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Abstract: Many ecosystem services are public goods whose provision depends on the spatial 
pattern of land use.  The pattern of land use is often determined by the decisions of multiple 
private landowners. Increasing the provision of ecosystem services, while beneficial for society 
as a whole, may be costly to private landowners. A regulator interested in providing incentives to 
landowners for increased provision of ecosystem services often lacks complete information on 
landowners’ costs. The combination of spatially-dependent benefits and asymmetric cost 
information means that the optimal provision of ecosystem services cannot be achieved using 
standard regulatory or payment for ecosystem services (PES) approaches. Here we show that an 
auction that pays a landowner for the increased value of ecosystem services generated by the 
landowner’s actions provides incentives for landowners to truthfully reveal cost information, and 
allows the regulator to implement the optimal provision of ecosystem services, even in the case 
with spatially-dependent benefits and asymmetric information.  
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1. Introduction 
 

Ecosystems provide many goods and services that contribute to human well-being 

(“ecosystem services”). For example, ecosystems regulate local climate through effects on water 

cycling and temperature and global climate through carbon sequestration, mediate nutrient 

cycling and processes that enhance soil fertility and improve water quality, and provide 

opportunities for recreation and aesthetic appreciation (Daily 1997, MA 2005). Because many 

ecosystem services, including climate regulation and water quality improvement, are public 

goods available to everyone without charge, private landowners are often uncompensated for 

their contribution to ecosystem service production and under-provision of these services is a 

likely result.   

A potential solution to the under-provision of ecosystem services is to provide 

landowners with payments for ecosystem services (PES). A PES program is a voluntary 

incentive-based program that pays landowners for their contribution to the provision of 

ecosystem services. A prominent example of a PES program is Costa Rica’s 1996 National 

Forest Law that pays landowners to conserve forests for carbon sequestration, water quality 

improvement, habitat, and scenic beauty. Though not originally designed as a PES program, the 

U.S. Conservation Reserve Program fulfills much the same purpose by paying landowners to 

retire land from active crop production, which contributes to provision of a number of ecosystem 

services (e.g., water quality improvement carbon sequestration, habitat provision). 

An optimal PES program will result in land being put to its “highest and best use,” which 

here is defined as the land use that maximizes total benefits to society, including the value of 

ecosystem services. Optimal PES programs, or other policies that involve provision of public 

goods from landscapes, must overcome three related challenges. First, provision of ecosystem 
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services often depends on the spatial configuration of land use. For example, in comparing 

landscapes with the same overall amount of habitat, the success of many species tends to be 

higher on landscapes where habitat is clustered rather than fragmented (e.g., Fahrig 2003). 

Second, the optimal provision of a public good on landscapes requires coordination among 

multiple private landowners. When spatial configuration matters, the contribution of each private 

land parcel to aggregate ecosystem service provision will be a function of the decisions of all 

other landowners; thus, optimal land-use decisions are interdependent. Third, landowners 

typically have private information about their cost for undertaking actions to increase ecosystem 

service provision. The cost of increasing ecosystem service provision on a particular land parcel 

will depend on parcel or landowner characteristics (e.g., land productivity or skills, knowledge, 

and preferences of landowners) that are often known only by the landowner. In other words, 

there is asymmetric information between an agency representing the interests of society as a 

whole in providing ecosystem services (hereafter, the “regulator”) and the landowners whose 

decisions affect the provision of these services. 

The combination of spatially-dependent benefits and multiple landowners with private 

cost information makes achieving optimal land use exceedingly difficult. Simple top-down 

regulatory approaches, such as zoning, will fail because the regulator does not have information 

about cost and so does not know the optimal solution to target. Simple PES or other incentive-

based approaches that pay each landowner according to their actions alone will also fail because 

they do not account for spatial interdependence of benefits. An optimal solution requires taking 

into account the information of landowners and the spatial interdependence of benefits across 

landowners.  
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In contrast, when the regulator has complete information about the cost to landowners of 

increasing ecosystem service provision simple regulatory or PES schemes can be used to 

maximize the net benefits from the landscape. When the landowners’ costs are known, the 

regulator can determine what land uses are optimal and can either mandate this outcome via 

regulation or offer payments to induce landowners to choose this outcome. This approach works 

equally well with spatially-dependent and spatially-independent benefits. Finding an optimal 

solution with spatially-dependent benefits can be challenging but spatial dependency by itself 

does not pose an insurmountable obstacle to optimal implementation.  

It is also the case that asymmetric information by itself does not prevent implementation 

of optimal PES programs (though it does prevent optimal implementation via top-down 

regulation). When the contribution of a parcel to the value of ecosystem services depends only 

on the characteristics of the land parcel itself (i.e., there are no spatial dependencies), the 

regulator can implement an optimal solution by simply offering a payment equal to the parcel’s 

contribution to benefits. Only landowners with private costs below their parcel’s incremental 

value will want to participate, accept the payment and take actions to increase provision of 

ecosystem services. In this case, the optimal solution is obtained despite asymmetric information.  

Neither regulation nor simple PES mechanisms, however, achieve an optimal solution with the 

combination of assymetric information and spatially-dependent benefits.  

In this paper, we present a PES scheme that achieves optimal provision of ecosystem 

services with spatially-dependent benefits and asymmetric information.  Our approach builds 

from the mechanism design literature in economics on the optimal provision of public goods 

(Groves 1973, Groves and Ledyard 1977), combining elements of a Vickrey auction that induces 

auction participants to truthfully reveal private information (Vickrey 1961), with Pigouvian 
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subsidies that provide optimal incentives by paying landowners for their incremental 

contribution to the value of ecosystem services. Under our mechanism, landowners 

simultaneously submit bids specifying the minimum price they would accept to undertake an 

action to increase provision of ecosystem services on their land. A landowner’s bid is accepted if 

and only if doing so increases the value of ecosystem services from the landscape as a whole by 

at least as much as the bid. If the bid is accepted, the landowner is paid the value of their parcel’s 

contribution to ecosystem services. Since the payment amount is independent of the landowner’s 

bid, it is a dominant strategy for landowners to bid exactly their cost. With this cost information, 

the regulator can identify the set of parcels that maximizes the net benefits from the landscape, 

determine the incremental benefits generated by each parcel selected for enrollment, and pay 

landowners accordingly. With spatially-dependent benefits, the value generated by an individual 

parcel, and hence the payment to each landowner, is a function of land uses on all parcels and so 

can only be determined once all bids are submitted.   

Economists and others have recognized that implementing optimal land use with 

spatially-dependent benefits and private information is a challenging but important task (e.g., 

Drechsler et al. 2010), which we briefly summarize here (see Supplementary Information Text 

S1 for a more in-depth literature review). One strand of literature investigates the ability of 

incentive policies to affect the spatial pattern of land use and associated levels of ecosystems 

services (e.g., Parkhurst et al. 2002, Lewis et al. 2011), but none have identified a general 

mechanism for achieving an optimal solution in this setting. A separate strand of literature finds 

numerical solutions for optimal land use assuming the regulator has complete information as 

well as control over all land-use decisions (e.g., Church et al. 1996, Polasky et al. 2008). Several 

prior papers study auctions for land conservation mostly with an emphasis on how auctions can 
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be used to reduce government expenditures (e.g., Stoneham et al. 2003, Kirwan et al. 2005). Our 

study is most closely related to papers in the economics literature on information-revealing 

mechanisms for optimal pollution control (Kwerel 1977, Dasgupta et al. 2000, Montero 2008). 

However, none of these papers consider spatially-dependent benefits. 

 
2.  A Simple Example 
 

We start with a simple example of a landscape composed of a 2×4 grid of land parcels 

(Fig. 1) to set ideas and demonstrate the challenge of finding the optimal land-use pattern with 

spatially-dependent benefits and asymmetric information. Each parcel can either be “conserved,” 

in which case it provides ecosystem services that are public goods, or “developed,” in which case 

it provides a monetary return to the landowner. The cost of conserving a parcel (foregone 

development value) measured in monetary terms is indicated by the top number in each parcel, 

while the ecosystem services provided by conserving the parcel, measured in biophysical terms 

are indicated along the bottom (Fig. 1). The first number is the ecosystem services provided 

when the parcel is conserved and benefits are spatially independent or when benefits are spatially 

dependent but no adjacent parcel is conserved. When benefits are spatially-dependent, the second 

number is the level of ecosystem services provided when one neighboring parcel is also 

conserved, and so on for two, and three conserved neighbors. Only parcels that share a side (not 

corners) are considered neighbors. The monetary value of a unit of ecosystem service is denoted 

by V. The value of ecosystem services provided by a conserved parcel is equal to V multiplied by 

the biophysical units of ecosystem services provided. 

For comparison purposes, we start with the case of no spatial dependencies and complete 

information about costs. Given a value of V, the optimal solution can be found by comparing the 

benefits (V × units of services) to costs on each parcel and conserving parcels whose benefits are 
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at least as great as costs. For example, with V=0.25, the benefits from conserving A2 are 0.25×5 

= 1.25, which is greater than the cost of 1. The criterion is also satisfied for B3 but is not for 

other parcels. If V=0.33, then B2 is optimally conserved along with A2 and B3. 

 We next add spatial dependencies but continue to assume complete information about 

costs. Because the level of the services increases when we add spatial dependencies, the 

solutions to the spatially independent and spatially dependent net benefits maximization 

problems at a given value of V are not comparable. Consider the optimal landscape when 

V=0.25. The optimal solution can be determined by enumerating all possible conservation 

combinations and determining which combination yields the highest net benefits (code for 

finding the optimal landscape can be found in the Supplementary Information SI Text 5). In this 

case, the optimal solution is to conserve A1, A2, B1, B2, and B3, which yields benefits of 

(11+10+3+9+8)*0.25, and a cost of (3+1+1+1+1), generating net benefits of 3.25. For 

comparison, the next highest potential net benefits is achieved by conserving A2, B2, and B3, 

which generates net benefits of 3. Comparing the net benefits from these two potential solutions 

highlights the role of spatial dependencies in determining the optimal landscape. Adding A1 and 

B1 to the configuration of A2, B2, and B3 increases ecosystem service provision because: i) two 

new parcels are conserved, and ii) the addition of A1 increases the provision on neighboring 

parcel A2 and B1, while the addition of B1 increases the provision on neighboring parcels A1 

and B2.   

 With complete information about costs of conservation, the regulator can implement the 

optimal solution by targeting payments to the parcels that make up the optimal solution (e.g., A2 

and B3 in the spatially independent case, and A1, A2, B1, B2, and B3 in the spatially dependent 

case). The only requirement is that payments equal or exceed landowners’ costs. Thus, to 
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conserve A1, A2, B1, B2, and B3, the regulator needs to offer payments of at least 3, 1, 1, 1, and 

1, respectively. This type of targeting approach works whether benefits are spatially independent 

or spatially dependent. 

With incomplete information about costs, however, another approach is needed. In the 

case of spatially-independent benefits, the regulator can still obtain the optimal solution using a 

payment to each landowner equal to the benefits generated by their parcel when conserved. To 

implement the solution from above involving A2 and B3, all landowners are offered 0.25 times 

the ecosystem services provision of their parcel. This amount is greater than or equal to costs 

only for A2 and B3 and, thus, only these two landowners agree to conserve their parcels.  

 Implementing the optimal solution is much more complex with both asymmetric cost 

information and spatially-dependent benefits. In this case, the regulator cannot achieve an 

optimal solution by targeting payments or setting them equal to a parcel’s contribution to 

benefits. With spatially-dependent benefits, the benefits of conserving any individual parcel 

cannot be determined without knowledge of which other parcels are also conserved. But without 

information about costs, the regulator cannot identify the set of parcels that are optimal to 

conserve. For example, net benefits decrease when either A1 or B1 are separately added to the 

configuration of A2, B2, and B3. However, adding both A1 and B1 to the configuration of A2, 

B2, and B3 increases net benefits from 3 to 3.25. If, on the other hand, the costs of conserving 

B1 were 2 instead of 1 then it would not be optimal to conserve either A1 or B1. The optimal 

landscape cannot be determined without cost information for each parcel. 

A regulator that only uses available information on benefits may obtain a solution that is 

far from optimal because parcels with high benefits may also have high costs and generate 

relatively low net benefits. For example, A3 always provides higher benefits than B1 with any 
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number of conserved neighbors, and yet B1 is optimally conserved and A3 is not. Starting with 

the optimal landscape, if A3 is conserved rather than B1, net benefits fall to 2.25 from 3.25 under 

the optimal solution. 

In sum, with spatially dependent benefits, the problem of finding the optimal land-use 

pattern that provides the highest level of net benefits cannot be solved on a parcel-by-parcel 

basis. Finding the optimal solution involves calculating benefits across the entire landscape to 

factor in spatial dependencies and requires information about costs.  Simple mechanisms 

sufficient for cases without asymmetric information or spatially dependent benefits do not solve 

the problem with both asymmetric information and spatially dependent benefits.  We develop an 

alternative approach that solves this problem in the next section.    

 

3.  The Auction Mechanism  

There are i = 1, 2, …, N land parcels in a landscape, each owned by a different individual.  

On each parcel, the landowner chooses between a land use that potentially provides a greater 

level of ecosystem services but lower direct monetary return to the landowner (“conservation”), 

or one that provides a low level of ecosystem services but higher direct monetary return 

(“development”)..  Let xi = 1 when parcel i is conserved and 0 when parcel i is developed. The 

binary vector X = (x1, x2, …, xN) describes the landscape pattern of conserved and developed 

parcels. It is straightforward to expand the number of land use alternatives available to 

landowner but doing so complicates notation without adding more insight so we stick to binary 

choice representation here.     

The function B(X) converts the landscape pattern (X) into the monetary value of 

ecosystem services provided on the landscape. Because of spatial interdependence, the increase 
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in B when parcel i is conserved may be a function of the pattern of conservation on other parcels

ij ≠ . We assume that the benefits function B(X) is common knowledge.  

The owner of parcel i earns a return ci ≥ 0 if the parcel is developed and 0 if the parcel is 

conserved (i.e., ci is the cost of conservation). We assume that ci is known only by the owner of 

parcel i, while all other landowners and the regulator only know the distribution of possible 

values of ci. Because  we solve for the dominant strategy equilibrium, assumptions about the 

distribution of ci do not affect the analysis (Montero 2008). 

The regulator wishes to implement the land-use pattern, X* = (x1*, x2*, …, xN*), that 

maximizes net social benefits. The optimal land use pattern is given by: 

])(max[arg*
1
∑

=

−=
N

i
ii cxXBX . 

If the regulator knew each ci then, in principle, this solution could be solved without the auction 

mechanism. In practice, finding the optimal solution can be a difficult problem and often search 

algorithms that find good, though not necessarily optimal, solutions are used (e.g., Polasky et al. 

2008). However, without knowledge of  costs, the auction is needed to reveal costs in order to 

determine the optimal solution..     

In the auction, each landowner i simultaneously submits a bid si. Upon receiving the bids 

the regulator decides which bids to accept and which to reject. If the bid of landowner i is 

accepted, parcel i is conserved and the regulator pays the landowner an amount pi. If the bid of 

landowner i is rejected, parcel i is developed and the landowner receives ci. We assume no 

collusion in bids across landowners, and elaborate on the importance of this assumption in the 

discussion section. 

To determine which bids to accept and the amount of payment to a landowner whose bid 

is accepted, the regulator first calculates the expected social benefits of conserving parcel i, ∆Wi. 
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To do this calculation, the regulator assumes that the bid of landowner i is equal to the cost of 

conserving parcel i (i.e., si = ci). Since the regulator knows the benefits function for the landscape 

B(X), observing si (assuming that si = ci) means the regulator can calculate the expected social 

net benefits of conserving parcel i. The regulator calculates the expected social benefits of 

conserving parcel i, ∆Wi, with the following steps:  

1) Solve for the set of parcels to conserve that maximize social net benefits assuming that 

parcel i will be conserved, Xi* = (x1i*, x2i*,…, xi-1i*, 1, xi+1i*, …, xNi*); 

2) Solve for the set of parcels to conserve that maximize social net benefits assuming that 

parcel i will not be conserved, X~i* = (x1~i*, x2~i*,…, xi-1~i*, 0, xi+1~i*, …, xN~i*); 

3) Find the social net benefits when parcel i is conserved net of the cost for parcel i: 

**)(*)( ji
ij

jiii xcXBXW ∑
≠

−= ; 

4) Find the social net benefits when parcel i is not conserved: 

**)(*)( ~~~ ij
ij

jiii xcXBXW ∑
≠

−= ; 

5) Take the difference between  :*)( and*)( iiii XWXW  









−−−=

−=∆

∑∑
≠≠

**)(**)(

*)(*)(

~~

~

ij
ij

jiji
ij

ji

iiiii

xcXBxcXB

XWXWW

.   

The regulator accepts the bid from landowner i if and only if ii sW ≥∆  and pays 

landowner i ii Wp ∆=  if and only if the bid is accepted. We assume that the auction mechanism 

is common knowledge.   

Note that each landowner does not know the exact value of ∆Wi = ip  when bids are 

submitted because this amount depends in part on which other landowners bids will be accepted. 
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However, landowner i understands that the payment pi is independent of the bid si as the 

landowner’s bid is not used in steps 1-5 above. The bid level only affects whether or not the bid 

is accepted, not the amount of the payment if the bid is accepted. 

If benefits are spatially-independent, then ∆Wi is only a function of conservation on 

parcel i. The only change between Xi* and X~i* is that parcel i is conserved in Xi* and developed 

in X~i*. With spatially-dependent benefits, however, this need not be the case. Removing a 

conserved parcel from the optimal solution may require a reconfiguration of conserved and 

developed parcels.  For example, suppose there are two parcels (1, 2) with B(0, 0) = 0, B(1, 0) = 

B(0, 1) = 2, B(1, 1) = 8, c1 = c2 = 3. In this case it is optimal to conserve both parcels so that Xi* 

= (1, 1). If, however, parcel i is left out of the solution, then it is better not to conserve parcel j as 

conserving one parcel alone generates benefits of 2 but costs of 3. Therefore, X~i* = (0, 0).   

 

4. Results 

We first show that it is a dominant strategy for each landowner to bid their cost si = ci 

under this auction mechanism (Proposition 1) and then that the auction mechanism yields an 

optimal solution (Proposition 2). 

 

Proposition 1:  Under the auction mechanism described above, it is a dominant strategy for each 

landowner i to bid si = ci. (See SI Text S2 for a formal proof).   

 

The intuition for Proposition 1 can be seen by plotting the range of potential payments to 

parcel i (pi) versus the range of potential bids (si) in relation to the cost ic  (Figure 2). When the 

landowner overbids (si > ci), there is the possibility that the bid will be rejected (si > pi) even 
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though  pi > ci  so that the landowner would be better off with conservation. When the landowner 

underbids (si < ci), there is the possibility that the bid will be accepted (si ≤ pi) even though  pi < 

ci  so that the landowner would be better off with development. Bidding the opportunity cost,

i is c= , eliminates risk of losses from both over- and under-bidding.  

For the landowner, it does not matter whether the benefits of conservation are simple or 

complex; what matters is whether or not their bid will be accepted, and if it is accepted that the 

payment from conservation (pi) is higher than the payment from development (ci). Truthful 

bidding is the dominant strategy given the auction mechanism. This result relies on the 

independence of payments and bids: ii Wp ∆=  does not depend on si. The bid only affects 

whether or not the bid is accepted, not the payment itself. The payment to landowner i depends 

on the value of increases in ecosystem services with conservation, and the bids of landowners 

other than i. This is true whether or not other landowners bid accurately. The landowner then 

should choose to have the bid accepted if and only if ii cp ≥  which they can guarantee by 

choosing ii cs = .     

 Truthful revelation of costs is needed for implementation of the optimal solution with 

spatially-dependent benefits. The conservation decision on some parcel j can affect the expected 

benefits of conserving parcel i. Thus, without exact information about costs on each parcel the 

regulator’s solution may deviate from the optimum. With cost information, the regulator can 

choose which bids to accept and make the associated payments to get to an optimal solution.  

Proposition 1 shows it is a dominant strategy for each landowner to choose si = ci. The following 

proposition shows that the auction mechanism achieves an optimal solution. 
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Proposition 2:  When benefits are spatially-dependent, the auction mechanism generates the 

optimal solution when the regulator 1) accepts bids if and only if ii Ws ∆≤ and 2) pays 

landowner i i ip W= ∆  if the bid is accepted. (See SI Text S3 for a formal proof).   

 

  In an optimal solution it must be the case that the social benefits of conservation are at 

least as great as the costs of conservation for all conserved parcels, and less than for all 

developed parcels. Defining net benefits, ∆Wi, as the difference between the highest net benefits 

when parcel i is included (but excluding the cost of parcel i) and the highest net benefits when 

parcel i is not included, ensures that this is the proper rule defining an optimum. If ∆Wi is greater 

than ci, then it is optimal to conserve parcel i, as it implies the net benefits of conserving parcel i 

are positive. When the converse is true, then parcel i should not be conserved.  

Together, propositions 1 and 2 show that the regulator can implement an optimal land-use 

pattern with spatially-dependent benefits through the auction mechanism described. Spatially-

dependent benefits can make finding an optimal solution more difficult and magnifies potential 

losses from mistakes but does not interfere with the incentive mechanism that enables the 

regulator to implement the optimal solution.  

 

5. The simple example revisited 

 To illustrate the auction mechanism, we return to the simple example from section 2 with 

V=0.25.  As discussed earlier, X* entails the conservation of parcels A1, A2, B1, B2, and B3, 

providing total net benefits of B(X*) =  3.25.  Table 1 shows the calculation of conservation 

payments under the auction mechanism. For each parcel, we compute the optimal landscape with 

parcel i (Xi*), the net benefits of Xi* without including the cost of parcel i (Wi(Xi*)), the optimal 
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landscape without conserving parcel i (X~i*), and the net benefits of X~i* (Wi(X~i*)).  From Table 

1 we can see that the optimal payment, pi = ∆Wi, is greater than or equal to the cost of 

conservation, ci, for optimally conserved parcels, and pi = ∆Wi < ci if parcel i is optimally 

developed.   

 

6. Discussion  

This paper examines the implementation of a PES program through an auction 

mechanism when ecosystem service provision depends on the spatial pattern of conservation 

across multiple landowners, each with private information about their cost of conservation. 

Spatial dependencies characterize many ecosystem services, with habitat provision, pollination 

and nutrient filtering for clean water being three prominent examples.  Because the opportunity 

cost of conservation will almost always depend on landowner characteristics that are privately 

known (e.g., landowner skills and preferences), asymmetric information is an important feature 

of most voluntary PES programs. Spatial dependencies imply that the benefit of conserving a 

given parcel will depend on the optimal pattern of conservation (i.e., what other parcels are also 

conserved), but this cannot be determined without information on each landowner’s cost. Hence, 

an optimal PES program for spatially-dependent ecosystem services cannot be implemented 

without first addressing the problem of asymmetric information.  

The auction mechanism proposed in this paper provides a surprisingly simple solution to 

the optimal provision of ecosystem services. The mechanism differs from traditional PES 

schemes by breaking the problem into two stages. First, the auction mechanism is used to 

generate information on each landowner’s cost. Second, the regulator uses the cost information 

to find a solution to the landscape level conservation problem and implements this solution by 
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targeting payments to the owners of parcels that make up the optimal solution. By paying each 

landowner an amount equal to the increase in social benefits with conservation of their parcel, an 

amount that is independent of their bid, the auction mechanism applies the fundamental insight 

of Vickrey auctions to break the link between a landowner’s bid and their payment, thereby 

inducing truthful revelation of cost in the bidding stage.    

Several additional issues deserve attention in connection with the auction mechanism 

developed in this paper: i) potential collusion among landowners in bidding, ii) the commitment 

of the planner to pay landowners the increase in social benefits of conservation even when bids 

come in far lower than benefits, and iii) the case where it is costly to raise and distribute program 

funds (i.e., there is a concern about the distribution of rents), or where there is a fixed 

conservation budget.   

In the auction it may be possible, though extremely difficult in practice, for landowners to 

collude and, thereby, raise the payments the group receives from the regulator. A group of 

landowners could potentially underbid in order to be awarded a conservation contract that would 

not occur with truthful bidding. Underbidding as a team can be profitable even though it might 

not be socially optimal. Consider a slight variation in the two-parcel example given above with 

B(0, 0) = 0, B(1, 0) = B(0, 1) = 2, B(1, 1) = 8. Now assume that c1 = c2 = 5 (rather than 3). Here 

the optimal the solution is to conserve neither parcel. However, if each landowner bids 2 rather 

than their cost of 5, the regulator will choose to conserve both parcels.  The regulator will pay 

each landowner 6 because in this case:   

~( *) ( *) (8 2) 0 6.i i i i iW W X W X∆ = − = − − =   

Successful collusion requires both landowners to change their bids in a coordinated fashion. This 

outcome is similar to each player in a Prisoner’s Dilemma game having a dominant strategy to 
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defect while both are better off with cooperation. However, underbidding in this fashion is risky 

because it is possible that landowners will be paid less than their cost. In general, successful 

collusion has high information requirements. To guarantee success, a group of landowners would 

need to compute the optimal solution to predict the planner’s outcome. But, to compute the 

optimal solution the landowners would need private information about the costs of other 

landowners as well as information about benefits. Landowners would also require an approach to 

share collusive profits such that team members do not wish to deviate from the collusive strategy 

(Montero 2008).   

Truthfully bidding cost is a dominant strategy for each landowner when the regulator 

commits ex-ante to paying landowners the social value of their increase in services. However, if 

landowners believe the regulator will renegotiate after bids have been submitted, then truth-

telling is no longer necessarily a dominant strategy. In this case, there would be an incentive to 

inflate bids to mitigate the potential for downward renegotiation of payments. Therefore, 

implementation of the auction mechanism requires that the regulator can credibly commit to 

enforcement of the payment plan.     

Under our auction mechanism, payments are based on the contribution of a landowner’s 

parcel to the increase in the value of ecosystem services provided, which will in general be larger 

than the landowner’s cost. The difference between benefits and cost, also referred to as 

“information rents,” reflect the fact that landowners must be paid something to disclose their 

private information. Information rents are an unavoidable feature of incentive schemes in the 

presence of asymmetric information. Paying anything less than full benefits in an effort to reduce 

information rents risks having some landowners for whom conservation is socially beneficial 

choose not to conserve. Spatial dependencies can increase the size of information rents (see SI 
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Text S4 and SI Figures 1 and 2 for more analysis of the information rents generated in our simple 

example).  

Economists have studied mechanisms designed to reduce information rents associated 

with environmental policies (see Lewis, 1996, for a survey and Mason and Plantinga, 2013, for a 

recent application). Mechanisms to reduce information rents involve a tradeoff between 

maximizing social net benefits and reducing the budgetary costs of the regulating agency. If the 

regulator must stay within a fixed budget, there is no guarantee that the (unconstrained) optimum 

can be obtained. In this case, there can be parcels for which social net benefits of conservation 

are positive but that cannot be afforded. It is a general finding of the mechanism design literature 

that no balanced-budget mechanism can be found to always implement the optimal solution 

(Walker 1980). Intuitively, by changing their bids, landowners can affect which parcels can be 

afforded and so they may try to alter their bids to manipulate the outcome of the auction.         

In general, even with complete information about conservation benefits and costs, solving 

for the optimal land-use pattern can be difficult when there are spatial dependencies. Benefits 

functions may be highly non-linear and the discreteness of the choice problem (e.g., conserve or 

develop) introduces further complications. Furthermore, the optimal solution may not be unique.  

In some applications, researchers use heuristic methods to find good – though not necessarily 

optimal – solutions (e.g., Nalle et al. 2004, Nelson et al. 2008, Polasky et al. 2008). Lewis et al. 

(2011) apply such methods to a large-scale integer programming problem for the Willamette 

Basin of Oregon. They approximate the optimal solution under the assumption that the regulator 

has complete information about costs and evaluate a range of targeted PES policies under the 

assumption that the regulator knows only the cost distribution. They find that the net benefits 

under the (approximate) optimal solution are always larger – and typically much larger – than 
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those generated by the targeted PES policies. These results suggest that the proposed auction 

mechanism will greatly outperform policies that are developed with incomplete information 

about costs. Regardless of whether the optimum is found, or just approximated, the auction 

mechanism developed in this paper can be used to implement the desired solution identified by 

the regulator.  

 
Acknowledgements 
The authors thank Soren Anderson for especially insightful comments. The authors also thank 
seminar participants at the Triangle Resource and Environmental Economics seminar in Raleigh, 
NC, Michigan State University, the University of Minnesota, the University of Puget Sound, and 
the AERE Conference in Seattle June 2011. Authors acknowledge funding from the National 
Science Foundation Collaborative Research Grant No.’s 0814424 (Lewis), 0814260 (Plantinga), 
and 0814628 (Nelson/Polasky). Lewis also acknowledges funding from the United States Forest 
Service, Pacific Northwest Research Station. 
 
 
References 
 
Church, R.L., D.M. Stoms, and F.W. Davis. 1996. Reserve selection as a maximal coverage 
problem. Biological Conservation 76: 105– 112. 
 
Daily, G. (Ed.). 1997. Nature’s Services:  Societal Dependence on Natural Ecosystems. 
Washington, DC: Island Press.  
 
Dasgupta, P., P. Hammond, and E. Maskin. 1980. On imperfect information and optimal 
pollution control. Review of Economic Studies 47(5): 857-860. 
 
Drechsler, M., F. Watzold, K. Johst, and J.F. Shogren. 2010. An agglomeration payment for 
cost-effective biodiversity conservation in spatially structured landscapes. Resource and Energy 
Economics 32(2): 261-275. 
 
Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, 
Evolution, and Systematics 34: 487-515. 
 
Groves, T.  1973. Incentives in teams. Econometrica 41: 617-631. 
 
Groves, T. and J. Ledyard. 1977.  Optimal allocation of public goods: A solution to the 'free 
rider' problem.  Econometrica 45: 783-809. 
 



20 | P a g e 
 

Kirwan, B., R.N. Lubowski, and M.J. Roberts. 2005. How cost-effective are land retirement 
auctions?  Estimating the difference between payments and willingness-to-accept in the 
Conservation Reserve Program. American Journal of Agricultural Economics 87(5): 1239-1247. 
 
Kwerel, E. 1977. To tell the truth: Imperfect information and optimal pollution control. Review 
of Economic Studies 44(3): 595-601. 
 
Lewis, T.R. 1996. Protecting the environment when costs and benefits are privately known. Rand 
Journal of Economics 27(4): 819-847. 
 
Lewis, D.J., A.J. Plantinga, E. Nelson, and S. Polasky. 2011. The efficiency of voluntary 
incentives policies for preventing biodiversity loss. Resource and Energy Economics 33(1): 192- 
211. 
 
Mason, C.F., and A.J. Plantinga. 2013. The additionality problem with offsets: Optimal contracts 
for carbon sequestration in forests.  Journal of Environmental Economics and Management, 
forthcoming. 
 
Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Synthesis. 
Washington (DC), Island Press. 
 
Montero, J.P. 2008. A simple auction mechanism for the optimal allocation of the commons. 
American Economic Review 98(1): 496-518. 
 
Nalle, D.J., C.A. Montgomery, J.L. Arthur, S. Polasky, and N.H. Schumaker. 2004. Modeling 
joint production of wildlife and timber. Journal of Environmental Economics and Management 
48(3): 997-1017. 
 
Nelson, E., S. Polasky, D.J. Lewis, A.J. Plantinga, E. Lonsdorf, D. White, D. Bael, and J. 
Lawler. 2008. Efficiency of incentives to jointly increase carbon sequestration and species 
conservation on a landscape. Proceedings of the National Academy of Sciences 105(28): 9471-
9476. 
 
Parkhurst, G.M., J.F. Shogren, C. Bastian, P. Kivi, J. Donner and R.B.W. Smith. 2002. 
Agglomeration bonus: An incentive mechanism to reunite fragmented habitat for biodiversity 
conservation. Ecological Economics 41: 305-328. 
 
Polasky, S., E. Nelson, J. Camm, B. Csuti, P. Fackler, E. Lonsdorf, D. White, J. Arthur, B. 
Garber-Yonts, R. Haight, J. Kagan, C. Montgomery, A. Starfield, and C. Tobalske. 2008. Where 
to put things?  Spatial land management to sustain biodiversity and economic production.  
Biological Conservation 141(6): 1505-1524. 
 
Stoneham, G., V. Chaudhri, A. Ha, and L. Strappazzon.  2003. Auctions for conservation 
contracts: An empirical examination of Victoria’s Bush Tender Trial.”  Australian Journal of 
Agricultural and Resource Economics 47(4): 477-500. 
 



21 | P a g e 
 

Vickrey, W. 1961. Counterspeculation, auctions, and competitive sealed tenders. Journal of 
Finance 16(1): 8-37. 
 
Walker, M. 1980. On the nonexistence of a dominant strategy mechanism for making optimal 
public decisions. Econometrica 48(6): 1521-1540. 
 
 

 
 

 

 



22 | P a g e 
 

Figure 1.  Costs and biophysical provision of services from land conservation  
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Figure 2: Illustration of Potential Losses from Over- and Under-Bidding.  The landowner 
would like to conserve if and only if pi ≥ci. Any bid (si) and price (pi) combination under the 45 
degree line results in bids being rejected. Any bid (si) and price (pi) combination over the 45 
degree line results in bids being accepted. The triangles show potential losses from over- or 
under-bidding.     
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Table 1. Optimal Payments in the Simple Example 
Parcel Cost ��

∗ ��(��
∗) �

~�

∗  ��(�~�

∗ ) ∆�� 
 Optimally Conserved Parcels 

A1 3 A1-A2,B1-B3 6.25 A2,B2-B3 3 3.25 
A2 1 A1-A2,B1-B3 4.25 B2-B3 1.5 2.75 
B1 1 A1-A2,B1-B3 4.25 A2,B2-B3 3 1.25 
B2 1 A1-A2,B1-B3 4.25 A2-A3,B3 0.75 3.5 
B3 1 A1-A2,B1-B3 4.25 A1-A2,B1-B2 2 2.25 

 Non-Conserved Parcels 
A3 3 A1-A3,B1-B3 5.75 A1-A2,B1-B3 3.25 2.5 
A4 3 All 5 A1-A2,B1-B3 3.25 1.75 
B4 3 A1-A2,B1-B4 6 A1-A2,B1-B3 3.25 2.75 
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SUPPORTING INFORMATION 

SI Text 

SI 1. Relationship to Previous Literature on Spatially-Dependent Provision of Ecosystem 

Services under Asymmetric Information  

Previous studies have examined incentive policies to affect the spatial pattern of land use 

and associated levels of ecosystems services, but none have identified a general mechanism for 

achieving an optimal solution in this setting. For example, Smith and Shogren (1) evaluate an 

optimal contract scheme for land preservation with asymmetric information but consider only the 

special case of two adjacent landowners. Parkhurst et al. (2), Parkhurst and Shogren (3), and 

Drechsler et al. (4) have studied an “agglomeration bonus” that provides an additional payment 

to landowners who conserve adjacent habitat.  

There is also a large literature devoted to finding optimal landscape patterns assuming 

full information. A number of studies solve for the reserve network that maximizes quantitative 

biodiversity indices subject to various constraints (e.g., 5 – 9).  In some cases, these studies 

account for spatial dependencies in the objective function (e.g., 10 – 14). 

Lewis and Plantinga (15) and Lewis et al. (16) consider alternative approaches for 

targeting afforestation payments designed to reduce forest fragmentation when the regulator does 

not have full information on landowners’ willingness-to-accept (WTA) to participate in 

afforestation. Lewis et al. (17) consider a suite of policies that target enrollment based on 

observable parcel characteristics that proxy for marginal benefits and costs. They evaluate the 

performance of the policies relative to the solution when the regulator has full information about 

WTA and show that these targeted policies typically achieve a small fraction of the benefits that 

are obtained by an optimal conservation policy under full information. While solving for the 
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optimal landscape with spatial dependencies can be difficult even with full information, Lewis et 

al. (17) find that even an approximately optimal solution developed under full information 

greatly outperforms policies developed under incomplete cost information. 

The use of auctions in the context of conservation has been examined in a set of papers 

(18 – 22).  This literature has emphasized the role of auctions in reducing information asymmetry 

(18), the link between the information structure in auctions and landowner incentives (20), and 

the ability of auctions to reduce costs to the government (21). These papers typically consider 

auctions in which payments are linked to the bids submitted by landowners, giving incentives for 

landowners to inflate bids.  In a study of U.S. Conservation Reserve Program (CRP) contracts, 

Kirwan et al. (21) find evidence that landowners systematically inflate their bid above cost.   

Our auction mechanism differs from the prior conservation auction literature in that we 

build from the fundamental insight from Vickery (23) and decouple payment from the 

landowner’s bid.  As such, our study is most closely related to the literature on information-

revealing mechanisms.  Kwerel (24) develops a tradable permit and subsidy scheme in which it 

is a Bayesian-Nash equilibrium for competitive firms to truthfully reveal private information 

about pollution control costs and implement an optimal pollution abatement solution.  Dasgupta 

et al. (25) and Kim and Chang (26) develop mechanisms that implement an optimal solution 

even with imperfect competition.  Montero (27) develops a uniform-price auction that achieves 

an optimal solution in which firms submit a demand schedule, and based on this, the regulator 

sets the number of permits for sale and a partial rebate of auction revenues.  These mechanisms 

achieve an optimal solution in the context of pollution reduction because they induce firms to 

correctly reveal information about cost of emissions reductions and provide incentives so that 

firms choose the efficient emissions level. Our mechanism works similarly to Montero’s 
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mechanism but in the context of providing ecosystem services.  However, the benefit function in 

our problem is more complex than in the pollution control problem because the provision of 

conservation benefits can be spatially-dependent, i.e., the net benefits of conservation on one 

land parcel depend on whether or not specific neighboring parcels are conserved.  The benefits of 

emissions control considered in the papers mentioned above, though they can depend on 

aggregate pollution, are not spatially dependent as in our problem.      

 

SI 2. Proof of proposition 1 

Suppose the landowner bids si = ci.  If ii Ws ∆≤ , the landowner’s bid will be accepted and the 

landowner will receive a payment iii cWp ≥∆= . If ii Ws ∆> , the landowner’s bid will be 

rejected and the landowner will receive ci.  We prove that bidding si = ci is a dominant strategy 

by showing that this strategy generates equal or greater payoffs than overbidding (si > ci) or 

underbidding (si < ci) over the range of possible values of iW∆ .   

 

Overbidding (si > ci ) 

Case (i): ii cW ≥∆ .  When ii cW ≥∆ , then either a) ii sW ≥∆ , in which case the 

landowner’s bid will be accepted and the landowner will receive a payment i i ip W c= ∆ ≥ , which 

is the same outcome as bidding si = ci, or b) ii sW <∆ , in which case the landowner’s bid will be 

rejected and the landowner will earn a payoff of ic  ≤ iW∆ .   In particular, when iii sWc <∆< , 

overbidding, si > ci , generates a lower payoff for the landowner than bidding si = ci.   
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Case (ii): ii cW <∆ . When ii cW <∆ , then ii Ws ∆>  and the landowner’s bid will be 

rejected.  The landowner will develop the land and earn ci, which is the same outcome as would 

have occurred had the landowner bid si = ci.    

Therefore, overbidding, si > ci, is dominated by bidding si = ci.   

 

Underbidding (si < ci) 

Case (i): ii cW ≥∆ . When ii cW ≥∆ , then i is c< , the landowner’s bid will be accepted 

and the landowner will receive a payment iii cWp ≥∆= , which is the same outcome as bidding 

si = ci.   

Case (ii): ii cW <∆ .  When iii cWs <∆≤ , the bid is accepted and the landowner receives 

a payment iii cWp <∆= .  Thus, bidding si < ci generates lower payoffs than bidding si = ci.  If 

ii Ws ∆> , the landowner’s bid is rejected and the landowner earns ci, which is the same outcome 

as would have occurred had the landowner bid si = ci.   

Therefore, underbidding (si < ci) is dominated by bidding si = ci.  QED 

 

SI 3. Proof of Proposition 2 

With full information about costs, the regulator can solve for X* that maximizes social net 

benefits. Proposition 1 proves that landowners have a dominant strategy to bid si = ci under this 

auction mechanism.  Given that landowners bid truthfully, si = ci, we show that the auction 

generates the optimal solution.   

In an optimal solution it must be the case that ii cW ≥∆  for all conserved parcels in X* 

and ii cW <∆  for all developed parcels in X*, otherwise net social benefits could be increased by 
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making a different choice about the conservation of parcel i. The social net benefits of 

conservation conditional on parcel i being included in the solution is given by: 

j

N

j
jiii cxXBXNB ∑

=

−=
1

*)(*)(*)(  

where Xi* includes the optimally chosen set of other parcels j ≠ i.  The net social benefits of 

conservation conditional on parcel i not being conserved is given by: 

j

N

j
ijii cxXBXNB ∑

=

−=
1

~~~ *)(*)(*)(  

If the inclusion of parcel i increases net social benefits, then  

NB(Xi
*)  – NB(X~i

*) ≥ 0   

Wi(Xi
*)  – ci – W(X~i

*)  ≥ 0 

∆Wi ≥ ci   

In the auction mechanism, parcel i will be conserved if and only if ii sW ≥∆ .  Because 

landowners bid truthfully (Proposition 2), so that si = ci, we have that parcel i will be conserved 

if and only if ii cW ≥∆ .  QED 

 

SI 4. Simulating the simple landscape 

In the text we illustrate the problem of finding the optimal landscape pattern with 

spatially-dependent benefits and asymmetric information on cost.  Further, we describe how the 

auction mechanism works on a 2 x 4 grid of land parcels with arbitrarily chosen parameter values 

(Figure 1).  Here we explore the performance of the auction mechanism on the simple landscape 

over a large range of monetary values for a unit of ecosystem service (V) and random draws of 

cost for conservation on a given parcel (ci).  Each time we solve for the optimal landscape we 

record payments to landowners, conservation cost (the sum of cost across parcels that are 
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awarded a conservation contract), and information rents (the payment to the landowner minus the 

cost).  

Our simulation of optimal landscapes uses the following process, 

1. We set an initial value of V: V = 0.02 

2. We randomly select a ci value for each parcel on the landscape over the integer range 

[0,4]. 

3. Using the spatial distribution of ecosystem services values from Figure 1 we solve for the 

optimal landscape and record all the relevant data, including B(X*), sum of conservation 

payments, the sum of conservation costs, and sum of information rents. 

4. We conduct steps 2 through 3 1,000 times. 

5. We increase V by 0.02 units and repeat steps 2 through 4. 

6. The simulation stops once steps 2 through 4 have been conducted for V = 1. 

 

In Figure S1 we graph the simulated mean and 5th and 95th percentile values of aggregate 

conservation payment and conservation opportunity cost on optimal landscapes over the range of 

modeled V (the MATLAB code for this simulation is found in SI Text 5). 

As V increases parcels receive higher conservation payments.  At V values of 0.4 and 

greater all parcels on the 2 x 4 landscape are optimally conserved no matter the distribution of 

costs.  At very low values of V the information rents generated on the landscape are relatively 

low.  For example, from V = 0.02 to V = 0.30 and at simulation means (the black diamonds and 

black circles), the aggregate information rent generated on the optimal landscape (the vertical 

distance between black diamonds and black circles) is on par with the optimal landscape’s 

conservation cost.  However, as V increases to the point and beyond where the entire landscape is 
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optimally conserved (V > 0.4) and conservation opportunity costs do not change as V increases, 

information rents generated on the landscape grow quickly. 

We also use the simulation to determine the effect of landscape heterogeneity on 

information rents.  Specifically, does a more uniform distribution of costs across the landscape 

lead to increased or decreased information rents?  To answer this question use a mean-preserving 

spread on the random distribution of cost to isolate the impact of WTA variance on information 

rents.  We calculate the average ratio of aggregate information rent to conservation cost 

generated on the optimal landscape over two dimensions, the value of V and the variance in 

WTA values (Figure S2). (The MATLAB code for this simulation is in SI Text 6.) 

At low levels of V, greater heterogeneity in cost across the landscape generates greater 

information rents on average.  At the highest levels of V, greater homogeneity in cost leads to 

slightly higher information rents.  This latter result can be explained by the fact that low levels of 

variance in cost means that few to no low cost parcels are present on the landscape while 

increasing V means that is optimal to pay all parcels a conservation payment.  At the same time 

payment levels are increasing as V gets larger.  Therefore, a combination of high payments 

across all parcels and little to no low cost anywhere on the landscape means the regulator can 

expect relative aggregate information rent to be very high.    

 
SI 5. MATLAB code for this simulation graphed in Figure S1 
 
% The code is constructed for a 2 x 4 landscape wit h spatially dependent  
% benefits.  The rows are labeled A and B in the pa per and the columns are  
% labeled 1 through 4 in the paper.  A letter-numbe r combination, for 
% example, A4, gives the parcel's address on the ma p.   
  
% The C matrix gives conservation costs.  
  
% The B1 matrix gives the conservation benefit (b) when no neighboring  
% parcel is conserved.  
  
% The B2 matrix gives the conservation benefit (b) when one neighboring  
% parcel is conserved.  
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% The B3 matrix gives the conservation benefit (b) when two neighboring  
% parcels are conserved.  
  
% The B4 matrix gives the conservation benefit (b) when three neighboring  
% parcels are conserved.  
  
% To solve the spatially-independent problem define  B1 and then set 
% B1=B2=B3=B4.  
  
iterations=0; 
for  z = 0.02:0.02:1 
iterations = iterations + 1; 
  
for  zz = 1:1000 
  
C = randi([0,4],2,4);    % WTA for each parcel is randomly assigned on the 

% uniform distribution (0,4).  
B1 = [6 5 4 2; 1 3 5 6];   % User input.  
B2 = [9 8 5 5; 2 6 8 9];    % User input.  
B3 = [11 10 7 7; 3 8 10 11];   % User input.  
B4 = [0 11 9 0; 0 9 11 0];  % User input.  
  
V = z %User input.  
   
% Find optimal landscape. (Find X-star-i) vector, n et benefit, etc.  This  
% calls the function 'findoptimal.m.'  
conserveoption=ones(2,4); 
[NB,BSumFinal,Pattern,FinalB,CSum]=findoptimal(C,B1 ,B2,B3,B4,V,conserveoption); 
OptNB=NB; OptBSum=BSumFinal; OptPattern=Pattern; Op tB=FinalB;  
  
% OptPattern gives a value of '1' in a cell if the parcel is optimally conserved and 
% a 0 otherwise.  
 
%Find W(X-star-i) for each conserved parcel i.  
for  j=1:2; for  k=1:4; 
    index=ones(2,4); index(j,k)=0; BV(j,k)=BSumFina l-sum(sum(C.*Pattern.*index));     
end ; end ; 
W=BV.*Pattern;  % The matrix 'W' gives the values of "W(X-star-i)".  
                % The value for each parcel is given at the parcel' s location  
                % on the landscape.  
  
% Find X-star-~i for each conserved parcel i.  
count = 0; 
Wnoti=zeros(2,4); 
for  j=1:2; for  k=1:4; 
    if  OptPattern(j,k)==1 
       count = count + 1; 
       conserveoption=ones(2,4); 
       conserveoption(j,k)=0; 
       [NB,BSumFinal,Pattern,FinalB,CSum]=findoptim al(C,B1,B2,B3,B4,V,conserveoption); 
       OptNBnoti(count,1)=NB; OptBSumnoti(count,1)= BSumFinal; OptPatternnoti(((count-
1)*2)+1:count*2,1:4)=Pattern; OptBnoti(((count-1)*2 )+1:count*2,1:4)=FinalB; 
        
      % Find W(X-star-~i) for each conserved i.  
      Wnoti(j,k)=BSumFinal-sum(sum(C.*Pattern));  % The matrix 'Wnoti' gives the 

   % values of "W(X-star-~i)". 
           % The value for each parcel is given  

   % at the parcel's location  on the 
   % landscape.  

end; end; end  
  
 
% Calculate Delta-W(i)and calculate other solution data 
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deltaWi = W - Wnoti;   % Payments given out to each parcel owner.  
sumdeltaWi(iterations,zz) = sum(sum(deltaWi)); % Sum of payments.  
finallandscape=zeros(2,4);  % Initialize the landscape.  
finallandscape(deltaWi>0)=1;  % A parcel is assigned a value of 1 if given a 

% payment.  
finalcost=C.*finallandscape;  % Map of opportunity cost (OC) of conservation.  
finalcostsum(iterations,zz)=sum(sum(finalcost));  % Total OC of conservation.  
finalcostvar(iterations,zz)=var([C(1,:) C(2,:)]);  % Variance in OC of conservation 

    % across parcels.  
end; end  
  
% Place simulation results in summary tables.   
sumdeltaWiAvg = mean(sumdeltaWi,2); 
sumdeltaWiPerc = prctile(sumdeltaWi,[0 5 95 100],2) ; 
finalcostsumAvg = mean(finalcostsum,2);  
finalcostsumPerc = prctile(finalcostsum,[0 5 95 100 ],2); 
zzz = 0.02:0.02:1; 
finaloutputsummary = [zzz' sumdeltaWiAvg sumdeltaWi Perc finalcostsumAvg 
finalcostsumPerc]; 
  
clearvars -except  finaloutputsummary  

 
% Function that is called by code above.   
function  [NB,BSumFinal,Pattern,FinalB,CSum] = 
findoptimal(C,B1,B2,B3,B4,V,conserveoption) 
  
NB=0; % Initialize NB at 0  
Pattern=zeros(2,4); % Initialize landscape at 0  
  
%Finds optimal landscape. (X-star-i). Loops over al l possible conservation patterns 
given ‘conserveoption’ restrictions.  
for  a=0:conserveoption(1,1); for  b=0:conserveoption(1,2); for  c=0:conserveoption(1,3); 
for  d=0:conserveoption(1,4); 
for  e=0:conserveoption(2,1); for  f=0:conserveoption(2,2); for  g=0:conserveoption(2,3); 
for  h=0:conserveoption(2,4); 
    B = B1; 
     
    if  b==1 || e==1; B(1,1)=B2(1,1); end ; 
    if  b==1 && e==1; B(1,1)=B3(1,1); end ; 
    if  a==1 || c==1 || f==1; B(1,2)=B2(1,2); end ; 
    if  (a==1 && c==1) || (a==1 && f==1) || (c==1 && f==1) ; B(1,2)=B3(1,2); end ; 
    if  (a==1 && c==1 && f==1); B(1,2)=B4(1,2); end ; 
  
    if  b==1 || d==1 || g==1; B(1,3)=B2(1,3); end ; 
    if  (b==1 && d==1) || (b==1 && g==1) || (d==1 && g==1) ; B(1,3)=B3(1,3); end ; 
    if  (b==1 && d==1 && g==1); B(1,3)=B4(1,3); end ; 
  
    if  c==1 || h==1; B(1,4)=B2(1,4); end ; 
    if  c==1 && h==1; B(1,4)=B3(1,4); end ; 
  
    if  a==1 || f==1; B(2,1)=B2(2,1); end ; 
    if  a==1 && f==1; B(2,1)=B3(2,1); end ; 
  
    if  b==1 || e==1 || g==1; B(2,2)=B2(2,2); end ; 
    if  (b==1 && e==1) || (b==1 && g==1) || (e==1 && g==1) ; B(2,2)=B3(2,2); end ; 
    if  (b==1 && e==1 && g==1); B(2,2)=B4(2,2); end ; 
     
    if  c==1 || f==1 || h==1; B(2,3)=B2(2,3); end ; 
    if  (c==1 && f==1) || (c==1 && h==1) || (f==1 && h==1) ; B(2,3)=B3(2,3); end ; 
    if  (c==1 && f==1 && h==1); B(2,3)=B4(2,3); end ; 
  
    if  d==1 || g==1; B(2,4)=B2(2,4); end ; 
    if  d==1 && g==1; B(2,4)=B3(2,4); end ; 
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BSum=sum(sum(B.*[a b c d; e f g h]))*V; % Total conservation benefit on landscape.  
CSum=sum(sum(C.*[a b c d; e f g h]));  % Total cost on landscape.  
 
% Retain the landscape that maximizes NB. The lands cape that maximizes NB is passed 
% back to the main program.   
if  BSum-CSum>NB 
    NB = BSum-CSum; BSumFinal = BSum; Pattern=[a b c d; e f g h]; FinalB = B; 
end  
  
end ; end ; end ; end ; end ; end ; end ; end ; 
 
% If no landscape generates positive NB a null solu tion is passed back to the main 
% program . 
if  NB==0 
    BSumFinal=0; Pattern=zeros(2,4); FinalB = 0; CS um=0; 
end  
       
end  

 
SI 6. MATLAB code for this simulation graphed in Figure S2 
 
% The code is constructed for a 2 x 4 landscape wit h spatially dependent  
% benefits.  The rows are labeled A and B in the pa per and the columns are  
% labeled 1 through 4 in the paper.  A letter-numbe r combination, for example, A4,  
% gives the parcel's address on the map.   
  
% The C matrix gives conservation costs.  
  
% The B1 matrix gives the conservation benefit (b) when no neighboring  
% parcel is conserved.  
  
% The B2 matrix gives the conservation benefit (b) when one neighboring  
% parcel is conserved.  
  
% The B3 matrix gives the conservation benefit (b) when two neighboring  
% parcels are conserved.  
  
% The B4 matrix gives the conservation benefit (b) when three neighboring  
% parcels are conserved.  
  
% To solve the spatially-independent problem define  B1 and then set B1=B2=B3=B4.  
  
iterations=0; 
for  z = 0.02:0.02:1 
iterations = iterations + 1; 
  
for  zz = 1:1000 
  
    % Ensures that the distribution of costs over lands cape for each iteration has a 
    % mean between 1.95 and 2.05 where costs are dr awn from a uniform distribution on 
    % the interval(0,4). 
    avgC = 0;     
    while  avgC > 2.05 || avgC < 1.95 
        C = randi([0,4],2,4); 
        avgC = sum(sum(C))/8; 
    end  
     
B1 = [6 5 4 2; 1 3 5 6];   % User input.  
B2 = [9 8 5 5; 2 6 8 9];    % User input.  
B3 = [11 10 7 7; 3 8 10 11];   % User input.  
B4 = [0 11 9 0; 0 9 11 0];   % User input.  
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V = z % User input.  
   
% Find optimal landscape. (Find X-star-i) vector, n et benefit, etc.  This  
% calls the function 'findoptimal.m.'  
conserveoption=ones(2,4); 
[NB,BSumFinal,Pattern,FinalB,CSum]=findoptimal(C,B1 ,B2,B3,B4,V,conserveoption); 
OptNB=NB; OptBSum=BSumFinal; OptPattern=Pattern; Op tB=FinalB;  
  
% OptPattern gives a value of '1' in a cell if the parcel is optimally conserved and  
% a 0 otherwise.  
 
% Find W(X-star-i) for each conserved i.  
for  j=1:2; for  k=1:4; 
    index=ones(2,4); index(j,k)=0; BV(j,k)=BSumFina l-sum(sum(C.*Pattern.*index));     
end ; end ; 
W=BV.*Pattern;  % The matrix 'W' gives the values of "W(X-star-i)".  
                % The value for each parcel is given at the parcel' s location  
                % on the landscape.  
  
%Find X-star-~i for each conserved i.  
count = 0; 
Wnoti=zeros(2,4); 
for  j=1:2; for  k=1:4; 
    if  OptPattern(j,k)==1 
       count = count + 1; 
       conserveoption=ones(2,4); 
       conserveoption(j,k)=0; 
       [NB,BSumFinal,Pattern,FinalB,CSum]=findoptim al(C,B1,B2,B3,B4,V,conserveoption); 
       OptNBnoti(count,1)=NB; OptBSumnoti(count,1)= BSumFinal; OptPatternnoti(((count-
1)*2)+1:count*2,1:4)=Pattern; OptBnoti(((count-1)*2 )+1:count*2,1:4)=FinalB; 
        
      %Find W(X-star-~i) for each conserved i.  
      Wnoti(j,k)=BSumFinal-sum(sum(C.*Pattern));  % The matrix 'Wnoti' gives the 

   % values of "W(X-star-~i)". 
           % The value for each parcel is given  

   % at the parcel's location  on the 
   % landscape.  

end; end; end  
  
  
% Calculate Delta-W(i)and calculate other solution data. 
deltaWi = W - Wnoti;   % Payments given out to each parcel owner.  
sumdeltaWi(iterations,zz) = sum(sum(deltaWi)); % Sum of payments.  
finallandscape=zeros(2,4);  % Initialize the landscape.  
finallandscape(deltaWi>0)=1;  % A parcel is assigned a value of 1 if given a 

% payment.  
finalcost=C.*finallandscape;  % Map of opportunity cost (OC) of conservation.  
finalcostsum(iterations,zz)=sum(sum(finalcost));  % Total OC of conservation.  
finalcostvar(iterations,zz)=var([C(1,:) C(2,:)]);  % Variance in OC of conservation 

    % across parcels.  
  
end; end  
  
% Place simulation results in summary tables.   
sumdeltaWiAvg = mean(sumdeltaWi,2); 
sumdeltaWiPerc = prctile(sumdeltaWi,[0 5 95 100],2) ; 
finalcostsumAvg = mean(finalcostsum,2);  
finalcostsumPerc = prctile(finalcostsum,[0 5 95 100 ],2); 
zzz = 0.02:0.02:1; 
finaloutput = [zzz' (sumdeltaWi-finalcostsum)./fina lcostsum finalcostvar]; 
finaloutputsummary = [zzz' sumdeltaWiAvg sumdeltaWi Perc finalcostsumAvg 
finalcostsumPerc]; 
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clearvars -except  finaloutput  finaloutputsummary  
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SI Figure Legends 
 
Figure S1: Simulated mean and 5th and 95th percentile values of the sum of conservation 
payments and conservation opportunity cost on the example landscape for various levels of V.  
 
Figure S2: Simulated mean ratio of aggregate information rent to conservation opportunity cost 
generated on the optimal landscape across two landscape dimensions: variance in WTA and V. 
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Figure S1 
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Figure SI2 
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