
Bowdoin College Bowdoin College

Bowdoin Digital Commons Bowdoin Digital Commons

Honors Projects Student Scholarship and Creative Work

2016

Robot Detection Using Gradient and Color Signatures Robot Detection Using Gradient and Color Signatures

Megan Marie Maher
Bowdoin College, meganmaher1@gmail.com

Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects

 Part of the Robotics Commons

Recommended Citation Recommended Citation
Maher, Megan Marie, "Robot Detection Using Gradient and Color Signatures" (2016). Honors Projects. 43.
https://digitalcommons.bowdoin.edu/honorsprojects/43

This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work
at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator
of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu.

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/honorsprojects
https://digitalcommons.bowdoin.edu/students
https://digitalcommons.bowdoin.edu/honorsprojects?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/honorsprojects/43?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu

Robot Detection Using Gradient and Color Signatures

An Honors Paper for the Department of Computer Science

By Megan Marie Maher

Bowdoin College, 2016

c©2016 Megan Marie Maher

Contents

List of Figures ii

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Background 2
2.1 Arm Disturbances . 2
2.2 Sonars . 2
2.3 Vision . 2

2.3.1 Scan Lines . 2
2.3.2 Disturbances in the Field Horizon 4

3 Robot Detection Using Gradient and Color 6
3.1 Gradient Estimation . 6
3.2 Fuzzy Logic . 7
3.3 Hough Line . 9
3.4 Finding Areas with High Spatial Density . 9
3.5 Results and Evaluation . 11

4 Further Work 14

5 Conclusions 15

References 16

A Appendix 17
A.1 Color . 17
A.2 Hough Line Transform . 17

A.2.1 Step 1: Estimate Gradient . 17
A.2.2 Step 2: Magnitude and Direction 17
A.2.3 Step 3: Reduction . 18

A.3 Homography . 19

B Color Images in Black and White 20

i

List of Figures

1 A sample set of pixels below the field horizon are analyzed, found along scan
lines. Scanned pixels are shown in the first image [4], which are found at the
intersection of the scan lines shown in the second image [4]. 3

2 Trigonometry is used to calculate where the top of a robot is after finding
the bottom. [1] . 4

3 The original image is on the left and the gradient image is on the right. In
the gradient image, the brightness of each pixel corresponds to the confidence
that there is high gradient magnitude at that pixel location in the original
image. 7

4 The original image is on the left and the white image is on the right. In the
white image, the brightness of each pixel corresponds to the confidence that
the pixel in the original image is white. 8

5 The combination of the white (left) and gradient (center) images produces a
new white-gradient image (right), where the brightness of each pixel corre-
sponds to the confidence that the pixel is part of a robot. 8

6 A refinement step that removes field lines from the white-gradient image. . 9
7 The top and bottom camera box sizes, respectively (two images not to scale

relative to each other). 10
8 Left: For a sample image of size 7 x 9 pixels with a box of size 3 x 4, each

index in the accumulator is the sum of the brightness values of the pixels
that are highlighted with the same color. Right: As the box moves once to
the right, the new accumulator is added and the old accumulator is subtracted. 10

9 Before updating the current sum with the new accumulator, the new accu-
mulator must be updated to reflect the rightmost column of pixels within the
box. 11

10 Bottom camera detection fails when the robot’s feet are too high in the image.
In this situation, the robot will likely be detected in the top camera. 12

11 A collection of results from bottom camera robot detection. The blue boxes
(bottom row) are a result of merging in around two red bounding boxes, on
average. 12

12 Unmerged detection of a small clump of robots (left), an undetected close
robot (center), and undetected robots from a far distance (right). 13

13 A collection of results from top camera robot detection. Merged boxes are
shown in the left and right images and an unmerged box is shown in the center. 13

14 A Hough line is defined by two parameters: r and θ (Left [2]). A single point
plotted in Hough Space represents a line (right [9]). 18

15 Left [10]: There are a total of six degrees of freedom: 3 translational and 3
rotational. Right: All points along the dotted red ray are mapped to the red
point in the image. Reverse mapping, from image to world coordinates, is
difficult because we no longer know where on the ray to map to. 19

ii

Acknowledgements

My deepest gratitude to Professor Eric Chown and Bill Silver for their invaluable help,
expertise, and encouragement. This work would not have been possible without them.

iii

Abstract

Tasks which are simple for a human can be some of the most challenging for a
robot. Finding and classifying objects in an image is a complex computer vision prob-
lem that computer scientists are constantly working to solve. In the context of the
RoboCup Standard Platform League (SPL) Competition, in which humanoid robots
are programmed to autonomously play soccer, identifying other robots on the field is
an example of this difficult computer vision problem. Without obstacle detection in
RoboCup, the robotic soccer players are unable to smoothly move around the field and
can be penalized for walking into another robot. This project aims to use gradient and
color signatures to identify robots in an image as a novel approach to visual robot detec-
tion. The method, “Fastgrad”, is presented and analyzed in the context of the Bowdoin
College Northern Bites codebase and then compared to other common methods of robot
detection in RoboCup SPL.

iv

1 Introduction

RoboCup is an international robotics event in which teams of researchers program au-
tonomous robots to compete in soccer matches, rescue missions, or home tasks. Bowdoin
College’s RoboCup team, the Northern Bites, competes in the Standard Platform League
(SPL), where all participating teams use the humanoid Nao robot of Aldebaran Robotics.

Soccer, although simple for a human, is extremely difficult for a robot. When a robot
moves around any given space, for each movement it must calculate the position of its
joints and adjust in order to not fall over. It must take in information from its cameras and
sensors and figure out what makes up its surroundings, and where it is located in space.
The robot may be exploring unknown territory and must react on the spot to changes in
its environment. However, since it is a robot, all of these things must be carefully thought
out and programmed by a human before it begins its task.

This project explores robot detection as an extension of the new vision system the
Northern Bites implemented last year. In gameplay, robot detection is absolutely crucial.
A robot must efficiently and effectively navigate around the field while avoiding other robots.
If unable to detect obstacles on the field, a robot may be physically blocked from moving
around, incapable of seeing around obstructions. Furthermore, it may walk directly into
a robot in its path and would most likely cost itself a penalty of 45 seconds, which is
a significant portion of each 10 minute half. As the league moves further from wireless
communication, robot detection becomes even more essential.

Although it is effortless for a human to identify a robot on the soccer field, this task
is extremely complicated for a robot. Robots are mostly white with a few grey spots; in
comparison to the white goal posts, the white net, the white field lines, the partially white
ball, and any white object in the background, it is easy for a robot to mistake something
else for a robot. Time constraints further complicate this task, as all code must be run 30
times every second, including the behavior system, localization, motion, and vision. Robot
detection is only a small portion of what makes up a vision system, meaning any algorithm
must be tremendously fast.

Specifically, there is around 1 ms free in the current vision system for the new algorithm.
This is an upper bound, as any new addition to the vision system will take up some of this
free 1 ms. Given the 1.6 GHz CPU of the Nao robot, there are around 1.6 million clock
ticks every ms. Aldebaran’s Nao robots have two cameras: one above their “eyes” and one
below; these are referred to as the “top” and “bottom” cameras. Two images are processed
every frame: one from each camera. Although the initial size of these images is 640 x 480
pixels, the top camera image is reduced to 320 x 240 pixels and the bottom image is reduced
to 160 x 120 pixels, to minimize the number of pixels processed. Between the two images,
this leads to an average of ∼17 instructions per pixel, assuming one instruction per clock
tick. This is in comparison against other “real time” visual obstacle detection algorithms
[8], which may run at 5 frames per second on one image of size 128 x 128 pixels, providing
time for ∼20,000 instructions per pixel.

Previous methods of robot detection in our codebase have not proven to be adequate.
These methods include the use of sonars and the calculation of when the robot’s arms have
been disturbed by an obstruction from their intended location. The most obvious improve-
ment to robot detection is to move to visual detection. Although there are a few existing
methods of visual robot detection, the proposed “Fastgrad” method works cohesively with
the Northern Bites’ vision infrastructure and explores a new approach to visual detection
that uses gradient and color signatures.

1

2 Background

Obstacle detection in RoboCup SPL involves a suite of different detectors. These include
the calculation of when the robots’ arms have been displaced by an object from its intended
position, the use of sonars, and visual robot detection.

2.1 Arm Disturbances

The Northern Bites detect an obstacle after a collision by determining if the robot’s arms
have been significantly moved. Since specific arm joint commands are sent to the robot in
gameplay, it is known exactly where the arms should be. Therefore, when the current arm
position is read back in, comparing this to the intended position determines if the arm has
been displaced, and in what direction it has moved. However, a robot must be in direct
contact with an obstruction in order for it to identify anything, limiting the detection to
a very short range. Furthermore, if an obstacle is detected in this manner, the robot has
already run into an obstacle; this should be avoided in the first place.

2.2 Sonars

Using sonars is another method that searches for potential obstructions in front of the
robot. Aldebaran’s Naos have two sonar units with two transmitters and two receivers: one
on the left and one on the right side of a robot’s center chest button. The sonars can detect
between 0.2m and 0.8m for the NAO V5 robot or between 0.25m and 2.55m for the NAO
V4 robot. This would seem to be an ideal form of short-range robot detection, as it gives a
distance to an obstacle from both sonars, from which we can figure out where the obstacle is
exactly. However, sonar readings are noisy and inconsistent, and there are irregularities in
the sonars of the V5 robots where identical scenarios often produce inconsistent and faulty
readings. This creates a need for a per-robot sonar configuration and the result is still
noisy and subject to error. Additionally, sonars can only detect objects in a short-range,
providing no information about other parts of the field.

2.3 Vision

There are two main approaches to visual robot detection that are implemented in RoboCup
SPL. These methods, 1) using scan lines and 2) looking for disturbances in the field horizon,
were created by the top two teams in the league, B-Human from the University of Bremen
[6], and UNSW Australia from the University of New South Wales [3], respectively. Other
teams in the league use variations of these two main approaches, or in some cases use the
actual code from B-Human or UNSW Australia.

2.3.1 Scan Lines

B-Human’s visual robot detection method [4, 5] looks for regions in the image which are
both non-green and are larger than a field line. The algorithm is run after a number of
other visual systems have already been processed. Most importantly, this includes finding
the field horizon that is used in the robot detection algorithm.

To analyze an image, B-Human’s algorithm only scans a small sample of points below the
field horizon in the image to avoid wasting time looking at insignificant pixels. Specifically,
points are examined at the intersection between parallel vertical lines and parallel horizontal

2

Figure 1: A sample set of pixels below the field horizon are analyzed, found along scan
lines. Scanned pixels are shown in the first image [4], which are found at the intersection
of the scan lines shown in the second image [4].

lines, where the space between vertical lines is equidistant and the spacing between the
horizontal lines increases further down in the image (shown in Figure 1). The space between
the horizontal lines reflects a fixed size in world coordinates, and corresponds to how they
are projected into the image. The way in which field coordinates are transformed into world
coordinates deals with Homography (see Appendix).

Pixels are analyzed starting where the field horizon meets each vertical scan line and
moving downwards in the image. When points with mostly non-green pixels in their neigh-
borhood are found in the image, they are marked for further examination. A pixel’s neigh-
borhood is made up of 2n pixels in each direction, where n = the width of a field line. If
there is more than one pixel on a vertical scan line that is surrounded by a mostly non-green
neighborhood, the lowest of all these pixels is specially marked.

In this approach, it is initially assumed that anything that is both larger than a field
line and mostly non-green is a robot. At this stage in the process, every vertical line with
marked pixels could contain a robot. However, since there is little information about the
size or shape of the robot, false positives are very likely. Thus, a series of filtering stages is
necessary to rule out as many false positives as possible.

The first filtering stage checks the height in comparison to the width of the candidate
robot. A scan to determine the bottom of the candidate moves downwards until areas of
green are found. Similarly, to find the top, a scan moves upwards until either a patch of
green is found or the horizon is reached. Any candidate whose height is less than its width
at its lowest points is a false positive and is thrown out.

Next, robot hands which have been previously marked are removed. Since they are not
directly on the field, it is impossible to use any knowledge about their location to calculate
the distance to the robot. This is due to the way in which Homography functions (see
Appendix). The robot’s arms are found by examining the lowest marked points in each
vertical scan line, and throwing out columns where the lowest marked pixel is significantly
higher than the lowest marked pixels in the columns of the other vertical scan lines.

If part of the robot extends below the top image, the top and bottom images are stitched
together. Once stitched, a sanity check is performed again to compare width and height
in order to ensure that the candidate is not wider than it is tall. If a candidate passes all
these stages, it is surrounded by a bounding box and classified as a robot.

B-Human’s approach has proven to be very effective, finding robots in most frames.

3

Figure 2: Trigonometry is used to calculate where the top of a robot is after finding the
bottom. [1]

However, the method may have a hard time picking up robots in clumps, as clumps would
be thrown out by the width vs. height sanity check. Clumps of robots are often the most
important to identify, as they will be the largest obstruction on the field.

2.3.2 Disturbances in the Field Horizon

In 2014, UNSW Australia, previously known as rUNSWift, published a paper on a visual
robot detection algorithm [1] that looks for disturbances in the field horizon, builds robot
candidates based on where the field is obstructed, and then uses Bayesian machine learning
to determine which robot candidates are truly robots.

Initially, the algorithm looks at the field edge to see if any points along the line are not
a part of the green field. Moving across each column in the image, x pixels below the field
edge are scanned (currently x = 5) and are each assigned a score according to their type:
white = 3, field = −3, background = 1. The scoring gives certain kinds of pixels more
weight and accounts for the imperfect conditions that often exist in RoboCup. If the total
score in any column is greater than 0, this column is marked to have a potential obstruction.

For each marked column, the next step in the algorithm finds the bottom of the obstruc-
tion in the column. Iterating downwards, when an area of multiple successive non-green
pixels is reached, the area is marked as the bottom of the obstacle. UNSW Australia uses
trigonometry to determine the top, assuming all robots would be upright (see Figure 2).
At this point, these obstructions, enclosed by a bounding box, are robot candidates.

To determine if the candidate is truly a robot, the next step uses Bayesian reasoning
with a few features. First, the height of the robot in comparison to the width of the robot:
rise over run. Similar to B-Human’s logic, robots with a very steep or very small slope
are most likely false positives, as robots are tall and flat to a certain degree. Second, the
algorithm considers the percentage of the pixels within the box that are white, as robots
are mostly white, except for the jersey. A large obstruction that is mostly non-white is
not likely to be a robot. Last, the machine learning classifier looks at the sonar input
and compares its distance estimate to the visually computed estimate. If the distances are
radically different, the candidate is more likely to be a false positive.

With this approach, the Bayesian reasoning categorizes candidates into “robot” and
“non-robot”. In this way, most robots were correctly detected in the images. However,

4

there are a considerable number of false positives and the algorithm has trouble detecting
fallen robots or clumps of robots. False positives are often extremely harmful as they
influence the robot’s decisions in a negative manner, whereas false negatives are not quite
as harmful in this situation because the robot simply has no information upon which to act.
Additionally, as previously stated, detecting robots in clumps is important since they are a
very large obstruction on the field.

UNSW Australia’s reliance on the field edge to find robots can be troublesome in certain
circumstances. First, finding the field edge is enough of a difficult task with its own sources
of error. The Northern Bites use a similar field edge detection method and have found that
classification of the field edge often alternates between near perfection and utter disaster. It
is possible that green exists beyond the field, such as in a robot’s jersey, a spectator’s shirt,
a green poster, etc., which causes problems when creating the field edge. Second, looking
for mostly non-green pixels beneath the field horizon requires a good classification of green,
which is tricky and changes with different lighting conditions. Last, for a robot who is close
to the field edge, any error in the calculation of the field edge makes it likely that the robot
will not be detected because it will not be “below the field edge.”

5

3 Robot Detection Using Gradient and Color

This paper introduces a new approach to visual robot detection, Fastgrad, that aims to
minimize some of the issues in the previous methods. As formerly mentioned, robots are
almost entirely white. However, since there are a considerable number of white objects on
the field – namely the field lines, goal posts, and ball – color signatures are not enough to
uniquely identify a robot. A signature that can help distinguish a robot from the other
white objects on the field is gradient.

Gradient is a vector, with a magnitude and direction, that measures the change in
brightness. Brightness is a function of a surface and the angle at which light hits the
surface. With a constant light source, as the surface moves, the angle at which the light
is reflected changes and thus the brightness changes on the surface. Change in brightness
gives us gradient. Since three-dimensional objects have curved surfaces, light will strike
places on the object at different angles and will produce different brightness levels across
the object. However, in a two-dimensional object, light will strike every part at the same
angle, producing uniform brightness. When we have uniform brightness we have little or
no gradient, but when we have non-uniform brightness, as on three-dimensional robots, we
are guaranteed to have gradient. The fact that significantly more gradients appear on a
robot’s body than on field lines provides a strong signature for distinguishing robots from
other objects in an image.

In this approach, a “white-gradient image” is created which weighs the importance of
both white and gradient signatures simultaneously. The steps to produce the image include
1) estimating gradient, 2) employing fuzzy logic, 3) making use of information from a Hough
line transform, then 4) moving a fixed-size box around every position in the white-gradient
image to search for areas with high spatial density. Each of these stages is discussed in
depth in the following sections.

3.1 Gradient Estimation

The top and bottom cameras of the Nao robot each produce a YUV image with a separate
Y, U, and V value for each pixel in the image, where Y is the pixel’s brightness and U and
V are color components. The reason we have three values is because cameras aim to mimic
the human eye, which also has three parameters.

Since gradient measures the change in brightness, the Y values in the original image are
required to calculate the gradient at each pixel location. A Sobel Estimator [7] was used
to estimate the x and y gradients, or partial derivatives, δz/δx and δz/δy at each pixel, for
z = f(x, y). A Sobel matrix has a 3 x 3 neighborhood, defined as follows for the x and y
gradients, respectively:

mx =

−1 0 1
−2 0 2
−1 0 1

 , my =

 1 2 1
0 0 0
−1 −2 −1

Consider a neighborhood of Y values around pixel e to be:

n =

a b c
d e f
g h i

To calculate the x and y gradients at each pixel e :

6

Figure 3: The original image is on the left and the gradient image is on the right. In the
gradient image, the brightness of each pixel corresponds to the confidence that there is high
gradient magnitude at that pixel location in the original image.

gx = −1a+ 0b+ 1c− 2d+ 0e+ 2f − 1g + 0h+ 1i

gy = 1a+ 2b+ 1c+ 0d+ 0e+ 0f − 1g − 2h− 1i

An alternative approach is to use a square kernel with weight matrices:

mx =

[
−1 1
−1 1

]
, my =

[
1 1
−1 −1

]
The Sobel estimator reduces noise significantly more than methods such as the square

kernel, which is a notable strength given how noisy gradient can be. Although not as
significant, gradient calculated with the Sobel estimator lies directly where the pixel e – the
center of the weight matrix – is in the image. The gradient computed with the square kernel
matrices produces a gradient value that exists between the four pixels in the neighborhood,
which is not an addressable location in the image.

At this point, gradient values exist for every pixel location in the image. From here,
fuzzy logic was employed to create a “gradient image”.

3.2 Fuzzy Logic

The gradient image is a grayscale image where the value of each pixel corresponds to the
confidence that there is high gradient magnitude at that location in the original image.
To accomplish this, fuzzy logic was used to turn raw measurements into confidence values
between 0 and 1.

The higher the gradient value of a pixel, the more important that pixel should be in
the gradient image, up to a certain point. Conversely, the lower the gradient value, the
less important that pixel should be in the gradient image, to a certain point. Fuzzy logic
allows us to choose two thresholds, the upper and lower fuzzy thresholds, and then classify
anything above the upper threshold with a confidence of 1 and anything below the lower
threshold with a confidence of 0. Anything that falls between the two thresholds is scaled
to the appropriate number between 0 and 1. In the gradient image, the solid white pixels
were scored as 1 and the black pixels were scored as 0. Any brightness that was in between
had a gradient value in between the two chosen fuzzy thresholds. The resulting image is
shown in Figure 3.

Since robots have both gradient and white color signatures, it is important to highlight
pixels in the image which reflect both qualities. In the Northern Bites codebase, a “white

7

Figure 4: The original image is on the left and the white image is on the right. In the
white image, the brightness of each pixel corresponds to the confidence that the pixel in the
original image is white.

Figure 5: The combination of the white (left) and gradient (center) images produces a
new white-gradient image (right), where the brightness of each pixel corresponds to the
confidence that the pixel is part of a robot.

image” for the top and bottom cameras are separately created in each frame (see Figure 4).
In this grayscale “white image”, the brightness of each pixel corresponds to the confidence
that the pixel is white. This was created with fuzzy logic, using a computed color (see
Appendix).

The white images and the gradient images were merged to produce a new “white-
gradient” image, where the brightness of each pixel corresponds to the confidence that the
pixel has both a significant white color and high gradient magnitude. This refinement step
rules out many false positives, as any pixel with only one of the robot signatures is most
likely not part of a robot.

In fuzzy logic, when combining two fuzzy values, & (∗) is defined to be the minimum
value and | (+) is defined to be the maximum value. With these definitions, all boolean
algebra properties still hold, including DeMorgan’s Theorem, the associative property, the
commutative property, etc. Since the goal is to produce an image whose brightness corre-
sponds to both significant gradient and white values, the fuzzy & operator is used. This
means choosing the brightness value in the white-gradient image to be the minimum of the
two fuzzy brightness values at each pixel location in the two separate white and gradient
images.

This resulting image (see Figure 5) highlights the two signatures that are most indicative
of a robot. In other words, the brightness of each pixel in this image corresponds to the
confidence that the pixel is part of a robot. There will always be a certain amount of error
in these calculations, but there is an additional refinement step that uses field lines to rule
out false positives in the image.

8

Figure 6: A refinement step that removes field lines from the white-gradient image.

3.3 Hough Line

The Hough Line transform is a widely used method of identifying straight lines in an
image. The Northern Bites use this approach to very accurately detect lines every frame
(see Appendix), producing a list of edges in the image that are part of known field lines.

Since field lines are completely white, they appear extremely bright in the white image.
In addition, the field lines are significantly brighter than the green field beside them and
therefore a large gradient is produced at the field lines’ edges. Since the edges of the field
lines appear very bright in both the white and gradient images, they are also bright in the
merged white-gradient image.

Each refinement step in Fastgrad aims to decrease the number of potential false positives.
Because the location of the field lines is calculated in each frame, it is simple to remove
all pixels in the constructed white-gradient image that relate to the field lines. This step
severely decreases the chance that part of a field line will be mistaken for a robot. Since
there is never complete certainty when determining the location of field lines in the image,
all pixels within 3 pixels of a field line are removed, or blackened, in the white-gradient
image (see Figure 6).

3.4 Finding Areas with High Spatial Density

The white-gradient image’s bright pixels are very white and have high gradient magnitude
at that location in the original image. Areas that have high spatial density in this white-
gradient grayscale image are the mostly likely to be a robot. To find these areas, a fixed-size
box is moved to every possible position in the white-gradient image. At each location, the
average brightness value contained by the box is computed and stored. Peak detection is
then used to select the strongest candidates, whose average value is both above a certain
threshold and higher than any of the neighboring candidates’ average value.

Time complexity is always a huge concern in RoboCup. As previously mentioned, the
entire robot detection system on both images must run in under 1 millisecond, with less
than 17 instructions per processed pixel. However, moving a fixed-sized box around the
image can be accomplished in linear time in the number of pixels in the image, independent
of the size of the box.

A box size was chosen to reflect the average size of a robot in the image. Because the
top and bottom cameras images are processed as different image sizes and show different
parts of the robot, a different box size was chosen for the two images (see Figure 7).

The box algorithm begins with an array of w accumulators, for w = the width of the

9

Figure 7: The top and bottom camera box sizes, respectively (two images not to scale
relative to each other).

Figure 8: Left: For a sample image of size 7 x 9 pixels with a box of size 3 x 4, each index in
the accumulator is the sum of the brightness values of the pixels that are highlighted with
the same color. Right: As the box moves once to the right, the new accumulator is added
and the old accumulator is subtracted.

image. Each accumulator is initially filled with the sum of the first h pixel brightness values
in column x of the white-gradient image, where h is the height of the box and x is the
current accumulator you are looking at (see Figure 8: Left).

Then, the first w accumulators are added to a “current sum”, which reflects the sum
of the brightness values at each pixel within a box, whose origin is in the upper left of the
image. As the box is moved to the right, the next column’s accumulator is added to the
current sum and the previous box’s first column accumulator is subtracted from the current
sum. This continues until the end of the row (see Figure 8: Right).

For the next row and any subsequent row, each accumulator must be updated to reflect
the sum of h pixels’ brightness values in column x of the white-gradient image, starting
at the current row and moving downwards. To do this, the brightness of the bottom right
pixel of the new box is added to the accumulator corresponding to the rightmost column of
the box, and the pixel brightness value directly above the top right pixel of the new box is
subtracted from this accumulator (Figure 9).

Once the accumulator for the rightmost column of the new box has been updated, it
can be added to the current sum. The accumulator for the leftmost column of the previous
box, or the column to the left of the leftmost column in the new box, is then subtracted
from the current sum. This is the same as what was formerly done in Figure 8: Right.

10

Figure 9: Before updating the current sum with the new accumulator, the new accumulator
must be updated to reflect the rightmost column of pixels within the box.

In simpler terms, this algorithm follows the same repeated pattern:
for each row until row = height − box height

for each column until column = width − box width
// update current sum as follows for index (row, column)
add bottom right pixel of new box to correct accumulator
subtract pixel directly above top right pixel of new box from accum.
add accumulator for right-most column in new box
subtract accumulator for column before left-most column in box

The current sum gives us the total brightness within the entire bounding box. To get
the average value, divide by the number of pixels enclosed by the box. This average pixel
brightness value is stored for that specific box position.

Once the box has been moved to all possible locations in the image, we select box
positions whose average brightness value is both above a certain threshold and is higher
than all of its neighboring box’s average brightness values. This is standard peak detection.
Any box that meets these requirements is determined to be a robot.

3.5 Results and Evaluation

Overall, this method performed extremely well when both camera and color calibration
were well tuned. Most robots were detected in both the top and bottom camera images,
with a few exceptions due to the differences between the two images.

The bottom camera detection is extremely robust and is able to select correct robots
in the image in difficult circumstances, such as when the image is mostly obstructed by a
robot’s own shoulder (see Figure 11 for a sample of images). The detection method has
problems when robots are far enough away that their toes appear only in the very top of
the bottom image. In this case, the box is too large to select any area containing a robot
as having high spatial density. However, in this position, the robot is highly visible in the
top camera, and we can rely on the top camera’s detection to find the robot (Figure 10).

11

Figure 10: Bottom camera detection fails when the robot’s feet are too high in the image.
In this situation, the robot will likely be detected in the top camera.

Figure 11: A collection of results from bottom camera robot detection. The blue boxes
(bottom row) are a result of merging in around two red bounding boxes, on average.

In the top camera, the detection method is able to find robots in clumps. Clumps
of robots often prove to be a challenging condition to classify in an image, but are some
of the most important obstacles to detect since they are large obstructions. In UNSW
Australia’s robot detection method, a clump of robots would severely fail the rise-over-run
test that is part of the Bayesian machine learning classifier. Similarly, B-Human’s sanity
check that compares the width and height of the candidate obstruction would immediately
discard a clump of robots as a possible obstacle. However, since this newly-developed
Fastgrad algorithm allows for multiple areas of high spatial density to be selected by the
box algorithm, an entire clump of robots will be classified as an obstacle (see Figure 12 for
detection of a clump, without merged boxes).

Though most circumstances resulted in correct robot detection, there are a few where
the method does not detect robots in the top cameras. First, when robots are extremely
close and only the chest and part of the head are in the image, the jersey of the robot is not
picked up by the white-gradient image causing the box algorithm to fail (see Figure 12).
However, when robots are this close, their feet will most likely be seen by the bottom
camera. As the bottom camera robot detection is very robust, we can rely on it to detect

12

Figure 12: Unmerged detection of a small clump of robots (left), an undetected close robot
(center), and undetected robots from a far distance (right).

Figure 13: A collection of results from top camera robot detection. Merged boxes are shown
in the left and right images and an unmerged box is shown in the center.

robots in these circumstances.
The top camera detection also fails when robots have fallen. Since the chosen box size is

simply the average size of a robot in the top image, the box’s orientation will not match that
of a fallen robot. If the box were rotated 90 degrees, the fallen robot would most likely be
detected. There has not yet been enough data to comment on the success of the algorithm
overall when a second pass is made in the image with a horizontal box. The third situation
when Fastgrad fails is when other robots are extremely far away (see Figure 12). In these
cases, these other robots are especially small and the box is too big. However, detecting
robots that are very far is not particularly important because no substantial decisions would
be made based on the information anyway. In general, false positives are worse than false
negatives in RoboCup because robots will act on incorrect information with false positives.
Missing detection of a few robots in unusual circumstances will not hurt gameplay in a
significant way, and it is not worthwhile to aim for absolute perfection.

13

4 Further Work

This method has taken steps towards developing successful robot detection, but there are
many opportunities for further improvement. First, in adjusting the dimensions of the
bounding box used to find areas of high spatial density in the white-gradient image. Second,
in estimating the number of robots in a given clump. Last, in using jersey color to help
with classification and to determine the team of a robot.

The bounding box’s dimensions were chosen to match the average size of a robot in each
image. However, as previously mentioned, this means that robots that are very far away or
on the ground are not detected, as they do not conform to the dimensions of the bounding
box. Moving forward, running the box algorithm with different box dimensions would be
worth exploring.

In terms of finding robots on the ground, scans of the top image with the standard box
rotated 90 degrees would highlight areas of high spatial density which are around the size
of an average fallen robot. Many teams do not attempt robot detection for fallen robots
because it is very easy to mistake field lines and balls for robots when relying on white color.
However, the risk of mistaking field lines for robots is minimized in the fastgrad method
due to the requirement of gradient signatures. Detecting robots on the ground is important
to avoid walking into them, as when this happens, robots often end up piled on top of one
another. Thus, exploring ways to find robots on the ground is a worthwhile task.

Adjusting the box size in general could allow for further detection of smaller robots
in the background that currently are not large enough to be detected. At the moment,
information about these smaller robots is not important as it is not used for anything in the
codebase. However, if further versions of the code require information about small robots in
the background, it would require adjusting the dimensions of the box in the box algorithm.

In this work, robot clumps are first characterized by multiple overlapping boxed areas
with high spatial density and then they are merged into one large bounding box. Finding
distinct robots or any object in a clump is a very complex computer vision problem with
not many solutions, but doing so would provide very helpful information about tracking
robots on the field. Although not very detailed, the large bounding box that this method
provides can still provide information about the nature of the clump. If x robots are lined
up facing the camera shoulder to shoulder and w is the width of one box, the bounding box
would be xw. This provides an estimation of the minimum number of robots possible in the
clump, as there must be at least x robots to create a box of size xw. However, there is no
way to estimate the maximum number of robots in a clump, unless you use the maximum
possible number of robots on the field as this number. For example, if x robots are lined up
one behind the other in a straight line, where it appears from the front as if there is only
one robot, only one robot is detected and the final bounding box will be of width w. There
is no way to estimate how many robots are hiding behind each other.

Any jersey on a robot which is not white will be filtered out of the white-gradient
image, as previously mentioned. Although the jersey is guaranteed to have gradient since
it is stretched across a three-dimensional robot, it is not white and thus is not bright in
the white image. This means the whole chest of the robot is guaranteed to be dark in the
white-gradient image and the box algorithm will likely fail. Although there are not severe
problems with this in the algorithm because the other parts of the robot were bright enough
in the white-gradient image to compensate for the jersey pixels, determining jersey color
would ease robot detection.

14

5 Conclusions

This project has enabled successful robot detection and has produced results that are usable
in competition. It is a large improvement over the previous detection methods in the
Northern Bites codebase, which included only the arm detection module that reports a
collision after it has already occurred. The codebase now contains both reliable short range
and long range robot detection algorithms which are very often able to identify obstacles
and avoid collisions before they occur.

Using this new method of robot detection, we are less likely to have less collisions. Fewer
collisions reduces the number of penalties as well as the number of times our robots fall
down. This also means that our robots will be able to move down the field more easily and in
a shorter amount of time, as they will not get stuck running into other robots. In addition,
to avoid accidentally handing the ball off to the other team, information about obstacles
allows the robots to aim kicks away from a potential opponent. These enhancements will
likely mean smoother gameplay and a better performance from the team.

Overall, the robot detection method performed remarkably well and was able to find
robots most of the time in the bottom camera as well as in key circumstances in the top
camera. The goal was to create a system that significantly improved upon previous detection
methods in the Northern Bites codebase as well as in other codebases in the league. Most
importantly, the work demonstrated that robots can be uniquely identified with the use of
only gradient and color signatures, and it has created a strong framework for visual robot
detection with many opportunities for future development.

15

References

[1] Jaiden Ashmore. Robot detection using Bayesian machine learning, 2014. UNSW CSE
RoboCup Report 20140831-Jaiden.Ashmore-RobotDetectionReport.pdf.

[2] Open CV. Hough Line Transform, 2014. Online; accessed December 12, 2015.

[3] Brad Hall, Sean Harris, Bernhard Hengst, Roger Liu, Kenneth Ng, Maurice Pagnucco,
Luke Pearson, Claude Sammut, , and Peter Schmidt. RoboCup SPL 2015 Champion
Team Paper, 2015. Available online: http://www.cse.unsw.edu.au/opencms/

export/sites/cse/about-us/help-resources/for-students/student-projects/

robocup/reports/SPL2015ChampionTeamPaper.pdf.

[4] Thomas Röfer, Tim Laue, Judith Müller, Michel Bartsch, Malte Jonas Batram, Arne
Böckmann, Martin Böschen, Martin Kroker, Florian Maaß, Thomas Münder, Marcel
Steinbeck, Andreas Stolpmann, Simon Taddiken, Alexis Tsogias, and Felix Wenk. B-
Human Team Report and Code Release 2013, 2013. Only available online: http:

//www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf.

[5] Thomas Röfer, Tim Laue, Judith Müller, Dennis Schüthe, Arne Böckmann, Dana
Jenett, Sebastian Koralewski, Florian Maaß, Elena Maier, Caren Siemer, Alexis
Tsogias, and Jan-Bernd Vosteen. B-Human Team Report and Code Release 2014,
2014. Only available online: http://www.b-human.de/downloads/publications/

2014/CodeRelease2014.pdf.

[6] Thomas Röfer, Tim Laue, Jesse Richter-Klug, Maik Schünemann, Jonas Stiensmeier,
Andreas Stolpmann, Alexander Stöwing, and Felix Thielke. B-Human Team Re-
port and Code Release 2015, 2015. Only available online: http://www.b-human.

de/downloads/publications/2015/CodeRelease2015.pdf.

[7] Irwin Sobel and Gary Feldman. A 3x3 Isotropic Gradient Operator for Image Process-
ing. presented at the Stanford Artificial Intelligence Project (SAIL) in 1968.

[8] A. Talukder, S. Goldberg, L. Matthies, and A. Ansar. Real-time detection of moving
objects in a dynamic scene from moving robotic vehicles. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, volume 4, page 3718. IEEE,
2004.

[9] School of Computer Science University of Western Australia and Software Engineering.
Computer Vision CITS4240, 2011. Online; accessed December 12, 2015.

[10] Wikipedia. Six degrees of freedom, 2016. Online; accessed December 12, 2015.

16

A Appendix

A.1 Color

Aldebaran’s Nao humanoid robots have two cameras that produce raw YUV values, but
robots work with color classes – such as white, green, orange – and so the raw values must
be converted into a color class, like computed color. Computed color is an alternative to
color table lookup that requires a calculation to convert from raw camera input instead
of a table lookup. A color table lookup often means a cache miss, as the table has over
two million entries and is too large to entirely fit in cache memory. In effect, performing a
few linear calculations in parallel with computed color is generally faster than color table
lookups.

Computed color is also simpler than color tables in terms of parameters. While each
entry in the color table must be categorized before gameplay, computed color has a mere
six parameters. This reduces hours of work that are normally required of color tables in
a new environment. Conversely, computed colors are restricted to a color rectangle in the
YUV space, whereas color tables allow for the creation of almost any color value.

A.2 Hough Line Transform

The Hough line transform is a crucial part of vision code that finds field lines in an image.
The method looks at the Y value of the YUV input for each pixel and 1) calculates the
gradient at each pixel, 2) maps all potential lines into Hough space, and 3) goes through a
set of reduction steps to figure out what lines are field lines.

A.2.1 Step 1: Estimate Gradient

Looking at white solid line on a green solid background, there is a drastic change in bright-
ness between the background (dark) and the line (bright). This change in brightness pro-
vides high gradient magnitude across the line’s edge. The first step in the Hough transform
is to estimate the gradient at each pixel in the image. This is done in the same manner
previously described in this paper (Section III, Gradient Estimation), with the use of a
standard Sobel Operator.

A.2.2 Step 2: Magnitude and Direction

Since every point in the image has both gradient magnitude and direction, there is a unique
line that goes through each of these points. There are many ways to define a line. It can be
represented by two points on the line, by the line’s slope and a point it passes through, or
even by the well-known equation y = mx + b. However, each of these methods either uses
more than two parameters – such as two points on a line – or breaks in certain circumstances
– such as y = mx+ b with an infinite slope.

In Hough space, there are two parameters that represent the line, in a way similar to
polar coordinates. If the line is plotted, we define a line segment through the origin that
is perpendicular to the plotted line. The closest point to the origin on the plotted line is
where the line segment intersects the plotted line. The line is therefore defined by r, the
length of the line segment, and θ, the angle the line segment makes with the x–axis (see
Figure 14, Left).

17

Figure 14: A Hough line is defined by two parameters: r and θ (Left [2]). A single point
plotted in Hough Space represents a line (right [9]).

Now that there are two parameters, the line can be plotted by a single point in a two-
dimensional space (r vs. θ). This two-dimensional space where points represent lines is
called ‘Hough Space’ (see Figure 14, Right).

Hough space is treated as a grid of accumulators. The value of these accumulators
represents the number of times a particular line has been found in the image. To build
the accumulators, for each location in the image, the Hough space accumulator bin for
the corresponding line is incremented. To account for noisy gradient calculation, bins are
incremented that correspond to a few variations of the line. After incrementing the bins in
Hough space, peak detection is used to select the bins which have a value greater than a
certain threshold and a value greater than each of its neighboring bins. The selected bins
correspond to lines that are the current field line candidates. To speed up processing, much
of this computation is performed in assembly.

A.2.3 Step 3: Reduction

At this stage, there are an extraordinary amount of line candidates that are not field lines,
and so it is necessary to go through a few sets of reduction steps to eliminate false positives:
1) pairing lines, 2) looking for correct lines, and 3) checking for lines that go from green to
not-green.

First, pairing lines. Each field line has two edges, so two distinct line candidates that face
each other and are relatively parallel are more likely to be part of a field line. The direction
of a Hough line is taken from gradient direction, pointing from dark to light. To determine
if lines are parallel, they first must be mapped into world coordinates via homography (see
next section), and then checked for both parallel qualities and for a separating distance that
is around the width of a field line.

The next step is to look eliminate lines that are too short, not straight enough, or
don’t contain enough points. Field lines are almost always at least a certain length in a
RoboCup image, so if a line is too short, it can be discarded. To ensure the line is straight
enough, a least-squares fit method is used. Edge points are points in the initial image with
a high enough gradient magnitude, which were used to find Hough lines. When there are
edge points that belong to more than one Hough line, they are assigned to the longest line
possible. This reduces the number of points in smaller lines so they can be thrown out.

Finally, all field lines are white with a green background, so lines in the image that are

18

Figure 15: Left [10]: There are a total of six degrees of freedom: 3 translational and 3
rotational. Right: All points along the dotted red ray are mapped to the red point in the
image. Reverse mapping, from image to world coordinates, is difficult because we no longer
know where on the ray to map to.

part of a field line will point from green to white. This last refinement step discards any
line candidates that do not point from green to non-green. If any lines make it through all
the reduction steps, they are classified as a field line.

A.3 Homography

Homography is a perspective transformation between world coordinates and camera coor-
dinates with both a linear and a non-linear component. Let’s define the world’s origin with
coordinate system W and the camera’s with coordinate system C. There is a translational
and rotational difference between the origins of W and C, each with 3 degrees of freedom.
This means a total of 6 degrees of freedom (see Figure 15, Left). The linear part of the trans-
formation is the two-dimensional transform from world coordinates to camera coordinates,
whereas the non-linear portion deals with the NAO camera lens model. Transformation
matrices are used to perform any of these conversions between the two coordinate systems.

Homography is used in many circumstances to map between image coordinates and field
coordinates. Mapping world to image coordinates is simple: there is only one place in the
image that a point in the world can be mapped to. However, when mapping from image
to world coordinates, there exists a whole ray of points that a pixel in the image could
have come from in the world (see Figure 15, Right). Knowing where something is in world
coordinates requires an additional piece of information. For example, when mapping field
lines from image to world coordinates, it is known that the field lines will be on the ground.
Knowing the height of the field lines – ground level – is enough to map to unique world
coordinates.

19

B Color Images in Black and White

A sample set of pixels below the field horizon are analyzed, found along scan lines. Scanned
pixels are shown in the first image [4], which are found at the intersection of the scan lines
shown in the second image [4].

Trigonometry is used to calculate where the top of a robot is after finding the bottom. [1]

20

The original image is on the left and the gradient image is on the right. In the gradient
image, the brightness of each pixel corresponds to the confidence that there is high gradient
magnitude at that pixel location in the original image.

The original image is on the left and the white image is on the right. In the white image, the
brightness of each pixel corresponds to the confidence that the pixel in the original image
is white.

The combination of the white (left) and gradient (center) images produces a new white-
gradient image (right), where the brightness of each pixel corresponds to the confidence
that the pixel is part of a robot.

A refinement step that removes field lines from the white-gradient image.

21

The top and bottom camera box sizes, respectively (two images not to scale relative to each
other).

Left: For a sample image of size 7 x 9 pixels with a box of size 3 x 4, each index in the
accumulator is the sum of the brightness values of the pixels that are highlighted with the
same color. Right: As the box moves once to the right, the new accumulator is added and
the old accumulator is subtracted.

Before updating the current sum with the new accumulator, the new accumulator must be
updated to reflect the rightmost column of pixels within the box.

22

Bottom camera detection fails when the robot’s feet are too high in the image. In this
situation, the robot will likely be detected in the top camera.

A collection of results from bottom camera robot detection. The blue boxes (bottom row)
are a result of merging in around two red bounding boxes, on average.

Unmerged detection of a small clump of robots (left), an undetected close robot (center),
and undetected robots from a far distance (right).

23

A collection of results from top camera robot detection. Merged boxes are shown in the left
and right images and an unmerged box is shown in the center.

A Hough line is defined by two parameters: r and θ (Left [2]). A single point plotted in
Hough Space represents a line (right [9]).

Left [10]: There are a total of six degrees of freedom: 3 translational and 3 rotational.
Right: All points along the dotted red ray are mapped to the red point in the image.
Reverse mapping, from image to world coordinates, is difficult because we no longer know
where on the ray to map to.

24

	Robot Detection Using Gradient and Color Signatures
	Recommended Citation

	tmp.1463770021.pdf.3KX5z

