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Abstract

The Diestel-Leader groups, described in Section 1.4, are a family of groups first introduced

in 2001 by Diestel and Leader in [7]. In this paper, we demonstrate that the Diestel-Leader

group Γ3(2) is not almost convex with respect to a particular generating set S, defined in

Section 2.5. Almost convexity, described in Section 1.3, is a geometric property that has

been shown by Cannon [3] to guarantee a solvable word problem (that is, in any almost

convex group there is a finite-step algorithm to determine if two strings of generators, or

“words”, represent the same group element). Our proof relies on the word length formula

given by Stein and Taback in [10], and we construct a family of group elements X in Section

3.0.3 that contradicts the almost convexity condition. We then go on to show that Γ3(2) is

minimally almost convex with respect to S, a geometric property also defined in Section 1.3.

This research was supported by NSF grant DMS-1105407.
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Section 1

Introduction

1.1 Overview

We first show that the Diestel-Leader group Γ3(2) is not almost convex with respect to a

particular generating set S.

Prior to the proof of this theorem, we provide an introduction to the notions of almost

convexity and minimal almost convexity. In order to do so, we first give basic definitions

of Cayley graphs and word length. We then provide an introduction to the Diestel-Leader

groups, paying special attention to the group Γ3(2), taken to be generated by a set we call S.

Harkening back to our description of Cayley graphs, we go on to show that the Diestel-Leader

graph DL3(2) is the Cayley graph of the group Γ3(2) with respect to S. Having gained a

thorough understanding of Γ3(2), the generating set S, and the Cayley graph with respect

to this generating set DL3(2), we reprove a word length formula on Γ3(2), first given in [10].

These tools are sufficient for us to introduce a family of elements X that violate the almost

convexity condition, thereby disproving the almost convexity of Γ3(2) with respect to S.

Finally, we show that the Diestel-Leader group Γ3(2) is minimally almost convex with respect

to S.
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1.2 Introduction to word length and Cayley graphs

Given a group G generated by a set S, the word length of an element g is defined as the

minimal length of any string of generators representing g.

Given a group G generated by a set S, we can define a graph Γ(G,S) (notation not to

be confused with that of the Diestel-Leader groups) as follows:

• Establish a bijective correspondence between group elements in G and vertices in

vert(Γ(G,S)).

• Draw an edge between the vertices corresponding to group elements that differ by a

generator s. Label that edge s.

– i.e. vg and vh are connected by an edge iff g = hs for some s ∈ S.

Note that in the coming sections it becomes tedious to constantly distinguish between group

elements and vertices, so we will on occasion simply refer to vertices by the name of the group

element they correspond to. We will likewise refer to edges by the name of the generator

they are labelled by.

Notice that, for any group element g, a word that realizes the word length of g will be

represented in the Cayley graph a minimal-length path from the identity to g (where length

is measured by number of edges traversed).

Cayley graphs are often studied as metric spaces, with a metric defined from the word length.

For a group G with word length formula l(g) relative to generating set S, the word metric

is given by

d(g, h) = l(g−1h)

This correspondence allows us to think about groups as metric spaces.

6



e
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Figure 1.1: The almost convexity condition AC2. If the points shown above are in the Cayley
graph of a group G with respect to generating set S, then we say G is AC2 with respect to S
if for any such x, y there exists a path γ1 of length less than or equal to some fixed number
N that remains in B(n− 1). We say G is minimally almost convex if for any such x, y there
exists a path γ1 that is strictly shorter than the path described by γ2. That is, the length of
γ1 is strictly less than 2n.

1.3 Introduction to almost convexity

The notion of almost convexity was introduced by James Cannon [3] in 1987. It is defined

for a group G, finite generating set S, and Cayley graph Γ(G,S) with word length l(g) and

word metric d(x, y). The almost convexity condition ACk is satisfied when there is some

number N such that for sufficiently large n, for any two points x and y inside the ball B(n)

that are joined by a path of length k, there exists a path from x to y of length at most N

that lies entirely inside the ball B(n). A diagram of the property AC2 is shown in Figure

1.1.

We say that a group is almost convex, or AC, with respect to a particular generating set if

it is ACk for every k. Cannon [3] also showed that AC2 implies AC, meaning that we only

have to concern ourselves with points that are joined by a path of length 2. Finally, Cannon

[3] showed that if a group is almost convex with respect to a given generating set, then it is
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recursive with respect to that generating set, where recursive means there is an algorithm to

construct B(k) for any positive integer k. Such an algorithm can be used to determine if two

words represent the same group element, and thus solve the word problem–the question of

when two different words describe the same group element. For this reason, almost convexity

is a very useful property for a group to have.

The weaker notion of minimal almost convexity is a relaxation of the almost convexity

condition. We say a group is minimally almost convex (MAC) with respect to a particular

generating set if for any k and for any sufficiently large n, for any two points x and y inside

the ball B(n) that are joined by a path of length k, there exists a path from x to y of length

at most 2n− 1 that lies entirely inside the ball B(n). The notion encapsulated by minimal

almost convexity is that if we have two points x and y in the ball B(n), there is some path

between them that remains in B(n) that is shorter than the path described by simply going

from x back to the identity and then out to y. It is clear that if G is almost convex with

respect to some generating set S, then it is also minimally almost convex with respect to S.

The MAC property is also illustrated graphically in Figure 1.1.

Cleary and Taback [6] have shown that the lamplighter group, described in the next section,

is not minimally almost convex. In addition, Belk and Bux [2] have shown that Thompson’s

group F is not minimally almost convex, and Miller and Shapiro have shown that the solvable

Baumslag-Solitar groups are not almost convex [9].

1.4 Introduction to the Diestel-Leader groups

In 2001 Diestel and Leader [7] introduced a family of graphs, which came to be called the

Diestel-Leader graphs. The Diestel-Leader graphs are notated DLd(m1,m2, . . . ,md) for some

natural numbers d,m1, . . . ,mn. The Diestel-Leader graph DLd(m1,m2, . . . ,md) is a subset

of the Cartesian product of d trees, the first of valence m1 + 1, the second of valence m2 + 1,

et cetera. The precise definition will be given for some concrete examples of Diestel-Leader
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graphs in Sections 2.2 and 2.4.

These groups were first introduced as an attempt to produce a connected, locally finite, vertex

transitive graph that is not quasi-isometric with a Cayley graph of any finitely generated

group. Five years later, in 2006, Eskin, Fisher, and Whyte [8] showed that if m1 6= m2 then

the Diestel-Leader graph DL2(m1,m2) is not quasi-isometric with the Cayley graph of any

finitely generated group. But when m1 = m2, the Diestel-Leader graph DL2(m1,m2) is the

Cayley graph of the lamplighter group with respect to a particular generating set.

It was later shown by Bartholdi, Neuhauser, and Woess [1] that DLd(m1,m2, . . . ,md) is not

the Cayley graph of any finitely generated group if we do not have m1 = m2 = · · · = md.

However, it is known that if m1 = m2 = · · · = md and d ≤ p+ 1 for all primes p dividing the

mi, then DLd(m1,m2, . . . ,md) is a Cayley graph of some finitely generated group. As these

are the only Diestel-Leader graphs we will concern ourselves with in this paper, we simply

write DLd(q) for DLd(q, q, . . . , q), since each tree is assumed to be of the same valence.

We will write the group for which DLd(q) is a Cayley graph as Γd(q).

Interestingly, if m1 = m2 = · · · = md and d > p + 1 for some prime p dividing the mi, it is

still not known if DLd(m1,m2, . . . ,md) is a Cayley graph of any finitely generated group.
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Section 2

Background on Diestel-Leader Groups

In this paper we study convexity properties of one particular group in this family, Γ3(2),

although our results will generalize to any Diestel-Leader group Γ3(q).

2.1 The lamplighter Group Γ2(2)

The Diestel-Leader group Γ2(2) is more commonly referred to as the lamplighter group, and

is usually denoted by L2. We will simply call it L. It is a simple example of a wreath

product, that is,

L = Z2 o Z.

The family of lamplighter groups is given by Ln = Zn oZ. It is particularly nice to study, as

there is a convenient visualization of elements of this group, using a diagram like the one in

Figure 2.1, called the lamplighter picture corresponding to a group element. The diagram is

meant to encapsulate a bi-infinite sequence of lamps with one placed at each integer point on

the number line, some finite number of which are illuminated, with a lamplighter positioned

at one of them. This group is denoted L2 because the lamps are modeled on Z2–that is,

they can either be on or off. The lamplighter group Ln has lamps with n distinct states.
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−2 −1 0 1 2 3 4 5

↑
Figure 2.1: An element of L. The integer-indexed circles are meant to represent lamps, which
can be either on (solid) or off (empty), and the arrow is meant to represent the position of
the lamplighter. The infinite number of lamps not pictured are assumed to be off.

The identity is simply the element in which no bulbs are illuminated and the lamplighter is

positioned at 0. With this convenient visualization in mind, we unpack the definition of a

wreath product and express L as follows:

L =
⊕
i∈Z

(Z2)i oϕ Z

where ϕ(n) ∈ Aut(
⊕
i∈Z

(Z2)i) shifts the indices up by n.

The semidirect product of groups is by definition a group, so we know that L is a group.

An element of L looks like ((. . . 0, 0, 1, 0, 1, 1, 1, 0, 0, . . . ), n). The infinite tuple of 0’s and 1’s

is meant to contain the information of which bulbs in our picture are illuminated, and the

integer n represents the position of the lamplighter. In this notation, the element represented

by Figure 2.1 is ((. . . 0, 1, 1, 0, 1, 0, 1, 0 . . . ), 3), where the first 1 is in the copy of Z2 indexed

by 0 ∈ Z.

The information captured in an element of the semidirect product can also be stored in a

matrix. For instance, L is equivalently defined by

L = {
(
tx P
0 1

)
| x ∈ Z, P ∈ Z2[t, t−1]}

The definition of L as a matrix group is the most useful one, as we will be using the matrix

presentation when we discuss its generalization, Γ3(2). P is a polynomial in t and t−1

with coefficients from Z2. Beginning with an infinite tuple as above, ai in the ith position
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becomes the term ait
i in the corresponding polynomial. So, P encodes which lamps are on.

The integer x is meant to represent the position of the lamplighter. In this notation, the

element represented in Figure 2.1 is
(
t3 1+t+t3+t5

0 1

)
. The binary operation is standard matrix

multiplication: (
tx P
0 1

)(
ty Q
0 1

)
=
(
tx+y txQ+P

0 1

)
To see that the binary operation under this definition agrees with the binary operation under

the preceding definition, we include a sample calculation:

Example 2.1.1. Consider the group elements ((. . . , 0, 1, 1, 0̄, 1, 0, 1, 0, . . . ), 3) and

((. . . , 0, 1, 1̄, 0, . . . ),−2), where the bar represents the copy of Z2 indexed by 0 ∈ Z.

Using the correspondence noted above, we see that these elements correspond to the matrices(
t3 t−2+t−1+t+t3

0 1

)
and

(
t−2 t−1+1
0 1

)
, respectively. First the product in the semidirect product

notation:

((. . . , 0, 1, 1, 0̄, 1, 0, 1, 0, . . . ), 3)((. . . , 0, 1, 1̄, 0, . . . ),−2) = ((. . . , 0, 1, 1, 1̄, 0, 0, 1, 0, . . . ), 1)

This element corresponds to the matrix
(
t t−2+t−1+1+t3

0 1

)
. We now check that the matrix

product agrees:

(
t3 t−2+t−1+t+t3

0 1

)(
t−2 t−1+1
0 1

)
=
(
t t(t−1+1)+t−2+t−1+t+t3

0 1

)
=
(
t t−2+t−1+1+t3

0 1

)
So multiplying matrices of the above form corresponds to semidirect product multiplication.

We wish to examine a Cayley graph for L, so we must determine a generating set and

presentation for the group.

A presentation that corresponds nicely with the lamplighter picture in Figure 2.1, and is

12



therefore somewhat intuitive, is given by

L = 〈a, t | a2 = e,∀i, j ∈ Z : (tiat−i)(tjat−j) = (tjat−j)(tiat−i)〉

The generator a is meant to correspond with the action of switching a bulb on or off, and the

generator t is meant to represent the action of moving the lamplighter one bulb to the right.

The relation a2 = e can be understood to mean that toggling a bulb twice (i.e. turning it

on and then off again) has no net effect. The family of relations defined by

∀i, j ∈ Z : (tiat−i)(tjat−j) = (tjat−j)(tiat−i)

encapsulate the notion that moving to a bulb at index i, toggling it, returning to the origin,

moving to a bulb at index j, toggling it, and returning to the origin produces the same

element as instead toggling j first and then toggling i. That is, these “operations” commute.

In this notation, the element represented by Figure 2.1 is atat2at2at−2.

We can give an equivalent presentation of L in terms of matrices with entries in Z2[t, t−1],

using the generating set
{(

1 1
0 1

)
,
(
t 0
0 1

)}
. We can do some simple multiplication to figure out

which matrix in this presentation is meant to correspond to which generator in the previous

presentation. Take a generic element
(
tx P
0 1

)
of L and compute

(
tx P
0 1

)(
1 1
0 1

)
=
(
tx tx+P
0 1

)
So, in the polynomial of the resultant matrix, the Z2-coefficient of tx has changed, and the

exponent of t is unchanged in the first entry. Recall that x is meant to encode the position of

the lamplighter, and the coefficient of tx in P is meant to encode the state of the bulb indexed

by x. So multiplying by this generator toggles the bulb at the position of the lamplighter–it
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is equivalent to a in the above presentation. Multiplication by the other generator yields

(
tx P
0 1

)(
t 0
0 1

)
=
(
tx+1 P

0 1

)
So, in the first entry of the resultant matrix, the exponent of t has increased by 1, and

the polynomial is unchanged. Recall that the exponent of t encodes the position of the

lamplighter. So multiplying by this generator moves the position of the lamplighter to the

right–it is the equivalent of t in the above presentation.

Of course, the graph that we would like to investigate as a Cayley graph of this group is

DL2(2). In order to get that DL2(2) is a Cayley graph of L, we must choose an alternate

generating set to work with. The generating set we wish to use is

T = {
(
t 1
0 1

)
,
(
t 0
0 1

)
}

which corresponds to {t, at} in our previous notation. Observe that this generating set

generates the same set of group elements as the above generators, because

(
t 1
0 1

)(
t 0
0 1

)−1
=
(

1 1
0 1

)
.

We claim that DL2(2) is the Cayley graph of L with respect to T . Before this claim can be

substantiated, we must first precisely define DL2(2).

2.2 The Diestel-Leader Graph DL2(2)

The Diestel-Leader graph DL2(2) is a subset of the Cartesian product of two binary trees.

Figure 2.2 shows the two trees with one sample point from DL2(2) marked. We must define

two height functions, which are maps h : T → R with Vert(T ) mapping onto Z such that

each level is assigned a height value and adjacent levels of vertices are mapped to consecutive

14



h T1 T2

2

1

0

−1 0

0

Figure 2.2: A picture of part of the Cartesian product of two binary trees. Note that we have
defined a height function h : T → Z on each tree, and then lined the levels up by height.
The vertices in this Cartesian product are ordered pairs of vertices, one from each tree. The
graph DL2(2) is a subset of this graph. The indicated point is one example of a vertex of
DL2(2).

integers. So call the height function on T1 “h1” and the height function on T2 “h2.” The

vertices of DL2(2) are defined by

Vert(DL2(2)) = {(v1, v2) ∈ Vert(T1)× Vert(T2) | h1(v1) + h2(v2) = 0}

Using this fact we can readily see that the point indicated in Figure 2.2 is indeed in DL2(2).

We define the edges of DL2(2) as follows:

Edges(DL2(2)) =
{(

(v1, v2), (w1, w2)
)
∈
(
Vert(DL2(2))× Vert(DL2(2))

)2

| (v1, w1) ∈ Edges(T1), (v2, w2) ∈ Edges(T2)
}

Figure 2.3 demonstrates that the valence of each vertex in DL2(2) is 4. This fact will become

important when we argue that DL2(2) is the Cayley graph of Γ2(2) with respect to T .

2.3 Identification between L generated by T and DL2(2)

Recall from Section 1.2 that, to establish that DL2(2) is the Cayley graph of L with respect

to T , we must show that each element of L corresponds with a unique vertex in DL2(2), and
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that for any g ∈ L and s ∈ T , the vertex corresponding to g is connected by an edge to the

vertex corresponding to gs.

We identify group elements with vertices as follows:

Consider a binary tree with edges labelled as in T1 in Figure 2.4. Then, for any vertex v

at height k, there is a unique sequence of zeros and ones corresponding to the labels on the

edges from v to the parent of v, then to the parent above that, and so on. Notice that this

string will eventually be only zeros. In this way we can see that vertices of a tree can be

uniquely identified with an integer and a series of zeros and ones.

We now wish to give an identification procedure between elements of L and vertices of

DL2(2). It will use the same strategy, but we will need two sequences to pick out vertices in

two trees. So, for an element of L of the form g = ( tk P
0 1 ) we first use the integer k to obtain

two sequences of zeros and ones of the form (ak, ak+1, . . . ) and (ak−1, ak−2, . . . ) where ai is

the coefficient of xi in P . Note that there can only be a finite number of nonzero coefficients

in P , so both of these sequences become all zeroes after a finite length. The vertex associated

with this element will have height k in tree 1 and height −k in tree 2. So, we use the integer

k and the former sequence to identify a vertex in tree one as described above, and the integer

−k and the latter sequence to identify a vertex in tree two as described above. Since the the

height of the vertex in tree 1 is k and the height of the vertex in tree 2 is −k, this vertex is

h T1 T2

1
a

O0

−1
b c

d

O

e f

Figure 2.3: The marked vertex in DL2(2) is connected by an edge in DL2(2) to the vertices
(a, e), (a, f), (d, b), and (d, c).

16



T1 T2
2

1

0

0

0

−1

0 1

1

0 1

0

1

0

0 1

1

0 1

0

0

0 1

1

0 1

1

0

0

0

1

1

0 1

Figure 2.4: The vertex in DL2(2) corresponding to ( t t+1+t−2

0 1
)∈ Γ2(2). The edges are la-

belled with zeros and ones to facilitate cross-referencing between the trees and the sequences
associated with the group element. It is important to note that we assume that the left side
of both trees is pictured–that is, the top node is a left child, as is its parent, and so on.

indeed in DL2(2).

We have noted in the caption of Figure 2.4 that the vertex indicated corresponds to the

group element ( t t+1+t−2

0 1
). We can see that the associated strings for this group element are

(1, 0, 0, . . . ) and (1, 0, 1, 0, 0, . . . ). If we refer to Figure 2.4, it is plain to see that these strings

correspond with the indicated vertices as described above.

Now that we have an identification procedure between elements of L and vertices of DL2(2),

we must show that vertices of DL2(2) joined by an edge correspond to elements of L that

differ by a member of the generating set T . We do so on the following page in Table 2.1. In

this table we can see that for any g ∈ L and any s ∈ T , the vertices corresponding to g and

gs are connected by an edge in DL2(2). So the four generators in T correspond to the four

edges from any given point in DL2(2).

We will now explore the generalization to the Diestel-Leader graph DL3(2), which is a subset

of the Cartesian product of three binary trees. Once we have a handle on this graph we will

investigate the group for which it is a Cayley graph. That group is Γ3(2) with respect to the

generating set S defined in Section 2.5.
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Generator s

(
tk P
0 1

)
s How to identify the vertex corresponding to(

tk P
0 1

)
s in DL2(2)

(
t 0
0 1

) (
tk+1 P

0 1

)
Move up one edge in height in T1,

move down along edge marked ak
(i.e. the coefficient of tk in P ) in T2

(
t 0
0 1

)−1 (
tk−1 P

0 1

)
Move down along edge marked ak

(i.e. the coefficient of tk in P ) in T1,
move up one edge in height in T2

(
t 1
0 1

) (
tk+1 P + tk

0 1

)
Move up one edge in height in T1,

move down along edge marked ak + 1
(i.e. the opposite of the coefficient of tk in P ) in T2

(
t 1
0 1

)−1 (
tk−1 P + tk−1

0 1

)
Move down along edge marked ak + 1

(i.e. the opposite of the coefficient of tk in P ) in T1,
move up one edge in height in T2

Table 2.1: Every generator in s ∈ T , along with, for some arbitrary group element g,
instructions on how to find the vertex corresponding to gs from the vertex corresponding
with g.

2.4 The Diestel-Leader Graph DL3(2)

DL3(2) is defined analogously to DL2(2), as a subset of the Cartesian product of three trees of

valence 3: DL3(2) ⊂ T1×T2×T3, where T1, T2, and T3 are binary trees as in the construction

of DL2(2). We associate a height function with each tree, hi : Ti → R as in Section 2.2, with

hi(Vert(Ti)) = Z. The set of vertices of DL3(2) is given by

Vert(DL3(2)) = {(v1, v2, v3) ∈ Vert(T1)×Vert(T2)×Vert(T3) | h1(v1)+h2(v2)+h3(v3) = −1}.
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There is a conspicuous −1 in this definition. Recall that in Section 2.2, we set the sum of

the heights of the vertices equal to zero. This was merely out of convenience; we could have

set this sum equal to any integer n and obtaining an isomorphic graph. In this setting we

need the sum to be equal to −1 to ensure that the group Γ3(2) acts faithfully on the graph

DL3(2).

An edge connects two vertices of DL3(2) if and only if the two vertices differ by a single edge

in two of the trees and do not differ in the other tree.

We can see that moving along an edge in DL3(2) from point (v1, v2, v3) to point (w1, w2, w3)

corresponds with moving up in height in one tree, moving down in height in another, and

staying fixed in the third as follows: let v = (v1, v2, v3) and w = (w1, w2, w3). We know

that if an edge connects v and w, they have one coordinate in common. Without loss of

generality, assume that v1 = w1. Then v2 and w2 differ by an edge in T2. Again preserving

generality, assume that h2(v2) + 1 = h2(w2). Because both of these points are in DL3(2),

h1(v1) + h2(v2) + h3(v3) = h1(w1) + h2(w2) + h3(w3).

Substituting, we get

h1(v1) + h2(v2) + h3(v3) = h1(v1) + h2(v2) + 1 + h3(w3)

so we can conclude that h3(v3) − 1 = h3(w3). One can now see that to get from point v to

point w, we must move up in height in tree 2 and down in height in tree 3, while not moving

in tree 1. Note the similarities between Figure 2.2 and Figure 2.5. Now we investigate the

group for which DL3(2) is the Cayley graph with respect to a particular generating set.
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T1 T2 T3

2

1

0

-1

O O

O

Figure 2.5: The Cartesian product of three binary trees. Note that we have defined a height
function h : T → Z on each tree, and then lined the levels up by height. The graph DL3(2)
is a subset of this graph. We will soon see that the marked point will be associated with the
identity in Γ3(2).

2.5 The Diestel-Leader Group Γ3(2)

Generalizing the matrix representation of the lamplighter group L, we follow Bartholdi,

Neuhauser, and Woess in [1] and define and analogous group of matrices Γ3(2) with two

formal variables, t and 1 + t. In general, elements of Γ3(2) are of the form

ta(1 + t)b P

0 1


where a, b ∈ Z and P ∈ Z2[t, t−1, (1 + t)−1]. This group is generated by the following set S

of matrices:

S =


t 0

0 1


±1

,

1 + t 0

0 1


±1

,

t 1

0 1


±1

,

1 + t 1

0 1


±1

,

 t
1+t

0

0 1


±1

,

 t
1+t

1
1+t

0 1


±1

It is with respect to this generating set that we will investigate convexity properties of Γ3(2).

2.6 Identification between Γ3(2) and DL3(2)

We now show that DL3(2) is the Cayley graph for Γ3(2) with respect to the generating set

S presented in Section 2.5.
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Let g ∈ Γ3(2) be given by

ta(1 + t)b P

0 1

, where a, b ∈ Z and P ∈ Z2[t, t−1, (1 + t)−1].

2.6.1 Associating group elements to vertices

Analogous to what we did in Section 2.3, we need to get from this matrix a height value

for each of the three trees, and we need to find a way to convert the information in the

polynomial P into three separate sets of instructions that uniquely determine a vertex in

each tree. To obtain height values, we use the top left entry ta(1 + t)b. The height in the

first tree will be a, the height in the second tree will be b, and, since the vertex must be

in DL3(2), we must have the height in the third tree equal to −(a + b + 1). To identify

particular vertices at these heights, we will first associate each tree with a formal variable.

Then, we

1. divide P into three separate polynomials, each in terms of one formal variable,

2. define an equivalence relation on polynomials, and use label the vertices of each tree

with an equivalence class, and

3. associate each polynomial from step 1 with an equivalence class, then locate the vertex

in the appropriate tree labelled by that equivalence class.

Each of these steps is described in a subsection, and the details of the identification are

justified in [1].

Dividing P into three polynomials

We first rewrite P in three different Laurent polynomials in one variable, one polynomial for

each of the formal variables t, 1 + t, and t−1. Note that each of these polynomials is infinite

in at most one direction–that is to say, each has a minimal exponent. In order to ensure
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the identification is consistent, we find the Laurent polynomial not of the polynomial P , but

instead of the polynomial t−a(1+t)−bP , which we will call Q. We denote these three Laurent

polynomials by Lt(Q), L1+t(Q), and Lt−1(Q).

Consider a sample term ti(1 + t)j in Q. We show how to rewrite this term in each of our

three formal variables. It is crucial to remember in these calculations that the coefficients of

these polynomials come from Z2.

In terms of the formal variable t, rewriting will depend on the sign of j. If j is positive, it

is clear that ti(1 + t)j can be calculated using the binomial theorem, and is equal to some

finite polynomial in t.

If j is negative, then we observe that

(1 + t)j = ((1 + t)−1)−j

=

(
1

1 + t

)−j
=

(
1

1− t

)−j
=

(∑
i≥0

ti

)−j

which, since j is negative, can again be rewritten as a polynomial in t that is infinite in one

direction. That is, there is a minimal degree n for which the coefficient of tn is nonzero.

In terms of the formal variable 1 + t, rewriting will depend on the sign of i. If i is pos-

itive, it is clear that ti(1+ t)j = (1+ t+(1+ t)0)i(1+ t)j can be calculated using the binomial

theorem, and is equal to some finite polynomial in 1 + t.

If i is negative, then we observe that ti = (t−i)−1. Since i is negative, t−i is a positive power of

t and can thus be rewritten as above as a finite polynomial in (1+t). So ti = (t−i)−1 is merely

the inverse of some finite polynomial in 1+t. So it is equal to some finite polynomial in 1+t.
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In terms of the formal variable t−1, rewriting will again depend on the sign of j. If j is

positive, it is clear that ti(1 + t)j = (t−1)−i(1 + (t−1)−1)j can be calculated using the bino-

mial theorem, and is equal to some finite polynomial in t−1.

If j is negative, then we observe that

(1 + t)j = ((1 + t)−1)−j

=

(
1

1 + t

)−j
=

(
1

1 + 1
t−1

)−j
=

(
1

1 + 1
t−1

· t
−1

t−1

)−j
=

(
t−1 · 1

1 + t−1

)−j
=

(
t−1 · 1

1− t−1

)−j
=

(
t−1 ·

∑
i≥0

(t−1)i

)−j

=

(∑
i≥1

(t−1)i

)−j

which, since j is negative, can again be rewritten as a polynomial in t−1 that is infinite in one

direction. That is, there is a minimal degree n for which the coefficient of (t−1)n is nonzero.

So for any term of Q, we can rewrite in terms of any of the three formal variables. For a

sample calculation, skip ahead to the initial steps of Example 2.6.1. Therefore we can rewrite

the polynomial Q in terms of any of the three formal variables. We call these polynomials in

one formal variable Lt(Q), L1+t(Q), and Lt−1(Q). We must now multiply the term ta(1 + t)b

back into the polynomials, to get (ta(1+t)b)Lt(Q), (ta(1+t)b)L1+t(Q), and (ta(1+t)b)Lt−1(Q).

We have seen above that we can still rewrite the resulting polynomial in terms of the desired
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formal variable. So we will use the following notation for the three polynomials in one formal

variable produced in this step:

Lt,L1+t, and Lt−1

where the subscript indicates which formal variable we have rewritten P in.

Labeling the vertices of binary trees with polynomials

We now define an equivalence relation on polynomials, and we label equivalence classes as

“balls”. Define B(P, 2n) to be the set of polynomials that agree with P on terms of degree

less than or equal to −(n + 1). So if we fix n, we can have the same ball defined by many

different polynomials. For instance,

B(t, 2−2) = B(t+ t2, 2−2) = B(t+
∑
i≥2

ti, 2−2),

but

B(t, 2−2) 6= B(t+ 1, 2−2).

This definition is meant to mimic the tree structure, with the exponent of 2 associated with

height–consider how B(0, 2−1) and B(1, 2−1) are distinct, but B(0, 20) and B(1, 20) are the

same. The relationship to binary trees is made explicit below.

We associate these balls with the vertices of the trees in DL3(2). Consider as an example

the tree associated with t; the procedure in the other trees will be analogous. For any height

value n, we can label the points at height n using polynomials in t. We label the leftmost

node at height n with the ball B(0, 2n). The node to its right is labelled B(tn, 2n), and the

labeling is continued as in Figure 2.6.
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h

2 B(0, 22)

1 B(0, 21)

0 B(0, 20)

−1 B(0, 2−1)
B(t−1, 2−1)

B(1, 20)

B(1, 2−1)

B(1 + t−1, 2−1)

B(t, 21)

B(t, 20)

B(t, 2−1)

B(t+ t−1, 2−1)

B(t+ 1, 20)

B(t+ 1, 2−1)

B(t+ 1 + t−1, 2−1)

Figure 2.6: One of the three trees of DL3(2), which we have associated with the formal
variable t. We have also labelled the vertices with balls, or equivalence classes of polynomials.

Association between polynomials and vertices

Recall that the group element we are trying to associate with a vertex of DL3(2) is

ta(1 + t)b P

0 1


where a, b ∈ Z and P ∈ Z2[t, t−1, (1 + t)−1]. We have seen that the height in the tree

associated with tree t is a, the height in the tree associated with tree 1 + t is b, and the

height in the tree associated with tree t−1 is −(a+ b+ 1). Furthermore, we have seen in step

1 that we can get from P the polynomials

Lt,L1+t, and Lt−1 ,
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each of which is infinite in at most one direction. We associate these polynomials with balls

as described in step 2 as follows:

B(Lt, 2
−a), B(L1+t, 2

−b), and B(Lt−1 , 2a+b−1).

Finally, using the labeling described in step 2, we can find a unique vertex in each tree at

the specified height with a label equivalent to the ball in the appropriate formal variable.

Example 2.6.1. Let g ∈ Γ3(2) be defined by

g =

t(1 + t)−1 t3(1 + t)−1

0 1



So Q = (t3(1 + t)−1)(t−1(1 + t)) = t2.

The first step is to identify the three Laurent polynomials Lt(Q),L1+t(Q), and Lt−1(Q):

Lt(P ) = t2,

L1+t(P ) = (1 + t)2 + 1, and

Lt−1(P ) = (t−1)−2.

Now we can associate the polynomial with the balls

B(t(1 + t)−1(t2), 2−1) in T1,

B(t(1 + t)−1((1 + t)2 + 1), 21) in T2, and

B(t(1 + t)−1((t−1)−2), 2−1+1−1) in T3,
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which, after some arithmetic and using the equivalence relation, can be simplified to

B(0, 2−1) in T1, because t(1 + t)−1(t2) =
∑
i≥3

ti, which has no terms of degree ≤ 0,

B(0, 21) in T2, because t(1 + t)−1((1 + t)2 + 1) = (1 + t)−1 + 1 + (1 + t) + (1 + t)2,

which has no terms of degree ≤ −2, and

B((t−1)−2 + (t−1)−1 + 1, 2−1) in T3, because t(1 + t)−1((t−1)−2) =
∑
i≥−2

(t−1)i.

Now we can locate these points on DL3(2) using the labeling described in Section 2.6.1. So

this group element corresponds to the vertex

2

1

0

-1 O

O

O

We have now seen that each group element can be matched to a vertex. It remains to

be shown that right multiplication by a member of the generating set corresponds with

traversing an edge in DL3(2).

2.6.2 Relationship between generators and edges

We show that for any g ∈ Γ3(2) and s ∈ S, the elements g and gs correspond to vertices

which differ by an edge in DL3(2). Consider some point g ∈ Γ3(2) given by

ta(1 + t)b P

0 1


where a, b ∈ Z and P ∈ Z2[t, t−1, (1 + t)−1]. Associate T1 with the formal variable t, T2

with the formal variable 1 + t, and T3 with the formal variable t−1. We show the result of

multiplying g by each generator in S in Table 2.2.

Instructions on how to find the vertex corresponding to gs starting from the vertex corre-
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sponding to g can be obtained from Table 2.2 in two steps:

1. To find the heights, refer to the third column, which says in which tree the vertex

associated with gs is one edge above the vertex associated with g, and in which tree

the vertex associated with gs is one edge below the vertex associated with g. These

changes in height are obtained by looking at the exponents in the top-left entry in the

product matrix (the second column), which, as we have seen, encode the height of the

vertices in each tree.

2. Notice that each pair of height changes in the third column appears twice. For each

pair with identical height changes, note that in one case there is a new term introduced

to the polynomial and in one case there is not. Recall that the polynomials encode the

position of the vertex in each tree. Referring back to Figure 2.6, we can see that two

nodes that share a common parent have labels that differ by exactly one term in the

polynomial defining the equivalence class. So, these two pairs indicate two different

ways to go down one edge (right or left) in the latter tree.
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Trees in which height
Generator s gs increases and decreases,

respectively(
t(1 + t)−1 0

0 1

) (
ta+1(1 + t)b−1 P

0 1

)
T1, T2(

t(1 + t)−1 (1 + t)−1

0 1

) (
ta+1(1 + t)b−1 ta(1 + t)b−1 + P

0 1

)
T1, T2(

t 0
0 1

) (
ta+1(1 + t)b P

0 1

)
T1, T3(

t 1
0 1

) (
ta+1(1 + t)b ta+1(1 + t)b + P

0 1

)
T1, T3(

t−1(1 + t) 0
0 1

) (
ta−1(1 + t)b+1 P

0 1

)
T2, T1(

t−1(1 + t) −t−1

0 1

) (
ta−1(1 + t)b+1 ta−1(1 + t)b + P

0 1

)
T2, T1(

1 + t 0
0 1

) (
ta(1 + t)b+1 P

0 1

)
T2, T3(

1 + t 1
0 1

) (
ta(1 + t)b+1 ta(1 + t)b+1 + P

0 1

)
T2, T3(

t−1 0
0 1

) (
ta−1(1 + t)b P

0 1

)
T3, T1(

t−1 −t−1

0 1

) (
ta−1(1 + t)b ta−1(1 + t)b + P

0 1

)
T3, T1(

(1 + t)−1 0
0 1

) (
ta(1 + t)b−1 P

0 1

)
T3, T2(

(1 + t)−1 −(1 + t)−1

0 1

) (
ta(1 + t)b−1 ta(1 + t)b−1 + P

0 1

)
T3, T2

Table 2.2: Every generator in s ∈ S, along with, for some arbitrary group element g, the
matrix corresponding to gs and the height differences between the vertices associated with
g and gs.
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We have seen in Section 2.4 that moving along an edge in DL3(2) corresponds to moving up

in one tree and down in another. As shown by Table 2.2, multiplying an arbitrary g ∈ Γ3(2)

by the each generator in S produces twelve group elements that correspond to the twelve

vertices connected by an edge to the vertex associated with g. So we have produced the de-

sired correspondence between generators and edges, and conclude that DL3(2) is the Cayley

graph of Γ3(2) with respect to S.

We will introduce the following notation for our generators: fix a vertex g in DL3(2) such

that g =

ta(1 + t)b P

0 1

. We let eij denote the generator such that geij is located one

edge higher in tree i and one edge lower in tree j, either preserving or introducing a term

to the polynomial (depending on the group element g). So, this generator can be seen in

DL3(2) as the label of the edge which contains the edge which increases in height in Ti and

decreases in height to the right in Tj. Similarly let eij denote the generator such that geij is

located one edge higher in tree i and one edge lower in tree j, either failing to introduce or

removing a term from P . So, this generator can be seen in DL3(2) as the label of the edge

which contains the edge which increases in height in Ti and decreases in height to the left in

Tj. Notice that the precise generator that has these properties will vary based on g, but for

any group element g, there exists some generator with these properties. This notation will

henceforth be the only notation we use to refer to the generators in S.

2.6.3 The projection function

We now define a projection function Π from DL3(2) to (Z2)3 which keeps track of some

combinatorial information describing the location of the vertex in all 3 trees. This projection

will be useful as it is much simpler to use than the matrix representation of group elements,

and it is sufficient to determine the word length of a group element (as shown below in
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Section 2.7, and was originally shown in [10]). It is defined by

Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
where (mi, li) is defined as follows: find a path γ from the coordinate of the identity in tree

i to the coordinate of g in tree i. Since we are in a tree, this path is unique. We can see that

this path can be divided neatly into two subpaths: the path that strictly goes up in height

(call this γ1), and the path that strictly goes down in height (call this γ2). So mi is defined

as the length of γ1 (where length is measured by number of edges), and li is defined as the

length of γ2. That is, mi is how far up in height the path goes, and li is how far down in

height from the highest point the path goes.

Notice that m1 − l1 is the height in tree 1 and m2 − l2 is the height in tree 2, since the

coordinate of the identity in trees 1 and 2 is at height 0. Similarly, m3 − l3 − 1 is the height

in tree 3, since the coordinate of the identity in tree 3 is at height −1. We defined the vertices

of Γ3(2) such that their heights sum to -1. So (m1− l1) + (m2− l2) + (m3− l3− 1) = −1, or

m1 +m2 +m3 = l1 + l2 + l3 (2.1)

This equation will be key in many future calculations.

Notice that there is only one projection the corresponds to a unique group element:

Π(e) =
(
(0, 0), (0, 0), (0, 0)

)
Any point with a nontrivial projection coordinate must have a nontrivial li value (by Equation

2.1), and there will be at least one other group element with the same projection but with

a different coordinate (at the same height) in tree i. This is demonstrated in Figure 2.7.

31



Ti

o

ogi o hi

Figure 2.7: Notice that if gi and hi represent the coordinates of the vertices associated with
group elements g and h in Ti, respectively, then g and h are distinct group elements that
have the same projection coordinate in Ti.

2.7 Word Length in Γ3(2)

A general formula for the Diestel-Leader groups Γd(q) which computes word length with

respect to the generating set S was proven by Stein and Taback in [10]. In this section

we reprove their word length formula specifically for Γ3(2). As mentioned above, this word

length formula relies solely on the combinatorial information contained in the projections of

the group elements. We will prove below that the word metric on Γ3(2) with respect to S is

given by:

l(g) = minσ∈S3{mσ(1) + lσ(3) + max{m1 +m2 +m3,mσ(2) + lσ(2)}}.

The proof relies on the following lemma:

Lemma 2.7.1 ([10],Lemma 1). Given a group G with generating set S, let l : G→ N be the

word length with respect to S. If f : G→ N is another function satisfying:

1. f(g) = 0 iff g is the identity element of G.

2. For every g ∈ G, we have l(g) ≥ f(g).

3. For every nontrivial g ∈ G there exists some s ∈ S with f(gs) = l(g)− 1.
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then l(g) = f(g) for every g ∈ G.

Proof. Let g ∈ G, and suppose f(g) = n. Then by property (3) there exist s1, s, . . . , sn ∈ S

satisfying f(gs1s2 . . . sn) = 0. By property (1), g = s−1
n . . . s−1

2 s−1
1 , so l(g) ≤ f(g). Hence by

property (2) we have l(g) = f(g).

So we must show that the above function has the three properties listed in the lemma. We

now use Lemma 2.7.1 to show that lΓ3(2) is indeed the word metric on Γ3(2). To facilitate

use of this lemma, assume that w represents the word metric on Γ3(2).

Theorem 2.7.2 ([10],Propositions 2,8). Let g be in Γ3(2). Then the word length of g with

respect to the generating set S is given by

l(g) = min
σ∈S3

{mσ(1) + lσ(3) + max{m1 +m2 +m3,mσ(2) + lσ(2)}}

Proof. We show each of the three properties of Lemma 2.7.1 as follows:

Property (1):

First suppose l(g) = 0, i.e.

min
σ∈S3

{mσ(1) + lσ(3) + max{m1 +m2 +m3,mσ(2) + lσ(2)}} = 0

Note that for any i ∈ {1, 2, 3} we have mi ≥ 0 and li ≥ 0, so

min
σ∈S3

{mσ(1) + lσ(3) + max{m1 +m2 +m3,mσ(2) + lσ(2)}} = 0 implies m1 +m2 +m3 = 0

regardless of σ. Furthermore,

m1 = m2 = m3 = 0 implies l1 = l2 = l3 = 0

by Equation 2.1. So l(g) = 0 implies Π(g) =
(
(0, 0), (0, 0), (0, 0)

)
= Π(e). This projection
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determines a unique point in the graph, so it corresponds to a unique group element. That

is, Π(g) = Π(e) implies g = e. Therefore,

l(g) = 0 implies g = e

Now suppose that g = e.

l(e) = min
σ∈S3

{mσ(1) + lσ(3) + max{m1 +m2 +m3,mσ(2) + lσ(2)}

= min
σ∈S3

{0 + 0 + max{0 + 0 + 0, 0 + 0}}

= 0.

So

g = e implies l(g) = 0

We conclude that l(g) = 0 iff g = e.

Property (2):

Following [10], we introduce the following notation:

lσ(g) = mσ(1) + lσ(3) + max{m1 +m2 +m3,mσ(2) + lσ(2)}

Using this notation, l(g) = minσ∈S3{lσ(g)}.

We aim to show for every g ∈ G that there is some σ such that w(g) ≥ lσ(g). It will then

follow that for every g ∈ G we have w(g) ≥ l(g), since for every σ ∈ S3 we have lσ(g) ≥ l(g).

Let g be such that Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
, and let γ describe a minimal-length

path from e to g.

We define the three summits of γ as follows:
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• s1 is the first point h1 ∈ γ with Π(h1) =
(
(m1, 0), (a, b), (c, d)

)
, where a, b, c, d ∈ Z.

• s2 is the first point h2 ∈ γ with Π(h) =
(
(e, f), (m2, 0), (g, h)

)
, where e, f, g, h ∈ Z.

• s3 is the first point h3 ∈ γ with Π(h) =
(
(i, j), (k, l), (m3, 0)

)
, where i, j, k, l ∈ Z.

If s1 does not come before s2 in γ, then rename the summits such that s1 is the first summit

and s2 is the second. Do the same with s2 and s3. Note that these three points are distinct.

This can be demonstrated by contradiction as follows: assume s1 = s2. Then consider the

point x ∈ γ immediately preceding s1. If we assume x 6= s1 and x 6= s2, then Π(x) has one of

two forms: either Π(x) has tree 1 coordinates (m1 +1, 0), in which case we must have already

summited in s1, or Π(x) has tree 1 coordinates (m1 − 1, 0), in which case by Equation 2.1

Π(x) either has tree 2 coordinates (m2 + 1, 0) or has tree 3 coordinates (m3 + 1, 0), i.e. we

have already summited in s2 or s3. So if we assume s1 = s2 then we have mislabeled one or

both of these points. We can apply the same argument to show that s2 6= s3 and s1 6= s3.

Let γ = γ1γ2γ3γ4, where:

• γ1 is the path from e to s1.

• γ2 is the path from s1 to s2.

• γ3 is the path from s2 to s3.

• γ4 is the path from s3 to g.

In the coming arguments we will be making inferences about the lengths of paths based on

the differences of certain projection coordinates. Recall that each generator in S corresponds

to an edge that goes up one edge in height in one tree and down one edge in height in another.

So for two group elements with a projection coordinate that differs by n, any path between

them must contain at least n generators, and therefore have at least length n. This type

of argument will be tacitly employed each time we make an inference about the length of a

path.
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We have labelled the summits in such a way that the desired permutation will be ε, the

identity permutation. Since we saw that if lσ(g) ≤ w(g) for any σ ∈ S3 then l(g) ≤ w(g), it

will suffice to simply show this property for lε(g).

lε(g) = m1 + l3 + max{m1 +m2 +m3,m2 + l2}

We consider two cases, based on which expression realizes the maximal term in the lε(g)

expression.

Case 1: Suppose that max{m1 +m2 +m3,m2 + l2} = m1 +m2 +m3.

So

lσ(g) = m1 + l3 +m1 +m2 +m3

Consider γ1γ2γ3. By the reasoning above, we have

length(γ1) ≥ m1

Note that in order to preserve Equation 2.1, the sum of the height of the vertex in T2 and

the height of the vertex in T3 must have decreased by a total of m1 at this point. Say we

decreased the height in T2 by n and the height in T3 by m1 − n. Then

length(γ2) ≥ m2 + n, and

length(γ3) ≥ m3 +m1 − n.

Furthermore, there can be no overlap between γ2 and γ3, because there is no edge of DL3(2)

that goes up an edge in two trees simultaneously. So

length(γ1γ2γ3) ≥ m1 +m2 + n+m3 +m1 − n

= m1 +m1 +m2 +m3
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Now consider γ4. By the reasoning above,

length(γ4) ≥ l3

So

length(γ) = length(γ1γ2γ3γ4) ≥ m1 + l3 +m1 +m2 +m3 = lε(g)

By our choice of γ, we have w(g) = length(γ), so

w(g) ≥ lε(g)

as desired.

Case 2: Suppose that max{m1 +m2 +m3,m2 + l2} = m2 + l2.

So

lσ(g) = m1 + l3 +m2 + l2

Consider γ1γ2. By the reasoning above, we have

length(γ1) ≥ m1, and

length(γ2) ≥ m2.

Furthermore, there can be no overlap between these two paths, because there is no edge of

DL3(2) that goes up an edge in two trees simultaneously. So

length(γ1γ2) ≥ m1 +m2
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Now consider the rest of γ, namely γ3γ4:

length(γ3γ4) ≥ l2, because we must get to height m2 − l2 in T2, and

length(γ3γ4) ≥ l3, because we must get to height m3 − l3 in T3.

Furthermore, there can be no overlap between these two parts of the path, because there is

no edge of DL3(2) that goes down an edge in two trees simultaneously. So

length(γ3γ4) ≥ l2 + l3

So then

length(γ) ≥ m1 + l3 +m2 + l2 = lε(g).

By our choice of γ, we have w(g) = length(γ), so

w(g) ≥ lε(g)

as desired.

In either case, w(g) ≥ lε(g), and we seen that lε(g) ≥ l(g), so we conclude that w(g) ≥ l(g).

Property (3):

Consider g 6= e ∈ Γ3(2) with projection Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
.

General observation: If m1 = m2 = m3 = 0 then l1 + l2 + l3 = 0 by Equation 2.1, so then

if Π(g) is such that m1 = m2 = m3 = 0, then g = e. So in general we can say that g 6= e

implies at least one of m1,m2,m3 is nonzero and at least one of l1, l2, l3 is nonzero.

Assume we have σ ∈ S3 such that l(g) = lσ(g).

For ease of notation, assume σ = ε. It will be clear how to produce the necessary generators
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for other values of σ as well. So

l(g) = m1 + l3 + max{m1 +m2 +m3,m2 + l2}

We consider two cases, based on which expression realizes the maximal term in the lε(g)

expression.

Case 1: Suppose that max{m1 +m2 +m3,m2 + l2} = m2 + l2, so l(g) = m1 + l3 +m2 + l2.

• Subcase 1a: If l2 = 0 and l3 > 0, then m2 + 0 ≥ m1 +m2 +m3, so m1 = m3 = 0. But

then

l(23)(g) = m2 < lε(3) +m2 = lε(g)

contradicting the assumption that lε(g) = l(g). So this case does not arise.

• Subcase 1b: If l2 > 0 then l(g) = m1 + 0 + m2 + l2 = m1 + l3 + m2 + l2. Note that

Π(ge21) =
(
(m1, l1 + 1), (m2, l2 − 1), (m3, l3)

)
. So

l(ge21) ≤ lε(ge21) = m1 + l3 +m2 + l2 − 1 = l(g)− 1

• Subcase 1c: If l3 = 0 then l(g) = m1 + m2 + l2. Recall from subcase 1a that we must

have l2 > 0. So then Π(ge21) =
(
(m1, l1 + 1), (m2, l2 − 1), (m3, l3)

)
. So

l(ge21) ≤ lε(ge21) = m1 +m2 + l2 − 1 = l(g)− 1

Case 2: max{m1+m2+m3,m2+l2} = m1+m2+m3, and thus l(g) = m1+l3+m1+m2+m3.

• Subcase 2a: If l3 > 0, then Π(ge31) =
(
(m1, l1 + 1), (m2, l2), (m3, l3 − 1)

)
. So

l(ge31) ≤ lε(ge31) = m1 + l3−1+m1 +m2 +m3 = m1 + l3 +m1 +m2 +m3−1 = l(g)−1
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• Subcase 2b: If l3 = 0, then it follows from the general observation that l1 > 0 or l2 > 0.

Assume without loss of generality that l1 > 0. So

l(g) = m1 + 0 +m1 +m2 +m3 = m1 +m1 +m2 +m3

Note that Π(ge13) =
(
(m1, l1 − 1), (m2, l2), (m3 − 1, 0)

)
, so

l(ge13) ≤ lε(ge13) = m1 + 0 +m1 +m2 +m3 − 1 = l(g)− 1

So, in either case, there is a generator s such that l(gs) ≤ l(g) − 1. Since g and gs are

separated by an edge in DL3(2), we must have l(gs) = l(g) − 1. We can run the above

argument assuming any σ ∈ S3 is such that lσ(g) = l(g)–the generators produced in each

case will be the same as above but with subscripts permuted by σ.

So we conclude that for every g ∈ G there exists some s ∈ S such that l(gs) = l(g)− 1.

We have now shown that l(g) satisfies the three properties of Lemma 2.7.1, so l(g) is the

word length function on Γ3(2).

We will just write l(g) to refer to the word length of a group element g, and we will say that

a permutation σ ∈ S3 realizes the word length of g iff l(g) = lσ(g). Note that it is possible

for multiple distinct permutations in S3 to realize the word length of an element g.

40



Section 3

Γ3(2) is not AC with respect to S

To show that Γ3(2) is not AC with respect to S, we must define a family of elements that

will give rise to pairs of points that violate the AC2 condition. That is, these pairs of points

lie in B(n) for some n, are connected by a path of length two, and there is no fixed constant

N such that all of these pairs can be connected by a path inside B(n) of length less that N .

We first introduce the following notation: for g with Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
, we

let gi = (mi, li) for each i ∈ {1, 2, 3}.

Let the family X ⊂ Γ3(2) be defined by

X = {g ∈ Γ3(2) | Π(g) =
(
(x, x+ 1), (2x+ 1, 2x+ 1), (x+ 1, x)

)
, x ≥ 1}

Theorem 3.0.3. The Diestel-Leader group Γ3(2) is not almost convex with respect to S.

Before proving the theorem, we show a lemma which will allow us to use the combinato-

rial information encoded in the projections to determine lower bounds on lengths of paths

connecting vertices in DL3(2).
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Lemma 3.0.4. If h, h′ ∈ Γ3(2) are such that

Π(h) =
(
(m1, l1), (m2, l2), (m3, l3)

)
and

Π(h′) =
(
(m′1, l

′
1), (m′2, l

′
2), (m′3, l

′
3)
)

then

• if li = l′i +m for some i ∈ {1, 2, 3} and m ∈ Z, then |m| is a lower bound on the length

of any path from h to h′, and

• if mi 6= m′i for some i ∈ {1, 2, 3} then li is a lower bound on the length of any path

from h to h′.

Proof. Assume we have h, h′ as above, with li = l′i + m for some m ∈ Z. It follows from

the definition of DL3(2) in Section 2.4 that following any single edge of DL3(2) will change

the coordinate in Ti by at most one edge. So, in order for a path in DL3(2) to change the

coordinate in Ti by m edges, it must contain at least m edges. That is, such a path must be

of length at least |m|, as desired.

Now assume we have h, h′ as above, and without loss of generality assume that mi > m′i.

Furthermore, assume li > 0, as the statement is trivially true when li = 0. Consider the

subtree Th of Ti whose root is at the leftmost vertex at height mi. We can see that hi is in

the right subtree of Th, while h′i is in the left subtree of Th. Since there are no closed loops,

any path γ between these two coordinates must pass through the root of Th. So the length

of γ is greater than or equal to the length of the path from the root of Th to hi, which by

definition has length equal to li. So any path between hi and h′i in Ti is of length greater

than or equal to li. As observed above, this implies that any path in DL3(2) from h to h′

must have have length greater than or equal to li, as desired.

We now prove the theorem:
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Proof. Assume g ∈ X as defined above, i.e. Π(g) =
(
(x, x + 1), (2x + 1, 2x + 1), (x + 1, x)

)
for some x, and assume x > 0.

We will begin by showing that l(ge31) = l(ge31) = l(g)−1. We compute word lengths below:

• l(g) = lε(g) = 6x+ 2, as shown in the following table:

σ lσ(g) Simplified lσ(g)

ε x+ x+ max{x+ 2x+ 1 + x+ 1, 2x+ 1 + 2x+ 1} 6x+ 2

(12) 2x+ 1 + x+ max{x+ 2x+ 1 + x+ 1, x+ x+ 1} 7x+ 3

(13) x+ 1 + x+ 1 + max{x+ 2x+ 1 + x+ 1, 2x+ 1 + 2x+ 1} 6x+ 4

(23) x+ 2x+ 1 + max{x+ 2x+ 1 + x+ 1, x+ 1 + x} 7x+ 3

(123) 2x+ 1 + x+ 1 + max{x+ 2x+ 1 + x+ 1, x+ 1 + x} 7x+ 4

(132) x+ 1 + 2x+ 1 + max{x+ 2x+ 1 + x+ 1, x+ x+ 1} 7x+ 4

• l(ge31) = lε(ge31) = 6x+ 1, as shown in the following table.

Note that Π(ge31) = Π(ge31) =
(
(x, x+ 2), (2x+ 1, 2x+ 1), (x+ 1, x− 1)

)
.

σ lσ(ge31) Simplified lσ(ge31)

ε x+ x− 1 + max{x+ 2x+ 1 + x+ 1, 2x+ 1 + 2x+ 1} 6x+ 1

(12) 2x+ 1 + x− 1 + max{x+ 2x+ 1 + x+ 1, x+ x+ 2} 7x+ 2

(13) x+ 1 + x+ 2 + max{x+ 2x+ 1 + x+ 1, 2x+ 1 + 2x+ 1} 6x+ 5

(23) x+ 2x+ 1 + max{x+ 2x+ 1 + x+ 1, x+ 1 + x− 1} 7x+ 3

(123) 2x+ 1 + x+ 2 + max{x+ 2x+ 1 + x+ 1, x+ 1 + x− 1} 7x+ 5

(132) x+ 1 + 2x+ 1 + max{x+ 2x+ 1 + x+ 1, x+ x+ 2} 7x+ 4

Since ge31 and ge31 have the same projection, they must have the same word length. So, we

conclude that l(ge31) = l(ge31) = 6x+ 1 = l(g)− 1.

Now assume γ is a path from ge31 to ge31 such that γ remains entirely inside the ball

B(l(g)− 1). We produce a point h which must be on γ by considering the three projections
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T1

g1

(ge31)1 (ge31)1

Figure 3.1: The relative positions in T1 of ge31, ge31, and g.

Π(g), Π(ge31), and Π(ge31).

First recall that

Π(g) =
(
(x, x+ 1), (2x+ 1, 2x+ 1), (x+ 1, x)

)
and

Π(ge31) =
(
(x, x+ 2), (2x+ 1, 2x+ 1), (x+ 1, x− 1)

)
= Π(ge31)

Since ge31 and ge31 differ only by their position in tree 1, that is, their coordinates in T1

share a common parent, any path connecting them in DL3(2) must pass through a point h

such that g1 = h1. As proof consider a path in DL3(2) between ge31 and ge31 which does

not contain such an intermediate point. We can see by our definition of the edges of DL3(2)

that connected paths in DL3(2) define connected paths in each tree. So such a path defines

a connected path in T1–we can readily see from Figure 3.1 that such a path in T1 would

create a closed loop, and therefore must not exist. Since g1 = h1, we have h1 = (x, x+ 1).

Case 1: Assume that we can write

Π(h) =
(
(x, x+ 1), (2x+ 1, 2x+ 1 + δ), (x+ 1, x− δ)

)
for some − (2x+ 1) ≤ δ ≤ x

Since γ stays completely inside the ball B(l(g) − 1), the point h must be inside this ball.

We will use this fact to produce a lower bound on |δ|. We have that h is inside the ball,

so l(h) < l(g), or l(g) − l(h) > 0. Recall that l(g) = 6x + 2. We can no longer say which
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permutation realizes l(h), so we must test each of them. We first test four permutations,

produce a lower bound on |δ| based on these four, and then verify that this lower bound

holds for the other two permutations as well.

σ Sign of δ lσ(h) Simplified lσ(h) l(g)− lσ(h)

1 ε + x+ x− δ + 2x+ 1 + 2x+ 1 + δ 6x+ 2 0

2 ε − x+ x− δ + x+ 2x+ 1 + x+ 1 6x+ 2− δ δ

3 (12) Irrelevant 2x+ 1 + x− δ + x+ 2x+ 1 + x+ 1 7x+ 3− δ −x− 1 + δ

4 (13) + x+ 1 + x+ 1 + 2x+ 1 + 2x+ 1 + δ 6x+ 4 + δ −3− δ

5 (13) − x+ 1 + x+ 1 + x+ 2x+ 1 + x+ 1 6x+ 4 −2

6 (132) Irrelevant x+ 1 + 2x+ 1 + δ + x+ 2x+ 1 + x+ 1 7x+ 4 + δ −x− 2− δ

We can see that no σ in rows 1,2,4, or 5 can realize the word length of h, as l(g)− lσ(h) < 0

and we have seen that l(g)− l(h) > 0. So if h is inside the ball, then the only permutations

in the above table that can realize l(h) are those in row 3 or row 6. That is, l(h) = l(12)(h)

or l(h) = l(132)(h).

If l(g)− l(12)(h) > 0, we must have −x− 1 + δ > 0 and therefore δ > x+ 1.

If l(g)− l(132)(h) > 0, we must have −x− 2− δ > 0 and therefore δ < −(x+ 2).

So if any of the permutations in the above table realize the word length of h we must have

|δ| > x+ 1.

We are seeking a lower bound of δ, so to test the remaining two permutations, we assume

|δ| ≤ x + 1. Notice that the maximal expression in both the l(23)(h) and the l(123)(h)

expressions is

max{x+ 2x+ 1 + x+ 1, x+ 1 + x− δ}

= max{4x+ 2, 2x+ 1− δ}

Because |δ| ≤ x + 1, we can say that 4x + 2 ≥ 2x + 1 − δ. So the maximal term in both
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expressions will be 4x+ 2.

σ lσ(h) Simplified lσ(h) l(g)− lσ(h)

1 (23) x+ 2x+ 1 + δ + 4x+ 2 7x+ 3 + δ −x− 1− δ

2 (123) 2x+ 1 + x+ 1 + 4x+ 2 7x+ 4 −x− 2

We can see clearly that l(g) − l(123)(h) < 0, so this scenario does not arise. Furthermore,

since we assumed |δ| ≤ x+ 1, we can see that −x− 1− δ < 0. So l(g)− l(23)(h) < 0 as well.

So, assuming |δ| ≤ x+ 1, we can see that neither of these permutations realizes l(h).

Combining the above, we get that if h is in the ball B(l(g) − 1), then |δ| > x + 1. Since

h ∈ γ, the path γ must contain a subpath from ge31 to h, which by Lemma 3.0.4, has a

length of at least x+ 2. So γ has length at least x+ 2.

Case 2: Assume that we cannot write Π(h) as above. That is, either the first coordinate of

h2 or the first coordinate of h3 differs from the corresponding coordinate in Π(g).

Case 2a: Assume the first coordinate of h2 differs from the first coordinate of g2. Since

g2 = (ge31)2, the first coordinate of h2 differs from the first coordinate of (ge31)2. Then by

Lemma 3.0.4, the length of any path between ge31 and h is bounded below by 2x+ 1.

Case 2b: Assume the first coordinate of h3 differs from the first coordinate of g3. Since the

first coordinate of g3 equals the first coordinate of (ge31)3, the first coordinate of h3 differs

from the first coordinate of (ge31)3. Then by Lemma 3.0.4, the length of any path between

ge31 and h is bounded below by x− 1.

Again because γ contains a subpath from ge31 to h, we conclude that the length of γ is at

least x−1. In either case, the length of γ is bounded below by x−1. Thus for any N , we can

select g ∈ X such that Π(g) =
(
(N + 2, N + 3), (2(N + 2) + 1, 2(N + 2) + 1), (N + 3, N + 2)

)
.

Then the elements ge31 and ge31 cannot be connected by a path of length less than N + 1

inside the ball of radius l(ge31). So Γ3(2) is not AC2, and therefore not almost convex.
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Section 4

Γ3(2) is MAC with respect to S

4.1 Proof Overview

We wish to show that Γ3(2) is minimally almost convex with respect to S, i.e. that for every

pair of points of word length n joined by a path of length two, there exists a path between

them remaining inside the closed ball of radius n, whose length is at most 2n− 1.

We will begin by identifying every pair of points of word length n joined by a path of length

two such that the intermediate point on the path is of word length n+1. These are precisely

the points described in Figure 1.1. Note that if the intermediate point on the path is of

length less than n + 1, it represents a fixed-length path that stays inside the required ball.

So in this way we will enumerate every point for which it is actually necessary to produce a

path of length less than 2n− 1.

Our method for finding all of these points is to identify for each point g ∈ Γ3(2) every

generator s ∈ S with the property that l(gs) = l(g)− 1. Each of these points gs, assuming

there is more than one of them, will represent an endpoint of a path we must produce, which

stays inside the closed ball B(l(gs)) and is of length less than 2l(gs) − 1. This process is

carried out in three main cases, called the two-zero, one-zero, and no zero cases. These names
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are based on the number of li’s in Π(g) that are equal to zero. Notice that the three-zero

case would consist solely of the element g with Π(g) =
(
(0, 0), (0, 0), (0, 0)

)
(due to equation

2.1), which is the identity and does not give rise to any of the pairs we are interested in.

The two-zero case deals with g ∈ Γ3(2) such that Π(g) =
(
(m1, l1), (m2, 0), (m3, 0)

)
. In

this case, we must handle the possibility of some of the mi’s being zero in separate claims.

The one-zero case deals with g ∈ Γ3(2) such that Π(g) =
(
(m1, l1), (m2, l2), (m3, 0)

)
. In

this case it is not important whether m1 or m2 are 0, but we must investigate the case

where m3 = 0 separately. Finally, the no-zero case deals with g ∈ Γ3(2) such that Π(g) =(
(m1, l1), (m2, l2), (m3, l3)

)
. In this case it does not matter if any mi is 0.

The results of these sections will be enough to describe any element of g up to permutation.

That is, to find out which generators s have the property that for g ∈ Γ3(2) such that

Π(g) =
(
(m1, 0), (m2, l2), (m3, 0)

)
we have l(gs) = l(g) − 1, we can still use our result from

the two-zero case, we merely need to apply the permutation (12) to the subscripts of each

generator. The idea of proofs and results being the same up to permutation will arise again

in the coming sections.

Note that we will be using the following notation: mn(g) is the coordinate mn in Π(g). If

we are comparing two group elements g and geij such that we know mn(g) = mn(geij), we

will simply write mn. Note that this notation can sometimes look similar to the word length

formula of an element–so we must remember that lσ(g) for some σ ∈ S3 is an expression

dealing with word length of g, while lx(g) for some x ∈ {1, 2, 3} is a coordinate from Π(g).

Also make note of the following lemmas, the first of which simplifies the process of determin-

ing when multiplication by a generator decreases word length. It will be used in the one-zero

and no-zero cases, as well as when we go on to build paths.

Lemma 4.1.1. Let g ∈ Γ3(2) and s ∈ S. If there is a σ ∈ S3 such that lσ(gs) = l(g) − 1

then lσ(gs) = l(gs).
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Proof. Assume we have σ such that lσ(gs) = l(g) − 1, and by way of contradiction assume

that there is some τ ∈ S3 such that lτ (gs) < lσ(gs). So lτ (gs) ≤ l(g) − 2, and since

l(gs) ≤ lτ (gs) we can see that l(gs) ≤ l(g)− 2. So we have found two elements of Γ3(2) that

differ by a single generator, whose word length differs by more than one. So l must not be

the word length function for Γ3(2) generated by S, contradicting Section 2.7. We conclude

that there is no such τ . So then for any other τ ∈ S3 we have lτ (gs) ≥ lσ(gs). Therefore σ

is minimal, i.e. lσ(gs) = l(gs), as desired.

The next lemma is a property on the ordering of the maximal terms m1 + m2 + m3 and

mσ(2) + lσ(2).

Lemma 4.1.2. Let g ∈ Γ3(2) and let {i, j, k} = {1, 2, 3}. If Π(g) is such that

m1 +m2 +m3 < mi + li then m1 +m2 +m3 ≥ mj + lj and m1 +m2 +m3 ≥ mk + lk.

Proof. Assume without loss of generality that i = 1, j = 2, and k = 3, and assume by way

of contradiction that m1 +m2 +m3 < m1 + l1 and m1 +m2 +m3 < m2 + l2.

So 2(m1 +m2 +m3) < m1 +m2 + l1 + l2.

From Equation 2.1 we have m1 +m2 +m3 − l3 = l1 + l2.

So

2(m1 +m2 +m3) < m1 +m2 +m1 +m2 +m3 − l3

m1 +m2 +m3 < m1 +m2 − l3

m3 < −l3

Since projection values are nonnegative, this is a contradiction.
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4.1.1 Two-Zero Case

In this section, we will enumerate all generators s ∈ S with the property l(gs) = l(g) − 1

under the assumption that Π(g) is of the form
(
(m1, l1), (m2, 0), (m3, 0)

)
.

So assume Π(g) =
(
(m1, l1), (m2, 0), (m3, 0)

)
. We will first concern ourselves with the case

where l1 = 1 in the following two lemmas:

Lemma 4.1.3. If Π(g) =
(
(1, 1), (0, 0), (0, 0)

)
then e12, e12, e13, and e13 are the only genera-

tors s such that l(gs) = l(g)− 1.

Proof. Clearly l(g) = 2, so any point of word length l(g)− 1 must be a generator.

We can see that Π(ge12) = Π(ge12) =
(
(1, 0), (0, 1), (0, 0)

)
= e12.

Similarly Π(ge13) = Π(ge13) =
(
(1, 0), (0, 0), (0, 1)

)
= e13.

The product of g and any other generator will have a projection with nonzero m-coordinates

in two trees, and is therefore not a generator.

Lemma 4.1.4. If Π(g) =
(
(0, 1), (1, 0), (0, 0)

)
or Π(g) =

(
(0, 1), (0, 0), (1, 0)

)
then the only

generator that decreases word length is g−1.

Proof. If Π(g) =
(
(0, 1), (1, 0), (0, 0)

)
then g = e21, and if Π(g) =

(
(0, 1), (0, 0), (1, 0)

)
then

g = e31.

In either case l(g) = 1, so the only point at word length l(g)− 1 is the identity.

Because inverses are unique, g−1 is the only generator that decreases word length.

Finally note that the three projections in Lemmas 4.1.3 and 4.1.4 are the only possible

projections in the two-zero case with l1 = 1, as a result of Equation 2.1.

So we assume l1 > 1. We also assume m2 and m3 are nonzero. We will handle the case in

which some of these values are zero separately.

First we simplify the word length formula for this case by enumerating the possible values

over all σ ∈ S3. We will use the fact that, from Equation 2.1, m1 +m2 +m3 = l1:
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σ lσ(g) Simplified lσ(g)

ε m1 + max{m1 +m2 +m3,m2} m1 +m1 +m2 +m3

(12) m2 + max{m1 +m2 +m3,m1 + l1} m2 +m1 +m1 +m2 +m3

(13) m3 + l1 + max{m1 +m2 +m3,m2} m3 +m1 +m2 +m3 +m1 +m2 +m3

(23) m1 + max{m1 +m2 +m3,m3} m1 +m1 +m2 +m3

(123) m2 + l1 + max{m1 +m2 +m3,m3} m1 +m1 +m2 +m3 +m1 +m2 +m3

(132) m3 + max{m1 +m2 +m3,m1 + l1} m3 +m1 +m1 +m2 +m3

So for any σ ∈ S3, we can see by direct comparison that lε ≤ lσ(g), and therefore lε(g) = l(g).

So in the two zero case,

l(g) = m1 +m1 +m2 +m3 (4.1)

Proposition 4.1.5. For g as above and any generator s ∈ S, we have that l(gs) = l(g)− 1

iff s = e12 or s = e13

Proof. We show the biconditional by enumerating all generators and explicitly showing which

ones reduce word length. First consider those generators eij such that l2(geij) = 0 and

l3(geij) = 0. Because we have assumed that l1 > 1, we know that the word length formula

specified in equation 4.1 will hold for geij. We enumerate those generators and compute

corresponding word lengths in Table 4.1. Notice that only e12 and e13 subtract 1 from the

word length of g, given in Equation 4.1. The remaining generators not in the above table are

given in Table 4.2. Let s be one of the generators in Table 4.2. Since each of the generators

has the property that either l2(gs) 6= 0 or l3(gs) 6= 0, we can no longer apply Equation 4.1.

Instead we divide the problem into two subcases, based on which term is maximal in the

l(gs) expression. Assume we have l(gs) = lσ(gs) for some σ ∈ S3. First note that

l(gs) = mσ(1)(gs) + lσ(3)(gs) + max{m1 +m2(gs) +m3(gs),mσ(2)(gs) + lσ(2)(gs)}

51



Generator s Differences between Π(g) and Π(gs) l(gs)

e12 l1(ge12) = l1(g)− 1 m1 +m1 +m2(g)− 1 +m3

m2(ge12) = m2(g)− 1
e13 l1(ge13) = l1(g)− 1 m1 +m1 +m2 +m3(g)− 1

m3(ge13) = m3(g)− 1
e23 m2(ge23) = m2(g) + 1 m1 +m1 +m2(g) + 1 +m3(g)− 1

m3(ge23) = m3(g)− 1
e32 m3(ge32) = m3(g) + 1 m1 +m1 +m2(g)− 1 +m3(g) + 1

m2(ge32) = m2(g)− 1
e21 l1(ge21) = l1(g) + 1 m1 +m1 +m2(g) + 1 +m3

m2(ge21) = m2(g) + 1
e21 l1(ge21) = l1(g) + 1 m1 +m1 +m2(g) + 1 +m3

m2(ge21) = m2(g) + 1
e31 l1(ge31) = l1(g) + 1 m1 +m1 +m2 +m3(g) + 1

m3(ge31) = m3(g) + 1
e31 l1(ge31) = l1(g) + 1 m1 +m1 +m2 +m3(g) + 1

m3(ge31) = m3(g) + 1

Table 4.1: List of generators that do not change the value of l2 or l3.

Generator Projection

e12 Π(ge12) =
(
(m1, l1 − 1), (m2, 1), (m3, 0)

)
e13 Π(ge13) =

(
(m1, l1 − 1), (m2, 0), (m3, 1)

)
e23 Π(ge23) =

(
(m1, l1), (m2 + 1, 0), (m3, 1)

)
e32 Π(ge32) =

(
(m1, l1), (m2, 1), (m3 + 1, 0)

)
Table 4.2: The generators not listed in Table 4.1.

Case 1: max{m1 +m2(gs) +m3(gs),mσ(2)(gs) + lσ(2)(gs)} = mσ(2)(gs) + lσ(2)(gs).

In this case mσ(2)(gs) + lσ(2)(gs) ≥ m1 +m2(gs) +m3(gs) implies σ(2) = 1, since l2 and

l3 are at most 1, and m2(gs),m3(gs) > 0.

And l1(g) = m1 +m2(g) +m3(g), as noted above.

So

l(gs) =


mσ(1)(gs) + lσ(3)(gs) + max{m1 +m2(g) +m3(g),m1 + l1(g)} : s = e23

mσ(1)(gs) + lσ(3)(gs) + max{m1 +m2(g) +m3(g),m1 + l1(g)} : s = e32

mσ(1)(g) + lσ(3)(gs) + max{m1 +m2(g) +m3(g),m1 + l1(g)− 1} : s = e12, e13

Notice that m1 + l1(g) = m1 +m1 +m2(g) +m3(g) = l(g), so we can see right away
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that l(ge23) ≥ l(g) and l(ge32) ≥ l(g). Furthermore, since mσ(1)(g) ≥ 1, we also have

l(ge12) = l(ge13) ≥ l(g).

Case 2: max{m1 +m2(gs) +m3(gs),mσ(2)(gs) + lσ(2)(gs)} = m1 +m2(gs) +m3(gs).

In this case mσ(2)(gs) + lσ(2)(gs) ≤ m1 +m2(gs) +m3(gs) implies σ(2) 6= 1, since

l1 = m1 + m2 + m3 and m2(gs),m3(gs) > 0. So σ(1) = 1 or σ(3) = 1. We examine the

cases

separately:

Case 2a: σ(1) = 1

Then l(gs) = m1(g) + lσ(3)(gs) +m1 +m2(gs) +m3(gs) ≥ l(g).

Case 2b: σ(3) = 1

So

l(gs) =

 mσ(1)(gs) + l1(g) +m1 +m2(g) +m3(g) : s = e23, e32

mσ(1)(g) + l1(g)− 1 +m1 +m2(g) +m3(g) : s = e12, e13

Since l1(g) = m1 +m2(g) +m3(g), we can see l(ge23) ≥ l(g) and l(ge32) ≥ l(g), and

furthermore since each σ(1) = 2 or 3 and m2(g),m3(g) ≥ 1 we have l(ge12) ≥ l(g) and

l(ge13) ≥ l(g) as well.

We have shown that, regardless of what form the word length formula takes, l(gs) ≥ l(g)

where s stands for any of the above 4 generators. So we have enumerated all generators

s ∈ S, and found that exactly two of them have the property that l(gs) = l(g)− 1: e12 and

e13. So then for any g as above, we can say l(gs) = l(g)− 1 iff s = e12 or s = e13.

We now move on to enumerate exactly which generators s have the property that l(gs) =

l(g)− 1 in the cases in which some mi values are zero:

Lemma 4.1.6. If g is such that Π(g) =
(
(m1, l1), (0, 0), (m3, 0)

)
and s is any generator then

l(gs) = l(g)− 1 iff s = e12, s = e12, or s = e13.
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Proof. The proof is almost identical to the proof of Proposition 4.1.5, with 0 substituted for

m2, with the exception of the s = e12 case. To see that this generator also decreases word

length, simply observe that Π(ge12) =
(
(m1, l1 − 1), (0, 1), (m3, 0)

)
= Π(ge12), so l(ge12) =

l(ge12) = l(g)− 1.

Lemma 4.1.7. If g is such that Π(g) =
(
(m1, l1), (m2, 0), (0, 0)

)
and s is any generator then

l(gs) = l(g)− 1 iff s = e12, s = e13, or s = e13.

Proof. The proof is identical to the proof of Lemma 4.1.6, with the permutation (23) applied

to all subscripts.

Lemma 4.1.8. If g is such that Π(g) =
(
(0, l1), (0, 0), (m3, 0)

)
and s is any generator then

l(gs) = l(g)− 1 iff s = e13.

Proof. The proof is almost identical to the proof of Proposition 4.1.5, with 0 substituted for

m1 and m2, with the exception of the s = e12 case. To see that this generator no longer

decreases word length, simply observe that Π(ge12) =
(
(0, l1 − 1), (0, 1), (m3, 0)

)
= Π(ge12),

so l(ge12) = l(ge12) 6= l(g)− 1

Lemma 4.1.9. If g is such that Π(g) =
(
(0, l1), (m2, 0), (0, 0)

)
and s is any generator then

l(gs) = l(g)− 1 iff s = e12.

Proof. The proof is identical to the proof of Lemma 4.1.8, with the permutation (23) applied

to all subscripts.

Claim 4.1.10. If g is such that Π(g) =
(
(m1, l1), (0, 0), (0, 0)

)
and s is any generator then

l(gs) = l(g)− 1 iff s = e12, e13, e12, or e13.

Proof. The proof is almost identical to the proof of Proposition 4.1.5, with 0 substituted for

m2 and m3, with the exception of the s = e12 case and the s = e13 case. To see the word

length does decrease in both of these cases as well, simply apply the arguments from the

proofs of Lemmas 4.1.6 and 4.1.7.
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4.1.2 One-Zero Case

In this case we will be considering g ∈ Γ3(2) such that Π(g) =
(
(m1, l1), (m2, l2), (m3, 0)

)
,

where l1, l2, and m3 are assumed to be nonzero. We will deal with the case when m3 = 0 in

a series of corollaries. We will say of any g with a projection of this form that it satisfies the

“1 zero condition.”

Proposition 4.1.11. For g satisfying the 1 zero condition, if σ ∈ S3 is such that l(g) = lσ(g)

then σ(3) = 3. That is, σ ∈ {ε, (12)}.

Proof. Assume that l(g) = lσ(g) for some σ ∈ S3.

First note that m3 + l3 ≤ m1 +m2 +m3, because l3 = 0.

We proceed by trying all permutations τ ∈ S3 and both maximal terms within the lτ (g)

expression. In this way we enumerate every possible form that the l(g) expression can take,

in Table 4.3

τ lτ (g)

ε m1 + max{m1 +m2 +m3,m2 + l2}
(12) m2 + max{m1 +m2 +m3,m1 + l1}
(23) m1 + l2 + max{m1 +m2 +m3,m3}
(13) m3 + l1 + max{m1 +m2 +m3,m2 + l2}
(123) m2 + l1 + max{m1 +m2 +m3,m3}
(132) m3 + l2 + max{m1 +m2 +m3,m1 + l1}

Table 4.3: Every possible form of l(g) for g satisfying the one-zero condition.

We have now enumerated all possible values for l(g). Notice that lε(g) < l(23)(g) and

l(12) < l(123), so l(g) 6= l(23)(g) and l(g) 6= l(123)(g). Unfortunately, we cannot simply com-

pare the other expressions directly. Instead, we can consider the problem in cases based on

which term is maximal. Recall that m1 +m2 +m3 > m3 + l3. The other potential maximal

expressions can compare to one another in the following four ways:

Case 1: m1 +m2 +m3 ≤ m1 + l1 and m1 +m2 +m3 ≤ m2 + l2.
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By Lemma 4.1.2 we have m1 + m2 + m3 = m1 + l1 or m1 + m2 + m3 = m2 + l2. So this

scenario is covered by case 2 or case 3.

Case 2: m1 + l1 ≤ m1 +m2 +m3 ≤ m2 + l2.

Then, given σ, we know what the maximal term will be, and we can enumerate the possible

values of l(g) as follows:

σ lσ(g)

ε m1 +m2 + l2

(12) m2 +m1 +m2 +m3

(13) m3 + l1 +m2 + l2

(132) m3 + l2 +m1 +m2 +m3

Direct comparison to lε(g) rules out l(132)(g).

So we consider l(13)(g):

l(13)(g) = m3 +m2 + (l1 + l2) = m3 +m2 +m1 +m2 +m3 > m2 +m1 +m2 +m3 = l(12)(g).

So l(13)(g) > l(12)(g).

So l(g) = lε(g) or l(g) = l(12)(g).

In either case, σ(3) = 3.

Case 3: m2 + l2 ≤ m1 +m2 +m3 ≤ m1 + l1.

Then, given σ, we know what the maximal term will be, and we can enumerate the possible

values of l(g) as follows:

σ lσ(g)

ε m1 +m1 +m2 +m3

(12) m2 +m1 + l1

(13) m3 + l1 +m1 +m2 +m3

(132) m3 + l2 +m1 + l1
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Direct comparison to l(12)(g) rules out l(13)(g).

So we consider l(132)(g):

l(132)(g) = m3 +m1 + (l1 + l2) = m3 +m1 +m1 +m2 +m3 > m1 +m1 +m2 +m3 = lε(g).

So l(132)(g) > lε(g).

So l(g) = lε(g) or l(g) = l(12)(g).

In either case, σ(3) = 3.

Case 4: m1 + l1 ≤ m1 +m2 +m3 and m2 + l2 ≤ m1 +m2 +m3.

Then, given σ, we know what the maximal term will be, and we can enumerate the possible

values of l(g) as follows:

σ lσ(g)

ε m1 +m1 +m2 +m3

(12) m2 +m1 +m2 +m3

(13) m3 + l1 +m1 +m2 +m3

(132) m3 + l2 +m1 +m2 +m3

First consider l(132)(g):

l(132)(g) = m3 + l2 + (m1 +m2 +m3) ≥ m3 + (l2 + l1) +m1 ≥ m3 +m1 +m2 +m3 +m1

> m1 +m1 +m2 +m3 = lε(g).

So l(132)(g) > lε(g).

Now consider l(13)(g):

l(13)(g) = m3 + l1 + (m1 +m2 +m3) ≥ m3 + (l1 + l2) +m2 ≥ m3 +m1 +m2 +m3 +m2

> m2 +m1 +m2 +m3 = l(12)(g).

So l(13)(g) > l(12)(g).

So l(g) = lε(g) or l(g) = l(12)(g).

In either case, σ(3) = 3.

So σ(3) = 3 for the minimal σ.
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Corollary 4.1.12. For g ∈ Γ3(2) with Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
,

• l(g) = lε(g) = l(132)(g), or

• l(g) = l(12)(g) = l(13)(g)

and l(g) 6= l(23)(g), l(123)(g).

Proof. Assume Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
, where m1, l1,m2, l2 > 0.

First note that l(g) 6= l(23)(g) and l(g) 6= l(123)(g) by the same logic as in the proof of

Proposition 4.1.11.

First note that m1 +m2 = l1 + l2, which will be used in the following calculations.

First we show lε(g) = l(132)(g):

So

lε(g) = m1 + max{m1 +m2,m2 + l2}

= m1 + max{l1 + l2,m2 + l2}

= m1 + l2 + max{l1,m2}

= l2 +m1 + max{m2, l1}

= l2 + max{m1 +m2,m1 + l1}

= l(132)(g)

So lε(g) = l(132)(g).

Next we show l(12)(g) = l(13)(g):
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So

l(12)(g) = m2 + max{m1 +m2,m1 + l1}

= m2 + max{l1 + l2,m1 + l1}

= m2 + l1 + max{l2,m1}

= l1 +m2 + max{m1, l2}

= l1 + max{m1 +m2,m2 + l2}

= l(13)(g)

So l(12)(g) = l(13)(g).

Note that Corollary 4.1.12 allows us to conclude that for any g with

Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
,

the word length l(g) is realized by ε or (12).

We now wish to find for g satisfying the one-zero condition, which values of i, j ∈ {1, 2, 3}

the generators eij and eij will have the property l(geij) = l(g) − 1 or l(geij) = l(g) − 1,

respectively. We begin with a series of propositions that identify circumstances in which

particular values of i, j will never have this property. The first two propositions together say

that no generator of the form e3j or e3j will have the property l(gs) = l(g)− 1.

Proposition 4.1.13. For g satisfying the 1 zero condition and j ∈ {1, 2}, we have

l(ge3j) ≥ l(g) and l(ge3j) ≥ l(g).

Proof. The following proof is for the generator e3j. However, in this case Π(ge3j) = Π(ge3j),

so the same argument will work for e3j.

We know m3(ge3j) = m3(g) + 1. Furthermore, since j 6= 3, we know l3(ge3j) = l3(g) = 0.
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So Proposition 4.1.11 applies to both group elements. We divide the proof into four cases

according to which permutations in {ε, (12)} minimize the l(g) and l(ge3j) expressions:

Case 1: Assume l(g) = lε(g) and l(ge3j) = lε(ge3j).

So

l(g) = m1 + l3(g) + max{m1 +m2 +m3(g),m2 + l2(g)}

and

l(ge3j) = m1 + l3(ge3j) + max{m1 +m2 +m3(ge3j),m2 + l2(ge3j)}

Since m3(ge3j) = m3(g) + 1 and l3(ge3j) = l3(g) = 0, we can say

l(g) = m1 + max{m1 +m2 +m3(g),m2 + l2(g)}

and

l(ge3j) = m1 + max{m1 +m2 +m3(g) + 1,m2 + l2(ge3j)}

Since j 6= 3, we know that l2(ge3j) ≥ l2(g). So, regardless of which term is maximal, we have

max{m1 +m2 +m3(g),m2 + l2(g)} ≤ max{m1 +m2 +m3(g) + 1,m2 + l2(ge3j)}

So then direct comparison shows l(g) ≤ l(ge3j).

Case 2: Assume l(g) = lε(g) and l(ge3j) = l(12)(ge3j).

First note that l(g) = lε(g) implies l(12)(g) ≥ lε(g), i.e.

m2 + max{m1 +m2 +m3(g),m1 + l1(g)} ≥ m1 + max{m1 +m2 +m3(g),m2 + l2(g)}

We can see that

l(ge3j) = m2 + max{m1 +m2 +m3(ge3j),m1 + l1(ge3j)}.
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Since m3(ge3j) = m3(g) + 1 and l3(ge3j) = l3(g) = 0, we can substitute to get

l(ge3j) = m2 + max{m1 +m2 +m3(g) + 1,m1 + l1(ge3j)}

Since j 6= 3, we know that l1(ge3j) ≥ l1(g). Combining the above, we get

l(g) ≤ l(12)(g) = m2 + max{m1 +m2 +m3(g),m1 + l1(g)}

≤ m2 + max{m1 +m2 +m3(g) + 1,m1 + l1(ge3j)} = l(ge3j)

So then l(g) ≤ l(ge3j).

Case 3: Assume l(g) = l(12)(g) and l(ge3j) = lε(ge3j).

This case is analogous to case 2, with the permutation (12) substituted for ε and replacing

1 with 2 and 2 with 1 in all subscripts of coordinates.

Case 4: Assume l(g) = l(12)(g) and l(ge3j) = l(12)(ge3j).

This case is analogous to case 1, with the permutation (12) substituted for ε and replacing

1 with 2 and 2 with 1 in all subscripts of coordinates.

Regardless of minimal permutation, we have l(ge3j) ≥ l(g).

We now show that e13 and e23 do not have the property l(gs) = l(g)− 1 for any g satisfying

the 1 zero condition:

Proposition 4.1.14. For g satisfying the 1 zero condition, l(ge13) ≥ l(g) and l(ge23) ≥ l(g).

Proof. Consider e13. For this generator we have

Π(ge13) =
(
(m1, l1(g)− 1), (m2, l2), (m3, 1)

)
We cannot appeal to Proposition 4.1.11, so we enumerate the values of lσ(ge13) over all

σ ∈ S3 in Table 4.4.
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σ Maximal term in Π(g) lσ(ge13) lσ(g)

ε m1 +m2 +m3 m1 + 1 +m1 +m2 +m3 m1 +m1 +m2 +m3

ε m2 + l2 m1 + 1 +m2 + l2 m1 +m2 + l2
(12) m1 +m2 +m3 m2 + 1 +m1 +m2 +m3 m2 +m1 +m2 +m3

(12) m1 + l1(g) m2 + 1 +m1 + l1(g)− 1 or m2 +m1 + l1(g) or
m2 + 1 +m1 +m2 +m3 m2 +m1 +m2 +m3

(13) m1 +m2 +m3 m3 + l1(g)− 1 +m1 +m2 +m3 m3 + l1(g) +m1 +m2 +m3

(13) m2 + l2 m3 + l1(g)− 1 +m2 + l2 m3 + l1(g) +m2 + l2
(23) m1 +m2 +m3 m1 + l2 +m1 +m2 +m3 m1 + l2 +m1 +m2 +m3

(23) m3 N/A (m3 can’t be maximal) N/A

(123) m1 +m2 +m3 m2 + l1(g)− 1 +m1 +m2 +m3 m2 + l1(g) +m1 +m2 +m3

(123) m3 N/A (m3 can’t be maximal) N/A

(132) m1 +m2 +m3 m3 + l2 +m1 +m2 +m3 m3 + l2 +m1 +m2 +m3

(132) m1 + l1(g) m3 + l2 +m1 + l1(g)− 1 or m3 + l2 +m1 + l1(g) or
m3 + l2 +m1 +m2 +m3 m3 + l2 +m1 +m2 +m3

Table 4.4: Values of lσ(ge13) and lσ(g), for both possible maximal terms in Π(g), over all
σ ∈ S3.

From Proposition 4.1.11, we know that for each σ 6∈ {ε, (12)} we have l(g) < lσ(g) and so

lσ(g)− 1 ≥ l(g). So, for each σ 6∈ {ε, (12)}, regardless of maximal term, we can say that

lσ(ge13) ≥ lσ(g)− 1 ≥ l(g)

Furthermore lε(ge13) = lε(g) + 1 > l(g) for both maximal terms arising when σ = ε, and

l(12)(ge13) ≥ l(12)(g) ≥ l(g) for both maximal terms arising when σ = (12). So

l(ge13) ≥ l(g)

Now consider e23. For this generator we have

Π(ge23) =
(
(m1, l1(g) + 1), (m2, l2), (m3, 1)

)
We cannot appeal to Proposition 4.1.11, so we enumerate the values of l(ge23) over all σ ∈ S3

in Table 4.5.
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σ Maximal term in Π(g) lσ(ge23) lσ(g)

ε m1 +m2 +m3 m1 + 1 +m1 +m2 +m3 m1 +m1 +m2 +m3

ε m2 + l2(g) m1 + 1 +m2 + l2(g)− 1 or m1 +m2 + l2(g) or
m1 + 1 +m1 +m2 +m3 m1 +m1 +m2 +m3

(12) m1 +m2 +m3 m2 + 1 +m1 +m2 +m3 m2 +m1 +m2 +m3

(12) m1 + l1 m2 + 1 +m1 + l1 m2 +m1 + l1
(13) m1 +m2 +m3 m3 + l1 +m1 +m2 +m3 m3 + l1 +m1 +m2 +m3

(13) m2 + l2(g) m3 + l1 +m2 + l2(g)− 1 or m3 + l1 +m2 + l2(g) or
m3 + l1 +m1 +m2 +m3 m3 + l1 +m1 +m2 +m3

(23) m1 +m2 +m3 m1 + l2(g)− 1 +m1 +m2 +m3 m1 + l2(g) +m1 +m2 +m3

(23) m3 N/A (m3 can’t be maximal) N/A

(123) m1 +m2 +m3 m2 + l1 +m1 +m2 +m3 m2 + l1 +m1 +m2 +m3

(123) m3 N/A (m3 can’t be maximal) N/A

(132) m1 +m2 +m3 m3 + l2(g)− 1 +m1 +m2 +m3 m3 + l2(g) +m1 +m2 +m3

(132) m1 + l1 m3 + l2(g)− 1 +m1 + l1 m3 + l2(g) +m1 + l1

Table 4.5: Values of lσ(ge23) and lσ(g), for both possible maximal terms in Π(g), over all
σ ∈ S3.

Again from Proposition 4.1.11, we know that for each σ 6∈ {ε, (12)} we have l(g) < lσ(g) and

so lσ(g)− 1 ≥ l(g). So, for each σ 6∈ {ε, (12)}, regardless of maximal term, we can say that

lσ(ge23) ≥ lσ(g)− 1 ≥ l(g)

Furthermore lε(ge23) ≥ lε(g) ≥ l(g) for both maximal terms arising when σ = ε, and

l(12)(ge23) = l(12)(g) + 1 > l(g) for both maximal terms arising when σ = (12). So

l(ge23) ≥ l(g)

The next proposition enumerates scenarios in which the generators e12 and e12 do not have

the property l(gs) = l(g)− 1.

Proposition 4.1.15. If g satisfies the 1 zero condition and is such that l(g) 6= l(12)(g) then

l(ge12) ≥ l(g) and l(ge12) ≥ l(g).
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Proof. The following proof is for the generator e12. However, in this case Π(ge12) = Π(ge12),

so the same argument will work for e12.

Assume g is such that l(g) 6= l(12)(g).

We can see that Π(g) and Π(ge12) are such that l1(ge12) = l1(g)− 1 and l2(ge12) = l2(g) + 1,

and every other coordinate is the same.

So l(g) = lε(g) = m1+max{m1+m2+m3,m2+l2(g)} < m2+max{m1+m2+m3,m1+l1(g)},

so then l(g) ≤ m2 + max{m1 +m2 +m3,m1 + l1(g)} − 1.

We divide the problem into cases based on which σ realizes the word length of ge12. Note

that, because l3(ge12) = l3(g) = 0, by Proposition 4.1.11, σ = ε or σ = (12).

Case 1: l(ge12) = lε(ge12).

So

l(ge12) = m1 + max{m1 +m2 +m3,m2 + l2(ge12)}

= m1 + max{m1 +m2 +m3,m2 + l2(g) + 1}

≥ m1 + max{m1 +m2 +m3,m2 + l2(g)}

= l(g).

So l(ge12) ≥ l(g).

Case 2: l(ge12) = l(12)(ge12).

So

l(ge12) = m2 + max{m1 +m2 +m3,m1 + l1(ge12)}

= m2 + max{m1 +m2 +m3,m1 + l1(g)− 1}.

Notice that max{m1 +m2 +m3,m1 + l1(g)} − 1 ≤ max{m1 +m2 +m3,m1 + l1(g)− 1}.
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So

l(g) ≤ m2 + max{m1 +m2 +m3,m1 + l1(g)} − 1

≤ m2 + max{m1 +m2 +m3,m1 + l1(g)− 1}

= l(ge12).

So l(ge12) ≥ l(g).

We now show a similar result for e21 and e21.

Proposition 4.1.16. If g satisfies the 1 zero condition and is such that l(g) 6= lε(g) then

l(ge21) > l(g)− 1 and l(ge21) > l(g)− 1.

Proof. The proof of Proposition 4.1.16 follows the reasoning of the proof of Proposition

4.1.15 exactly, with every permutation multiplied by (12) and every projection coordinate

subscript and generator subscript permuted by (12).

Corollary 4.1.17. The results of Propositions 4.1.13, 4.1.15, and 4.1.16 all hold if

Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
as well.

Proof. Simply note that none of the proofs of Propositions 4.1.13, 4.1.15, or 4.1.16 relied on

m3 being nonzero.

We now wish to enumerate exactly when the rest of the generators s have the property

l(gs) = l(g) − 1. We approach the problem casewise. For g satisfying the 1 zero condition,

Proposition 4.1.11 tells us that there are two permutations that can realize l(g). So we

consider the problem in three cases: when only ε realizes word length, when only (12)

realizes word length, and when both permutations realize word length.

Theorem 4.1.18. If g satisfies the 1 zero condition and l(g) = lε(g) = l(12)(g) then:
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• l(ge21) = l(g)− 1 and l(ge21) = l(g)− 1 iff m2 + l2(g) > m1 +m2 +m3

• l(ge12) = l(g)− 1 and l(ge12) = l(g)− 1 iff m1 + l1(g) > m1 +m2 +m3

• l(ge13) = l(g)− 1

• l(ge23) = l(g)− 1

• Any generator s not noted above does not have the property l(gs) = l(g)− 1 under any

circumstances.

Proof. Since lε(g) = l(12)(g) we know that

m2 + max{m1 +m2 +m3(g),m1 + l1(g)} = m1 + max{m1 +m2 +m3(g),m2 + l2(g)}

First, we can eliminate six generators that we know will not have the property l(gs) = l(g)−1

as follows:

• l(ge32) ≥ l(g),

• l(ge31) ≥ l(g),

• l(ge32) ≥ l(g), and

• l(ge31) ≥ l(g) by Proposition 4.1.13, and

• l(ge13) ≥ l(g) and

• l(ge23) ≥ l(g) by Proposition 4.1.14.

The remaining 6 generators we consider individually:

Consider e21 and e21. For these generators we have

Π(ge21) = Π(ge21) =
(
(m1, l1(g) + 1), (m2, l2(g)− 1), (m3, 0)

)
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so from Proposition 4.1.11 we know that l(ge21) and l(ge21) are minimized by ε or (12). The

corresponding expressions are below:

l(12)(ge21) = l(12)(ge21) = m2 + max{m1 +m2 +m3,m1 + l1(g) + 1} ≥ l(g)

lε(ge21) = lε(ge21) = m1 + max{m1 +m2 +m3,m2 + l2(g)− 1} ≤ l(g)

We proceed using e21. The same argument works for e21.

If (12) realizes l(ge21) then l(ge21) ≥ l(g).

But if ε realizes l(ge21) then l(ge21) = l(g)− 1 only if m2 + l2(g) > m1 +m2 +m3.

Notice that if m2 + l2(g) > m1 +m2 +m3 then lε(ge21) < l(g) ≤ l(12)(ge21), and so

ε realizes l(ge21).

So

m2 + l2(g) > m1 +m2 +m3 =⇒ ε realizes l(ge21)

and

ε realizes l(ge21) =⇒ l(ge21) = l(g)− 1 only if m2 + l2(g) > m1 +m2 +m3

So if m2 + l2(g) > m1 +m2 +m3 then l(ge21) = l(g)− 1 and l(ge21) = l(g)− 1.

Consider e12 and e12. For these generators we have

Π(ge12) = Π(ge12) =
(
(m1, l1(g)− 1), (m2, l2(g) + 1), (m3, 0)

)
so from Proposition 4.1.11 we know that l(ge12) and l(ge12) are minimized by ε or (12). The

corresponding expressions are below:

lε(ge12) = lε(ge12) = m1 + max{m1 +m2 +m3,m2 + l2(g) + 1} ≥ l(g)
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l(12)(ge12) = l(12)(ge12) = m2 + max{m1 +m2 +m3,m1 + l1(g)− 1} ≤ l(g)

We proceed using e12. The same argument works for e12.

If ε realizes l(ge12) then l(ge12) ≥ l(g).

But if (12) realizes l(ge12) then l(ge12) = l(g)− 1 only if m1 + l1(g) > m1 +m2 +m3.

Notice that if m1 + l1(g) > m1 +m2 +m3 then l(12)(ge12) < l(g) ≤ lε(ge12), and so

(12) realizes l(ge12).

So

m1 + l1(g) > m1 +m2 +m3 =⇒ (12) realizes l(ge12)

and

(12) realizes l(ge12) =⇒ l(ge12) = l(g)− 1 only if m1 + l1(g) > m1 +m2 +m3

So if m1 + l1(g) > m1 +m2 +m3 then l(ge12) = l(g)− 1 and l(ge12) = l(g)− 1.

Consider e13. For this generator we have

Π(ge13) =
(
(m1, l1(g)− 1), (m2, l2), (m3(g)− 1, 0)

)
Note that

l(12)(ge13) = m2 + max{m1 +m2 +m3(g)− 1,m1 + l1(g)− 1} = l(g)− 1

so by Lemma 4.1.1, e13 decreases word length.
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Consider e23. For this generator we have

Π(ge23) =
(
(m1, l1), (m2, l2(g)− 1), (m3(g)− 1, 0)

)
Note that

lε(ge23) = m1 + max{m1 +m2 +m3(g)− 1,m2 + l2(g)− 1} = l(g)− 1

So by Lemma 4.1.1, e23 decreases word length.

We have now considered every generator.

Corollary 4.1.19. If Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
and l(g) = lε(g) = l(12)(g) then

• l(ge21) = l(g)− 1 and l(ge21) = l(g)− 1 iff m2 + l2(g) > m1 +m2 +m3

• l(ge12) = l(g)− 1 and l(ge12) = l(g)− 1 iff m1 + l1(g) > m1 +m2 +m3

• l(ge13) = l(ge13) = l(g)− 1

• l(ge23) = l(ge23) = l(g)− 1

• Any generator s not noted above does not have the property l(gs) = l(g)− 1 under any

circumstances.

Proof. For the generators e21, e21, e12, and e12, we can simply refer to the proof of Theorem

4.1.18, as these generators did not rely on m3 being nonzero.

Similarly for e32, e31, e32, and e31, we can simply refer to the proof of Theorem 4.1.18, as

these generators did not rely on m3 being nonzero.

Next we will show l(ge13) = l(g)− 1 and l(ge13) = l(g)− 1.

Notice that

Π(ge13) = Π(ge13) =
(
(m1, l1 − 1), (m2, l2), (0, 1)

)
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So

l(13)(ge13) = l(13)(ge13)

= l1 − 1 + max{m1 +m2,m2 + l2}

= l(13)(g)− 1

= l(12)(g)− 1 by Corollary 4.1.12

= l(g)− 1 by the assumptions of the corollary.

So l(ge13) = l(ge13) = l(g)− 1 by Lemma 4.1.1.

Finally we show l(ge23) = l(g)− 1 and l(ge23) = l(g)− 1.

Notice that

Π(ge23) = Π(ge23) =
(
(m1, l1), (m2, l2 − 1), (0, 1)

)
So

l(132)(ge23) = l(132)(ge23)

= l2 − 1 + max{m1 +m2,m1 + l1}

= l(132)(g)− 1

= lε(g)− 1 by Corollary 4.1.12

= l(g)− 1 by the assumptions of the corollary.

So l(ge23) = l(ge23) = l(g)− 1 by Lemma 4.1.1.

Theorem 4.1.20. If g satisfies the 1 zero condition and l(g) 6= l(12)(g) then:

• l(ge21) = l(g)− 1 and l(ge21) = l(g)− 1 iff m2 + l2(g) > m1 +m2 +m3

• l(ge13) = l(g)− 1 iff m2 + l2 < m1 +m2 +m3(g)
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• l(ge23) = l(g)− 1

• Any generator s not noted above does not have the property l(gs) = l(g)− 1 under any

circumstances.

Proof. By Proposition 4.1.13:

l(g) = lε(g) = m1 + max{m1 +m2 +m3(g),m2 + l2(g)}

First, we can eliminate eight generators that we know will not have the property

l(gs) = l(g)− 1 as follows:

• l(ge32) ≥ l(g),

• l(ge31) ≥ l(g),

• l(ge32) ≥ l(g), and

• l(ge31) ≥ l(g) by Proposition 4.1.13,

• l(ge13) ≥ l(g) and

• l(ge23) ≥ l(g) by Proposition 4.1.14, and

• l(ge12) ≥ l(g) and

• l(ge12) ≥ l(g) by Proposition 4.1.15.

So we have 4 generators left to investigate:

Consider e21, e21, and e23. For these generators we can apply the same argument

from the proof of Theorem 4.1.18. So e23 decreases word length under any conditions, if

m2+l2(g) > m1+m2+m3 then e21 decreases word length, ifm2+l2(g) > m1+m2+m3 then e21

decreases word length, and no other generator s on this list has the property l(gs) = l(g)−1.
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Consider e13. For this generator we have

Π(ge13) =
(
(m1, l1(g)− 1), (m2, l2), (m3(g)− 1, 0)

)
so from Proposition 4.1.11 we know that l(ge13) is minimized by ε or (12). The corresponding

expressions are below:

l(12)(ge13) = m2 + max{m1 +m2 +m3(g)− 1,m1 + l1(g)− 1} = l(12)(g)− 1 ≥ l(g)

lε(ge13) = m1 + max{m1 +m2 +m3(g)− 1,m2 + l2} ≤ lε(g) = l(g)

So if (12) realizes l(ge13) then l(ge13) ≥ l(g).

But if ε realizes l(ge13) then l(ge13) = l(g)− 1 only if m2 + l2(g) < m1 +m2 +m3.

Notice that if m2 + l2(g) < m1 +m2 +m3 then lε(ge13) < l(g) ≤ l(12)(ge13), and so

ε realizes l(ge13).

So

m2 + l2(g) < m1 +m2 +m3 =⇒ ε realizes l(ge13)

and

ε realizes l(ge13) =⇒ l(ge13) = l(g)− 1 only if m2 + l2(g) < m1 +m2 +m3

So if m2 + l2(g) < m1 +m2 +m3 then e13 decreases word length.

We have now considered every generator.

Corollary 4.1.21. If Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
and l(g) 6= l(12)(g) then

• l(ge21) = l(g)− 1 and l(ge21) = l(g)− 1 iff m2 + l2(g) > m1 +m2
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• l(ge13) = l(g)− 1 and l(ge13) = l(g)− 1 iff m1 + l1(g) > m1 +m2

• l(ge23) = l(ge23) = l(g)− 1

• Any generator s not noted above does not have the property l(gs) = l(g)− 1 under any

circumstances.

Proof. For the generators e21, e21, e12, and e12, we can simply refer to the proof of Theorem

4.1.20, as these generators did not rely on m3 being nonzero.

Similarly for e32, e31, e32, and e31, we can simply refer to the proof of Theorem 4.1.20, as

these generators did not rely on m3 being nonzero.

It follows from Corollary 4.1.12 that l(g) = lε(g) = l(132)(g).

First we will show l(ge13) = l(g) − 1 and l(ge13) = l(g) − 1 iff m1 + l1(g) > m1 + m2 using

Table 4.6.

σ Maximal term in Π(g) lσ(ge13) = lσ(ge13) lσ(g)

ε m1 +m2 m1 + 1 +m1 +m2 m1 +m1 +m2

ε m2 + l2 m1 + 1 +m2 + l2 m1 +m2 + l2
(12) m1 +m2 m2 + 1 +m1 +m2 m2 +m1 +m2

(12) m1 + l1(g) m2 + 1 +m1 + l1(g)− 1 or m2 +m1 + l1(g) or
m2 + 1 +m1 +m2 m2 +m1 +m2

(13) m1 +m2 l1(g)− 1 +m1 +m2 l1(g) +m1 +m2

(13) m2 + l2 l1(g)− 1 +m2 + l2 l1(g) +m2 + l2
(23) m1 +m2 m1 + l2 +m1 +m2 m1 + l2 +m1 +m2

(23) m3 = 0 N/A (0 can’t be maximal) N/A
(123) m1 +m2 m2 + l1(g)− 1 +m1 +m2 m2 + l1(g) +m1 +m2

(123) m3 = 0 N/A (0 can’t be maximal) N/A
(132) m1 +m2 l2 +m1 +m2 l2 +m1 +m2

(132) m1 + l1(g) l2 +m1 + l1(g)− 1 or l2 +m1 + l1(g) or
l2 +m1 +m2 l2 +m1 +m2

Table 4.6: Values of lσ(ge13), lσ(ge13), for either maximal term in Π(g), over all σ ∈ S3.
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From Corollary 4.1.12 and from the assumptions of the corollary, we know that for each

σ 6∈ {ε, (132)} we have l(g) < lσ(g) and so lσ(g) − 1 ≥ l(g). So, for σ 6= ε, (132), regardless

of maximal term, we have

lσ(ge13) = lσ(ge13) ≥ lσ(g)− 1 ≥ l(g)

Furthermore, lε(ge13) = lε(ge13) = lε(g) + 1 = l(g) + 1.

Finally, we can see that l(132)(ge13) = l(132)(ge13) = l(g)− 1, and therefore

l(ge13) = l(ge13) = l(g) − 1 by Lemma 4.1.1, only under the condition that m1 + l1(g) >

m1 +m2.

So we can say that l(ge13) = l(g)− 1 and l(ge13) = l(g)− 1 iff m1 + l1(g) > m1 +m2.

Finally we must show that l(ge23) = l(ge23) = l(g) − 1, but this argument will be iden-

tical to the argument for the same claim from the proof of Corollary 4.1.19.

Theorem 4.1.22. If g satisfies the 1 zero condition and l(g) 6= lε(g) then:

• l(ge12) = l(g)− 1 and l(ge12) = l(g)− 1 iff m1 + l1(g) > m1 +m2 +m3

• l(ge23) = l(g)− 1 iff m2 + l2 < m1 +m2 +m3(g)

• l(ge13) = l(g)− 1

• Any generator s not noted above does not have the property l(gs) = l(g)− 1 under any

circumstances.

Proof. By Proposition 4.1.13:

l(g) = l(12)(g) = m2 + max{m1 +m2 +m3(g),m1 + l1(g)}

First, we can eliminate eight generators that we know will not have the property

l(gs) = l(g)− 1 as follows:
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• l(ge32) ≥ l(g),

• l(ge31) ≥ l(g),

• l(ge32) ≥ l(g), and

• l(ge31) ≥ l(g) by Proposition 4.1.13,

• l(ge13) ≥ l(g) and

• l(ge23) ≥ l(g) by Proposition 4.1.14, and

• l(ge21) ≥ l(g) and

• l(ge21) ≥ l(g) by Proposition 4.1.16.

So we have 4 generators left to investigate:

Consider e12, e12, and e13. For these generators we can apply the same argument

from the proof of Theorem 4.1.18. So e13 decreases word length under any conditions, if

m1+l1(g) > m1+m2+m3 then e12 decreases word length, ifm1+l1(g) > m1+m2+m3 then e12

decreases word length, and no other generator s on this list has the property l(gs) = l(g)−1.

Consider e23. For this generator we have

Π(ge23) =
(
(m1, l1), (m2, l2(g)− 1), (m3(g)− 1, 0)

)
so from Proposition 4.1.11 we know that l(ge23) is minimized by ε or (12). The corresponding

expressions are below:

l(ge23) = lε(ge23) = m1 + max{m1 +m2 +m3(g)− 1,m2 + l2(g)− 1} = lε(g)− 1 ≥ l(g)

l(12)(ge23) = m2 + max{m1 +m2 +m3(g)− 1,m1 + l1} ≤ l(g)
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So if ε realizes l(ge23) then l(ge23) ≥ l(g).

But if (12) realizes l(ge23) then l(ge23) = l(g)− 1 only if m1 + l1(g) < m1 +m2 +m3.

Notice that if m1 + l1(g) < m1 +m2 +m3 then l(12)(ge23) < l(g) ≤ l(12)(ge23), and so

(12) realizes l(ge23).

So

m1 + l1(g) < m1 +m2 +m3 =⇒ (12) realizes l(ge23)

and

(12) realizes l(ge23) =⇒ l(ge23) = l(g)− 1 only if m1 + l1(g) < m1 +m2 +m3

So if m1 + l1(g) < m1 +m2 +m3 then e23 decreases word length.

We have now considered every generator.

Corollary 4.1.23. If Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
and l(g) 6= lε(g) then

• l(ge12) = l(g)− 1 and l(ge12) = l(g)− 1 iff m1 + l1(g) > m1 +m2

• l(ge23) = l(ge23) = l(g)− 1 iff m2 + l2(g) > m1 +m2

• l(ge13) = l(ge13) = l(g)− 1

• Any generator s not noted above does not have the property l(gs) = l(g)− 1 under any

circumstances.

Proof. For the generators e21, e21, e12, and e12, we can simply refer to the proof of Theorem

4.1.20, as these generators did not rely on m3 being nonzero.

Similarly for e32, e31, e32, and e31, we can simply refer to the proof of Theorem 4.1.20, as

these generators did not rely on m3 being nonzero.
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It follows from Corollary 4.1.12 that l(g) = l(12)(g) = l(13)(g).

First we will show l(ge23) = l(g)− 1 and l(ge23) = l(g)− 1 iff m2 + l2(g) > m1 +m2 in Table

4.7

σ Maximal term in Π(g) lσ(ge23) = lσ(ge23) lσ(g)

ε m1 +m2 m1 + 1 +m1 +m2 m1 +m1 +m2

ε m2 + l2(g) m1 + 1 +m2 + l2(g)− 1 or m1 +m2 + l2(g) or
m1 + 1 +m1 +m2 m1 +m1 +m2

(12) m1 +m2 m2 + 1 +m1 +m2 m2 +m1 +m2

(12) m1 + l1 m2 + 1 +m1 + l1 m2 +m1 + l1
(13) m1 +m2 l1 +m1 +m2 l1 +m1 +m2

(13) m2 + l2(g) l1 +m2 + l2(g)− 1 or l1 +m2 + l2(g) or
l1 +m1 +m2 l1 +m1 +m2

(23) m1 +m2 m1 + l2(g)− 1 +m1 +m2 m1 + l2(g) +m1 +m2

(23) m3 = 0 N/A (0 can’t be maximal) N/A
(123) m1 +m2 m2 + l1 +m1 +m2 m2 + l1 +m1 +m2

(123) m3 = 0 N/A (0 can’t be maximal) N/A
(132) m1 +m2 l2(g)− 1 +m1 +m2 l2(g) +m1 +m2

(132) m1 + l1 l2(g)− 1 +m1 + l1 l2(g) +m1 + l1

Table 4.7: Values of lσ(ge23), lσ(ge23), for either maximal term in Π(g), over all σ ∈ S3.

From Corollary 4.1.12 and from the assumptions of the corollary, we know that for each

σ 6∈ {(12), (13)} we have l(g) < lσ(g) and so lσ(g) − 1 ≥ l(g). So, for σ 6= (12), (13),

regardless of maximal term, we have

lσ(ge23) = lσ(ge23) ≥ lσ(g)− 1 ≥ l(g)

Furthermore, l(12)(ge23) = l(12)(ge23) = l(12)(g) + 1 = l(g) + 1.

Finally, we can see that l(13)(ge23) = l(13)(ge23) = l(g)− 1, and therefore

l(ge23) = l(ge23) = l(g) − 1 by Lemma 4.1.1, only under the condition that m2 + l2(g) >

m1 +m2.

So we can say that l(ge23) = l(g)− 1 and l(ge23) = l(g)− 1 iff m2 + l2(g) > m1 +m2.

Finally we must show that l(ge13) = l(ge13) = l(g) − 1, but this argument will be iden-
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tical to the argument for the same claim from the proof of Corollary 4.1.19.

4.1.3 No-Zero Case

Assume we have g ∈ Γ3(2) such that Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
where li > 0 for

i ∈ {1, 2, 3}. We have shown that

l(g) = min
σ∈S3

{mσ(1) + lσ(3) + max{m1 +m2 +m3,mσ(2) + lσ(2)}} (4.2)

First note that, when li > 0 for i ∈ {1, 2, 3}, for any i, j ∈ {1, 2, 3} we have Π(geij) = Π(geij).

So we will omit the bar in this case, and everything we say of a generator eij will also hold

for the corresponding eij.

We now show that, in this case, if we have a group element g and a generator eij such that

l(g)− 1 = l(geij) then l(g) and l(geij) can be realized by the same permutation.

Proposition 4.1.24. Suppose eij is such that l(geij) = l(g)− 1 and l(geij) = lτ (geij). Then

l(g) = lτ (g).

Proof. We can see that

l(geij) =lτ (geij)

=mτ(1)(geij) + lτ(3)(geij) + max{m1(geij) +m2(geij) +m3(geij),

mτ(2)(geij) + lτ(2)(geij)}

Claim. |l(geij)− lτ (g)| ≤ 1.

Proof. Consider lτ (g) = mτ(1)(g)+ lτ(3)(g)+max{m1(g)+m2(g)+m3(g),mτ(2)(g)+ lτ(2)(g)}.

Because no values in Π(g) are zero, we know that for k 6= i, j we have lk(geij) = lk(g).

Furthermore, for each i ∈ {1, 2, 3} we have mi(g) = mi(geij). Finally, we know
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li(g) = li(geij) + 1 and lj(g) = lj(geij)− 1.

So we can write the difference of the word lengths as follows:

l(geij)−l(g) = [lτ(3)(geij)− lτ(3)(g)]

+ [max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)} −max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}]

We have used square brackets to divide the expression into the sum of two differences. For

ease of reference, we let lτ(3)(geij)− lτ(3)(g) = A and max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}−

max{m1 +m2 +m3,mτ(2) + lτ(2)(g)} = B. Notice that |lτ(3)(geij)− lτ(3)(g)| ≤ 1 by the way

we defined our generators. So |A| ≤ 1. We break the problem into cases based on the value

of A.

Case 1: A = −1.

So lτ(3)(geij)− lτ(3)(g) = −1.

Then, because i 6= j, we have 0 ≤ lτ(2)(geij)− lτ(2)(g) ≤ 1. So we have two possible subcases

for the second difference.

Case 1a: lτ(2)(geij)− lτ(2)(g) = 0

Then B = max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}−max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}

= 0, and so A+B = −1.

Case 1b: lτ(2)(geij)− lτ(2)(g) = 1

Then B = max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}−max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}

= 1, and so A+B = 0.

Case 2: A = 0.

So lτ(3)(geij)− lτ(3)(g) = 0.

Then, because i 6= j, we have |lτ(2)(geij) − lτ(2)(g)| = 1. So we have two possible subcases

for the second difference.
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Case 2a: lτ(2)(geij)− lτ(2)(g) = −1

Then B = max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}−max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}

= −1, and so A+B = −1.

Case 2b: lτ(2)(geij)− lτ(2)(g) = 1

Then B = max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}−max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}

= 1, and so A+B = 1.

Case 3: A = 1.

So lτ(3)(geij)− lτ(3)(g) = 1.

Then, because i 6= j, we have −1 ≤ lτ(2)(geij) − lτ(2)(g) ≤ 0. So we have two possible

subcases for the second difference.

Case 3a: lτ(2)(geij)− lτ(2)(g) = −1

Then B = max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}−max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}

= −1, and so A+B = 0.

Case 3b: lτ(2)(geij)− lτ(2)(g) = 0

Then B = max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}−max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}

= 0, and so A+B = 1.

In any case, |A+B| ≤ 1, so we can conclude that

|lτ(3)(geij) + max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}

−lτ(3)(g)−max{m1 +m2 +m3,mτ(2) + lτ(2)(g)}| ≤ 1

Therefore |l(geij)− lτ (g)| ≤ 1, as desired.

So then lτ (g) = lτ (geij) + ε where ε ∈ {−1, 0, 1}.

First assume ε ≤ 0. So lτ (g) ≤ l(geij), and l(g) ≤ lτ (g) by our definition of the l function,

and l(geij) < l(g) by our choice of eij. Combining these, we get l(g) < l(g), a contradiction.

So we must have ε = 1. So lτ (g) = lτ (geij) + 1 = l(g)− 1 + 1, so lτ (g) = l(g), as desired.
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For any generator eij such that l(geij) = lτ (geij) = l(g)− 1, Proposition 4.1.24 tells us that:

l(geij) = mτ(1) + lτ(3)(geij) + max{m1 +m2 +m3,mτ(2) + lτ(2)(geij)}

= mτ(1) + lτ(3)(g) + max{m1 +m2 +m3,mτ(2) + lτ(2)(g)} − 1 = l(g)− 1

(4.3)

We will enumerate which generators s have the property l(gs) = l(g)−1 in three cases based

on which term in the l(g) expression realizes the maximum. In each proposition, we will

show which generators s have the property l(gs) = l(g) − 1 based on the particular σ that

realizes word length for both g and gs.

Proposition 4.1.25. Assume g is such that l(g) = lσ(g) and m1+m2+m3 > mσ(2)+lσ(2)(g),

and assume i, j ∈ {1, 2, 3} are such that i 6= j. Then

l(geij) = l(g)− 1 iff i = σ(3)

Proof. Assume that g, i, and j are as above.

(=⇒) Assume lσ(geij) = l(geij) = l(g) − 1. Because m1 + m2 + m3 ≥ mσ(2) + lσ(2)(g) + 1

we can eliminate all common terms from Equation 4.3 and get lσ(3)(geij) = lσ(3)(g)− 1. We

know li(geij) = li(g)− 1 and no other lx value has this property. So lσ(3) = li, and therefore

σ(3) = i, as desired.

(⇐=) Assume i = σ(3). We know li(geij) = li(g)− 1 and lj(geij) = lj(g) + 1. Then

lσ(geij) = mσ(1) + li(geij) + max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}

= mσ(1) + li(g)− 1 + max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}

= mσ(1) + li(g)− 1 + max{m1 +m2 +m3,mσ(2) + lσ(2)(g)}, as m1 +m2 +m3 > mσ(2)

+ lσ(2)(g)

= lσ(g)− 1

= l(g)− 1
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So lσ(geij) = l(g)− 1, and by Lemma 4.1.1 l(geij) = l(g)− 1

Proposition 4.1.26. Assume g is such that l(g) = lσ(g) and m1+m2+m3 = mσ(2)+lσ(2)(g),

and assume i, j ∈ {1, 2, 3} are such that i 6= j. Then

l(geij) = l(g)− 1 iff i = σ(3) and j = σ(1)

Proof. Assume that g, i, and j are as above.

(=⇒) Assume lσ(geij) = l(geij) = l(g)− 1.

Assume by way of contradiction that σ(1) = i. Then mσ(1) + lσ(3)(geij) ≥ mσ(1) + lσ(3)(geij)

and max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)} ≥ max{m1 +m2 +m3,mσ(2) + lσ(2)(g)}. So then

l(geij) ≥ l(g), contradicting our assumption. So σ(1) 6= i.

Assume by way of contradiction that σ(2) = i. Then mσ(1) + lσ3(geij) ≥ mσ(1) + lσ3(geij)

and max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)} = max{m1 +m2 +m3,mσ(2) + lσ(2)(g)}. So then

l(geij) ≥ l(g), contradicting our assumption. So σ(2) 6= i.

We have now shown that σ(3) = i.

Assume by way of contradiction that σ(2) = j. Then

max{m1 +m2 +m3,mσ(2) + lσ(2)(g)}+ 1 = max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}

So we can eliminate common terms from Equation 4.3 and get lσ(3)(geij) + 1 = lσ(3)(g)− 1.

But this is a contradiction, as li(geij) = li(g) − 1, lj(geij) = lj(g) + 1, and every other

coordinate is identical between Π(g) and Π(geij). So σ(2) 6= j. Therefore σ(1) = j.

So σ(3) = i and σ(1) = j, as desired.

(⇐=) Assume i = σ(3) and j = σ(1).
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We know li(geij) = li(g)− 1 and lj(geij) = lj(g) + 1. Then

lσ(geij) = mσ(1) + li(geij) + max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}

= mj + li(g)− 1 + max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}

= mj + li(g)− 1 + max{m1 +m2 +m3,mσ(2) + lσ(2)(g)}, as lσ(2)(geij) = lσ(2)(g)

= lσ(g)− 1

= l(g)− 1

So lσ(geij) = l(g)− 1, and by Lemma 4.1.1 l(geij) = l(g)− 1

Proposition 4.1.27. Assume g is such that l(g) = lσ(g) and m1+m2+m3 < mσ(2)+lσ(2)(g),

and assume i, j ∈ {1, 2, 3} are such that i 6= j. Then

l(geij) = l(g)− 1 iff j = σ(1)

Proof. Assume that g, i, and j are as above.

(=⇒) Assume lσ(geij) = l(geij) = l(g)− 1.

Assume by way of contradiction that σ(2) = j. Then max{m1+m2+m3,mσ(2)+lσ(2)(g)}+1 =

max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}. So we can eliminate common terms from Equation

4.3 and get lσ(3)(geij) + 1 = lσ(3)(g) − 1. But this is a contradiction, as li(geij) = li(g) − 1,

lj(geij) = lj(g) + 1, and every other coordinate is identical between Π(g) and Π(geij). So

σ(2) 6= j.

Now assume by way of contradiction that σ(3) = j. Then we can eliminate common terms

from Equation 4.3 and get max{m1 + m2 + m3,mσ(2) + lσ(2)(geij)} + 1 = max{m1 + m2 +

m3,mσ(2) + lσ(2)(g)}−1, but this is a contradiction, as li(geij) = li(g)−1, lj(geij) = lj(g)+1,

and every other coordinate is identical between Π(g) and Π(geij). So σ(3) 6= j.

We conclude that σ(1) = j, as desired.
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(⇐=) Assume j = σ(1).

We know li(geij) = li(g)− 1 and lj(geij) = lj(g) + 1. We now must consider the problem in

cases, based on which value σ maps to i:

Case 1: σ(2) = i. Then

lσ(geij) = mσ(1) + lσ(3)(geij) + max{m1 +m2 +m3,mi + li(geij)}

= mj + lσ(3)(geij) + max{m1 +m2 +m3,mi + li(geij)}

= mj + lσ(3)(g) + max{m1 +m2 +m3,mi + li(g)− 1}, as lσ(3)(geij) = lσ(3)(g)

= mj + lσ(3)(g) + max{m1 +m2 +m3,mi + li(g)} − 1, as m1 +m2 +m3 < mσ(2) + lσ(2)(g)

= lσ(g)− 1

= l(g)− 1

So lσ(geij) = l(g)− 1, and by Lemma 4.1.1 l(geij) = l(g)− 1

Case 2: σ(3) = i. Then

lσ(geij) = mσ(1) + li(geij) + max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}

= mj + li(geij) + max{m1 +m2 +m3,mσ(2) + lσ(2)(geij)}

= mj + li(g)− 1 + max{m1 +m2 +m3,mσ(2) + lσ(2)(g)}, as lσ(2)(geij) = lσ(2)(g)

= lσ(g)− 1

= l(g)− 1

So lσ(geij) = l(g)− 1, and by Lemma 4.1.1 l(geij) = l(g)− 1
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4.2 Summary of Sections 4.1.1, 4.1.2, and 4.1.3

The findings of sections 4.1.1, 4.1.2, and 4.1.3 are summarized in Figure 4.1. Note that the

28 rows of the figure represent, up to permutation, every possible value for the projection of

an element of Γ3(2).
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4.3 Triangles in DL3(2)

In this section we enumerate every instance in which two elements of the form gs0, gs1 for

some s0, s1 ∈ S are connected by an edge in DL3(2). These represent the triangles in DL3(2),

and these triangles will be used to connect most of the elements identified in the Figure 4.1.

Theorem 4.3.1. For any g ∈ Γ3(2) and {i, j, k} = {1, 2, 3}, there is an edge between the

vertices geij and geik in the Cayley graph Γ(Γ3(2), S) with label ejk. Similarly, there is an

edge between the vertices geij and geik in the Cayley graph Γ(Γ3(2), S) with label ejk

Proof. Let Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
.

We will prove the theorem with i = 1, j = 2, and k = 3. Note that the same argument will

work with other values of i, j, and k. So we will first show there is an edge between ge12 and

ge13, by comparing the projections of each:

Π(ge12) =
(
(m1, l1 − 1), (m2, l2 + 1), (m3, l3)

)
or Π(ge12) =

(
(m1 + 1, 0), (m2, l2 + 1), (m3, l3)

)
if l1 = 0

Π(ge13) =
(
(m1, l1 − 1), (m2, l2), (m3, l3 + 1)

)
or Π(ge13) =

(
(m1 + 1, 0), (m2, l2), (m3, l3 + 1)

)
if l1 = 0

Π(ge12e23) =
(
(m1, l1 − 1), (m2, l2), (m3, l3 + 1)

)
or Π(ge12e23) =

(
(m1 + 1, 0), (m2, l2), (m3, l3 + 1)

)
if l1 = 0

We can see that Π(ge12e23) = Π(ge13), and since both have the same position in the k tree,

we can say that ge12e23 = ge13.

So there is an edge that connects ge12 and ge13 with label e23.
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The same argument produces the same result for ge12 and ge13.

Theorem 4.3.2. For any g ∈ Γ3(2) and {i, j, k} = {1, 2, 3}, there is an edge between the

vertices geij and geik in the Cayley graph Γ(Γ3(2), S) with label ejk. Similarly, there is an

edge between the vertices geij and geik in the Cayley graph Γ(Γ3(2), S) with label ejk

Proof. Let Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
.

We will prove the theorem with i = 1, j = 2, and k = 3. Note that the same argument will

work with other values of i, j, and k. So we will first show there is an edge between ge12 and

ge13, by comparing the projections of each:

Π(ge12) =
(
(m1, l1 − 1), (m2, l2 + 1), (m3, l3)

)
or Π(ge12) =

(
(m1 + 1, 0), (m2, l2 + 1), (m3, l3)

)
if l1 = 0

Π(ge13) =
(
(m1, l1 − 1), (m2, l2), (m3, l3 + 1)

)
or Π(ge13) =

(
(m1 + 1, 0), (m2, l2), (m3, l3 + 1)

)
if l1 = 0

or Π(ge13) =
(
(m1, l1 + 1), (m2, l2), (m3 − 1, 0)

)
if l3 = 0 and m3 > 0

or Π(ge13) =
(
(m1 + 1, 0), (m2, l2), (m3 − 1, 0)

)
if l1 = l3 = 0 and m3 > 0

Π(ge12e23) =
(
(m1, l1 − 1), (m2, l2), (m3, l3 + 1)

)
or Π(ge12e23) =

(
(m1 + 1, 0), (m2, l2), (m3, l3 + 1)

)
if l1 = 0

or Π(ge12e23) =
(
(m1, l1 + 1), (m2, l2), (m3 − 1, 0)

)
if l3 = 0 and m3 > 0

or Π(ge12e23) =
(
(m1 + 1, 0), (m2, l2), (m3 − 1, 0)

)
if l1 = l3 = 0 and m3 > 0

We can see that Π(ge12e23) = Π(ge13), and since both have the same position in the k tree,

we can say that ge12e23 = ge13.
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So there is an edge that connects ge12 and ge13 with label e23.

The same argument produces the same result for ge12 and ge13.

Theorem 4.3.3. For any g ∈ Γ3(2) and {i, j, k} = {1, 2, 3}, there is an edge between the

vertices geij and gekj in the Cayley graph Γ(Γ3(2), S) with label eki or eki. Similarly, there

is an edge between the vertices geij and gekj in the Cayley graph Γ(Γ3(2), S) with label eki or

eki

Proof. Let Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
.

We will prove the theorem with i = 1, j = 2, and k = 3. Note that the same argument will

work with other values of i, j, and k. So we will first show there is an edge between ge12 and

ge32, by comparing the projections of each:

Π(ge12) =
(
(m1, l1 − 1), (m2, l2 + 1), (m3, l3)

)
or Π(ge12) =

(
(m1 + 1, 0), (m2, l2 + 1), (m3, l3)

)
if l1 = 0

Π(ge23) =
(
(m1, l1), (m2, l2 − 1), (m3, l3 + 1)

)
or Π(ge13) =

(
(m1, l1), (m2 + 1, 0), (m3, l3 + 1)

)
if l2 = 0

Π(ge12e31) =
(
(m1, l1), (m2, l2 − 1), (m3, l3 + 1)

)
or Π(ge12e31) =

(
(m1, l1), (m2 + 1, 0), (m3, l3 + 1)

)
if l2 = 0

Π(ge12e31) =
(
(m1, l1), (m2, l2 − 1), (m3, l3 + 1)

)
or Π(ge12e31) =

(
(m1, l1), (m2 + 1, 0), (m3, l3 + 1)

)
if l2 = 0
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We can see that Π(ge12e31) = Π(ge12e31) = Π(ge32), and since one of ge12e31 or ge12e31 has

the same position in the k tree as ge32, we can say that ge12e31 = ge32 or ge12e31 = ge32.

So there is an edge that connects ge12 and ge32 with label e31 or e31.

The same argument produces the same result for ge12 and ge32.

We can connect most of the points in Figure 4.1 with fixed-length paths constructed entirely

from the triangles identified above.

In rows 5, 6, 11, and 14 of Table 4.1 there is no fixed-length path to build, as only one

generator decreases word length.

In rows 1, 2, 3, 4, 7, 13, 16, 20, 23, and 26 of Table 4.1, Theorems 4.3.1 and 4.3.2 can

be used to construct a fixed-length path between any two points of length l(g)−1 that differ

from g by a generator.

In rows 8, 12, and 15 of Table 4.1, Theorem 4.3.3 can be used to construct a fixed-length

path between any two points of length l(g)− 1 that differ from g by a generator.

In rows 9, 10, 18, and 19 of Table 4.1, Theorems 4.3.1, 4.3.2, and 4.3.3 can be used to

construct a fixed-length path between any two points of length l(g)− 1 that differ from g by

a generator.

4.4 Paths of non-constant length

We have yet to address rows 17, 21, 22, 24, 25, 27, or 28 of Table 4.1. Notice that the family

of elements from Section 3.0.3 satisfies the conditions of row 27. For these we will have to

produce paths whose length is not fixed, but is nevertheless less than 2l(g)−1. In each case,

the problematic points are the points of the form geij and geij. If we can produce such a

path, then we can use the triangles from Section 4.3 to connect any of the points identified

in these rows. The technique for producing these paths will be to reduce one of the other

l-values down to zero, then change the coordinate in tree j, then return the l-value to it’s
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original position.

We first identify a path that can be used to connect points that arise from any g that satisfies

the conditions of row 17, 21, or 22 of Table 4.1:

Theorem 4.4.1. If g is such that Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
, and lε(g) = l(132)(g) =

l(g) then there is a path from ge23 to ge23 of length strictly less than 2l(ge23) that remains

inside the ball B(l(g) − 1). This path is of the form el2−1
21 e32e23e̊

l2−1
12 , where e̊12 represents

either e12 or e12.

Proof. Begin by observing that l(g) = l2 + max{m1 +m2,m1 + l1}. We have

Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
From this it follows that

Π(ge23) =
(
(m1, l1), (m2, l2 − 1), (0, 1)

)
= Π(ge23)

We can see that l(132)(ge23) = l2− 1 + max{m1 +m2,m1 + l1} = l(g)− 1, so by Lemma 4.1.1

l(ge23) = l(132)(ge23) = l(g)− 1.

The nth intermediate point on the path (with n ≤ l2 − 1) has projection:

Π(ge23e
n
21) =

(
(m1, l1 + n), (m2, l2 − n− 1), (0, 1)

)
So l(ge23e

n
21) ≤ l(132)(ge23e

n
21) = l2−n− 1 + max{m1 +m2,m1 + l1 +n} ≤ l(ge23) = l(g)− 1.

So l(ge23e
n
21) ≤ l(g)− 1.

The l1th intermediate point on the path has projection:

Π(ge23e
l2−1
21 e32) =

(
(m1, l1 + l2 − 1), (m2 − 1, 0), (0, 0)

)
So l(ge23e

l2−1
21 e32) ≤ l(132)(ge23e

l2−1
21 e32) = max{m1 +m2,m1 + l1 + l2−1} ≤ l(ge23) = l(g)−1.
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So l(ge23e
l2−1
21 e32) ≤ l(g)− 1.

The (l1 + 1)th intermediate point on the path has projection:

Π(ge23e
l2−1
21 e32e23) =

(
(m1, l1 + l2 − 1), (m2, 0), (0, 1)

)
Notice that Π(ge23e

l2−1
21 e32e23) = Π(ge23e

l2−1
21 ).

So l(ge23e
l2−1
21 e32e23) ≤ l(g)− 1.

The remaining edges on the path are of the form e12 or e12. The goal is to reach a point

with the same position in tree 2 as ge23. It is clear that there is some sequence of e12s and

e12s that accomplishes this, so we will just write e̊12.

The kth intermediate on the path (with l2 + 1 < k < 2l2) has projection:

Π(ge23e
l2−1
21 e32e23e̊

k
12) =

(
(m1, l1 + l2 − k − 1), (m2, k), (0, 1)

)
Notice that Π(ge23e

l2−1
21 e32e23e̊

k
12) = Π(ge23e

2l2−k
21 ).

So l(ge23e
l2−1
21 e32e23e̊

m
12) ≤ l(g)− 1

The 2l2th intermediate point on the path has projection:

Π(ge23e
l2−1
21 e32e23e̊

l2−1
12 ) =

(
(m1, l1), (m2, l2 − 1), (0, 1)

)
= Π(ge23)

So the given path goes from ge23 to ge23, and remains entirely inside the ball B(l(g)− 1).

Note that 2l(geij) = 2(l(g)− 1) = 2(l2 + max{m1 +m2,m1 + l1})− 2 > 2l2. So this path is

short enough to satisfy minimal almost convexity.

This path can be used in conjunction with the triangles from Theorem 4.3.3 to connect any

of the points that arise from g satisfying the conditions of rows 17 or 22 of Table 4.1.

We now produce a similar path for rows 17, 24, or 25 of Table 4.1:
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Theorem 4.4.2. If g is such that Π(g) =
(
(m1, l1), (m2, l2), (0, 0)

)
, and l(12)(g) = l(13)(g) =

l(g), then there is a path from ge13 to ge13 of length strictly less than 2l(ge13) that remains

inside the ball B(l(g) − 1). This path is of the form el1−1
12 e31e13e̊

l1−1
21 , where e̊21 represents

either e21 or e21.

Proof. The proof of this theorem is identical to the argument for Theorem 4.4.1, with the

permutation (12) applied to all subscripts.

This path can be used in conjunction with the triangles from Theorem 4.3.3 to connect any

of the points that arise from g satisfying the condition of rows 17 or 25 of Table 4.1.

This leaves rows 27 and 28 of Table 4.1. The following path can be used to connect the

points that arise from any g that satisfies the conditions of rows 27 or 28 of Table 4.1.

Theorem 4.4.3. If g is such that

• Π(g) =
(
(m1, l1), (m2, l2), (m3, l3)

)
,

• lσ(g) = l(g) where σ(1) = j and σ(3) = i for some i 6= j ∈ {1, 2, 3}, and

• m1 +m2 +m3 ≤ mσ(2) + lσ(2),

then there is a path from geij to geij of length strictly less than 2l(geij) that remains inside

the ball B(l(g) − 1). This path is of the form eli−1
ik ejieij e̊

li−1
ki , where e̊ki represents either eki

or eki.

Proof. From Section 4.1.3, we can see that l(geij) = l(geij) = lσ(geij) = lσ(geij) = l(g)− 1.

Without loss of generality, assume i = 1, j = 2, and k = 3. So l(ge12) = l(ge12) = l(g) − 1.

The result can be shown in the same way for any other choices of i, j, and k. We can see

that

Π(ge12) =
(
(m1, l1 − 1), (m2, l2 + 1), (m3, l3)

)
= Π(ge12)
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Recall that

l(ge12) = l(ge12) = l(123)(ge12) = m2 + l1 − 1 + max{m1 +m2 +m3,m3 + l3} = l(g)− 1.

The nth intermediate point on the path (with n ≤ l1 − 1) has projection:

Π(ge12e
n
13) =

(
(m1, l1 − n− 1), (m2, l2 + 1), (m3, l3 + n)

)
So

l(ge12e
n
13) ≤ l(123)(ge12e

n
13) = m2 + l1 − n− 1 + max{m1 +m2 +m3,m3 + l3 + n}

≤ l(123)(ge12) = l(123)(ge12) = l(g)− 1

So l(ge12e
n
13) ≤ l(g)− 1.

The l1th intermediate point on the path has projection:

Π(ge12e
l1−1
13 e21) =

(
(m1 − 1, 0), (m2, l2), (m3, l3 + l1 − 1)

)
So

l(ge12e
l1−1
13 e21) ≤ l(123)(ge12e

l1−1
13 e21) = m2 + max{m1 +m2 +m3,m3 + l3 + l1 − 1}

≤ l(123)(ge12) = l(123)(ge12) = l(g)− 1

So l(ge12e
l1−1
13 e21) ≤ l(g)− 1.

The (l1 + 1)th intermediate point on the path has projection:

Π(ge12e
l1−1
13 e21e12) =

(
(m1, 0), (m2, l2 + 1), (m3, l3 + l1 − 1)

)
Notice that Π(ge12e

l1−1
13 e21e12) = Π(ge12e

l1−1
13 .

So l(ge12e
l1−1
13 e21e12) ≤ l(g)− 1.

The remaining edges on the path are of the form e31 or e31. The goal is to reach a point
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with the same position in tree 1 as ge12. It is clear that there is some sequence of e31s and

e31s that accomplishes this. So we will simply write e̊31.

The kth intermediate point on the path (with l1 + 1 < k < 2l1) has projection:

Π(ge12e
l1−1
13 e21e12e̊

k
31) =

(
(m1, k), (m2, l2 + 1), (m3, l3 + l1 + k − 1)

)
Notice that Π(ge12e

l1−1
13 e21e12e̊

k
31) = Π(ge12e

2l1−k
13 ).

So l(ge12e
l1−1
13 e21e12e̊

k
31) ≤ l(g)− 1

The 2l1th intermediate point on the path has projection:

Π(ge12e
l1−1
13 e21e12e

l1−1
31 ) =

(
(m1, l1 − 1), (m2, l2 + 1), (m3, l3)

)
= Π(ge12)

So the given path goes from ge12 to ge12, and remains entirely inside the ball.

Note that 2l(geij) = 2(l(g)−1) = 2(mσ(1)+lσ(3)+max{m1+m2+m3,mσ(2)+lσ(2)})−2 > 2lσ(3).

So this path is short enough to satisfy minimal almost convexity.
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