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Abstract

One way to obtain invariants of some Legendrian submanifolds in the standard contact

manifolds of 1-jet spaces, J1M , is through the Morse theoretic technique of generating

families. This dissertation extends the effective but not complete invariant of generating

family cohomology by giving it a product µ2. To define the product, moduli spaces of

gradient flow trees are constructed and shown to live as the 0-stratum of a compact smooth

manifold with corners. These spaces consist of intersecting gradient trajectories of functions

whose critical points correspond to Reeb chords of the Legendrian. This dissertation lays

the foundation for an A∞ algebra which will show, in particular, that µ2 is associative and

thus gives generating family cohomology a ring structure.
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Chapter 1

Introduction

A classic contact manifold is the 1-jet space of a smooth manifold M , J1(Mn) = T ∗(M)×R,

equipped with the contact structure ξ = ker(dz − λ), where λ is the canonical Liouville 1-

form. An important class of submanifolds in any contact manifold are the Legendrian

submanifolds: Λn such that TpΛ ⊂ ξ, for all p ∈ Λ. Given a smooth function f : M → R,

the 1-jet of f , j1(f) = {x, ∂f∂x (x), f(x)}, is a Legendrian submanifold of J1(M). Not all

Legendrian submanifolds arise as the 1-jet of a function. Generating families are a Morse

theoretical tool that encode a larger class of Legendrian submanifolds through considering

functions defined on a vector bundle over M : if a Legendrian Λ ⊂ J1(M) has a generating

family F : M×RN → R, then Λ = {(x, ∂F∂x (x, e), F (x, e))} | ∂F∂e (x, e) = 0}. More background

on generating families is given in Chapter 2.

In recent years, invariant cohomology groups have been defined for some Legendrian

submanifolds in J1(Mn) through the different techniques of pseudoholomorphic curves and

of generating families; see, for example, [4, 7, 12,21, 35]. In both of these types of construc-

tions, the cohomology groups have an underlying cochain complex generated by the Reeb

chords of the Legendrian.
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For a Legendrian Λ in J1M with a generating family F , the Reeb chords are in bijec-

tive correspondence with the positively valued critical points of a “difference function” w

associated to F . Thus by considering a cochain complex generated by the positively valued

critical points of w and a coboundary map ∂ defined using the positive gradient flow of

w, one can define generating family cohomology GH∗(F ). Sometimes a Legendrian Λ can

have multiple, non-equivalent generating families: one then obtains an invariant of Λ by

considering the set {GH∗(F )} for all generating families of Λ.

Generating family cohomology is an effective but not complete invariant, so a natural

problem is to build further invariant algebraic structures on GH∗(F ). Towards this goal,

we define a product structure:

Theorem 1. Given a Legendrian Λ ⊂ J1M with a generating family F : M × RN → R,

there exists a map

µ2 : GH i(F )⊗GHj(F )→ GH i+j(F ).

Moreover, this map descends to the equivalence class [F ] with respect to the operations of

stabilization and fiber-preserving diffeomorphism. Further, if {Λt}t∈[0,1] is a Legendrian

isotopy and Λ0 has a generating family, then for F 0 and F 1 given by a lift to a path

of generating families {F t}t∈[0,1] for {Λt}t∈[0,1] guaranteed by Proposition 8, the following

diagram commutes:

GH i(F 0)⊗GHj(F 0)

∼=
��

µ0
2 // GH i+j(F 0)

∼=
��

GH i(F 1)⊗GHj(F 1)
µ1

2 // GH i+j(F 1)

(1)

where the vertical isomorphisms are induced by continuation maps constructed in Chapter

8.

This theorem appears in parts throughout this dissertation as Corollary 2, Corollary 3,
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Corollary 4, and Theorem 19.

The product µ2 is defined through a count of points in a 0-dimensional moduli space of

gradient flow trees. Namely, from F one constructs the difference function w and then three

different stabilizations of w, denoted by w1,2;3, w2,3;3, w1,3;3. For critical points p1, p2, p0

of w, which correspond to Reeb chords of Λ, and a “perturbation” parameter s, one

constructs a moduli space M(p1, p2; p0|s) of “s”-intersecting gradient flow trajectories of

w1,2;3, w2,3;3, w1,3;3; see Figure 1. For generic choices of the s parameter,M(p1, p2; p0|s) will

be a manifold; for appropriate indices of pi, M(p1, p2; p0) will be 0-dimensional, and then

m2 is defined by a count of trees. The boundary of the compactification of a 1-dimensional

M(p1, p2; p0|s) shows that m2 is a cochain map and thus descends to GH∗(F ).

∇w1,2;3

∇w2,3;3

∇w1,3;3

p1

p2

p0

Figure 1: An element inM(p1, p2; p0|0) is a tree with three intersecting half-infinite trajec-
tories that follow different quadratic stabilizations of the difference function w and limit to
critical points given by the pi’s at their infinite ends.

Defining µ2 is part of a larger project in progress to define A∞ structures for Leg-

endrian/Lagrangian submanifolds with generating families. This was inspired in part by

Fukaya’s A∞ category of Lagrangian submanifolds in a symplectic manifold, an extension

of Floer homology, [15]. In a toy model of Fukaya’s construction, one gets an A∞ category

extending the Morse cohomology of a manifold M by studying gradient flow trees of Morse

functions on M [14] [23]. In Fukaya’s full construction, gradient flow trees are replaced by
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pseudoholomorphic curves. Rather than using pseudoholomorphic curves to capture geo-

metric information, our approach builds off of the toy model to build an A∞ category using

gradient flow trees from generating families; this involves extending the tree construction

from functions on M to functions defined on vector bundles over M . There are a number

of analytic challenges in this approach, including the fact that the geometric information

is recorded in the subcomplex of the Morse cochain complex consisting of positive valued

critical points and that standard generic perturbations of functions used for transversality

arguments in Fukaya’s work are no longer possible since these perturbations destroy the

correspondence of critical points with the geometric information of Reeb chords.

There are a number of interesting differences between this generating family construction

and analogous pseudoholomorphic curve constructions. Pseudoholomorphic curve construc-

tions have built a DGA [7–9], whose homology is a strong invariant algebraic structure for

Legendrian submanifolds of arbitrary dimensions, by using infinite-dimensional analysis of

PDEs. In low dimensions, combinatorial methods have been used to extract invariant al-

gebraic structures similar to those that we are interested in from the DGA [1, 4, 6, 26, 27].

Our work gives a different approach: It is a non-combinatorial, chain level construction

for Legendrians with generating families in J1(M), where M is Rn or a closed n-manifold,

for arbitrary n. Our approach differs from pseudoholomorphic curve constructions by only

using finite-dimensional analysis.

The outline of this dissertation is as follows: In Chapter 2 we give some background on

Morse Theory, generating families, and smooth manifolds with corners. In Chapter 3 we

construct cohomology groups for generating families using gradient flow lines; this differs

from previous constructions of such groups using the relative singular cohomology of sublevel

sets. Chapter 4 constructs the functions and metrics used in our gradient flow trees. The

construction of spaces of trees themselves occurs in Chapter 5, along with compactifications
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of these spaces. The spaces of trees are used to construct a chain-level product in Chapter 6

and compactification results show that the product descends to cohomology. In Chapter 7,

we show that the product is invariant under the generating family operations of stabilization

and fiber-preserving diffeomorphism. Chapter 8 constructs a cochain homotopy that shows

that the product is invariant under Legendrian isotopy. Chapter 9 lays the foundation for

a larger A∞ structure to be constructed in the future.



6
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Chapter 2

Background

In this chapter, we give some basic background on Morse Theory, generating families, and

manifolds with corners.

2.1 Morse Theory Basics

To set notation, we recall a few facts from Morse Theory; see, for example, [19,24,25,32,38]

for more details. Let X be closed manifold and let f : X → R be a Morse function, i.e., a

smooth function with nondegenerate critical points. We will relax the condition that X is

closed in future sections to using a function with taming properties outside a compact set.

Given a critical point p ∈ Crit(f), the Morse index indf (p) ∈ Z≥0 is the dimension

of the negative eigenspace of the Hessian D2 f(p). The Morse Lemma states that, for a

Morse function f : X → R, we may find local coordinates φ : Rn ⊃ B → X so that, in a

neighborhood of a critical point p,

φ∗f(x1, . . . , xn) = f(p)−
(
x2

1 + · · ·+ x2
ind(p)

)
+
(
x2

ind(p)+1 + . . . x2
n

)
.
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To study how a Morse function gives topological information, we pick an auxiliary

Riemannian metric g and study flow lines of ∇gf . For the purposes of this dissertation,

we use positive gradient flow. Let ψ : R ×X → X denote the flow of this vector field and

define the stable and unstable manifolds for p ∈ Crit(f) as

W−p (f) = {x ∈ X | lim
t→−∞

ψt(x) = p} W+
p (f) = {x ∈ X | lim

t→∞
ψt(x) = p}.

These are smooth manifolds. Since we are using positive gradient flow, W−p (f) is of dimen-

sion coind(p) while W+
p (f) is of dimension ind(p). The pair (f, g) is called Morse-Smale

if W−p (f) tW+
p (f), for all p ∈ Crit(f).

2.2 Generating Family Background

In this subsection, we discuss the background necessary for working with generating families

for Legendrian submanifolds. The germ of the idea comes from the following observation:

given a function f : M → R, the 1-jet of f is a Legendrian submanifold of J1M . Generating

families extend this construction to “non-graphical” Lagrangians and Legendrians by ex-

panding the domain to, for example, the trivial vector bundle M ×RN for some potentially

large N . We will denote the fiber coordinates by e = (e1, . . . , eN ). In this paper, M will

either be Rn or a closed manifold. What follows are bare-bones definitions so as to set

notation; see for example [34–36] for more details.

Suppose that we have a smooth function F : Mn × RN → R such that 0 is a regular

value of the map ∂eF : M × RN → RN . We define the fiber critical set of F to be the

n-dimensional submanifold ΣF = (∂ηF )−1(0). Define immersions jF : ΣF → J1M in local

coordinates by:

jF (x, e) = (x, ∂xF (x, e), F (x, e)).
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The image Λ of jF is an immersed Legendrian submanifold. We say that F generates Λ,

or that F is a generating family (of functions) for Λ.

Two functions Fi : M × RNi → R, i = 0, 1, are equivalent (denoted F0 ∼ F1) if they

can be made equal by applying fiber-preserving diffeomorphisms and stabilizations to each;

these operations are defined as follows:

1. Given a function F : M × RN → R, let Q : RK → R be a non-degenerate quadratic

function. If we define F ⊕Q : M ×RN ×RK → R by F ⊕Q(x, e, e′) = F (x, e) +Q(e′),

then F ⊕Q is a (dimension K) stabilization of f .

2. Given a function F : M×RN → R, suppose Φ : M×RN →M×RN is a fiber-preserving

diffeomorphism, i.e., Φ(x, e) = (x, φx(e)) for a smooth family of diffeomorphisms φx.

Then F ◦Φ is said to be obtained from F by a fiber-preserving diffeomorphism.

Given a function F , denote by [F ] its equivalence class with respect to these two operations.

It is easy to see that if F : M × RN → R is a generating family for a Legendrian Λ,

then any F ′ ∈ [F ] will also be a generating family for Λ. While a Legendrian submanifold

with a generating family will always have an infinite number of generating families, the set

of equivalence classes may be more tractable.

Having a generating family to work with instead of a Legendrian submanifold allows us

to use concepts from Morse homology. As the domain of our functions are non-compact,

we impose the following “tameness” property on our generating families:

Definition 1. A function f : M × RN → R is linear-at-infinity if f can be written as

f(x, e) = f c(x, e) +A(e),

where f c has compact support andA is a non-zero linear function, that isA(e) = A(e1, . . . eN ) =

c1e1 + · · ·+ cNeN with ci ∈ R not all zero.
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Remark 1. As M is a closed manifold or Rn, we may assume that the compact set in

Definition 1 is of the form KM ×KE ⊂M ×RN where KM = M if M is closed or KM and

KE are compact Euclidean subsets.

This convention is particularly convenient for producing compact Legendrians when

M = Rn, as seen in [12, 21]. The definition of linear-at-infinity is not preserved under

stabilization. However, we have:

Lemma 1 ( [31]). If F is the stabilization of a linear-at-infinity generating family, then F

is equivalent to a linear-at-infinity generating family.

2.3 Smooth Manifolds with Corners

Many proofs of theorems in Chapter 5 use concepts from differential topology applied to

smooth manifolds with corners, which we review in this section.

Definition 2. A smooth manifold with corners of dimension n ∈ N is a second-

countable, Hausdorff space X equipped with a maximal atlas of charts

{φ : X ⊃ U → V ⊂ [0,∞)n} whose transition maps are smooth. The `-stratum X` is the

set of points x ∈ X such that φ(x) has ` components equal to 0.

Lemma 2. If X and Y are smooth manifolds with corners of dimensions m1 and m2,

respectively, then X × Y is a smooth manifold with corners of dimension m1 +m2 and

(X × Y )i =
⊔

j+k=i

Xj × Yk.

Proof. Let (x, y) ∈ X × Y . Then there are open sets U1 ⊂ X about x and U2 ⊂ Y about

y, and charts φ1 : U1 → V1 ⊂ [0,∞)m1 and φ2 : U2 → V2 ⊂ [0,∞)m2 for V1, V2 open. Then
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V1 × V2 is an open set in [0,∞)m1+m2 and φ1 × φ2 : U1 × U2 → V1 × V2 is a local chart for

(x, y).

If (x, y) ∈ (X × Y )i then φ1 × φ2(x, y) = (φ1(x), φ2(y)) has i components equal to 0

which happens if and only if φ1(x) has j components equal to 0, φ2(y) has k components

equal to 0, and j + k = i.

There is a natural way to understand smooth maps and derivatives on manifolds with

corners, similar to the treatment of manifolds with boundary in Chapter 2 of [16]. For our

purposes, understanding maps from a smooth manifold with corners to a smooth manifold

without boundary or corners will suffice. Consider a smooth map f : U ⊂ [0,∞)n → R` for

some n, `. If u ∈ U has no coordinates equal to 0, then dfu is our usual notion of derivative.

However, if u has some 0 coordinates, the smoothness of f implies that we may extend f

to a smooth map f̃ on a neighborhood of u in Rn. We define dfu to be the usual derivative

df̃u : Rn → R`. This will not depend on the local extension of f .

With this observation, given a manifold with corners X, we may define the tangent

space TxX at x ∈ X to be the image of the derivative of any local parametrization about

x. Given a map defined on a manifold with corners X, let ∂if : Xi → Y denoted the

restriction of f to the stratum Xi. Then TxXi is a linear subspace of TxX of codimension

i and d(∂if)x = dfx|TxXi .

We will make use of the following natural extension of classic differential topology theo-

rems of manifolds with boundary to manifolds with corners. We must impose extra transver-

sality conditions on the strata to achieve these results.

The following is a known result (see, for example, [28]). For the reader’s convenience,

we give a proof.

Theorem 2. Let f be a smooth map of a manifold X with corners onto a boundaryless

manifold Y , and suppose f : X → Y and ∂if : Xi → Y are transversal to a boundaryless
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submanifold Z ⊂ Y for all strata Xi of X. Then the preimage f−1(Z) is a manifold with

corners with i-stratum f−1(Z)i = f−1(Z) ∩Xi and the codimension of f−1(Z) in X equals

the codimension of Z in Y .

Proof. We generalize the proof in Section 2.1 of [16] for the analogous statement with

manifolds with boundary (a special case of the above theorem). From [16], we know that

f−1(Z) ∩X0 is a smooth manifold without boundary and f−1(Z) ∩ (X0 ∪X1) is a smooth

manifold with boundary equal to f−1(Z)∩X1. We proceed inductively by assuming f−1(Z)∩

(∪i−1
k=0Xk) is a smooth manifold with corners whose k-stratum is equal to f−1(Z)∩Xk. Let

x ∈ f−1(Z) ∩Xi. We show that, near x, f−1(Z) is a manifold with corners.

As usual, if codim(Z) = `, we may express Z near f(x) as the zero-set of ` linearly-

independent functions; that is, there is a submersion φ of a neighborhood of f(x) in Y onto

R` so that Z = φ−1(0) in this neighborhood. Thus there is a neighborhood of x ∈ X in

which f−1(Z) is (φ ◦ f)−1(0). Since x ∈ Xi, around x in this neighborhood, we may pick a

parametrization h : Rn−i × [0,∞)i ⊃ U → X near x so that g = φ ◦ f ◦ h is defined. We

will show that g−1(0) is a manifold with corners near u ∈ U for u such that h(u) = x.

Since f t Z and φ is a submersion, g is regular at u. The smoothness of g means that

we may extend it to a smooth function g̃ on a neighborhood of u in Rn and regularity is

preserved since dg̃u = dgu (as explained in the paragraphs before this theorem). Thus,

g̃−1(0) is a boundaryless manifold S of codimension ` in some neighborhood of u ∈ Rn.

The inductive hypothesis implies that S∩(Rn−i+1×[0,∞)i−1) is a manifold with corners

containing (i − 1) strata. To extend this to one with an extra stratum, we show that

S ∩ (Rn−i × [0,∞)i) is a manifold with corners of i strata. For 1 ≤ j ≤ n, let πj : S → R

be the jth coordinate function on Rn, restricted to S. Then

S ∩ (Rn−i × [0,∞)i) = {s ∈ S ∩ (Rn−i+1 × [0,∞)i−1) | πj(s) ≥ 0 ∀ j, n− i+ 1 ≤ j ≤ n}.
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By the inductive hypothesis, we know that the collection of s ∈ S ∩ (Rn−i × [0,∞)i)

with πj(s) = 0 for at most i − 1 choices of j ∈ {n − i + 1, . . . , n} form a smooth manifold

with corners of i − 1 strata. To complete the proof, we show that, given such an s, 0 is a

regular value of the remaining coordinate map, which we call π. Suppose not. Then there

exists s ∈ S with πj(s) = 0 for all j ∈ {n − i + 1, . . . , n} and d(π)s ≡ 0. This means that

the coordinate of every vector in TsS given by π is 0, so TsS ⊂ Rn−1. By the Preimage

Image Theorem for smooth manifolds, TsS = ker
(
dgs : Rn → R`

)
. Thus any map onto R`

on the restriction to its ith stratum will have dimension n − 1 − i − `. The hypothesis

that ∂kf t Z for all k means that d(∂kg)s : Rn−k → R` is onto, and so has kernel with

dimension n− k− `. In particular, d(∂ig)s : Rn−i → R` is onto, so the kernel has dimension

n− i− ` 6= n− 1− i− `, giving a contradiction.

The following is a generalization of the Transversality Theorem for manifolds with

boundary (see, for example Section 2.3 in [16]) to manifolds with corners.

Theorem 3. Suppose F : X × S → Y is a a smooth map, where X is a manifold with

corners and S and Y are boundaryless manifolds. Let Z be a boundaryless submanifold of

Y . Suppose F : X × S → Y is transversal to Z and ∂iF : Xi × S → Y is transversal to Z

for all i-strata Xi of X. Then for almost every s ∈ S, fs and ∂ifs are transversal to Z for

each i-stratum Xi, where fs(x) = F (x, s) and ∂ifs = fs|Xi.

Proof. Again, we follow the proof of the analogous statement for manifolds with boundary

in [16]. From the Preimage Theorem 2, W = F−1(Z) is a submanifold with corners of

X × S whose i-stratum is Wi = W ∩ (X × S)i. Let π : X × S → S be the projection to S.

Then we have the following restriction maps: πW : W → S and πi : Wi → S. From Sard’s

Theorem, we know that almost every s ∈ S is a regular value of each of these maps. We

claim that if s ∈ S is regular for πW then fs t Z and for each i, if s ∈ S is regular for πi,

then ∂ifs t Z. Each of these claims is proved by a similar argument found in [16].
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We sketch a proof of the claim for an arbitrary i. We wish to show that ∂ifs t Z, so

let x ∈ Xi and suppose fs(x) = z ∈ Z. Since ∂iF : Xi × S → Y is transversal to Z and

F (x, s) = z,

Im
(
d(∂iF )(x,s)

)
+ TzZ = TzY.

Equivalently, given arbitrary a ∈ TzY , there exists b ∈ T (Xi × S)(x,s) so that

d(∂iF )(x,s)(b)− a ∈ TzZ.

To show that ∂ifs t Z, we wish to find v ∈ TxXi so that d(∂ifs)x(v) − a ∈ TzZ. Since

T (Xi × S)(x,s) = TxXi × TsS, we may write b = (w, e) for w ∈ TxXi and e ∈ TsS.

If e = 0, we are done, for we claim that d(∂iF )(x,s)(c, 0) = d(∂ifs)x(c) for any c ∈ TxXi.

Identifying Xi with Xi × {s}, we may express

∂ifs = ∂iF |Xi×{s} = ∂iF ◦ ι,

where ι : Xi
∼= Xi × {s} → Xi × S is the natural inclusion map. Thus,

d(∂ifs)x = d∂iF(x,s) ◦ dιx.

The fact that T(x,s)(Xi × {s}) = TxXi × {0} proves the claim.

To finish the proof, we use the assumption that s is a regular value for πi : Wi → S.

Since d(πi)(x,s) is onto, there exists (u, e) ∈ T(x,s)Wi for e ∈ TsS as above. Since Wi =

F−1(Z) ∩ (X × S)i, we know that d(∂iF )(x,s)(u, e) ∈ TzZ. Thus, v = w − u ∈ TxXi is such
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that

d(∂ifs)x(v)− a

= d(∂ifs)x(w − u)− a

= d(∂iF )(x,s)(w − u, 0)− a

=
[
d(∂iF )(x,s)(w, e)− a

]
− d(∂iF )(x,s)(u, e) ∈ TzZ.
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Chapter 3

A Flow Line Approach to

Generating Family Cohomology

We use gradient flow lines of a “difference function” associated to a generating family

to define the generating family cohomology invariants of Legendrian submanifolds; this

setup differs from past formulations of cohomology for generating families using the relative

singular cohomology of sublevel sets as in [12,21,35], for example.

3.1 Setup of GH∗(F )

Suppose that F : M × RN → R is a generating family for a Legendrian Λ ⊂ J1M . The

difference function, w : M × RN × RN → R, is defined to be:

w(x, e, e′) = F (x, e)− F (x, e′). (2)

The reason to work with the difference function is that its critical points capture infor-

mation about the Reeb chords of Λ. Reeb chords are segments of the Reeb vector field
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with endpoints on Λ. The Reeb vector field Rα of a contact structure locally given by

ker(α) is the unique vector field satisfying dα(Rα, ·) ≡ 0 and α(Rα) ≡ 1. For the contact

form we use, α = dz − λ on J1(M), Rα = ∂
∂z . For our purposes, then, Reeb chords are

segments γ : [a, b] → J1M in the z-direction whose endpoints lie on Λ. Note that Reeb

chords are in one-to-one correspondence with double points of the projection of Λ to an

immersed Lagrangian submanifold of T ∗M . Let `(γ) > 0 be the length of the Reeb

chord γ.

Proposition 4 ( [12,30]). The critical points of the difference function w are of two types:

1. For each Reeb chord γ of Λ, there are two critical points (x, e, e′) and (x, e′, e) of w

with nonzero critical values ±`(γ).

2. The set

{(x, e, e) : (x, e) ∈ ΣF }

is a critical submanifold of w with critical value 0.

For generic F , these critical points and submanifolds are non-degenerate, and the critical

submanifold has index N .

We will work with the critical points of w of Type 1 that have positive critical value.

Definition 3. Given F : M × RN → R and associated difference function w : M × RN ×

RN → R, let Crit+(w) be the set of critical points of w with positive critical value. Then

define C (F ) := 〈Crit+(w)〉Z2
to be the vector space generated over Z2 by elements in

Crit+(w). Equip C (F ) with the following grading on generators:

|p| = indw(p)−N.
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Remark 2. The shift in index occurs so that the groups are invariant when F undergoes

a stabilization operation. Note that previous formulations of GH∗(F ) use a shift of N + 1

rather than N to produce an isomorphism with linearized contact homology [12]. We use a

shift of N , however, to guarantee that our product map has the standard degree.

The postive-valued critical point, and in fact all critical points of w, are contained in a

compact subset of M × R2N .

Lemma 3. Suppose that F : M × RN → R is a linear-at-infinity generating family that

agrees with a non-zero linear function outside KM ×KE, for compact sets KM ⊂ M and

KE ⊂ RN as in Remark 1. Then every critical point of the associated difference function

w : M × RN × RN → R is contained in KM ×KE ×KE.

Proof. First consider the critical points of w. By assumption

F (x, e) = F c(x, e) +A(e),

where F c = 0 if x /∈ KM or x /∈ KE , and A is a nonzero linear function. Thus we see that

for all (x, e1, e2) ∈M × RN × RN ,

w(x, e1, e2) = F c(x, e1)− F c(x, e2) +A(e1)−A(e2).

We want to show that if (x, e1, e2) is a critical point of w, then x ∈ KM , e1 ∈ KE ,

and e2 ∈ KE . Suppose for a contradiction that x /∈ KM . Then we see that w(x, e1, e2)

agrees with the linear function A(e1)−A(e2), and thus (x, e1, e2) cannot be a critical point.

If e1 /∈ KE , w(x, e1, e2) = −F0(x, e2) + A(e1) − A(e2), and thus the ∂w
∂e1

(x, e1, e2) 6= 0,

showing that (x, e1, e2) is not critical for w. A similar argument shows that if e2 /∈ KE ,

∂w
∂e2

(x, e1, e2) 6= 0. Thus if (x, e1, e2) is critical for w, then x ∈ KM , e1 ∈ KE , and e2 ∈ KE .
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It is easy to check that if F is linear-at-infinity, then the associated difference function

w is no longer linear-at-infinity. However, we have:

Lemma 4 ( [12]). If F is linear-at-infinity, then the associated difference function w is

equivalent to a linear-at-infinity function.

Since Reeb chords of a Legendrian with a generating family F are in bijection with

positive-valued critical points of the difference function w of F , the idea behind generating

family cohomology is to study the Morse cohomology of the set {w > 0}. To do this, we

first equip the domain of the w with a Riemannian metric.

Definition 4. Let F : M × RN → R be a linear-at-infinity generating family that agrees

with a non-zero linear function outside KM×KE , for compact sets KM ⊂M and KE ⊂ RN

as in Remark 1. Let F have difference function w : M × RN × RN → R. Let the set of

compatible metrics, GF , denote the set of Riemannian metrics gw on M × RN × RN

so that for all p ∈ Crit+w, there is a neighborhood U of p and a parametrization φ :

Bind p ×B(n+2N)−ind p → U with φ(0) = p such that

1. φ∗w = w(p) + 1
2(x2

1 + · · ·+ x2
(n+2N)−ind p)− 1

2(x2
(n+2N)−ind p+1 + · · ·+ x2

n+2N ),

2. φ∗gw = dx1 ⊗ dx1 + · · ·+ dxn+2N ⊗ dxn+2N .

In addition, metrics in GF will satisfy

3. Outside KM ×KE ×KE , gw is the standard Euclidean metric, and

4. For every pair of critical points p, q ∈ Crit+w, the unstable and stable manifolds of p

and q have a transverse intersection.
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Remark 3. 1. Conditions (1), (2), and (3) are standard Morse theoretic conditions so

that we may understand gradient flow near critical points and outside the compact

set. In particular, these assumptions allow us to use results of [37] in Chapter 5.

While condition (2) is not generic, the gradient flow of a pair satisfying conditions

(1), (3), and (4) is topologically conjugate to one satisfying all four; see [37, Remark

3.6] or [11].

2. It is possible to find metrics satisfying (1) - (4). Start with a metric satisfying (1) -

(3) and then perform L2-small perturbations of the metric on annuli around critical

points to get the additional Smale condition (4), see [2].

To compute cohomology groups on C (F ), we will equip C (F ) with a codifferential δ :

C∗(F )→ C∗+1(F ) defined by a count of isolated gradient flow lines, modulo reparametriza-

tion in time.

In particular, if p, q ∈ C (F ) and g ∈ GF , let

M(p, q) :=(
{γ : R→M × RN × RN | γ̇ = ∇gw, lim

t→−∞
γ(t) = p, lim

t→∞
γ(t) = q}

)
/R,

where R denotes the action of translation in the t variable.

Theorem 5. M(p, q) is a smooth manifold of dimension |q| − |p| − 1.

Theorem 5 follows from the natural identification

M(p, q) ∼= W−p (w) ∩W+
q (w) ∩ w−1(c),

for c ∈ R a regular value in (w(p), w(q)). The Morse-Smale assumption shows that this is

a smooth manifold of the above dimension.
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Definition 5. Define the map δ : C∗(F )→ C∗+1(F ) by

δ(p) =
∑

q∈C|p|+1(F )

#Z2M(p, q) · q.

Remark 4. The map δ is well defined: while C (F ) is generated by only positively-valued

critical points of w, δ counts flow lines of the positive gradient flow, so w will increase in

value along trajectories.

In fact, δ is a codifferential:

Lemma 5. The map δ : C∗(F )→ C∗+1(F ) satisfies δ2 = 0.

Proof. Given our taming condition of requiring F to be linear-at-infinity, the relevant flow

lines are contained in a compact set; see Lemma 3 and note that outside this compact set,

the gradient is constant. Thus, the above is shown by the standard argument for functions

with a compact domain– If M(p, q) is a 1-dimensional manifold, it may be compactified

with the addition of once-broken flow-lines, which make up its boundary. As the boundary

of a 1-dimensional manifold contains an even number of points, the result follows. For more

details, see, for example, [32].

Definition 6. The generating family cohomology GH∗(F ) of the generating family F

is defined to be the cohomology of C (F ) with respect to the codifferential δ:

GH∗(F ) = H∗(C (F ), δ).

Remark 5. Note that we built the usual grading shift into the definition of the index

of C (F ) rather than into the definition of the cohomology as was done in past papers on

GH∗(F ) such as in [12,21,35], for example.
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3.2 Independence of GH∗(F ) with respect to metric choice:

A first continuation argument

Crucial to the above construction of GH∗(F ) is the metric g ∈ GF used to produce a gradient

flow of w. In this section, we show that GH∗(F ) is independent of the metric used in its

construction. While different metrics affect the codifferential δ of GH∗(F ), a continuation

argument shows that the cohomology is invariant up to isomorphism under generic change

of metric. Continuation arguments will be used multiple times in this work, so we provide

a detailed exposition for the following proposition:

Proposition 6. Up to isomorphism, GH∗(F ) does not depend on the metric g ∈ GF used

in the construction.

Proof. To show that GH∗(F ) does not depend on the metric, we use the idea of continuation

maps in Floer homology from [10], [20]; see also [19] for an informal exposition. This

technique will be used multiple times to show different notions of invariance; as this is the

first use, we will provide the details here for later reference.

The strategy of the proof is to define a continuation cochain map ΦΓ from a path of

functions and metrics Γ (Lemma 6). Given a homotopy between two such paths Γ and Γ̂,

we construct a cochain homotopy K between the two continuation maps of the two paths in

Lemma 7. We then show that in Lemma 8 that the continuation map of the concatenation

of any two paths ΦΓ2∗Γ1 is cochain homotopic to the composition of the two continuation

maps from the paths ΦΓ2 ◦ΦΓ1 . Last, we show that the continuation map of a constant path

of a Morse-Smale pair is the identity map (Lemma 9). With all of these pieces, suppose

that we have an arbitrary admissible path of functions and metrics. Concatenating the path

with its reverse is homotopic to the constant path, showing that the continuation map is

an isomorphism on cohomology.
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To construct a continuation map, we use a path Γ = {(wt, gt) | t ∈ [0, 1]} of difference

functions and metrics. For this proof, we may set wt = w for all t ∈ [0, 1]. Given two

metrics g0, g1 ∈ GF , construct a path gt in the space of Riemannian metrics on M × R2N

that are standard outside KM ×KE ×KE . This space is contractible because we can use

a straight-line homotopy of the metrics on the non-standard part to contract to any given

metric in this set.

Given Γ, we construct a continuation map which we will denote by ΦΓ, with

ΦΓ : C∗(F 0)→ C∗(F 1),

where (in this case) F 0 = F 1 = F , the generating family that produced w. Given ε > 0

such that
ε

4
< ρ, where ρ is the least positive critical value of w, the continuation maps

count isolated gradient flow lines of the vector field ∇GW on (M × R2N )× I with

W (p, t) = wt(p) + ε
(
(1/2)t2 − (1/4)t4

)
G(p,t) = gtp + dt2.

(3)

We say that the path Γ is admissible if the unstable and stable manifolds of ∇GW

intersect transversely. Note that this does not mean that each (wt, gt) is Morse-Smale.

This vector field has the following property: when projected to I, there’s a critical point

of index 0 at t = 0 and one of index 1 at t = 1 with none in between. The vector field flows

smoothly from 0 to 1. Let Critk+(W ) denote the set of critical points of W with critical

value greater than
ε

4
. Then we have that

Critk+(W ) =
(

Critk+(w0)× {0}
)⋃(

Critk−1
+ (w1)× {1}

)
,

where the superscript denotes the Morse index.
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For p ∈ Crit+(w0) and q ∈ Crit+(w1), consider the space MΓ((p, 0), (q, 1)) of flow lines

of ∇GW from (p, 0) to (q, 1), modulo translation reparametrization. If Γ is admissible,

usual Morse Theory arguments will show that MΓ((p, 0), (q, 1)) is a manifold of dimension

indW (q, 1)− indW (p, 0)− 1 = indw1(q) + 1− indw0(p) + 1 = indw1(q)− indw0(p).

Thus, we can define the map ΦΓ on generators in C∗(F 0) by

ΦΓ(p) =
∑

q∈C|p|(F 1)

#Z2MΓ((p, 0), (q, 1)) · q.

We wish to show that the continuation map ΦΓ gives an isomorphism on GH∗(F ). To

show this, we must prove that ΦΓ is a cochain map, that a homotopy of Γ induces a cochain

homotopy, that concatenating paths gives a cochain homotopy, and that the constant path

gives the identity. These facts together show that our continuation map will induce an

isomorphism on cohomology [20].

Lemma 6. For the path Γ, ΦΓ is a cochain map, i.e., the following diagram commutes:

Ck(F 0) Ck(F 1)

Ck+1(F 0) Ck+1(F 1).

ΦΓ

δ0 δ1

ΦΓ

Thus, ΦΓ descends to cohomology.

Proof. Consider a 1-dimensional Moduli Space MΓ((p, 0), (q, 1)) of flow lines along the

vector field ∇GW defined above (3) for (p, 0) ∈ Crit+(W ) to (q, 1) ∈ Crit+(W ). Since this

space is one-dimensional, we have that indW (q, 1)− indW (p, 0) = 2, i.e., indw(q)− indw(p) =

1. If Γ is admissible, the usual Morse Theory compactification argument implies that

MΓ((p, 0), (q, 1)) has a compactification to a compact 1-manifold with boundary consisting

of once-broken flow lines. Since these flow lines may only break at points in (M×R2N )×{0}
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or (M × R2N )× {1}, we have the following expression for the boundary:

∂MΓ((p, 0), (q, 1)) =
⋃

q′∈Crit
ind(p)
+ (w1)

MΓ((p, 0), (q′, 1))×MΓ((q′, 1), (q, 1))

∪
⋃

p′∈Crit
ind(p)+1
+ (w0)

MΓ((p, 0), (p′, 0))×MΓ((p′, 0), (q, 1)).

Thus,

0 =
∑

q′∈Crit
ind(p)
+ (w1)

#Z2MΓ((p, 0), (q′, 1)) ·#Z2MΓ((q′, 1), (q, 1))

+
∑

p′∈Crit
ind(p)+1
+ (w0)

#Z2MΓ((p, 0), (p′, 0)) ·#Z2MΓ((p′, 0), (q, 1))

The dynamics of ∇GW imply that flows between critical points at fixed time t = 0 or

t = 1 are completely contained in M × R2N × {t}. Thus, we have the following natural

identifications of the following manifolds:

MΓ((q′, 1), (q, 1)) ∼=Mw1(q′, q)

MΓ((p, 0), (p′, 0)) ∼=Mw0(p, p′).

So we have that

0 =
∑

q′∈Crit
ind(p)
+ (w1)

#Z2MΓ((p, 0), (q′, 1)) ·#Z2Mw1(q′, q)

+
∑

p′∈Crit
ind(p)+1
+ (w0)

#Z2Mw0(p, p′) ·#Z2MΓ((p′, 0), (q, 1)).

The result that 0 = δ1 ◦ ΦΓ + ΦΓ ◦ δ0 follows.
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· · · Ck−1(F 0) Ck(F 0) Ck+1(F 0) · · ·

· · · Ck−1(F 1) Ck(F 1) Ck+1(F 1) · · ·

δ0 δ0

Kk−1

ΦΓΦ
Γ̂

δ0

Kk

ΦΓΦ
Γ̂

δ0

Kk+1

ΦΓΦ
Γ̂

δ1 δ1 δ1 δ1

Figure 2: A cochain homotopy K between ΦΓ and Φ
Γ̂

is a sequence of maps that makes the
above diagram commute.

The construction so far depended on the path Γ and it is necessary to show that Φ∗Γ,

the induced map on cohomology, does not depend on the path chosen in a given homotopy

class of paths. For the current proof we will take a homotopy of the path of metrics on

M×R2N that are standard outside KM×KE×KE . Since this space is contractible through

straight-line homotopies, the induced isomorphism will be canonical, showing that GH∗(F )

is independent of the metric chosen in the construction.

Choose another path (ĝt) with g0 = ĝ0 and g1 = ĝ1 (i.e., change the path but not the

endpoints), and suppose there is a generic homotopy between these two paths. We wish to

say that the corresponding continuation maps are the “same” on cohomology, through the

notion of a cochain homotopy (see Figure 2).

Lemma 7. Given admissible paths Γ and Γ̂ from (w0, g0) to (w1, g1), a fixed endpoint

homotopy from the path Γ to Γ̂ induces a cochain homotopy

K : C∗(F 0)→ C∗−1(F 1)

between the maps ΦΓ and Φ
Γ̂

; see Figure 2.

Proof. The image of the path homotopy between Γ and Γ̂ traces out the shape of a digon

D, a smooth two-dimensional manifold with corners consisting of two vertices, two edges in

between them, and one face. The vertices correspond to fixed endpoints of the paths in the
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homotopy while the edges correspond to the two homotopic paths. For every d ∈ D, the

homotopy gives a pair (wd, gd), where, in this case, wd = w and gd is a metric on M ×R2N

that is standard outside the nonlinear-support compact set KM ×KE ×KE .

Let h be a metric on D such that the edges of D have length one. Let f : D → R be a

nonnegative function on the digon that has an index 0 critical point at one vertex d0 with

critical value 0, an index 2 critical point at the other vertex d1 with critical value
ε

4
for ε > 0

as in the equation (3) of ∇GW , and no other critical points. Lastly suppose ∇hf is tangent

to the edges of the digon and agrees with the standard gradient of ε
(
(1/2)t2 − (1/4)t4

)
on

each edge.

To get a cochain homotopy, we will consider certain flow lines of the function WD :

(M × R2N )×D → R and metric GD defined by

WD(p, d) = wd(p) + f(d)

GD(p,d) = gdp + hd

Denote the critical points of WD with critical value greater than
ε

4
by Crit+(WD). Since

the only critical points of the digon occur at the vertices d0 and d1,

Critk+(WD) =
(

Critk+(w0)× {d0}
)⋃(

Critk−2
+ (w1)× {d1}

)
.

The homotopy is admissible if the stable and unstable manifolds of ∇GDWD have a

transverse intersection. Given an admissible homotopy, the space MD((p, d0), (q, d1)) of

gradient flow lines modulo reparametrization is a manifold of dimension

indWD(q, 1)− indWD(p, 0)− 1 = indw1(q) + 2− indw0(p) + 1 = indw1(q)− indw0(p) + 1.
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Thus, we may define a map KD : C∗(F 0) → C∗−1(F 1) by counting isolated flow lines of

∇GDWD:

KD(p) =
∑

q∈C|p|−1(F 1)

#Z2MD((p, d0), (q, d1)) · q.

To show that KD gives a cochain homotopy between ΦΓ and Φ
Γ̂
, we use the usual

argument that if MD((p, 0), (q, 1)) is one-dimensional, then it has a compactification to

a compact one-dimensional manifold with boundary. The boundary contains the usual

once-broken flow lines and has additional flow lines from the boundary of the digon, ∂D.

∂MD((p, 0), (q, 1)) =
⋃

q′∈Crit
ind(p)−1
+ (w1)

M((p, 0), (q′, 1))×M((q′, 1), (q, 1))

∪
⋃

p′∈Crit
ind(p)+1
+ (w0)

M((p, 0), (p′, 0))×M((p′, 0), (q, 1))

∪MΓ((p, 0), (q, 1)) ∪ M
Γ̂
((p, 0), (q, 1))

Thus, KDδ
0 + δ1KD = ΦΓ − Φ

Γ̂
.

Lemma 8. Given admissible paths Γ1,Γ2 with Γ1(1) = Γ2(0), there is a concatenation

cochain homotopy between ΦΓ2 ◦ ΦΓ1 and ΦΓ2∗Γ1.

Proof. This proof is similar to the proof of Lemma 7. An admissible homotopy between Γ1

followed by Γ2 with their concatenation Γ2 ∗ Γ1 may be represented by a triangle T with

vertices ri representing the pair (wi, gi) for i ∈ {0, 1, 2}. For every r ∈ T , this homotopy

gives a pair (wr, gr) with wr = w and gr a metric that is standard outside KM ×KE ×KE .

Equip T with a metric h that gives each edge of T length one. Let f : T → R be a
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nonnegative function with an index i critical point at vertex ri with critical value i
ε

4
and no

other critical points. Lastly suppose ∇hf is tangent to the edges of the triangle and agrees

with the standard gradient of ε
(
(1/2)t2 − (1/4)t4

)
on each edge.

The remainder of the proof follows as in Lemma 7 by analyzing spaces of flow lines from

(p, r0) to (q, r2) for p ∈ Crit+(w0) and q ∈ Crit+(w2).

Lastly, since concatenating a path with its reverse is homotopic to the constant path,

we need:

Lemma 9. Given a constant path Γ = (wt, gt) with wt = w and gt = g ∈ GF for t ∈ [0, 1],

ΦΓ = idC(F ).

Proof. The fact that every point of Γ is a Morse-Smale pair makes this case different than

just fixing the path of functions. Given p ∈ Crit+(w), we claim there is an isolated flow line

from (p, 0) to (p, 1) along ∇GW , for W,G as in 3. In fact, for all t ∈ [0, 1],

∇GW (p, t) =
(
0,∇

(
ε
(
(1/2)t2 − (1/4)t4

)))
,

and the result follows.

Lemma 10. For an admissible path Γ, the map ΦΓ induces an isomorphism GH∗(F 0) →

GH∗(F 1).
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3.3 Invariance of GH∗(F ) with respect to stabilization and

fiber-preserving diffeomorphism

We show that the generating family (co)homology descends to equivalence classes of gener-

ating families, as defined in Section 2.2.

Proposition 7. If F0 ∼ F1, then GH∗(F0) ' GH∗(F1).

This follows from Lemmas 11 and 12.

Lemma 11. If F : M × RN → R is altered by a positive or negative stabilization resulting

in F̂ : M × RN × RK → R then GH∗(F̂ ) ∼= GH∗(F ).

Proof. Given a generating family F : M × RN → R, define F± : M × RN × R → R where

F±(x, e, e′) = F (x, e)± (e′)2. It suffices to show GH∗(F±) ∼= GH∗(F ).

We will denote and express the difference functions from F± by

w± : M × RN × R× RN × R→ R

(x, e1, e
′
1, e2, e

′
2) 7→ F±(x, e1, e

′
1)− F±(x, e2, e

′
2)

= F (x, e1)± (e′1)2 − F (x, e2)∓ (e′2)2

Given p = (x, e1, e2) ∈ Crit+(w) there is a corresponding critical point p′ = (x, e1, 0, e2, 0) ∈

Crit+(w±) with the same critical value and indw±(p′) = indw(p) + 1. This gives a bi-

jection between the generators of C (F ) and C(F±) and this bijection preserves grading:

|p′| = indw±(p′)− (N + 1) = indw(p)−N = |p|. This is precisely why the grading on C (F )

depends on the dimension of the fiber of F .

We claim that there is also a correspondence of gradient flow lines, but to show this we

must choose a metric from GF± . We claim that, if g ∈ GF , then g′ = g + g0 ∈ GF± , where
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g0 is the standard Euclidean metric on the two extra R coordinates of M × R2(N+1). The

only condition from Definition 4 that is not immediate is the Smale condition (4).

To check the Smale condition for (w±, g′), we first show that the gradient flow of this

pair splits. We may write the stabilized difference function as

w±(x, e1, e
′
1, e2, e

′
2) = w(x, e1, e2)±Q±(e′1, e

′
2),

for Q± : R2 → R given by Q±(e′1, e
′
2) = ±(e′1)2 ∓ (e′2)2, so

d(w±)(x,e1,e′1,e2,e
′
2) = dw(x,e1,e2) + dQ±

(e′1,e
′
2)
.

We then claim that ∇g′w± = (∇gw,∇g0Q
±); the details of a similar proof may be found

in Lemma 15. In particular, the unstable and stable manifolds split, and since g ∈ GF , this

reduces to checking the Smale condition for (Q±, g0). But the only critical point of Q± is

0 = (0, 0), and the only point in T0W
−
0 (Q±) ∩ T0W

+
0 (Q±) is 0, and the result holds; see

Prop 11 for a similar argument with more details.

To show that GH∗(F ) ∼= GH∗(F±), we show that, with the metric chosen, M(p, q) ∼=

M(p′, q′), where p′, q′ ∈ Crit+(w±) are the images of p, q ∈ Crit+(w) under the bijection

described earlier in this proof. Since we showed in the previous subsection that the construc-

tion of GH∗(F±) does not depend on the metric chosen from GF± , the result will follow. In

fact, sinceM(p′, q′) ∼=
(
W−p′ (w

±) ∩W+
q′ (w

±)
)
/R, the fact that T0W

−
0 (Q±)∩T0W

+
0 (Q±) =

{(0, 0)} gives a diffeomorphism.

Lemma 12. If F : M × RN → R is altered by fiber-preserving diffeomorphism that is an

isometry outside KM ×KE ×KE resulting in F̂ : M × RN → R then GH∗(F̂ ) ∼= GH∗(F ).

This result will follow from:



3.3. Invariance with respect to F Equivalences 33

Lemma 13. Suppose g is a Riemannian metric on X, f : X → R and Φ : X → X̂ is a

diffeomorphism. If V is the gradient vector field of f with respect to g, then Φ∗V is the

gradient vector field of (Φ−1)∗f with respect to the pullback metric (Φ−1)∗g.

Proof. Given that the vector field V is such that for all x ∈ X, gx(Vx, u) = dfx(u) for

all u ∈ TxX, we wish to show that the vector field Φ∗V satisfies ((Φ−1)∗g)x̂((Φ∗V )x̂, û) =

d(f ◦ Φ−1)x̂(û) for all x̂ ∈ X̂ and û ∈ Tx̂X̂.

Let x̂ ∈ X̂ and û ∈ Tx̂X̂. Since Φ is a diffeomorphism, x̂ = Φ(x) for some x ∈ X and

Φ∗ gives an isomorphism between TxX and Tx̂X̂, so û = Φ∗u for some u ∈ TxX. Thus

((Φ−1)∗g)x̂((Φ∗V )x̂, û) =

((Φ−1)∗g)Φ(x)((Φ∗V )Φ(x),Φ∗u) =

gx(Φ−1
∗ ((Φ∗V )x),Φ−1

∗ (Φ∗u)) =

gx(Vx, u) = dfx(u) =

dfx ◦ dΦ−1
Φ(x)(Φ∗u) =

d(f ◦ Φ−1)Φ(x)(Φ∗u) =

d(f ◦ Φ−1)Φ(x)(û),

as desired.

Lemma 13 will give bijections of trajectories on the chain level that shows GH∗(F ) =

GH∗(F̂ ) as long as (Φ−1)∗g ∈ G
F̂

. Since Φ is an isometry outside KM × KE × KE , if g

is Euclidean outside this set, so is (Φ−1)∗g. Lemma 13 induces a diffeomorphism between

the stable and unstable manifolds from the flows of before and after the fiber-preserving

diffeomorphism, and the Smale condition holds.
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Given a Legendrian submanifold Λ ⊂ J1M , let:

F lin(Λ) = {F : F is a linear-at-infinity generating family for Λ}.

On the level of equivalence, we will be interested in equivalence classes of generating families

that contain linear-at-infinity representatives.

When Λ is a Legendrian unknot in the standard contact R3 with maximal Thurston-

Bennequin invariant, all elements of F lin(Λ) are equivalent; see [21].∗ In general, the set

F lin(Λ) is not well understood, though see [5, 12,17] for some results.

3.4 GH∗(F ) as a Legendrian Invariant

To form an invariant of a Legendrian submanifold Λ with a generating family, it is important

to know that the existence of a linear-at-infinity generating family persists under Legendrian

isotopy. A proof of the following proposition can be given using Chekanov’s “composition

formula” [3]; see, for example, [21].

Proposition 8 (Persistence of Legendrian Generating Families). Suppose M is compact.

For t ∈ [0, 1], let Λt ⊂ J1M be an isotopy of Legendrian submanifolds. If Λ0 has a linear-

at-infinity generating family F , then there exists a smooth path of generating families F t :

M ×RN → R for Λt so that F 0 is a stabilization of F and F t = F 0 outside a compact set.

Remark 6. We will often be considering generating families for compact Legendrians in

J1(Rn). The above persistence will still apply since these Legendrians can be thought of

as living in J1Sn, and the linear-at-infinity condition allows the generating families to be

defined on Sn × RN .

∗In [21], the focus was on generating families that are linear-quadratic-at-infinity. Lemma 1, however,
can be used to show that linear-quadratic-at-infinity functions are equivalent to linear-at-infinity ones.
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Proposition 9. If Λt ⊂ J1M is an isotopy of Legendrian submanifolds for t ∈ [0, 1], then

for the path F t ∈ F lin(Λ) as in Proposition 8 there exists an isomorphism Φ∗ : GH∗(F 0)→

GH∗(F 1).

Proof. These isomorphisms may be constructed using a continuation argument as in Propo-

sition 6. Given a contact isotopy and generating family, let F t : M ×RN → R be a smooth

path of generating families as in Proposition 8. Given g0 ∈ GF 0 and g1 ∈ GF 1 , construct a

path of metrics gt for t ∈ [0, 1] on M × R2N so that gt is standard outside the nonlinear

support compact set Kt
M ×Kt

E ×Kt
E . These sets vary smoothly due to the smoothness of

the path F t. The rest of the proof proceeds as in Proposition 6.

The above proof gives an isomorphism between GH∗(F 0) and GH∗(F 1) that arise as a

lifted path of generating families from a Legendrian isotopy. This isomorphism is indepen-

dent for paths in the homotopy class of the given path F t, but given any two generating

families of isotopic Legendrians, there need not be a path between them†.

In other words, since it may not be the case that all elements in F lin(Λ) are equivalent,

the generating family homology of a linear-at-infinity generating family F , is not itself an

invariant of the generated Legendrian Λ. By Corollary 9, however, we do have:

Proposition 10 ( [21, 35]). For a compact Legendrian submanifold Λ ⊂ J1M , the set of

all generating family cohomology groups

GHk(Λ) = {GHk([F ]) : F ∈ F lin(Λ)},

is invariant under Legendrian isotopy.

†See [29] for some results on homotopy spaces of generating families for Legendrian submanifolds.
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Chapter 4

Extended Difference Functions

As seen in the previous chapter, gradient flow lines from a single difference function are

used to construct generating family cohomology groups. To form gradient flow trees from a

generating family, we will need intersecting gradient trajectories, so we use Sabloff’s idea of

using multiple “extended difference functions,” sketched by Henry and Rutherford in [18].

In this chapter, we define these functions and corresponding metrics which will give an

identification of gradient flow lines of these spaces with those of the original difference

functions w.

Definition 7. Suppose F : M ×RN → R is a generating family for Λ. Let P3 = M ×R3N .

For each 1 ≤ i < j ≤ 3 and k ∈ {1, 2, 3} − {i, j}, the extended difference functions

wi,j;3 : P3 → R are defined as

wi,j;3(x, e1, e2, e3) = F (x, ei)− F (x, ej) +


e2
k, k < i or k > j

−e2
k, i < k < j

.

The set of positively-valued critical points of wi,j;3 will be denoted by Crit+(wi,j;3) ⊂ P3.
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Remark 7. 1. The number 3 in the notation of the extended difference functions wi,j;3

is a bit superfluous at this stage, but it will be useful in the future to have generalizable

notation, see Chapter 9.

2. Each ei is an N -dimensional vector, i.e., ei = (ei1, ei2, · · · , eiN ) and e2
i := ‖ei‖2 =

e2
i1 + · · ·+ e2

iN . This is especially important to remember in dimension calculations.

3. The three extended difference functions on P3 are

w1,2;3(x, e1, e2, e3) = F (x, e1)− F (x, e2) + e2
3,

w2,3;3(x, e1, e2, e3) = F (x, e2)− F (x, e3) + e2
1,

w1,3;3(x, e1, e2, e3) = F (x, e1)− F (x, e3)− e2
2.

Each extended difference function may be written in the following form (see Definition

7):

wi,j;3(x, e1, e2, e3) = w(x, ei, ej) +Q(ek),

where k ∈ {1, 2, 3} is such that k 6= i, j and Q : RN → R is the quadratic form

Q(ek) = Q(ek1, . . . , ekN ) = ±
(

N∑
`=1

e2
k`

)
.

Fix a point p = (x, e1, e2, e3) ∈ P3. Then for any combination of {i, j, k} = {1, 2, 3},

TpP3 = T(x,ei,ej)(M × RN × RN )× TekRN

and we have that

d(wi,j;3)p = dw(x,ei,ej) + dQek .
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In fact, we can consider a larger class of extended difference functions of the form

wi,j;3(x, e1, e2, e3) = w(x, ei, ej) + Q̃i,j;3(ek),

where Q̃i,j;3 : RN → R is a function with exactly one critical point 0
Q̃

with value 0 of

index 0 for (i, j) = (1, 2), (2, 3) and index N for (i, j) = (1, 3). We would also want

Q̃i,j;3(ek) = ±e2
k outside a compact set (with the sign corresponding to the sign of the

quadratic it is generalizing). We will see in Section 7.2 the benefit of generalizing the

extended difference functions in this way. For now, we use the notation in Definition

7 and will often refer to 0
Q̃

as 0.

Even though we will be working with multiple functions, we will form the product on

C (F ) as in Definition 3. While the sets of positively-valued critical points of the extended

difference functions wi,j;3 are different, there is a natural way to identify them each with

positively-valued critical points of the original difference function w.

Lemma 14. For 1 ≤ i < j ≤ 3, there are bijections:

ιi,j;3 : Crit+(w)→ Crit+(wi,j;3)

which preserve critical value. In addition, we have the following index relation:

|p| = indw(p)−N = indwi,j;3 (ιi,j;3(p))− (j − i)N. (4)
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Proof. The bijections are defined as follows:

ι1,2;3 : Crit+(w)→ Crit+(w1,2;3),

(x, e, e′) 7→ (x, e, e′, 0)

ι2,3;3 : Crit+(w)→ Crit+(w2,3;3),

(x, e, e′) 7→ (x, 0, e, e′)

ι1,3;3 : Crit+(w)→ Crit+(w1,3;3),

(x, e, e′) 7→ (x, e, 0, e′).

(5)

If (x, e, e′) is a generator of C`(F ) then (x, e, e′) ∈ Crit+w with Morse index `+N . From

the definition of the extended difference functions in Definition 7, we see immediately that

ιi,j;3(x, e, e′) ∈ Crit+wi,j;3. The index of ι1,2;3(x, e, e′) and ι2,3;3(x, e, e′) remains `+N , while

there are N extra subtracted quadratic terms in the extended difference function w1,3;3 so

ι1,3;3(x, e, e′) has index `+N +N = `+ 2N . Since we have added or subtracted terms that

are just 02 = 0, the critical values will not change.

Remark 8. Since every critical point p of w of positive critical value will correspond to a

Reeb chord of the Legendrian Λ generated by F , the same is true of critical points ιi,j;3(p)

of wi,j;3. The positive critical value of a critical point p (resp. ιi,j;3(p)) will be the length of

the corresponding Reeb chord. By an abuse of notation, we will often use p to denote both

p and ιi,j;3(p).

Definition 8. By Definition 1, if F : M ×RN → R is a linear-at-infinity generating family,

then we may write F (x, e) = F c(x, e)+A(e) where F c : M×RN → R is compactly supported

on KM ×KE ⊆M × RN . We assume that 0 ∈ KE ; if not, enlarge the compact set so that
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this is true. We call the compact set

K := KM ×KE ×KE ×KE ⊂ P3 (6)

the non-linear support of wi,j;3.

Remark 9. Suppose that F : M × RN → R is a linear-at-infinity generating family that

agrees with a non-zero linear function outside KM ×KE , for compact sets KM ⊂ M and

KE ⊂ RN . Then every critical point of an extended difference function wi,j;3 : M×R3N → R

is of the form (x, e1, e2, e3) where x ∈ KM , ei, ej ∈ KE , and e` = 0 for ` 6= i, j. Thus, every

point in Crit+(wi,j;3) is contained in the set K; see Lemma 3.

As in Remark 7, if we use the more general form of the extended difference functions,

we choose K so that 0
Q̃
∈ KE .

Definition 9. Similarly, given Q : RN → R as in Remark 3 after Definition 7, let GQ denote

the set of Riemannian metrics gQ on RN such that gQ is the standard Euclidean metric

outside KE and in a neighborhood U of the origin 0 (the only critical point of Q).

Given gw ∈ GF and gQ ∈ GQ, we define the following three “split” metrics gi,j;3 pointwise

on P3:

(g1,2;3)(x,e1,e2,e3) = (gw)(x,e1,e2) + (gQ)e3

(g2,3;3)(x,e1,e2,e3) = (gw)(x,e2,e3) + (gQ)e1

(g1,3;3)(x,e1,e2,e3) = (gw)(x,e1,e3) + (gQ)e2 .

The metrics gi,j;3 from Definition 9 produce gradient vector fields of the extended dif-

ference functions that we may express in terms of gradient vector fields of the original

difference function, w. To see this, first note that each extended difference function may be
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written in the following form (see Definition 7):

wi,j;3(x, e1, e2, e3) = w(x, ei, ej) +Q(ek),

where k ∈ {1, 2, 3} is such that k 6= i, j and Q : RN → R is the quadratic form

Q(ek) = Q(ek1, . . . , ekN ) = ±
(

N∑
`=1

e2
k`

)
.

Fix a point p = (x, e1, e2, e3) ∈ P3. Then for any combination of {i, j, k} = {1, 2, 3},

TpP3 = T(x,ei,ej)(M × RN × RN )× TekRN

and we have that

d(wi,j;3)p = dw(x,ei,ej) + dQek .

Putting this all together, we have the following Lemma:

Lemma 15. Given gw ∈ GF and gQ ∈ GQ, let gi,j;3 as in Definition 9. Then, up to a

reordering of coordinates, we have the following split of gradient vector fields:

∇gi,j;3wi,j;3 =
(
∇gww,∇gQQ

)
.

Proof. Fix gw ∈ GF and gQ ∈ GQ. By definition, ∇wi,j;3 = ∇gi,j;3wi,j;3 is a vector field so

that for all p = (x, e1, e2, e3) ∈ P3, gp(∇wi,j;3, ·) = d(wi,j;3)p(·) =
(
dw(x,ei,ej) + dQek

)
(·).
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Let v = (vw, ve) ∈ TpP3 = T(x,ei,ej)(M × RN × RN )× TekRN . We check:

gp
(
(∇gww,∇gQQ), (vw, ve)

)
= (gw)(x,ei,ej)(∇w, vw) + (gQ)ek(∇Q, ve)

= dw(x,ei,ej)(vw) + dQek(ve)

= dp(wi,j;3)(vw, ve).

which, due the positive definiteness of metrics and the resulting uniqueness of gradient

vector fields, implies the result.

The preceding Lemma shows why we chose metrics as in Definition 9. We must check,

however, that such a choice of metric yields Morse-Smale pairs.

Proposition 11. Given gw ∈ GF and gQ ∈ GQ, each (wi,j;3, gi,j;3) satisfies the Smale

condition on positively-valued critical points: That is, for every pair of critical points p, q ∈

Crit+wi,j;3, the unstable and stable manifolds of p and q have a transverse intersection.

Proof. Fix p′ = ιi,j;3(p) and q′ = ιi,j;3(q) for p, q ∈ C (F ), and suppose a = (x, e1, e2, e3) ∈

W−p′ (wi,j;3) ∩W+
q′ (wi,j;3).

Lemma 15 implies that the flow Ψ of ∇gi,j;3wi,j;3 on P3 may be expressed as Ψ =

(Ψw,ΨQ), where Ψw is the flow of ∇gww and ΨQ is the flow of ∇gQQ. Thus, W−p′ (wi,j;3) =

W−p (w)×W−0 (Q) and W+
q′ (wi,j;3) = W+

q (w)×W+
0 (Q).
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Thus, we have that

TaW
−
p′ (wi,j;3) + TaW

+
q′ (wi,j;3)

= Ta(W
−
p (w)×W−0 (Q)) + Ta(W

+
q (w)×W+

0 (Q))

=
(
T(x,ei,ej)W

−
p (w)× TekW−0 (Q)

)
+
(
T(x,ei,ej)W

+
q (w)× TekW+

0 (Q)
)

=
(
T(x,ei,ej)W

−
p (w) + T(x,ei,ej)W

+
q (w)

)
×
(
TekW

−
0 (Q) + TekW

+
0 (Q)

)
= T(x,ei,ej)(M × RN × RN )×

(
TekW

−
0 (Q) + TekW

+
0 (Q)

)
,

where the first term in the final equivalence is our assumption that (w, g) satisfies the Smale

condition on Crit+(w). For the second term, note that ek ∈W−0 (Q) ∩W+
0 (Q) implies that

ek = 0. Since T0W
−
0 (Q) + T0W

+
0 (Q) = T0RN = RN , we have that

TaW
−
p′ (wi,j;3) + TaW

+
q′ (wi,j;3) = T(x,ei,ej)(M × RN × RN )× TekRN = TaP3,

as desired.

We can now define trajectory spaces of the extended difference functions.

Definition 10. For p−, p+ ∈ Crit+(w), the unbroken infinite Morse trajectory spaces

between p− and p+ is

Mi,j;3(p−, p+) := {γ : (−∞,∞)→ P3 | γ̇ = ∇gi,j;3wi,j;3,

lim
t→−∞

γ(t) = ιi,j,3(p−), lim
t→∞

γ(t) = ιi,j,3(p+)}/R,

where /R denotes quotienting by the action of R that takes γ(t) to γ(t+ a) for a ∈ R.

Given the correspondence of the (positively-valued) critical points of w and the extended

difference functions wi,j;3, we would like there to also be a correspondence of gradient flow
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lines. This is where we see the benefit of choosing our metrics gi,j;3 to be “split” as in

Definition 9.

Proposition 12. For appropriate choice of metrics, there are bijections

M(p, q)↔Mi,j;3(p, q)

for each 1 ≤ i < j ≤ 3.

Proof. Express γ : R→M ×RN ×RN ∈M(p, q) as γ(t) = (a(t), b1(t), b2(t)) for a : R→M

and b1, b2 : R→ RN . Define paths γi,j;3 : R→ P3 by

γ1,2;3(t) = (a(t), b1(t), b2(t), 0)

γ2,3;3(t) = (a(t), 0, b1(t), b2(t))

γ1,3;3(t) = (a(t), b1(t), 0, b2(t)) .

We claim that γi,j;3 ∈ Mi,j;3(p, q) and that this identification defines a bijection (that is,

up to reparametrization, all trajectories in Mi,j;3(p, q) are of this form).

Lemma 15 implies that gradient trajectories of wi,j;3 may be written in terms of a

gradient trajectory of w and one of Q : RN → R. Since Q(ek) = ±
(∑N

`=1 e
2
k`

)
, 0 is its

only critical point, and hence the constant trajectory at 0 is the only gradient trajectory of

Q.
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Chapter 5

Moduli Space of Gradient Flow

Trees

We will study positive gradient flow lines of the extended difference functions wi,j;3 with

respect to metrics as in Definition 9. Gradient flow lines are well-studied objects in Morse

Theory, and we will work with moduli spaces of intersecting flow lines, which we will refer to

as gradient flow trees. Understanding the structure of these spaces will play an integral

role in defining our product. In particular, to define products with correct properties, we will

need that our moduli spaces are smooth manifolds with certain compactification properties.

A gradient flow tree is made of three half-infinite gradient trajectories, one from each

extended difference function, that limit to critical points at their infinite ends and intersect

at their finite ends. To achieve transversality of this intersection, we consider trees that

“almost” intersect at their finite ends, up to a small fixed vector at each finite end.

To compactify the space of flow trees, we use results from [37] that give a smooth

manifold with corners structure to spaces of broken, half-infinite gradient trajectories of a

Morse-Smale pair (f, g), where f is a function on closed manifold. There are differences in
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∇w1,2;3

∇w2,3;3

∇w1,3;3

p1

p2

p0

Figure 3: A gradient flow tree with three intersecting half-infinite trajectories.

our setup: Our functions are Morse-Bott rather than Morse and defined on a noncompact

space. However, the positive-valued critical points are isolated and contained in a compact

set. This set is not boundaryless but we show that the trajectories in our trees are contained

in an open subset of this compact set and hence do not approach the boundary. Thus, the

space of flow trees sits in a larger, compact space of flow trees with broken branches.

To be able to prove this, we build a few choices into our construction, explained in the

following remark:

Remark 10. Lemma 9 implies that there are only a finite number of critical points with

positive critical value since such points are isolated. Thus, we know that there exists a

smallest positive critical value

ρ := ρF = min{w(p) | p ∈ Crit+(w)}. (7)

To prove certain results in Chapter 5(see Lemma 17), we need to use this fact to build a

couple of choices into our construction:

1. We shrink the fiber coordinates in the following way: We apply a fiber-preserving

diffeomorphism to P3 that is the identity outside of K and so that every point y =
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(x, e1, e2, e3) ∈ K ⊂ P3 is such that e2
1 + e2

2 + e2
3 < ρ. In Chapter 7 we will see that

the product is invariant under fiber preserving diffeomorphism, so this choice will not

affect the outcome.

2. By Lemma 9, each wi,j;3|K is uniformly continuous. In particular, for ρ as above, there

exists δ = min{δ1,2;3, δ2,3;3, δ1,3;3} > 0 such that for all y1, y2 ∈ K, |y1 − y2| < δi,j;3

implies that |wi,j;3(y1)− wi,j;3(y2)| < ρ
4 .

5.1 Unbroken flow trees

Definition 11. The unbroken half-infinite Morse trajectory spaces to/from a critical

point p ∈ Crit+(w) are defined as:

Mi,j;3(P3, p) := {γ : [0,∞)→ P3 | γ̇ = ∇wi,j;3, lim
t→∞

γ(t) = ιi,j,3(p)} and

Mi,j;3(p, P3) := {γ : (−∞, 0]→ P3 | γ̇ = ∇wi,j;3, lim
t→−∞

γ(t) = ιi,i,;3(p)}.

Remark 11. 1. The sets in Definition 11 inherit smooth structures from unstable and

stable manifolds:

Mi,j;3(P3, p) ∼= W+
p (wi,j;3),

Mi,j;3(p, P3) ∼= W−p (wi,j;3).

2. In contrast to the infinite gradient trajectory spaces in the previous chapters, quoti-

enting by reparametrization is not needed for half-infinite trajectory spaces because

the image of the trajectory changes under reparametrization.

Definition 12. Define evaluation maps on the half-infinite trajectory spaces to record
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the finite endpoint:

ev−i,j;3 :Mi,j;3(P3, p)→ P3, ev+
i,j;3 :Mi,j;3(p, P3)→ P3

are given by ev−i,j;3(γ) := γ(0) and ev+
i,j;3(γ) := γ(0).

Next, we define the perturbation ball S and maps Ei,j;3 that perturb the evaluation

at endpoints map by vectors in S. The perturbation ball S and the subsequent maps are

defined in slightly different ways depending on whether the manifold M in P3 = M × R3N

is a Euclidean space or a closed manifold.

Definition 13. If M = Rn, define the perturbation ball S ⊂ P3 to be an open ε-ball

centered at 0 in P3 = Rn+3N . We will denote such a ball as Bn+3N (ε) or just B(ε) if the

dimension is clear.

If M is a closed manifold, then we know M ⊂ Rm for some m ∈ N. Every Bm(ε)

defines a space M ε ⊂ Rm, the open set of points in Rm of distance less than ε to M . By

the ε-Neighborhood Theorem (see, for example [16]), if ε is small enough, there is a well

defined submersion πM : M ε → M that takes a point in M ε to the unique closest point in

M and is the identity when restricted to M . We can extended this map to get a submersion

π : M ε × R3N → P3 defined by

π(x, e1, e2, e3) = (πM (x), e1, e2, e3).

For M ⊂ Rm compact, the perturbation ball is

S := Bm+3N (ε) ⊂ Bm(ε)×B3N (ε) ⊂ Rm × R3N .

Remark 12. For δ as in Remark 10, we choose the size of the perturbation ball S so that
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for all s ∈ S, |s| < δ. This choice is used in Lemma 17.

Definition 14. For M = Rn, define perturbed evaluation maps Ei,j;3 as follows:

E1,2;3 :M1,2;3(p1, P3)× S → P3

(γ, s) 7→ ev+
1,2;3(γ) + s = γ(0) + s,

E2,3;3 :M2,3;3(p2, P3)× S → P3

(γ, s) 7→ ev+
2,3;3(γ) + s = γ(0) + s,

E1,3;3 :M1,3;3(P3, p0)× S → P3

(γ, s) 7→ ev−1,3;3(γ) + s = γ(0) + s.

If M is a closed manifold, we define Ei,j;3 using the map π : M ε ×R3N → P3 defined in

Definition 13:

E1,2;3 :M1,2;3(p1, P3)× S → P3

(γ, s) 7→ π
(

ev+
1,2;3(γ) + s

)
= π (γ(0) + s) ,

E2,3;3 :M2,3;3(p2, P3)× S → P3

(γ, s) 7→ π
(

ev+
2,3;3(γ) + s

)
= π (γ(0) + s) ,

E1,3;3 :M1,3;3(P3, p0)× S → P3

(γ, s) 7→ π
(

ev−1,3;3(γ) + s
)

= π (γ(0) + s) .

Remark 13. The Ei,j;3 maps are well-defined: This is clear when M = Rn, and for closed

M ⊂ Rm, the evaluation maps have outputs in P3 = M × R3N ⊂ M ε × R3N ⊂ Rm+3N .
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Adding an element s ∈ S to this output will give a point within distance ε of the endpoint.

This is a valid input for the map π, which we use to get a corresponding point P3.

The following definitions set notation for the statement and proof of Theorem 13.

Definition 15. For p1, p2, p0 ∈ Crit+(w), let

X :=M1,2;3(p1, P3)×M2,3;3(p2, P3)×M1,3;3(P3, p0),

and define the following triple perturbed evaluation map:

E : X × (S × S × S)→ P3 × P3 × P3

((γ1, γ2, γ3), (s1, s2, s3)) 7→ (E1,2;3(γ1, s1), E2,3;3(γ2, s2), E1,3;3(γ3, s3)) .

For a given s = (s1, s2, s3) ∈ S3, let Es = E|X×{s} : X → (P3)3 be the restriction of E to s.

Denote the diagonal of (P3)3 by ∆3, i.e, ∆3 = {(y, y, y) | y ∈ P3}. The following theorem

shows that, for almost every choice of perturbation s ∈ S3, there is manifold structure on

flow trees with a midpoint perturbation by s.

Theorem 13. For almost every s = (s1, s2, s3) ∈ S3 = S × S × S, E−1
s (∆3) ⊂ X is a

smooth manifold of dimension |p0| − |p1| − |p2|.

Proof. We show that, for almost every s ∈ S3, Es t ∆3. Thus, by the Transversality

Theorem (see, for example Section 2.3 in [16]), E−1
s (∆3) is a smooth manifold and the

codimension of E−1
s (∆3) in X equals to codimension of ∆3 in (P3)3.

For M = Rn, the map Ei,j;3 restricted to γ is the translation s 7→ γ(0) + s and for

M compact, Ei,j;3 restricted to γ is this translation composed with the submersion π (see

Definitions 13 and 14). Thus, fixing a triple of trajectories γ̂ := (γ1, γ2, γ3) ∈ X, the map



5.1. Unbroken flow trees 53

Eγ̂ : S ×S ×S → P3×P3×P3 is a product of submersions of the ball S, so the whole map

E is transversal to any submanifold of (P3)3.

Since the hypothesis of the Transversality Theorem is satisfied, for almost every s ∈

S × S × S, E−1
s (∆3) is a smooth manifold whose codimension in X equals the codimension

of ∆3 in (P3)3. From this, Remark 11, and Equation 4, we can calculate:

dim
(
E−1
s (∆3)

)
= dim(X)−

(
dim((P3)3)− dim(∆3)

)
= dim(M1,2;3(p1, P3)) + dim(M2,3;3(p2, P3)) + dim(M1,3;3(P3, p0))− 2(n+ 3N)

= dim(W−p1
(w1,2;3)) + dim(W−p2

(w2,3;3)) + dim(W+
p0

(w1,3;3))− 2(n+ 3N)

= (n+ 3N)− indw1,2;3(p1) + (n+ 3N)− indw2,3;3(p2) + indw1,3;3(p0)− 2(n+ 3N)

= −(|p1|+N)− (|p2|+N) + (|p0|+ 2N)

= |p0| − |p1| − |p2|.

Definition 16. We denote the manifold E−1
s (∆3) from Theorem 13 by M(p1, p2; p0|s).

We may describe M(p1, p2; p0|s) in the following way:

Given a generating family F : M × RN → R, pick metrics gi,j;3 as in Definition 9. Let

S be a perturbation ball as in Definition 13 and form the Ei,j;3 maps as in Definition 14.

Theorem 13 implies that we can choose s = (s1, s2, s3) ∈ S × S × S so that the following
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set is a smooth manifold.

M(p1, p2; p0|s) =



(γ1, γ2, γ3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 : (−∞, 0]→M × RN × RN × RN ,

γ2 : (−∞, 0]→M × RN × RN × RN ,

γ3 : [0,∞)→M × RN × RN × RN ,
dγ1

dt
= ∇g1,2;3w1,2;3,

dγ2

dt
= ∇g2,3;3w2,3;3,

dγ3

dt
= ∇g1,3;3w1,3;3,

E1,2;3(γ1, s1) = E2,3;3(γ2, s2) = E1,3;3(γ3, s3),

lim
t→−∞

γ1(t) = ι1,2;3(p1), lim
t→−∞

γ2(t) = ι2,3;3(p2),

lim
t→∞

γ3(t) = ι1,3;3(p0)



.

5.2 Compactification by broken flow trees

The compactification of M(p1, p2; p0|s) relies on a few technical lemmas that allow us to

apply the compactifications of half-infinite Morse trajectories from [37]. In particular, we

show that the images of flow trees inM(p1, p2; p0|s) are contained in a compact set (Lemma

16) and are bounded away from the critical submanifolds of the extended difference functions

(Lemma 17).

Although the gradient trajectories are in the non-compact space P3, the following shows

that all trees will have their images in a compact subset of P3.

Lemma 16. For a given a linear-at-infinity generating family F : M × RN → R, there is

a compact set Ks with K ⊆ Ks ⊆ P3 such that for all p1, p2, p0 and all Γ = (γ1, γ2, γ3) ∈

Ms
F (p1, p2; p0), Im Γ ⊆ Ks.

Proof. As shown above in Lemma 9, the critical points p1, p2, p0 ∈ K. To show that the

image of every Γ ∈ M(p1, p2; p0|s) is contained in Ks, we first work with a tree with
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s = 0. We show that that every trajectory of ∇wi,j;3 that leaves K cannot reenter K. This

implies that every edge E in a tree, Im(Γ|E) can intersect ∂K at most once. To show that

these edges in fact never intersect ∂K, we show that the point of intersection of the three

trajectories is in K.

For these arguments, it will useful to first analyze some properties of ∇wi,j;3 outside a

compact set. Since F is linear-at-infinity and our metrics are chosen to be standard outside

K, we know that for (x, e1, e2, e3) /∈ K,

∇wi,j;3(x, e1, e2, e3) =

(
∂F

∂x
(x, ei)−

∂F

∂x
(x, ej)

)
∂

∂x

+

(
∂F

∂ei
(x, ei)

)
∂

∂ei
−
(
∂F

∂ej
(x, ej)

)
∂

∂ej

± 2e`
∂

∂e`
,

where ` 6= i, j and the
∂

∂e`
sign is − if ` = 2 and + else.

More specifically, suppose that outside KM ×KE , F (x, e) is the nonzero linear function

A(e1, . . . , eN ) and ∂
∂ek

A(e) = ck ∈ RN − {0}. Then we have that ∀ i, j,

1. if x /∈ KM , the
∂

∂x
component of ∇wi,j;3(x, e1, e2, e3) equals 0;

2. if ei /∈ KE , the
∂

∂eik
component of ∇wi,j;3(x, e1, e2, e3) equals ck ;

3. if ej /∈ KE , the
∂

∂ejk
component of ∇wi,j;3(x, e1, e2, e3) equals −ck;

4. for e`, ` 6= i, j, the
∂

∂e`
component of ∇wi,j;3(x, e1, e2, e3) is 2e` when ` = 1 or ` = 3

and is −2e` when ` = 2.

First, suppose γ is a trajectory of∇wi,j;3 and there exists a t0 < t1 so that γ(t0) ∈ K, γ(t1) /∈

K. The following argument then shows that for all t > t1, γ(t) /∈ K. Since γ(t1) /∈ K,

γ(t1) = (x, e1, e2, e3) where x /∈ KM or ei /∈ KE , for some i. From the form of∇wi,j;k outside
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K, it is easy to see that for all t > t1, γ(t1) /∈ K. For example, if γ(t1) = (x, e1, e2, e3), where

ei /∈ KE , then since the
∂

∂ei
component of ∇wi,j;k(x, e1, . . . , ek+1) is constant or linear, it

follows that for all t > t1, the ith component of γ(t) will not lie in KE .

To complete the proof, we first assume the perturbation vector s = 0 ∈ S × S × S (so

that the trajectories intersect) and show that for the vertex v in the interior of the tree,

Γ(v) ∈ K; in other words, we show that the intersection point of gradient trajectories in a

tree must be contained in K. Let y ∈ M × R3N denote the intersection point of gradient

trajectories.

Suppose y = (xy, ey1, e
y
2, e

y
3) /∈ K. From (1), we see that y /∈ K can only follow from

eyi /∈ KE for some 1 ≤ i ≤ 3. We complete the argument by finding contradictions to

eyi /∈ KE , by cases depending on i.

Suppose ey1 /∈ KE . Then by 2, we see that the
∂

∂e1
components of ∇w1,2;3(x, e1, e2, e3)

and ∇w1,3;3(x, e1, e2, e3) both equal the same constants ck, but the first flows from K to y

and the other flows from y to K, giving a contradiction.

A similar contradiction is reached if ey2 /∈ KE : The trajectories along∇w1,2;3 and∇w2,3;3

both flow to y, but by 2 and 3, we see the
∂

∂e2
components of the trajectories outside K

are constant with opposite signs.

Lastly, if ey3 /∈ KE , we obtain a similar contradiction as in the case i = 1 using 3 and

the fact that ∇w2,3;3 flows from K to y while ∇w1,3;3 flows away from y back to K. Thus

we must have y ∈ K.

For trajectories with a nonzero perturbation, let y = (xy, ey1, e
y
2, e

y
3) be the intersection

point of the perturbed trajectories, i.e., if Γ = {γ1, γ2, γ3} ∈ M(p1, p2; p0|s), then

y = π(γ1(0) + s1) = π(γ2(0) + s2) = π(γ3(0) + s3),

where π is the identity map or a submersion that is the identity on P3 , see Definition 14.
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We built the perturbation ball S so that |si| < δ; see Remark 12. Either By(3δ) ⊂ K or

there exists a larger compact set Ks containing K so that this is true.

Hence Γ is contained in a compact set Ks, as desired.

To apply results in [37], we must bound the half-infinite trajectories of the extended

difference functions in our trees away from the critical submanifold of their respective func-

tion. Since the critical submanifolds have value 0, we show that the points in the image

of each trajectory have positive value bounded away from 0. Since our trajectories follow

a positive gradient, the trajectories that flow from positive-valued critical points p1 and p2

naturally are bounded away from their respective Morse-Bott submanifolds. The following

lemma bounds the remaining trajectory.

Lemma 17. Given Γ = (γ1, γ2, γ3) ∈ M(p1, p2; p0|s), γ3(0) >
ρ

4
> 0, where ρ is the least

positive critical value of w.

Proof. Consider

y = E1,2;3(γ1, s1) = E2,3;3(γ2, s2) = E1,3;3(γ3, s3)

= (x(y), e1(y), e2(y), e3(y)) ∈ P3.

While the Ei,j;3 maps were defined in slightly different ways dependent on if the underlying

manifold M was Euclidean or closed (see Definition 14), we may express them as π(γk +sk)

for k = 1, 2, 3, where π is the identity or the submersion described in the definition.

Since the trees in M(p1, p2; p0|s) are defined using the positive gradient flow of the

extended difference functions, we have that w1,2;3(γ1(0)) ≥ w1,2;3(p1) and w2,3;3(γ2(0)) ≥

w2,3;3(p2).
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By construction of the extended difference functions,

w1,3;3(y) = w1,2;3(y) + w2,3;3(y)− e1(y)2 − e2(y)2 − e3(y)2. (8)

We now make use of a couple of the choices we have built into our constructions of

M(p1, p2; p0|s); see Remark 10. Since the perturbation terms si ∈ S, we have ensured that

|si| < δ so that, using the uniform continuity of wi,j;3 on K, we have that

|wi,j;3(y)− wi,j;3 (γk(0)) | < ρ

4
. (9)

From this and (8) we see that

w1,3;3(γ3(0))

> w1,3;3(y)− ρ

4

= w1,2;3(y) + w2,3;3(y)− (e1(y))2 − (e2(y))2 − (e3(y))2 − ρ

4

> w1,2;3(γ1(0))− ρ

4
+ w2,3;3(γ2(0))− ρ

4
− (e1(y))2 − (e2(y))2 − (e3(y))2 − ρ

4

≥ w1,2;3(p1) + w2,3;3(p2)− (e1(y))2 − (e2(y))2 − (e3(y))2 − 3ρ

4

> w1,2;3(p1) + w2,3;3(p2)− ρ− 3ρ

4

> 2ρ− ρ− 3ρ

4
> 0.

The idea behind compactifying Morse trajectory spaces is that unbroken flow lines limit

to broken ones. Topologically, spaces of multiply-broken flow lines have a manifold with cor-

ners structure. This notion has been made precise for Morse functions on closed manifolds

in [37]. Lemma 16 will be used in the proof of Theorem 4 for compactification, but to get
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a (noncompact) manifold with corners structure on the spaces of half-infinite trajectories,

we use the result of Lemma 17 to justify restricting the space M1,3;3(P3, p0) to a space

of trajectories that have their finite end bounded away from {w1,3;3 = 0}, so that broken

trajectories cannot break at the critical submanifold. With this in mind, we set up broken

half-infinite trajectory spaces:

Definition 17. To ease notation, let

(U−,U+) = (p1, P3), (p2, P3), or
(
{w1,3;3 >

ρ

8
}, p0

)
.

We define the `-fold broken half-infinite trajectories to be

Mi,j;3(U−,U+)` :=
⋃
Mi,j;3(U−, q1)×Mi,j;3(q1, q2)× · · · ×Mi,j;3(q`,U+),

where the union is taken over sequence of critical points q1, . . . , q` ∈ Crit+(w) such that

Mi,j;3(U−, q1),Mi,j;3(q1, q2), . . . ,Mi,j;3(q`,U+) 6= ∅.

Definition 18. The generalized Morse trajectory space is

Mi,j;3(U−,U+) :=
⋃
`∈N
Mi,j;3(U−,U+)`.

We will use γ = {γ1, . . . , γ`} to denote an element of Mi,j;3(U−,U+).

Remark 14. The union in Definition 18 is finite: There are only a finite number of points

in Crit+w and they live in a compact subset of P3 (see Lemma 9). The finite ends of the

generalized trajectories from p1 and p2 may leave the non-linear support set K, so these

spaces are not necessarily contained in a compact set.

There is a natural metric on Mi,j;3(U−,U+):
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Definition 19. OnMi,j;3(U−,U+) consider the metric dM which is the Hausdorff distance

on the images of broken trajectories.

dM(γ, γ′) := dHaus(imγ, imγ′).

By imγ, we mean the closure of the union of the images of trajectories that make up the

trajectory sequence γ, i.e., we are including the critical point limits of the trajectories in

the sequence. Recall that the Hausdorff distance dHaus is a metric on non-empty compact

subsets of a space defined by

dHaus(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

Theorem 14. For p0, p1, p2 ∈ Crit+(w), the half-infinite broken trajectory spaces(
M1,2;3(p1, P3), dM

)
,
(
M2,3;3(p2, P3), dM

)
, and

(
M1,3;3({w1,3;3 >

ρ
8}, p0), dM

)
are metric

spaces that can be equipped with the structure of a smooth manifold with corners. In each

case, the `-stratum is Mi,j;3(U−,U+)` as in Definition 17.

Proof. While our setup differs from that in [37, Theorem 2.3], we argue that constructions

in [37] suffice to claim this result. In particular, the constructions in [37] give a maximal

atlas of charts and associative gluing maps to define a manifold with corners structure for

Morse-Smale pairs on a closed manifold. In neighborhoods not containing critical points,

there is a natural smooth structure induced by the smoothness of the gradient flow. The

careful work to define the corner structure occurs in neighborhood of the critical points.

Thus, while the extended difference functions are Morse-Bott and defined on a noncompact

manifold, Lemmas 16 and 17 show that neighborhoods of the trajectories that occur in

trees occur in an open set contained in compact set. Hence, the charts in [37] suffice

to give a manifold with corners structure on the relevant trajectory spaces. In contrast
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to [37, Theorem 2.3], we lose the compactness of the trajectory spaces themselves.

Definition 20. Extend the maps in Definition 12 to generalized evaluation maps

ev−i,j;3 :M1,3;3

({
w1,3;3 >

ρ

8

}
, p0

)
→ P3, ev+

i,j;3 :Mi,j;3(p, P3)→ P3

by

ev−i,j;3(γ) = ev−i,j;3({γ1, . . . , γ`}) := γ1(0)

and

ev+
i,j;3(γ) = ev+

i,j;3({γ1, . . . , γ`}) := γ`(0).

Remark 15. [37, Lemma 3.3] proved that the extended evaluation maps in Definition 20

are continuous with respect to the Hausdorff metric defined in 19. As shown in [37, Remark

5.5], the evaluation maps are smooth.

Definition 21. ForM = Rn, define the generalized perturbation maps Ei,j;3 as follows:

E1,2;3 :M1,2;3(p1, P3)× S → P3

(γ, s) 7→ ev+
1,2;3(γ) + s = γ`(0) + s,

E2,3;3 :M2,3;3(p2, P3)× S → P3

(γ, s) 7→ ev+
2,3;3(γ) + s = γ`(0) + s,

E1,3;3 :M1,3;3

({
w1,3;3 >

ρ

8

}
, p0

)
× S → P3

(γ, s) 7→ ev−1,3;3(γ) + s = γ1(0) + s.

If M is a compact manifold, we define the generalized perturbation maps Ei,j;3
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using the map π : M ε × R3N → P3 defined in Definition 13:

E1,2;3 :M1,2;3(p1, P3)× S → P3

(γ, s) 7→ π
(

ev+
1,2;3(γ) + s

)
= π (γ`(0) + s) ,

E2,3;3 :M2,3;3(p2, P3)× S → P3

(γ, s) 7→ π
(

ev+
2,3;3(γ) + s

)
= π (γ`(0) + s) ,

E1,3;3 :M1,3;3

({
w1,3;3 >

ρ

8

}
, p0

)
× S → P3

(γ, s) 7→ π
(

ev−1,3;3(γ) + s
)

= π (γ1(0) + s) .

Definition 22. For p1, p2, p0 ∈ C (F ), let

X :=M1,2;3(p1, P3)×M2,3;3(p2, P3)×M1,3;3

({
w1,3;3 >

ρ

8

}
, p0

)
.

Applying Lemma 2 twice shows that the space X is a manifold with corners whose

`-stratum is

X` =
⊔

i+j+k=`

M1,2;3(p1, P3)i ×M2,3;3(p2, P3)j ×M1,3;3

({
w1,3;3 >

ρ

8

}
, p0

)
k
.

Theorem 15. For almost every s = (s1, s2, s3) ∈ S3 = S×S×S, E
−1
s (∆3) =M(p1, p2; p0|s)

is a compact manifold with corners of dimension |p0|−|p1|−|p2| with i−stratumM(p1, p2; p0|s)i =

Xi ∩ E−1
s (∆3) given by trees with a total of i breaks on the tree edges. In particular,

M(p1, p2; p0|s)0 =M(p1, p2; p0|s). Thus,M(p1, p2; p0|s) is a compactification ofM(p1, p2; p0|s).

Proof. Following a similar strategy as in the proof of Theorem 13, we transversely cut out

a smooth manifold with corners from X. We will make use of extensions of Transversality
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and Preimage Theorems for manifolds with corners; see Theorems 2 and 3.

Combining the generalized perturbation maps into one map, define:

E : X × (S × S × S)→ P3 × P3 × P3

((γ1, γ2, γ3), (s1, s2, s3)) 7→
(
E1,2;3(γ1, s1), E2,3;3(γ2, s2), E1,3;3(γ3, s3)

)
.

We use Theorem 3 to show that for almost every s = (s1, s2, s3) ∈ S×S×S, ∂`Es = Es|X`

is transversal to the diagonal ∆3 ⊂ P3×P3×P3. Thus, by Theorem 2, E
−1
s (∆3) is a smooth

submanifold with corners of X whose `-stratum E
−1
s (∆3)` is X` ∩ E−1

s (∆3).

To use Theorem 3, we need to show that ∂iE is transversal to ∆3 for all strata of X.

Fix a trajectory sequence γ in M1,2;3(p1, P3),M2,3;3(p2, P3), or M1,3;3({w1,3;3 >
ρ
8}, p0).

For M = Rn, the map Ei,j;3 restricted to γ is the translation s 7→ x + s where

x = ev±i,j;3(γ) and so is a submersion, and since γ was arbitrary, Ei,j;3 restricted to any

strata (which is exactly the map ∂iEi,j;3) of Mi,j;3(pi, P3) or M1,3;3({w1,3;3 >
ρ
8}, p0) is a

submersion.

The case where M is closed is similar. For fixed γ as above, the map Ei,j;3 sends s

to π(x + s) and is a composition of a translation with π, which was chosen through the

ε-Neighborhood Theorem to be a submersion (see Definition 13). Since a restriction to one

trajectory sequence is a submersion, a restriction to any stratum will be as well.

Thus, fixing a triple of trajectories γ̂ := (γ1, γ2, γ3) ∈ X, note that, no matter which

stratum this triple lives in, the map Eγ̂ : S × S × S → P3 × P3 × P3 is a product of

submersions of the ball S. Thus, any restriction of E to any strata of X is transversal to

any submanifold of (P3)3, which shows that ∂iE t ∆3.

Thus, for almost every s ∈ S × S × S, M(p1, p2; p0|s) will be a smooth manifold with

corners whose codimension in X equals the codimension of ∆3 in (P3)3. The dimension

follows from the exact calculation Theorem 13.
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It remains to show that M(p1, p2; p0|s) is compact. This would be immediate if X

were compact, as ∆3 is closed in (P3)3 and so E
−1
s (∆3) is closed in X. We will argue,

instead, that trajectory sequences that cause X to be noncompact do not show up in trees

in M(p1, p2; p0|s). We know that broken half-infinite trajectory spaces for Morse-Smale

pairs on a closed manifold are compact from [37, Theorem 2.3], so issues of noncompactness

in

X =M1,2;3(p1, P3)×M2,3;3(p2, P3)×M1,3;3

({
w1,3;3 >

ρ

8

}
, p0

)
stem from the noncompactness of P3 and {w1,3;3 >

ρ
8}. In particular, the spacesMi,j;3(pi, P3)

could contain a sequence of trajectories whose finite ends (i.e., images of ev+
i,j;3) diverge.

Similarly, there could be sequence in M1,3;3({w1,3;3 >
ρ
8}, p0) whose limit has finite end,

given by ev−i,j;3, in the level set {w1,3;3 = ρ
8}.

As M(p1, p2; p0|s) is a metric space, to show that it is compact it suffices to prove

sequential compactness. Suppose Γn = (γ1, γ2, γ3)n is a sequence of trees inM(p1, p2; p0|s).

The same proofs of Lemma 16 and 17 show that, ∀ n, Γn ⊂ Ks and w1,3;3((γ3)n) > ρ
4 >

ρ
8 .

With these bounds, the convergence of a subsequence of Γn follows as in the proof

of [37, Theorem 2.3] and [2, Proposition 3]. This was shown by defining a continuous

reparametrization of the images of trajectories in the sequence with bounded derivatives on

the complements of neighborhoods of critical points. This implies the equicontinuity of these

reparametrizations, which, by the Arzelà-Ascoli Theorem, gives a convergent subsequence.

Geometrically, the content of Theorem 15 is that M(p1, p2; p0|s) lives as the 0-stratum

in a larger manifold with corners whose `-stratum is made up of “almost” intersecting trees

with a total of ` breaks spread over its three branches.

We apply Theorem 15 to see that a 1-dimensional M(p1, p2; p0|s) has a natural com-
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pactification through the addition of trees with once-broken edges, see Figure 4.

Corollary 1. Given p1, p2, p0 with |p0|− |p1|− |p2| = 1, M(p1, p2; p0|s) can be compactified

to a 1-manifold M(p1, p2; p0|s) with boundary

∂M(p1, p2; p0|s) :=
⋃
p′1

M1,2;3(p1, p
′
1)×M(p′1, p2; p0|s)

⋃
p′2

M2,3;3(p2, p
′
2)×M(p1, p

′
2; p0|s)

⋃
p′0

M(p1, p2; p′0|s)×M1,3;3(p′0, p0),

where the unions are taken over p′1 ∈ C |p1|+1(F ), p′2 ∈ C |p2|+1(F ), and p′0 ∈ C |p0|−1(F ).

∇w12 ∇w23

∇w13

p1
p2

p0

p′1
δ ∇w12

∇w23

∇w13

p1 p2

p0

δ

p′2
∇w12

∇w23

∇w13

p1 p2

p0δ

p′0

Figure 4: Elements in ∂M(p1, p2; p0|s) for s = (0, 0, 0).
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Chapter 6

Product Structure

We define a map by counting isolated trees in M(p1, p2; p0|s). Note that, for p1, p2, p0 ∈

Crit+(w), Theorem 13 implies that isolated trees in M(p1, p2; p0|s) satisfy

|p0| = |p1|+ |p2|

Definition 23. Given a generating family F : M × RN → R, we define a map

m2 : Ci(F )⊗ Cj(F )→ Ci+j(F )

as follows: For critical points p1, p2 ∈ Crit+(w), define

m2(p1 ⊗ p2) =
∑

(#Z2M(p1, p2; p0|s)) · p0

where the sum is taken over p0 ∈ Crit+(w), such that |p0| = |p1|+ |p2|. Extend the product

bilinearly over the tensor product.

The following lemma shows that m2 descends to a map on cohomology:
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Lemma 18. The map

m2 : Ci(F )⊗ Cj(F )→ Ci+j(F )

is a cochain map, i.e., the following diagram commutes:

C (F )⊗ C (F )

δ⊗1+1⊗δ
��

m2 // C (F )

δ
��

C (F )⊗ C (F )
m2 // C (F ).

(10)

Proof. Consider a 1-dimensional moduli space of flow trees, M(p1, p2; p0|s). Theorem 13

shows that such a space occurs when

|p0| = |p1|+ |p2|+ 1,

so let p1 ∈ Ci(F ), p2 ∈ Cj(F ), and p0 ∈ Ci+j+1(F ).

Corollary 1 gives an expression for ∂M(p1, p2; p0|s). In particular, the boundary of

M(p1, p2; p0|s) consists of isolated trees with a single broken edge. After compactification,

M(p1, p2; p0|s) is a compact 1-manifold, so its boundary contains an even number of points.

Thus, a Z2 count of both sides of the expression for ∂M(p1, p2; p0|s) gives us:

0 =
∑
p′1

#Z2M1,2;3(p1, p
′
1) ·#Z2M(p′1, p2; p0 | s)

+
∑
p′2

#Z2M2,3;3(p2, p
′
2) ·#Z2M(p1, p

′
2; p0 | s)

+
∑
p′0

#Z2M(p1, p2; p′0 | s) ·#Z2M1,3;3(p′0, p0).

(11)
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This now implies the cochain map condition

m2(δp1 ⊗ p2) +m2(p1 ⊗ δp2) = δm2(p1 ⊗ p2).

This follows since the terms on the right hand side of Equation 11 are exactly the coefficients

of the three terms in the cochain map condition.

As an example, consider the term m2(δp1 ⊗ p2):

m2(δp1 ⊗ p2) =
∑
p0

#Z2M(δp1, p2, p0 | s) · p0

=
∑
p0

#Z2M(
∑
p′1

#Z2M1,2;3(p1, p
′
1) · p′1, p2, p0 | s) · p0

=
∑
p0

(
∑
p′1

#Z2M1,2;3(p1, p
′
1) ·#Z2M(p′1, p2, p0 | s)) · p0.

The other two terms follow similarly, which shows that m2 is a cochain map, as desired.

Corollary 2. Given a generating family F : M × RN → R, there is a product map on

Generating Family Cohomology

µ2 : GH i(F )⊗GHj(F )→ GH i+j(F ).
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Chapter 7

Invariance with respect to

Equivalences of F

Recall from Section 2.2 that there is a notion of equivalence ∼ of generating families for a

Legendrian submanifold Λ ⊂ J1(M). Lemma 7 shows that GH∗(F ) is invariant under ∼.

In this chapter, we show that the product is unchanged under ∼ as well.This amounts to

showing that, when F̂ is obtained from F by stabilization or fiber-preserving diffeomorphism

resulting in isomorphisms GH∗(F ) → GH∗(F̂ ) as in Section 3.3, the following diagram

commutes:

GH∗(F )⊗GH∗(F )

∼=
��

µ2 // GH∗(F )

∼=
��

GH∗(F̂ )⊗GH∗(F̂ )
µ̂2 // GH∗(F̂ ).

(12)

7.1 Stabilization

Given a generating family F : M × RN → R, define F± : M × RN × R → R where

F±(x, e, e′) = F (x, e) ± (e′)2. To show invariance under stabilization, it suffices to show
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that the diagram 12 commutes for F̂ = F±. Observe that we can write out new extended

difference functions

w±i,j;3 : M × R3N × R3 → R

from F± in terms of stabilizations of F :

w+
1,2;3(x, e1, e

′
1, e2, e

′
2, e3, e

′
3) = F (x, e1) + (e′1)2 − F (x, e2)− (e′2)2 + e2

3 + (e′3)2

w+
2,3;3(x, e1, e

′
1, e2, e

′
2, e3, e

′
3) = F (x, e2) + (e′2)2 − F (x, e3)− (e′3)2 + e2

1 + (e′1)2

w+
1,3;3(x, e1, e

′
1, e2, e

′
2, e3, e

′
3) = F (x, e1) + (e′1)2 − F (x, e3)− (e′3)2 − e2

2 − (e′2)2

w−1,2;3(x, e1, e
′
1, e2, e

′
2, e3, e

′
3) = F (x, e1)− (e′1)2 − F (x, e2) + (e′2)2 + e2

3 + (e′3)2

w−2,3;3(x, e1, e
′
1, e2, e

′
2, e3, e

′
3) = F (x, e2)− (e′2)2 − F (x, e3) + (e′3)2 + e2

1 + (e′1)2

w−1,3;3(x, e1, e
′
1, e2, e

′
2, e3, e

′
3) = F (x, e1)− (e′1)2 − F (x, e3) + (e′3)2 − e2

2 − (e′2)2,

which induces isomorphisms with GH∗(F ) by Lemma 11. We may also express these sta-

bilized extended difference functions as

w±i,j;3(x, e1, e
′
1, e2, , e

′
2, e3, e

′
3) = wi,j;3(x, e1, e2, e3) +Q±i,j;3(e′1, e

′
2, e
′
3)

for different nondegenerate quadratic functions Q±i,j;3 : R3 → R.

Remark 16. As in Section 3.3, given a generating family F and F± as above, if p ∈

Crit+(w), then there are corresponding critical points p± ∈ Crit+(w±) with the same critical

value and |p±| = |p|, even though the Morse index changes. Note that, by construction, this

correspondence passes to the extended difference functions and bijections in Lemma 14: If

p ∈ Crit(wi,j;3), then there is a corresponding critical point p± ∈ Crit(w±i,j;3) whose primed

coordinates are 0. Hence, wi,j;3(p) = w±i,j;3(p±). The Morse index increases by 1 if j− i = 1
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and 2 if j − i = 2.

The gradient trajectories we are interested in now live in P3 × R3 rather than P3. To

study trajectories, we equip P3 × R3 with split metrics g′i,j;3 = gi,j;3 + g0 where gi,j;3 is a

metric on P3 as in Definition 9 and g0 is the standard Riemannian metric on R3. Such a

metric facilitates comparison of gradient trajectories of the stabilized extended difference

functions to those before stabilization. It is necessary to check that such a metric satisfies

the conditions in Definition 9.

Lemma 19. If gi,j;3 is a metric of the form in Definition 9; that is, if gi,j;3 = gw+gQ, then

g′i,j;3 = gw± + gQ′ for gw± ∈ GF± and gQ′ ∈ GQ′. Here, GF± and GQ′ are the metric sets

defined in Definition 9 for the stabilized generating family F± : M×RN+1 and corresponding

quadratic form Q′ : RN+1 → R so that w±i,j;3 = w± +Q′.

Proof. The only non-immediate condition to check is the Smale condition, but since

w±(x, e1, e
′
1, e2, e

′
2) = w(x, e1, e2)± (e′1)2 ∓ (e′2)2, the techniques in the proof of Proposition

11 show that these metrics will ensure the Smale condition.

Remark 17. With this choice of metrics gi,j;3, the below relations between the unsta-

ble/stable manifolds hold, where p±i ∈ C(F±) denotes the corresponding critical point to

pi ∈ C (F ), see Remark 16. Note that we are abusing notation as promised in Remark

8. The first diffeomorphism, as noted by Remark 11, is due to the fact that the Morse

trajectory spaces inherit their smooth structures from the unstable and stable manifolds.
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M+
1,2;3(p+

1 , P3 × R3) ∼= W−
p+

1

(w+
1,2;3) ∼= W−p1

(w1,2;3)× Re′1 × {0}e′2 × Re′3

M+
2,3;3(p+

2 , P3 × R3) ∼= W−
p+

2

(w+
2,3;3) ∼= W−p2

(w2,3;3)× Re′1 × Re′2 × {0}e′3

M+
1,3;3(P3 × R3, p+

0 ) ∼= W+

p+
0

(w+
1,3;3) ∼= W+

p0
(w1,3;3)× {0}e′1 × Re′2 × Re′3

M−1,2;3(p−1 , P3 × R3) ∼= W−
p−1

(w−1,2;3) ∼= W−p1
(w1,2;3)× {0}e′1 × Re′2 × Re′3

M−2,3;3(p−2 , P3 × R3) ∼= W−
p−2

(w−2,3;3) ∼= W−p2
(w2,3;3)× Re′1 × {0}e′2 × Re′3

M−1,3;3(P3 × R3, p−0 ) ∼= W+

p−0
(w−1,3;3) ∼= W+

p0
(w1,3;3)× Re′1 × Re′2 × {0}e′3

Remark 17 tells us how the space X =M1,2;3(p1, P3)×M2,3;3(p2, P3)×M1,3;3(P3, p0)

in which our moduli space of flow trees lives, compares to the space

X± =M±1,2;3(p±1 , P3 × R3)×M±2,3;3(p±2 , P3 × R3)×M±1,3;3(P3 × R3, p±0 ).

It remains to check transversality of perturbed evaluation at endpoints maps with the

diagonal ∆̂3 ∼= ∆3×∆R3 ⊂ (P3×R3)3 persists, and that the resulting preimage, the moduli

space of flow trees, is diffeomorphic to the preimage from before. Given a perturbation

s = (s1, s2, s3) ∈ S3, we claim that (s, 0) ∈ Ŝ3 achieves transversality, where Ŝ is the

perturbation ball in P3 × R3 as defined in Definition 13. As we will prove in the following

chapter, the product does not depend on the choice of perturbation used in its construction.
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∆3
_�

��yy
X

��

Es // (P3)3

��
X±

E±
(s,0)// (P3 × R3)3

∆̂3
?�

OOee

(13)

Lemma 20. Given F : M × RN → R and F± : M × RN × R → R, let p1, p2, p0 ∈ C (F )

have corresponding critical points p±1 , p
±
2 , p

±
0 ∈ C(F±) (see Remark 16). Then if Es t ∆3

then Ê(s,0) t ∆̂3.

Proof. Our choice of metric and perturbation reduces this question to a elementary differ-

ential topology one. We wish to show the following in R9:

(
W−0 (Q±1,2;3)×W−0 (Q±2,3;3)×W+

0 (Q±1,3;3)
)
t ∆3

R3 .

Remark 17 tells us what these stable and unstable manifolds are. Since the product of these

manifolds in both the + and − case is 6-dimensional and ∆3
R3 is 3-dimensional, the result

follows because

(
W−0 (Q±1,2;3)×W−0 (Q±2,3;3)×W+

0 (Q±1,3;3)
)
∩∆3

R3 = {0}

With our choice of split metric and no extra perturbation, the following lemma shows

that the moduli space of flow trees that define out product splits into a space of trees defined

through the original generating family F and “constant” trees, that is, three constant
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trajectories at 0 ∈ R3.

Proposition 16. Given F, F±, pi ∈ C (F ), and P±i ∈ C(F±), M̂(p±1 , p
±
2 ; p±0 |(s, 0)) is dif-

feomorphic to M(p1, p2; p0|s).

Proof. Our setup shows that we may split this preimage

Ê−1
(s,0)(∆̂

3) ∼= E−1
s (∆3)× E−1

0 (∆R3).

As E−1
s (∆3) = M(p1, p2; p0|s), we consider E−1

0 (∆R3). This space consists of triples of

trajectories {γ1, γ2, γ3} with γ1, γ2 : (−∞, 0] → R3 and γ3 : [0,∞) → R3. The trajectory

γ1 flows from 0 ∈ R3 and follows ∇g0Q
±
1,2;3, and so, by Remark 17, is contained in the

(e′1, e
′
3)-plane in the + case and the (e′2, e

′
3)-plane in the − case. Similarly, γ2 flows from

0 ∈ R3 and follows ∇g0Q
±
2,3;3, and so is contained in the (e′1, e

′
2)-plane in the + case and

the (e′1, e
′
3)-plane in the − case. Thus, in the + case, γ1 and γ2 intersect along the e′1-axis;

in the − case, they intersect along the e′3-axis. In either case, γ3 intersects the intersection

of γ1 and γ2 and flows to 0 ∈ R3 along ∇g0Q
±
1,3;3. In both the + and − case, however,

γ3 trajectory will only intersect the e′1-axis (e′3-axis) at 0, and thus has to be the constant

trajectory. This implies that both γ1 and γ2 never flowed away from 0, and are also constant

trajectories.

Corollary 3. If F : M ×RN → R is altered by a positive or negative stabilization resulting

in F̂ : M × RN × R→ R then the following diagram commutes:

GH∗(F )⊗GH∗(F )

∼=
��

µ2 // GH∗(F )

∼=
��

GH∗(F±)⊗GH∗(F±)
µ±2 // GH∗(F±).

(14)
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7.2 Fiber Preserving Diffeomorphism

In this section, we analyze how the product is affected when we pre-compose our generating

family F : M × RN → R with a fiber-preserving diffeomorphism Φ : M × RN → M × RN .

Recall from Subsection 2.2 that, by definition, Φ(x, e) = (x, φx(e)) for a smooth family of

diffeomorphisms φx : RN → RN . As in Lemma 12, we consider diffeomorphisms φ that are

isometries outside the compact set KE since our setup of gradient flow uses metrics that

are Euclidean outside K; see Definitions 4 and 9.

Remark 18. We may extend Φ naturally to a diffeomorphism on P3 = M ×R3N : Abusing

notation, let Φ : P3 → P3 be defined as

(x, e1, e2, e3) 7→ (x, φ(e1), φ(e2), φ(e3)).

Lemma 21. For ∆3 ⊂ (P3)3, Φ3(∆3) = ∆3.

Proof. This is not a hard fact, but we write out the proof to recall the space ∆3. We use

coordinates (x, e1, e2, e3) on P3 = M × R3N , so we have natural coordinates

(x1, e11, e21, e31, x2, e12, e22, e32, x3, e13, e23, e33)

on P 3
3 . With these coordinates, ∆3 is the submanifold in which x1 = x2 = x3 and ei1 =

ei2 = ei3 for i = 1, 2, 3, which is preserved under Φ.

Lemma 13 showed that critical points and gradient trajectories correspond under diffeo-

morphism. This induces diffeomorphisms of the stable and unstable manifolds which gives

a diffeomorphism X̃ ∼= X.
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X × S3

��

E // (P3)3

∼=
��

∆3? _oo
_

��
X̃ × S̃3 E // (P3)3 ∆3? _oo

(15)

Proposition 17. Suppose F̃ is obtained from F through fiber-preserving diffeomorphism.

Let s = (s1, s2, s3) ∈ S × S × S and pi ∈ C (F ) so that M(p1, p2; p0|s) is a 0-dimensional

manifold. Then, for corresponding p̃i ∈ C(F̃ ), there exists an s̃ = (s̃1, s̃2, s̃3) ∈ S̃ × S̃ × S̃

for some δ̃ ball S̃ such that M̃(p̃1, p̃2; p̃0 | s̃) is in bijection with M(p1, p2; p0|s).

Proof. Given a tree Γ = {γ1, γ2, γ3} ∈ M(p1, p2; p0|s), there exists a (y, y, y) ∈ ∆3 ⊂ (P3)3

such that E(Γ) = (y, y, y), i.e., E1,2;3(γ1) = E2,3;3(γ2) = E1,3;3(γ3) = y.

In the case that M = Rm, this means that y = γ1(0) + s1 = γ2(0) + s2 = γ3(0) + s3.

From Lemma 13, we know that there are corresponding γ̃i. Remark 18 gives us an element

ỹ = Φ(y) ∈ ∆3. Thus, there is a unique way to pick s̃i so that ỹ = γ̃1(0) + s̃1 = γ̃2(0) + s̃2 =

γ̃3(0) + s̃3.

For this s̃ = (s̃1, s̃2, s̃3), we have that Es̃ t ∆3 and that s̃i ∈ S̃ for each i, that is,

|s̃i| < δ̃. Here, δ̃ is such that for all y1, y2 ∈ K̃, |y1 − y2| < δ̃ implies that |(wi,j;3 ◦Φ)(y1)−

(wi,j;3 ◦Φ)(y2)| < ρ/4, where ρ is the least positive critical value of w, which is the same as

the least positive critical value of w ◦ Φ.

Remark 19. While using Φ as in Remark 18 gives the desired bijection, wi,j;3 ◦ Φ is not

an extended difference function as defined in Definition 7. Rather,

(wi,j;3 ◦ Φ)(x, e1, e2, e3) = (w ◦ Φ)(x, ei, ej)± (φx(ek))
2,

and (φx(ek))
2 is not necessarily a quadratic form. It is however, a function with only one

critical point with preserved index and preserved critical value. While quadratic forms are
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especially nice, such a function also suits our needs, as pointed out in Remark 7.

Corollary 4. Suppose F : M × RN → R is altered by a fiber-preserving diffeomorphism

Φ : M × RN → M × RN , where Φ(x, e) = (x, φx(e)) for some diffeomorphisms φx : RN →

RN that are isometries outside KE, resulting in F̃ = F ◦ Φ. Then the following diagram

commutes:

GH∗(F )⊗GH∗(F )

∼=
��

µ2 // GH∗(F )

∼=
��

GH∗(F̃ )⊗GH∗(F̃ )
µ̃2 // GH∗(F̃ ).

(16)
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Chapter 8

Invariance under Legendrian

isotopy

In this chapter, we study the product as the underlying Legendrian Λ undergoes a Legen-

drian isotopy. In particular, suppose we have a Legendrian isotopy Λt with t ∈ [0, 1], and

suppose Λ0 has a generating family. From the Persistence of Legendrian Generating Families

(see Proposition 8), there exists a smooth path of generating families F t for Λt. In Section

3, we constructed a chain map that induces an isomorphism between GH∗(F 0)→ GH∗(F 1)

(Corollary 9). Similar isomorphisms can be constructed using extended difference functions.

Given F 0 and the resulting F 1 guaranteed by Proposition 8, we may assume by stabi-

lization that both are functions on M×RN . We wish to compare the product from F 0 with

the product from F 1. In particular, we wish to show that the following diagram commutes:

GH∗(F 0)⊗GH∗(F 0)

∼=
��

µ0
2 // GH∗(F 0)

∼=
��

GH∗(F 1)⊗GH∗(F 1)
µ1

2 // GH∗(F 1).

(17)
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While we know there exists isomorphisms GH∗(F 0)→ GH∗(F 1), for the vertical isomor-

phisms in the diagram in 17, we construct maps that will be compatible with the product.

To do this, we slightly alter the setup of the continuation map in Section 3 to produce three

continuation maps using paths of extended difference functions. We then extend this idea

to form a moduli space of “continuation flow trees” on P3× I and define a map K counting

isolated spaces of such trees. Studying the compactification of a 1-dimensional space of

the trees shows that the map K defines a cochain homotopy that induces the commutative

diagram 17 on cohomology.

The first subsection of this section deals with the vertical isomorphisms in the above

diagrams, while the second constructs “continuation trees” which will define a cochain

homotopy that implies the commutativity of 17.

8.1 Continuation isomorphisms on GH∗(F )

Given the path of linear-at-infinity generating families from F 0 : M × RN → R to F 1 :

M × RN → R, we wish to compare the product at time t = 0 to the one at t = 1.

For F0 and F1, we constructed continuation maps from the path of difference functions

wt : M × RN × RN → R such that wt(x, e1, e2) = F t(x, e1)− F t(x, e2).

To get continuation isomorphisms that are compatible with the product, we will constuct

them on the paths of extended difference functions for t ∈ [0, 1], denoted wti,j;3 : M ×RN ×

RN × RN → R defined as usual by:

wt1,2;3(x, e1, e2, e3) = F t(x, e1)− F t(x, e2) + e2
3

wt2,3;3(x, e1, e2, e3) = F t(x, e2)− F t(x, e3) + e2
1

wt1,3;3(x, e1, e2, e3) = F t(x, e1)− F t(x, e3)− e2
2
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For each wti,j;3, there is the corresponding non-linear support compact set Kt, which will

vary smoothly with t.

Given F 0 and the resulting F 1, construct the resulting extended difference functions as

above and pick metrics g0
i,j;3, g

1
i,j;3 as in Definition 9. Then let Γi,j;3 = {(wti,j;3, gti,j;3) | t ∈

[0, 1]} be a path of the extended difference functions and metrics on P3 that are standard

outside Kt from (w0
i,j;3, g

0
i,j;3) to (w1

i,j;3, g
1
i,j;3).

For each of these three paths we have a continuation map Φi,j;3 : C∗(F 0) → C∗(F 1)

defined by counting isolated flow lines of the vector field ∇Gi,j;3Wi,j;3 on (M × R3N ) × I

with

Wi,j;3(p, t) = wti,j;3(p) + ε
(
(1/2)t2 − (1/4)t4

)
(Gi,j;3)(p,t) = (gti,j;3)p + dt2,

(18)

for ε > 0 such that
ε

4
< ρ, where ρ is the least positive critical value of w.

As done in detail in Section 3, these maps induce isomorphisms which we will denote

by Φ∗i,j;3, with

Φ∗i,j;3 : GH∗(F 0)→ GH∗(F 1),

and the arguments in Proposition 6 show that this map does not depend on the path F t

up to homotopy class.

8.2 Continuation flow trees

To get the commutative diagram in 17, we construct a cochain homotopy by defining

a moduli space of “continuation flow trees.” The construction will be similar to that of

M(p1, p2; p0|s). Now, our trees will live in P3 × I rather than P3 and we will require that

the trees span I, i.e., flow along trajectories out of two critical points p1, p2 at t = 0 and
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along a trajectory that limits to a critical point p1 at t = 1. We will denote the moduli

space of continuation flow trees by MI(p1, p2; p0|{st}) and describe its construction in the

following paragraphs.

Each branch in a continuation tree will follow one of the vector fields Vi,j;3 = ∇Gi,j;3Wi,j;3

defined in the previous subsection in 18. Recall that the path of metrics gti,j;3 used to define

Gi,j;3 was chosen to be admissible so that the unstable and stable manifolds from each Vi,j;3

intersect transversely. This does not guarantee the transverse intersection in the flow trees.

To fix this and prove that the product does not depend on the perturbation used to achieve

transversality, we add the data of a path of perturbation vectors into the construction of

the continuation trees.

The perturbation balls S0 for F 0 and S1 for F 1 might be of different sizes; see Re-

mark 12. There is, however, a smooth path St of perturbation balls connecting them.

To construct a path st = (st1, s
t
2, s

t
3) ∈ (St)3, first pick endpoints s0 ∈ (S0)3 so that

MF 0(p1, p2; p′0|s0) 6= ∅ is a smooth manifold for any choice of p′0 ∈ Crit+(w) and s1 ∈ (S1)3

so that MF 1(p′1, p
′
2; p0|s1) 6= ∅ is a smooth manifold for any choices of p′1, p

′
2 ∈ Crit+(w).

By Theorem 13, almost every choice of s0 and s1 will suffice for a fixed triplet of critical

points so almost every choice still suffices because Crit+(w) is a finite set. Using these

endpoints, construct a smooth path st = (st1, s
t
2, s

t
3) ∈ (St)3. This path may be perturbed

while keeping the admissible endpoint fixed to achieve transversality as described in the

following after we setup perturbed continuation evaluation maps.

To get a manifold structure and compactification results onMI(p1, p2; p0|{st}) we need

to transversely cut it out of Morse trajectory spaces. As before in Definition 11, we have

half-infinite Morse trajectory spaces, for (p, t) ∈ C(F t)× {t} for t = 0 or t = 1.
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Mi,j;3((p, t), P3 × I) = {γ : (−∞, 0]→ P3 × I | γ̇ = Vi,j;3, lim
s→−∞

γ(s) = (p, t)} and

Mi,j;3(P3 × I, (p, t)) = {γ : [0,∞)→ P3 × I | γ̇ = Vi,j;3, lim
s→∞

γ(s) = (p, t)},

where we abuse notation and use p to denote a critical point in Crit+(wt) and its bijective

image in Crit+(wti,j;3). Given p1, p2 ∈ Crit+(w0) and p0 ∈ Crit+(w1), let

XI =M1,2;3((p1, 0), P3 × I)×M2,3;3((p2, 0), P3 × I)×M1,3;3((P3 × I, (p0, 1)).

This space has a smooth structure induced by a diffeomorphism with W−(p1,0)(V1,2;3) ×

W−(p2,0)(V2,3;3)×W+
(p0,1)(V1,3;3).

Given a path {st} through (St)3 as described above, we have analogous perturbed

evaluation maps as in Definition 14 that we will use to construct a map EI as in Definition

15. Given a half-infinite trajectory γ in one of the above spaces, the evaluation maps

ev±i,j;3(γ) give a point γ(0) = (γ(0)|P3 , γ(0)|I) ∈ P3 × I and we will perturb γ(0)|P3 by st in

P3 × {t} for t = γ(0)|I . That is, we have the following three maps, with π representing the

submersion or the identity to remain consistent with Definition 14.

E1,2;3 :M1,2;3((p1, 0), P3 × I)→ P3 × I

E2,3;3 :M2,3;3((p2, 0), P3 × I)→ P3 × I

E1,3;3 :M1,3;3((P3 × I, (p0, 1))→ P3 × I

γ 7→ π
(
γ(0)|P3 + sγ(0)|I

)
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Thus, we have the map E : XI → (P3 × I)3 defined by

E(γ1, γ2, γ3) = (E1,2;3(γ1), E2,3;3(γ2), E1,3;3(γ3)).

Definition 24. The moduli space of continuation trees is

MI(p1, p2; p0|{st}) := E−1(∆(P3 × I)3).

We may express this moduli space as the following set:

MI(p1, p2; p0|{st}) =



(γ1, γ2, γ3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 : (−∞, 0]→ P3 × I,

γ2 : (−∞, 0]→ P3 × I,

γ3 : [0,∞)→ P3 × I,
dγ1

ds
= V1,2;3,

dγ2

ds
= V2,3;3,

dγ3

ds
= V1,3;3,

E1,2;3(γ1) = E2,3;3(γ2) = E1,3;3(γ3)

lim
s→−∞

γ1(s) = (p1, 0), lim
s→−∞

γ2(s) = (p2, 0),

lim
s→∞

γ3(s) = (p0, 1)



.

Lemma 22. There is a perturbation of the path {st} so that E t ∆(P3 × I)3. Then

MI(p1, p2; p0|{st}) is a manifold of dimension |p0| − |p1| − |p2|+ 1.

Proof. The freedom given by perturbing the path {st} together with the larger class of met-
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rics used to define Vi,j;3 give us room to achieve transversality. We calculate the dimension:

dim(E−1(∆(P3 × I)3))

= dim(XI)− codim((∆(P3 × I)3)

= dim(W−(p1,0)(V1,2;3)) + dim(W−(p2,0)(V2,3;3)) + dim(W+
(p0,1)(V1,3;3))− 2(n+ 3N + 1)

= (n+ 3N + 1)− indV1,2;3((p1, 0)) + (n+ 3N + 1)− indV2,3;3((p2, 0))

+ indV1,3;3((p0, 1))− 2(n+ 3N + 1)

= indw1
1,3;3

(p0) + 1− indw0
1,2;3

(p1)− indw0
2,3;3

(p2)

= (|p0|+ 2N) + 1− (|p1|+N)− (|p2|+N)

= |p0| − |p1| − |p2|+ 1.

As in previous arguments in this dissertation, we will need to understand the boundary

of the compactification of a 1-dimensionalMI(p1, p2; p0|{st}). Rather than defining a larger

manifold with corners structure as in Chapter 5, we will use similar arguments to classify

possible limits of unbroken continuation trees.

To apply similar arguments, we need bounds on the continuations trees as in Lemmas

16 and 17. The compact non-linear support set from each generating family F t gives a path

of compact non-linear support sets Kt as in Definition 6. A similar argument to Lemma 16

shows that, for all Γ ⊂ MI(p1, p2; p0|{st}), Im(Γ) ⊂ ⋃t∈I(K
t × {t}) ⊂ P3 × I. Similarly,

given {ρt}, the path of smallest positive critical values of wt, we may bound the “‘midpoint”

of any tree Γ, which occurs at a specific slice P3 × {t} away from the critical submanifold

of wt1,3;3 as in Lemma 17.

Proposition 18. Given p1, p2 ∈ Crit+(w0) and p0 ∈ Crit+(w1) with |p0| = |p1| + |p2|, if
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{st} is a path so that MI(p1, p2; p0|{st}) is a 1-manifold, then it may be compactified to a

1-manifold MI(p1, p2; p0|{st}) with boundary

∂MI(p1, p2; p0|{st} =⋃
p′1

M1,2;3((p1, 0), (p′1, 0))×MI(p
′
1, p2; p0|{st})

⋃
p′2

M2,3;3((p2, 0), (p′2, 0))×MI(p1, p
′
2; p0|{st})

⋃
p′0

MI(p1, p2, p
′
0|{st})×M1,3;3((p′0, 1), (p0, 1))

⋃
p′′0

MF 0(p1, p2, p
′′
0|s0)×M1,3;3((p′′0, 0), (p0, 1))

⋃
p′′1 ,p

′′
2

M1,2;3((p1, 0), (p′′1, 1))×M2,3;3((p2, 0), (p′′2, 1))×MF 1(p′′1, p
′′
2; p0|s1),

where the unions are taken over p′1 ∈ C |p1|+1(F 0), p′2 ∈ C |p2|+1(F 0), p′0 ∈ C |p0|−1(F 1),

p′′0 ∈ C |p0|(F 0), p′′1 ∈ C |p1|(F 1), and p′′2 ∈ C |p2|(F 1), respectively.

Proof. LetMI(p1, p2; p0|{st}) be of dimension 1. A similar argument as in Chapter 5 gives

a compactification of this space by trees with once broken branches. By construction of our

vector fields, all critical points of Vi,j;3 live in P3 × {0} and P3 × {1}. With three branches

that may break at critical points in either of these manifolds, we seemingly have six cases of

broken trees that might show up in the boundary of a compactified 1-dimensional moduli

space of continuation trees:

1. The branch flowing from (p1, 0) along V1,2;3 breaks in P3×{0}: This would mean that

p1 flows along ∇g1,2;3w
0
1,2;3 to another critical point p′1 ∈ C(F 0) with |p′1| = |p1| + 1.

An index calculation shows that a tree from (p′1, 0) and (p2, 0) to (p0, 1) would be
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isolated.

2. In the same way, (p2, 0) could flow along ∇g2,3;3w
0
2,3;3 to a point (p′2, 0) with p′2 ∈

C |p2|+1(F 0). Note that the indices force only one edge to break in this way at a time.

3. If the branch flowing along V1,3;3 ending at (p0, 1) breaks at a point in P3×{1}, then

the trajectories form a tree from (p1, 0) and (p2, 0) to a critical point (p′0, 1), where

p′0 ∈ C |p0|−1(F 1) and then p′0 flows along ∇g1,3;3w
1
1,3;3 to p0.

4. If the branch flowing along V1,3;3 to (p0, 1) breaks at t = 0 at a point (p′′0, 0), then we

see a tree that must be contained in P3×{0}. Since indV1,3;3(p′′0, 0) = indV1,3;3(p0, 1)−

1, it must be that p′′0 ∈ C |p0|(F 0). The tree in P3 × {0} is in a moduli space

MF 0(p1, p2, p
′′
0|s0) of flow trees from F 0, and our conditions on the endpoints of the

path {st} guarantee that this a manifold of dimension |p′′0| − |p1| − |p2| = 0. We then

see a flow line from (p′′0, 0) to (p0, 1), which is in the 0-dimensional continuation moduli

space M1,3;3((p′′0, 0), (p0, 1)).

5. Suppose the branch following V1,2;3 from (p1, 0) breaks in P3 × {1} at a point (p′′1, 1).

This would imply that (p′′1, 1) ∈ Crit
ind

w1
1,2;3

(p1)+1

+ (V1,2;3), so p′′1 ∈ C |p1|(F 1). Thus, this

is a flow line in the isolated continuation moduli spaceM1,2;3((p1, 0), (p′′1, 1)). Then we

see a tree with the V1,2;3 branch contained in P3 × {1}. In particular, the “midpoint”

of the tree (the point in ∆(P3 × I)3) is a point y ∈ P3 × {1}. This means that the

branch γ2 of the tree that flows along V2,3;3 has finite endpoint γ2(0) in P3×{1}. Due

to the ∂t component of the vector field vanishing as t → 1, this cannot happen in

finite time. Thus, the branch flowing along V2,3;3 must break at a critical point (p′′2, 1)

with p′′2 ∈ C |p2|(F 1). Then there is a tree from (p′′1, 1) and (p′′2, 1) to (p0, 1) completely

contained in P3 × {1}. This tree lives in a moduli space MF 1(p′′1, p
′′
2; p0|s1), which,

due to the construction of the perturbation path {st}, is a manifold of dimension 0.
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Definition 25. We define a map K : Ci(F 0)⊗ Cj(F 0)→ Ci+j−1(F 1) as follows:

Given p1 ∈ Crit+(w0) and p2 ∈ Crit+(w0), then

K(p1 ⊗ p2) =
∑

(#Z2MI(p1, p2; p0|{st})) · p0

where the sum is taken over p0 ∈ Crit+(w1) with |p0| = |p1|+ |p2| − 1. Extend the product

bilinearly over the tensor product.

The following Corollary follows directly from the description of the boundary of a com-

pactified one-dimensional continuation flow tree moduli space in Proposition 18.

Corollary 5. The map K : Ci(F 0)⊗ Cj(F 0)→ Ci+j−1(F 1) is a cochain homotopy, i.e.,

δ1,3;3 ◦K +K ◦ (δ1,2;3 ⊗ 1 + 1⊗ δ2,3;3) = (Φ1,3;3 ◦m0
2) +m1

2 ◦ (Φ1,2;3 ⊗ Φ2,3;3)

C(F 0)⊗ C(F 0)

m1
2◦(Φ1,2;3⊗Φ2,3;3)

��

Φ1,3;3◦m0
2

��

δ⊗1+1⊗δ // C(F 0)⊗ C(F 0)

m1
2◦(Φ1,2;3⊗Φ2,3;3)

��

Φ1,3;3◦m0
2

��

K

vv
C(F 1)

δ
// C(F 1).

(19)

The following results follow from the fact that K is a cochain homotopy:

Theorem 19. Let Λt ⊂ J1M, t ∈ [0, 1] be isotopy of Legendrian submanifolds, and suppose

Λ0 has a linear-at-infinity generating family. Then for F 0 and F 1 guaranteed by Proposition



8.2. Continuation flow trees 91

8, the following diagram commutes:

GH∗(F 0)⊗GH∗(F 0)

∼=
��

µ0
2 // GH∗(F 0)

∼=
��

GH∗(F 1)⊗GH∗(F 1)
µ1

2 // GH∗(F 1).

(20)

Since paths of metrics and perturbations appeared in the construction of continuation

flow trees, the resulting cochain homotopy also shows the following two results of invariance.

Corollary 6. The construction of µ2 does not depend on choice of metrics from GF and

GQ in Definition 9 used in the gradient vector fields.

Corollary 7. The construction of µ2 does not depend on choice of perturbation s used to

achieve transversality in M(p1, p2; p0|s).
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Chapter 9

Directions of Future Study: An A∞

Algebra on C(F )

Constructing µ2 is part of a larger project to construct an A∞ algebra for a Legendrian

with a generating family. To explain this, we first give a brief introduction to A∞ algebras

and then sketch a construction for the higher order products that make up this structure.

9.1 A∞ Background

The notion of an A∞ algebra was introduced by Stasheff [33] to study homotopy associativity

of topological spaces.

Definition 26. An A∞ algebra over Z2 is a graded vector space V along with maps

mk : V ⊗k −→ V of degree 2− k satisfying

∑
i+j+l=k

mi+1+l ◦ (1⊗i ⊗mj ⊗ 1⊗l) = 0.

The first three relations tell us that m1 ◦m1 = 0 and m2 descends to the cohomology
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H∗(V,m1) to form an associative product there. Higher order products will not in general

descend to cohomology, but we can form Massey products on cohomology modulo the images

of lower order products.

There is an equivalence on A∞ algebras:

Definition 27. An A∞ morphism φ : (V,m) −→ (W,n) is a collection of graded maps

φk : V ⊗k −→W of degree 1− k that satisfy

∑
i+j+l=k

φi+1+l ◦ (1⊗i ⊗mj ⊗ 1⊗l) =
∑

1≤r≤n
i1+···+ir=n

nr ◦ (φi1 ⊗ · · · ⊗ φir).

The morphism φ is an A∞ quasi-isomorphism if φ1 induces an isomorphism on coho-

mology.

For k ≥ 2, while the mk maps of an A∞ algebra on V will not descend to the cohomology

H∗(V,m1), we can recover an A∞ structure on its homology using the following theorem:

Theorem 20. [22] If (V,m) is an A∞ algebra over a field, then its cohomology H∗(V )

also has an A∞ structure given by µ such that µ1 = 0, µ2 is induced by m2, and there is

an A∞ quasi-isomorphism (H∗(V ),µ) −→ (V,m). Further, this structure is unique up to

A∞ quasi-isomorphism.

9.2 Setup of A∞ Algebra

We will follow a similar procedure to define the maps mk : C (F )⊗k → C (F ) as was used

to define m2. We define extended difference functions wi,j;k+1 and set up gradient flow

trees using these functions. One of the added complications here is that there is a space of

configurations of trees that include different finite-length gradient trajectories.
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Definition 28. Suppose F : M × RN → R is a generating family for Λ. Let Pk+1 denote

the (k + 1)th ordered fiber product Pk+1 = M × R(k+1)N . For each 1 ≤ i < j ≤ k + 1 the

extended difference function wi,j;k+1 : Pk+1 −→ R, is defined as

wi,j;k+1(x, e1, · · · , ek+1) = F (x, ei)− F (x, ej) +
i−1∑
`=1

e2
` −

j−1∑
`=i+1

e2
` +

k+1∑
`=j+1

e2
` ,

where for e` = (e`1, · · · , e`N ) ∈ RN , e2
` := e2

`1 + · · · + e2
`N . The set of critical points of

wi,j;k+1 with positive critical value will be denoted by Crit+(wi,j;k+1) ⊂ Pk+1.

As in Lemma 14, there are bijections between the positive-valued critical points of w

with those of wi,j;k+1.

Remark 20. For 1 ≤ i < j ≤ k + 1, there is a bijection

ιi,j;k+1 : Crit+(w)→ Crit+(wi,j;k+1)

(x, e, e′) 7→ (x, 0, . . . , 0, e, 0, . . . , 0, e′, 0, . . . 0).

(21)

Given p = (x, e, e′) ∈ Crit(w), we have that

|p| = indw(p)−N = indwi,j;k+1(p)− (j − i− 1)N −N = indwi,j;k+1(p)− (j − i)N

Under this bijection the critical value of p will agree with the critical value of ιi,j;k+1(p).

Thus every critical point p (resp. ιi,j;k+1(p)) of w (resp. wi,j;k+1), of positive critical value

will correspond to a Reeb chord of the Legendrian Λ generated by F , and the positive

critical value of a critical point p (resp. ιi,j;k+1(p)) will be the length of the corresponding

Reeb chord. By an abuse of notation, we will often use p to denote both p and ιi,j;k+1(p).

We will study positive gradient flow lines of the extended difference functions wi,j;k+1

working with Riemannian metrics gi,j;k+1 that split as in Definition 9. As in the k = 2
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case, we will consider gradient flow lines that “intersect” to form gradient flow trees. The

biggest difference in general setup is that, for k > 2, there are different configurations of

trees involving finite interior edges. Following ideas of Fukaya, [13], we will first define a

space Tk of different configurations of weighted rooted planar trees with k leaves, and then

define the moduli space of flow trees MF (p1, p2, · · · , pk; p0) as maps of trees in Tk into the

ambient space Pk+1 defined in Definition 28.

A tree is a one dimensional simplicial complex that is compact and simply connected.

In particular, trees do not contain cycles. Recall that the valency of the vertex denotes the

number of edges that connect to it.

Definition 29. For k ≥ 2, fix a set of k+ 1 distinct points Vk = {v0, · · · , vk} ⊂ S1 = ∂D2,

ordered counterclockwise. The space of weighted, rooted k-trees Tk consists of the set

of trees, T , embedded in D2 ⊂ R2 satisfying:

1. T has Vk as a subset of its vertices; all vertices in Vk have valency 1;

2. No vertex of T has valency equal to 2;

3. Each edge of T is assigned an element of R+ ∪ {∞}: each external edge, meaning

an edge with a vertex in Vk, is assigned ∞; any other edge, referred to as internal

edge, is assigned a positive real number.

Such trees form spaces sometimes called associahedra or Stasheff polytopes, after:

Theorem 21. [33] Tk is homeomorphic to Rk−2.

Since the valency of any vertex of T ∈ Tk cannot equal 2, any T will have at most k− 2

internal edges. Note that this gives k − 2 possible length parameters if we consider trees

with fewer edges as having some edges of length 0.
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For each T ∈ Tk, D2−T will consist of k+1 connected components. Order these so that

the vertex vi is between the regions i and i + 1 for 1 ≤ i ≤ k, and v0 is between regions 1

and k+ 1; see Figure 6. For i < j, let the edge ei,j be the edge between region i and region

j, and denote its corresponding length parameter by li,j . Give the following orientation to

ei,j with region i on its left and region j on its right:

i

j

Figure 5: For i < j, the direction of the gradient flow of wi,j;k.

v1

v2 v3

v4

v0

1

2

3
4

5

Figure 6: An example of how a tree in T4 embeds into D2 in this way.

For a tree T ∈ Tk, we will let IntT denote the tree without its vertices in Vk:

IntT = T ∩ IntD2.

Given a linear-at-infinity generating family F : M×RN −→ R and p1, . . . , pk, p0 ∈ C (F ),

we form the associated unperturbed Moduli Space of Gradient Flow Trees,M(p1, . . . , pk; p0),

as follows. Let p1 ∈ Crit(w1,2;k+1), . . . , pk ∈ Crit(wk,k+1;k+1), p0 ∈ Crit(w1,k+1;k+1) be the
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images of p1, . . . , pk, p0 under the maps in (5). Then M(p1, p2, · · · , pk; p0) = {Γ : IntT →

Pk+1 | T ∈ Tk}, where Γ satisfy:

1. For 1 ≤ i ≤ k, after parametrizing the external edges ei,i+1, Γ|ei,i+1 : (−∞, 0]→ Pk+1

satisfies

d

dt
Γ|ei,i+1 = ∇gi,i+1wi,i+1;k+1, lim

t→−∞
Γ|ei,i+1 = pi.

2. After parametrizing the external edge e1,k+1, Γ|e1,k+1
: [0,∞)→ Pk+1 satisfies

d

dt
Γ|e1,k+1

= ∇g1,k+1
w1,k+1;k+1, lim

t→∞
Γ|e1,k+1

= p0.

3. After parametrizing the internal edge ei,j to have length `i,j ,

Γ|ei,j : [0, `i,j ]→ Pk+1 satisfies

d

dt
Γ|ei,j = ∇gi,jwi,j;k+1.

Future work must be done to show that such spaces, perhaps with some perturbations at

some internal vertices, have the structure of a smooth manifold and may be compactified to

a space with the structure of a smooth manifold with corners. Then we may define higher-

order product maps mk : C(F )⊗k → C(F ) by counting isolated moduli spaces of gradient

flow trees as in Chapter 6. The boundary of the compactification of a 1-dimensional space

should prove the A∞ relations, similar to how we proved that m2 is a cochain map. Theorem

20 will transfer this structure to GH∗(F ). A continuation argument as in Chapter 8 will

show that this structure is invariant under Legendrian isotopy up to A∞ quasi-isomorphism.
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[22] T. Kadeǐsvili. On the theory of homology of fiber spaces. Uspekhi Mat. Nauk,
35(3(213)):183–188, 1980. International Topology Conference (Moscow State Univ.,
Moscow, 1979).

[23] S. Mescher. Perturbed gradient flow trees and a∞-algebra structures on morse cochain
complexes, 2016.

[24] J. Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of
Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.

[25] M. Morse. The calculus of variations in the large, volume 18. American Mathematical
Soc., 1934.

[26] L. Ng. Computable Legendrian invariants. Topology, 42(1):55–82, 2003.

[27] L. Ng, D. Rutherford, V. Shende, S. Sivek, and E. Zaslow. Augmentations are sheaves.
arXiv preprint arXiv:1502.04939, 2015.



REFERENCES 101

[28] L.T. Nielsen. Transversality and the inverse image of a submanifold with corners.
Mathematica Scandinavica, pages 211–221, 1982.

[29] J. Sabloff and M. Sullivan. Families of Legendrian submanifolds via generating families.
Quantum Topol., To Appear.

[30] J. Sabloff and L. Traynor. Obstructions to the existence and squeezing of Lagrangian
cobordisms. J. Topol. Anal., 2(2):203–232, 2010.

[31] J. Sabloff and L. Traynor. Obstructions to Lagrangian cobordisms between Legendrian
submanifolds. Algebr. Geom. Topol., 13:2733–2797, 2013.

[32] M. Schwarz. Morse homology, volume 111 of Progress in Mathematics. Birkhäuser
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