to D-PSO suggests that S-PSO
actually performed better than D-PSO. This is because although there were several
trials with relatively high errors that caused S-PSO to have a higher mean error than
D-PSO, the majority of S-PSO trials had lower errors than D-PSO trials.

Both DS-PSO and D-PSO performed significantly better than S-PSO on the
Rastrigin function. The mean errors of both D-PSO and DS-PSO were less than
half of the mean error of the Rastrigin function. Although the best version of
D-PSO had a slightly lower mean error than the best version of DS-PSO, the
difference was not statistically significant at the 0.01 level (p = 0.26).

DS-PSO dramatically outperformed both S-PSO and D-PSO on the Rosenbrock
function, with p-values of 7.07e-18 in both cases. According to the Mann-Whitney
tests, the difference between DS-PSO and the other PSO variants on the Rosenbrock
function was more significant than any other difference for any of the benchmark
functions we tested.

All three PSO variants were able to solve the Sphere function very effectively.
The best versions of both D-PSO and DS-PSO were able to find the global optimum
for all 50 trials. There were several variations of D-PSO and DS-PSO that were
able to find the true optimum every time – only one variant each of D-PSO and
D-PSO is included in Table 1 for the sake of space. Although S-PSO was unable to
find the true optimum in all 50 trials with any of the three topologies, S-PSO with
the Ring topology found the optimum in 49 out of 50 trials. The Mann-Whitney
tests suggest that the differences between the S-PSO and the other variants were
statistically insignificant at the 0.01 level (p = 0.33). It is also worth noting that
many more trials were done for DS-PSO and D-PSO than for S-PSO due to the
number of variations of dynamic topologies we tested.

6.2 D-PSO and DS-PSO Results

While we only did three S-PSO experiments for each function – one for each
topology type – we did many more experiments for D-PSO and DS-PSO. Because
we did experiments using (1) restructure probabilities ranging from 0.0 to 1.0 in
increments of 0.05 and (2) dynamic topology sizes ranging from two particles to eight
particles, we performed a total of 147 D-PSO trials on each function. Because we
varied the static topology type as well for DS-PSO, we did 441 DS-PSO trials on each
function.

D-PSO tended to perform extremely poorly when the probability of restructuring
was high. To make it easier to evaluate the performance of different DS-PSO variants,
the y-axis limits of plots in this section have been set such that all DS-PSO mean
errors are shown, but D-PSO errors may be cut off. Plots that show all D-PSO
results are included in Appendix A. Note that because the errors for D-PSO with
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higher restructure probabilities are many orders of magnitude larger than the errors
obtained by DS-PSO, most DS-PSO errors appear to be the same as one another in
the plots in Appendix A. As shown in the plots in this section, however, there was
some degree of variation among the different types of DS-PSO we tested.

It is also worth noting that because particles in DS-PSO have two topologies, it
does not necessarily make sense to directly compare two D-PSO and D-PSO
variants with the same dynamic topology parameters, especially when making
statements about which algorithm performed better. It might make more sense, for
example, to compare DS-PSO with the von Neumann topology and random
topologies of two particles to D-PSO with a random topology size of six particles,
since the von Neumann topology has four particles.
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Figure 12: Mean errors for D-PSO and DS-PSO on the Ackley function.
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Figure 13: Mean errors for D-PSO and DS-PSO on the Griewank function.
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Figure 14: Mean errors for D-PSO and DS-PSO on the Penalized P8 function.
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Figure 15: Mean errors for D-PSO and DS-PSO on the Rastrigin function.
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Figure 16: Mean errors for D-PSO and DS-PSO on the Rosenbrock function.
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Figure 17: Mean errors for D-PSO and DS-PSO on the Sphere function.
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6.2.1 D-PSO

For all functions, D-PSO generally had lower mean errors with lower probabilities
of restructuring, although the exact probability at which D-PSO started to perform
badly differed for each function. On each of the benchmark functions we tested, as the
dynamic topology size increased, the probability at which performance deteriorated
increased. As shown in Figure 12, for example, D-PSO had high mean errors on the
Ackley function for probabilities of 0.3 and greater when the neighborhood size was
two particles. When the neighborhood size was eight particles, however, D-PSO had
low mean errors for probabilities of up to 0.65. Full plots showing the mean D-PSO
errors for all probabilities are included in Appendix A.

6.2.2 DS-PSO

On several of the benchmark functions we tested, the performance of DS-PSO
was relatively consistent, regardless of static topology type, dynamic topology size,
or probability of dynamic topologies being restructured. On the Ackley function, for
example, none of the three static topologies seemed to be particularly dominant for
all dynamic topology sizes and restructure probabilities. Additionally, the
performance of DS-PSO on the Ackley function was fairly consistent. All mean
errors were roughly between 1.25 and 2.25, regardless of the dynamic topology size
and restructure probability. This consistency can be seen in the Griewank and
Penalized P8 functions as well, although the variances among these data were
greater than the variance on the Ackley function.

Unlike on the benchmark functions mentioned above, the performance of DS-PSO
on the Rastrigin function varied greatly depending on the dynamic topology size and
restructure probability. For dynamic topology sizes of four particles and greater, the
overall trend for DS-PSO was that as the restructure probability increased, the mean
error decreased. For dynamic topology sizes of two and three particles, however,
mean errors decreased from probabilities of 0.0 to about 0.6 and 0.7, respectively,
before increasing. Interestingly, both the smallest and largest mean errors for DS-
PSO occurred when the dynamic topologies contained two particles.

The results of DS-PSO on the Rosenbrock function were perhaps the most
striking. The lowest overall mean error on the Rosenbrock function for any of the
PSO variants occurred for DS-PSO with a von Neumann static topology, a dynamic
topology size of two particles, and a restructure probability of 0.0. When higher
restructure probabilities were tested for small dynamic topology sizes – two and
three particles, for example – performance deteriorated dramatically. For larger
dynamic topology sizes, however, DS-PSO had much lower mean errors than either
S-PSO or D-PSO, even for larger restructure probabilities.

Because the Sphere function is relatively easy to solve, the results on the Sphere
function are not particularly interesting. Although the variance for DS-PSO appears
to be quite dramatic based on the plots, all mean errors were extremely close to zero.
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7 Discussion

According to our results, DS-PSO performs much better than S-PSO and
D-PSO on certain functions, and significantly worse on other functions. On the
Ackley function in particular, DS-PSO performed much worse than either S-PSO or
D-PSO. DS-PSO also performed worse than the other two algorithms on the
Griewank function. Despite this, the differences in performance between DS-PSO
and the other algorithms on the Griewank function, while statistically significant,
were small in magnitude.

It is much more difficult to compare the performance of the three algorithms on
the Penalized P8 function. Because of a small number of trials for both S-PSO and
DS-PSO, those two algorithms had substantially higher mean errors than D-PSO.
The results of the Mann-Whitney tests indicate that S-PSO may be the best overall
algorithm for solving the Penalized P8 function, since so many of the trials for the best
version of S-PSO were lower than errors for both D-PSO and DS-PSO. Despite the
differences in mean errors and results of Mann-Whitney tests, is is important to note
that for the best versions of all three algorithms, the vast majority of trials resulted
in errors on an order of magnitude of 10−32. Practically speaking, all three algorithms
performed incredibly well on the Penalized P8 function and would be perfectly fine
to use in practice.

Our results indicate that Rastrigin is the hardest to solve of the six benchmark
functions we tested. For all three PSO variants, the mean error on the Rastrigin
function, even in the best case, was much, much larger than the mean errors on
other functions. Furthermore, our results show that both D-PSO and DS-PSO
performed significantly better than S-PSO on the Rastrigin function.
Mann-Whitney tests suggest that both D-PSO and DS-PSO are comparable in
effectiveness when used on the Rastrigin function.

DS-PSO performed substantially better on the Rosenbrock function than either
S-PSO or D-PSO. Surprisingly, the restructure probability in the best version of
DS-PSO was 0.0. This means that particles had two static topologies, rather than
one static topology and one dynamic topology. Variants of DS-PSO with larger
dynamic topology sizes and true dynamic topologies also performed significantly
better than both S-PSO and D-PSO, although performance tended to be best when
the restructure probability was low. The fact that the overall best DS-PSO variant
on the Rosenbrock function did not allow for topology restructuring at all suggests
that perhaps the “dynamic” component of DS-PSO, at least on the Rosenbrock
function, is less important than the use of two neighborhoods for each particle.

There are several major conclusions we can make based on our data. First and
foremost, the excellent performance of both D-PSO and DS-PSO on several of our
benchmark functions suggests that the introduction of dynamic topologies can
significantly improve the performance of PSO. That being said, the fact that S-PSO
still performed best on the Ackley and Griewank functions indicates that dynamic
topologies may not always improve performance. Moreover, the fact that D-PSO
performed best with low restructure probabilities indicates that too much
randomness may actually cause PSO to perform worse.
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Interestingly, the best DS-PSO variants had much higher restructure probabilities
than D-PSO, even as high as 1.0 in the case of the Griewank function. One possible
explanation for this is that because particles have a static topology that allow them to
exploit knowledge about the search space, the dynamic topology can be more dynamic
than the topologies in D-PSO. Because particles in D-PSO only have one dynamic
topology, if those topologies constantly change, then the exploitative characteristic
of the algorithm is disrupted. This is apparent in the plots in Appendix A, which
show that for large restructure probabilities, D-PSO performed extremely poorly on
all functions. It is possible that D-PSO requires a lower probability of restructuring
so that the exploitative characteristic of standard PSO is preserved.

Based on our experiments, it is unclear which aspects of DS-PSO are responsible
for its improved performance on several of the benchmark functions we tested. One
possibility is that the randomness introduced by dynamic topologies coupled with
the knowledge provided by static topologies causes DS-PSO to perform well. The
fact that D-PSO outperformed S-PSO on several functions supports the argument
that dynamic topologies are at least partly responsible for the improved performance
of DS-PSO. The results from our experiments on the Rosenbrock function, however,
indicate that the inclusion of multiple neighborhoods may be more important than
the inclusion of dynamic topologies. In fact, DS-PSO performed better with two
static topologies per particle than with one static and one dynamic topology for each
particle.

What is clear about DS-PSO is that it performs substantially better than other
variations of PSO on several functions. Although the exact reason for its substantially
improved performance on functions like Rosenbrock and Rastrigin and significantly
worse performance on the Ackley function is uncertain, DS-PSO is an exciting, new
type of PSO algorithm that builds upon the original PSO in several ways. While it
will likely not replace the standard PSO algorithm and other variations in its current
form, DS-PSO is a promising alternative to the standard algorithm that has many
potential applications. Future studies will determine whether or not DS-PSO or a
similar algorithm will someday replace other variants of PSO as the new standard.
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8 Future Work

Our experiments leave several open questions. The first and perhaps most
important question is which aspects of DS-PSO – the inclusion of dynamic
topologies and the use of multiple topologies per particle – are responsible for its
performance. While it is possible that one of the characteristics is more important
than the other, it is also possible that both aspects of the algorithm together lead to
improved performance on certain functions. Another possibility is that different
aspects of DS-PSO are important for different functions. The introduction of
multiple topologies for each particle seems to be more important for the Rosenbrock
function, for example, while the inclusion of dynamic topologies seems to be more
responsible for the improved performance on the Rastrigin function.

The fact that DS-PSO performed worse than S-PSO and D-PSO on the
Griewank function, and much worse on the Ackley function, indicates that the
introduction of dynamic topologies and multiple topologies per particle may
negatively impact performance on certain types of functions. Both the Ackley and
Griewank functions are multimodal. That being said, DS-PSO also performed well
on the Penalized P8 and Rastrigin functions, both of which are multimodal. An
interesting direction for future studies would be to experiment with DS-PSO on a
wider variety of functions. This would hopefully allow us to draw conclusions about
the characteristics of functions that cause DS-PSO to perform well. This would
allow us to make informed guesses about when to use DS-PSO over other PSO
variants.

One final question that our study raises is how to best compare different PSO
algorithms. Although comparisons can be rather clear in certain cases, such as
between DS-PSO and S-PSO on the Rosenbrock function, it is difficult to determine
which algorithm is best in other cases, such as with the Penalized P8 function.
Especially when different measures lead to different conclusions, it is unclear how to
best compare different algorithms. While we used mean errors and two-tailed
Mann-Whitney tests in our study, perhaps other measures – such as convergence
speed – are more appropriate or more useful for certain applications. In future
studies, using a wider variety of comparison statistics could be useful for more
definitively determining which algorithm is best.
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A Full Plots of D-PSO and DS-PSO

Figure 18: All D-PSO and DS-PSO mean errors on the Ackley function.
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Figure 19: All D-PSO and DS-PSO mean errors on the Griewank function.
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Figure 20: All D-PSO and DS-PSO mean errors on the Penalized P8 function.
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Figure 21: All D-PSO and DS-PSO mean errors on the Rastrigin function.
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Figure 22: All D-PSO and DS-PSO mean errors on the Rosenbrock function.
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Figure 23: All D-PSO and DS-PSO mean errors on the Sphere function.
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