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Abstract 

We report solid state nuclear magnetic resonance 1H spin-lattice relaxation, single-crystal 

X-ray diffraction, powder X-ray diffraction, field emission scanning electron microscopy, 

and differential scanning calorimetry in solid samples of 2-ethylanthracene (EA) and 2-

ethylanthraquinone (EAQ) that have been physically purified in different ways from the 

same commercial starting compounds. The solid state 1H spin-lattice relaxation is always 

nonexponential at high temperatures as expected when CH3 rotation is responsible for 

the relaxation. The 1H spin-lattice relaxation experiments are very sensitive to the 

"several-molecule" (clusters) structure of these van der Waals molecular solids. In the 

three differently prepared samples of EAQ, the relaxation also becomes very 

nonexponential at low temperatures. This is very unusual and the decay of the nuclear 

magnetization can be fitted with both a stretched exponential and a double exponential. 

This unusual result correlates with the powder X-ray diffractometry results and suggests 

that the anomalous relaxation is due to crystallites of two (or more) different polymorphs 

(concomitant polymorphism). 

 

1.  Introduction 

Solid state 1H nuclear magnetic resonance (NMR) spin-lattice relaxation experiments [1-

4] exploit the long-range nature of the 1H-1H dipolar (spin-spin) interaction to gain insight 

into the relationship between dynamics and structure on the mesoscopic (several-

molecule or cluster) level in van der Waals solids composed of covalently bonded 

molecules. This mesoscopic realm, which includes polymorphism [5-7] (especially 

concomitant polymorphism [8]) or crystallinity versus glassy states [9, 10] is still an 

important frontier. 

 When methyl group rotation is responsible for the 1H spin-lattice relaxation, the 

relaxation can be nonexponential and this allows for more stringent tests of the relaxation 

models and for the identification of inhomogeneities in the structure of the pure solid [11-

14]. In this report we investigate two closely related molecular solids where different 

procedures for preparing very pure samples, along with 1H spin-lattice relaxation 

experiments, result in different, but reproducible, results from sample to sample. To aid in 

the interpretation of the unusual relaxation results in the various samples, we have 



Beckmann et al         

 

3 

performed single crystal X-ray diffraction [15], powder X-ray diffractometry [16, 17], 

differential scanning calorimetry [18], high resolution NMR spectroscopy [19, 20], gas 

chromatography−mass spectrometry, and field emission scanning electron microscopy 

[21]. The compounds under investigation are 2-ethylanthracene (EA) and 2-

ethylanthraquinone (EAQ) (Figure 1). We have investigated two samples of EA and four 

samples of EAQ, all prepared differently from the same supplied commercial stock. They 

are solids well above room temperature, the samples produced in different ways are very 

stable over long times, they are all very pure, and there are no solid-solid phase 

transitions in the temperature regions studied by the solid state NMR relaxation 

experiments. These samples are indicated in Table 1. The experiments reported here are 

consistent with our previously reported, less precise, experiments in these two 

compounds [22]. 

 

2.  Data Analysis 

2.1  Single-crystal X-ray Diffraction 

The single crystal X-ray diffraction data for 2-ethylanthraquinone (EAQ) and 2-

ethylanthracene (EA) are presented in Table 2. For EAQ, a single crystal was taken from 

sample EAQ0 and for EA a single crystal was taken from sample EA1 (see Table 1). 

Samples EA2, EAQ1, EAQ2, and EAQ3 simply did not have crystals large enough for 

single-crystal X-ray analysis. The structures of the EAQ and EA molecules in these 

crystals are shown in Figure 1 and the crystal structures of the two compounds are shown 

in Figure 2. The structures have been deposited with the Cambridge Structural Database 

and the deposit numbers are 1537735 (EAQ) and 1538277 (EA). As indicated in Figures 

1 and 2, the asymmetric unit is a single molecule (Z'=1) for this polymorph of EAQ and 

two molecules (Z'=2) for what is, as far as we can tell, the only structure for EA. The 

methyl groups in both compounds are well out of the aromatic plane; 78O in EAQ and 73O 

(molecule A) and 57O (molecule B) in EA. [For comparison, gas phase microwave 

spectroscopy [23, 24], supersonic molecular jet spectroscopy [25, 26], liquid state NMR 

spin-spin coupling constants analyses [27], gas phase electron diffraction studies [28], 

and molecular orbital calculations [29] all consistently show that, in the gas and liquid 

phases, the preferred orientation (i.e., the lowest-energy configuration) of the ethyl group 
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in ethylbenzene-like systems corresponds to the methyl group oriented 90o to the plane.] 

Given these orientations of the methyl groups, there will be both intramolecular 

(predominantly intraethyl) and intermolecular contributions to the barrier for methyl group 

rotation [30-32]. 

 

2.2  Powder X-ray Diffraction 

Powder X-ray diffractograms were observed and compared with diffractograms computed 

from the single-crystal X-ray experiments. The broad backgrounds were very similar for 

all the powder X-ray diffractograms [17] and were removed. The experimental and 

computed diffractograms have different line broadenings and thus peak heights cannot be 

directly compared. Figure 3 shows a comparison between the powder X-ray diffractogram 

for 10 mg of sample EA1 (red line) and the diffractogram computed from the single crystal 

X-ray structure (black line) determined using a small single crystal taken from sample 

EA1. This comparison indicates that sample EA1 is entirely composed of crystallites 

whose structure was determined using the very small single crystal. This comparison also 

indicates that the sample is very pure. 

 Figure 4 shows powder X-ray diffractograms for samples EAQ1 (red line), EAQ2 

(purple line) and EAQ3 (blue line), along with the computed diffractogram (black line) 

from the single crystal X-ray structure determination using a small crystal taken from 

sample EAQ0. The comparison indicates that a 10 mg sample taken from sample EAQ1 

is almost entirely composed of crystallites whose structure was determined using a very 

small single-crystal from sample EAQ0. There are small but significant differences 

between the computed diffractogram using a crystal taken from sample EAQ0 (black line) 

and the experimental diffractograms using about 10 mg of samples EAQ2 (purple line) 

and EAQ3 (blue line). All samples are very pure and these comparisons indicate the 

presence of crystallites composed of at least one additional polymorph in samples EAQ2 

and EAQ3 in addition to the one found in samples EAQ0 and EAQ1. The powder 

diffractograms offer no information, however, on how much of each polymorph might be 

present in each sample since much of the spectrum is likely to be similar or the same 

from one polymorph to the other. 
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2.3  High-resolution NMR Spectroscopy and Gas Chromatography−Mass 

Spectrometry. 

High-resolution NMR spectroscopy experiments at 400 MHz and gas chromatography –

mass spectrometry (GC-MS) experiments were conducted in all five samples used in the 

solid state NMR relaxation experiments (see Table 1) and indicate no perceptible 

impurities at the level of resolution for these techniques. 

 

2.4  Differential Scanning Calorimetry 

The approximately 10 mg of sample used for the differential scanning calorimetry (DSC) 

experiments were taken from the actual samples (all approximately 0.7 g) already used in 

the NMR relaxation experiments. This means that, starting at room temperature (292-297 

K), the two samples of EA had been taken up and down in temperature between 93 K 

and 320 K, and the three samples of EAQ had been taken up and down in temperature 

between 105 and 286 K, all many times over a period of five years, prior to the DSC 

scans. No solid-solid phase transitions were observed in four of the five samples. One 

high-temperature phase transition was observed in sample EA2 as presented below.   

 Sample EA1 melted at 427 K with a latent heat of melting of 90 J/g. It showed no 

evidence (see below) of polymorphism. For sample EA2, there was a small endotherm 

(14 J/g) at 362 K and on melting there was a double peak. The first peak (413 K) was 

very small (1.2 J/g) with the main melting peak coming at 425 K with a latent heat of 

melting of 93 J/g. The phase transition at 362 K is well above 320 K, the highest 

temperature that this sample had ever been taken to in the NMR relaxation experiments. 

 Sample EAQ1 melted at 381 K with a latent heat of melting of 64 J/g. The sharp 

melting curve is consistent with the sample being predominantly composed of a single 

polymorph. The NMR relaxation results presented in Section 2.6.5 suggest that a second 

polymorph is present at the level of 10±5%. 

 Sample EAQ2 gave two melting peaks, one at 380 K with a latent heat of melting 

of 58 J/g, and the second at 383 K with a latent heat of melting of 39 J/g, suggesting the 

presence of two polymorphs. These melting temperatures are far above room 

temperature (293-297 K), the highest temperature this recrystallized sample had been to 

prior to this DSC experiment. The ratio of the polymorphs, assuming similar heats of 
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melting (since they melt at approximately the same temperature) are approximately 60% 

to 40%. These results are consist with the NMR relaxation results that find two 

polymorphs in approximately a 50%-50% ratio in the sample before it was first melted. On 

quenching from the melt to room temperature and reheating through the melt, only one 

sharp phase transition was found at 382 K with a latent heat of melting of 87 J/g. This 

suggests that the quench from the melt resulted in a single polymorph.  

 Sample EAQ3 melted at 379 K with a latent heat of melting of 81 J/g but the melt 

was broader than the other samples. On quenching from the melt to room temperature 

and reheating through the melt, a very sharp phase transition was found at 379 K with a 

latent heat of melting of 75 J/g. These results, taken together, are consistent with the 

sample, before the first melt, having more than one polymorph with very close melting 

points. This is consist with the NMR relaxation results that find two polymorphs in 

approximately a 50%-50% ratio in the sample before it was first melted. 

 All the melting (or remelting) transitions were very sharp. In agreement with the 

other techniques, these results indicate that all the samples are very pure. We note that if 

some samples contain more than one polymorph, once a sample is melted, it is a 

"different" sample. The absence of solid-solid phase transitions at temperatures up to the 

highest temperatures used in the solid state NMR relaxation experiments imply that the 

structure determined by single-crystal X-ray diffraction at room temperature for sample 

EA1 and at 100 K for sample EAQ0 is valid for the entire temperature range of the solid 

state 1H spin-lattice relaxation experiments described in Section 2.6. In some cases solid-

solid phase transitions show up clearly in NMR spin-lattice relaxation experiments as 

discontinuities in the relaxation rate versus temperature [32-36] but sometimes there is no 

indication [37-39]. But differential scanning calorimetry is definitive [37, 38]. 

 

2.5  Scanning Electron Microscopy 

Field emission scanning electron microscopy (SEM) was performed on all five samples 

used in the solid state NMR relaxation experiments. Figure 5 shows images of (a small 

part of) sample EA1, Figure 6 shows images of (a small part of) sample EAQ1, and 

Figure 7 shows images of (a small part of) sample EAQ3. SEM images for samples EA2, 

and EAQ2 are similar and are not shown. All these images are very unusual and very 
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difficult to interpret unambiguously. Normally, at the spatial resolution indicated in part (b) 

of these figures, at least some structures that are clearly single crystals can be seen in 

these types of organic solids [12, 40, 41] but that is not the case here. All these images 

suggest structures that may or may not be single crystals and that, if they are single 

crystals, the crystals have a smallest dimension (thickness) that is 100s nm or less.   

 

2.6  Solid State 1H Spin-lattice Relaxation 

2.6.1.  Introduction: General Features 

In both EA and EAQ, the dominant solid state 1H spin-lattice relaxation mechanism 

involves methyl group rotation modulating the six 1H-1H spin-spin interactions among the 

three 1H spins in a methyl group [42]. In the solid state, the ethyl groups, like isopropyl 

groups [43], are static on the NMR time scale, meaning that the NMR activation energy 

for rotation is over approximately 60 kJ mol-1 which is to be compared to the methyl group 

activation energies in the 8-18 kJ mol-1 for molecules like those studied here [12, 30, 40, 

44]. The quenching of ethyl and isopropyl group rotation in the solid state results from 

intermolecular interactions [45, 46] and the rotational asymmetry of ethyl and isopropyl 

groups. [Ethyl and isopropyl group rotational barriers in isolated molecules (the gas 

phase) similar to that studied here [24, 27, 47] are in the 1-8 kJ mol-1 range.] In contrast, 

t-butyl groups, though more bulky, do orient on the NMR time scale in the solid state with 

activation energies in the 8-36 kJ mol-1 range [48-50] as a consequence of their three-fold 

rotational symmetry. 

 When methyl group rotation is responsible for 1H  spin-lattice relaxation (or 19F 

spin-lattice relaxation for a trifluoromethyl group [51]) in the solid state, nonexponential 

relaxation is expected at temperatures above the maximum in the relaxation rate and at 

temperatures in the vicinity of the relaxation rate maximum [52, 53]. This phenomenon is 

a result of cross correlations among the three spin-1/2 protons (or three spin-1/2 19F 

nuclei) and is well understood [52, 53] and well established experimentally [51 54-58]. 

The relaxation becomes more exponential if the methyl group rotation axis is reorienting, 

such as in a t-butyl group [48, 49] or for whole-molecule rotation [57, 59-61]. It also 

becomes more exponential if CH3 – non-CH3 1H-1H interactions play a significant role [57 

59, 62]. Finally, at temperatures well below the maximum in the relaxation rate, the 
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relaxation becomes exponential within experimental uncertainty. The experiments in the 

two samples of EA are as expected in that they follow this pattern. The nonexponential 

relaxation reported here at low temperatures in all three samples of EAQ is both 

unexpected and unusual and is one major focus of this paper, as discussed in Sections 

2.6.4 and 2.6.5.   

 

2.6.2.  Modeling the Initial Relaxation Rates RS 

When methyl group rotation is responsible for nonexponential relaxation at high 

temperatures and at temperatures in the vicinity of the relaxation rate maximum, it is the 

initial (i.e., short time following a perturbation of the 1H magnetization) relaxation rate RS 

[63] that is to be modeled [52]. The temperature T dependences of the initial relaxation 

rates RS for sample EA1 of 2-ethylanthracene and sample EAQ1 of 2-ethylanthraquinone 

are shown as red circles on a lnRS versus T-1 plot in Figure 8. The relaxation in both EA1 

and EAQ1 was nonexponential at higher temperatures as expected. 

 The basic model [64-69], when applied to the initial relaxation rate RS as required 

[52], is [42] RS=C[JDC(,DC)+4JDC(2,DC)] with 

JDC(,DC)=(2/)[sin{arctan(DC)}]/[(1+2DC
2)

/2], DC=∞[exp{EDC/kT}], 

∞=x(2/3)(2I/EDC)1/2, and C=y(n/N)(9/40)[O/(4)]2( 2/r3)2. We note that we do not need 

to consider the quantum mechanical tunneling of methyl groups at the high temperatures 

encountered here [39, 65, 70-78]. JDC(,) is the Davidson-Cole spectral density [42, 79] 

(thus all the DC subscripts), /(2)=22.5 MHz is the NMR frequency, DC is the Davidson-

Cole cutoff mean time between methyl group hops in a semiclassical (thermally activated) 

methyl group hopping process for methyl groups in the perfect crystal environment,  is a 

parameter that characterizes a Davidson-Cole distribution of NMR activation energies E 

with EDC being an upper limit cutoff [42, 49], I is the moment of inertia of a methyl group, 

n=3 is the number of 1H spins in a methyl group, N (=14 for EA and 12 for EAQ) is the 

number of 1H spins in the molecule [80-82], O is the magnetic constant,  is the 1H 

magnetogyric ratio, and r is the H-H distance in a methyl group. The parameter C with y = 

1 can be calculated with no adjustable parameters [42] and accounts for the strength of 

the 1H spin-lattice relaxation resulting from the modulation of the six 1H-1H spin-spin 
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interactions in a methyl group (the intramethyl contribution). The phenomenological fitting 

parameter y ≥ 1 accounts for the contribution of the modulation of the spin-spin 

interactions between 1H spins in a methyl group and other 1H spins (both intramolecular 

and intermolecular) (see Eq. 6 in ref 83). It is important that the H-H distance in a methyl 

group r as determined by electronic structure calculations [40] is used since single-crystal 

X-ray diffraction finds distances that are approximately 10% too short [84, 85]. 

The parameter ∞ with x = 1 results from a somewhat simplistic model for the 

preexponential factor that assumes that between hops the methyl group is vibrating as a 

harmonic oscillator at the bottom of the rotational potential [86]. The parameter x is simply 

a phenomenological fitting parameter that accounts for departure from this simple model. 

This model, with the parameter x, is a useful benchmark and guide. Finally, we note that 

the NMR activation energy E is closely related to, but not exactly the same as, the barrier 

V for rotation of a methyl group. The relationship between V and E is complicated and 

numerical models suggest that E is between 0 and 20% smaller than V for activation 

energies E in the range being investigated here [87, 88]. 

 For 2-ethylanthracene (sample EA1), EDC=16.0±1.6 kJ mol-1, =0.53±0.11, 

y=1.6±0.3, and x=0.30±0.15. For 2-ethylanthraquinone (sample EAQ1), EDC=17.5±1.8 kJ 

mol-1, =0.60±0.12, y=1.3±0.3 and x=0.50±0.25. With one caveat, standard iterative 

(Simplex) fitting procedures were used that involve estimating initial parameters and then 

minimizing the difference in the sum of squares between the predicted and experimental 

lnRS versus T-1 values. The caveat is that the values of the four parameters produced in 

these procedures have unrealistically small uncertainties. As such, one of the four values 

was fixed at a value that was a certain percentage difference from the "best" value and 

the algorithm was rerun allowing the other three parameters to find new best values. This 

was done for different percentages involving all four parameters and the subsequent fits 

were inspected visually. Though somewhat unorthodox, we feel this an intellectually 

honest way to proceed. The final uncertainties produced are significantly larger than 

those produced by the initial minimization routine. The large uncertainties in x result from 

the fact that EDC was ultimately assigned a 10% uncertainty and is in an exponential 

DC=∞[exp{EDC/kT}] with ∞=x(2/3)(2I/EDC)1/2. This means that ∞ has about a 40% 

uncertainty and x has about a 50% uncertainty. NMR relaxation experiments, even with 
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high signal-to-noise do a poor job of determining the preexponential factor ∞ accurately 

when realistic fitting procedures are employed. 

 

2.6.3.  A Distribution of Activation Energies 

The model presented in Section 2.6.2 that predicts <1 is the Davidson-Cole spectral 

density JDC(,DC)=(2/)[sin{arctan(DC)}]/[(1+2DC
2)

/2] and it interprets  as a 

parameter that characterizes a distribution of  values with DC being an upper-limit cutoff 

value corresponding to the perfect crystal environment. Via =∞[exp{E/kT}], a distribution 

of NMR activation energies E with an upper-limit value of EDC, can be determined [42]. In 

the limit  → 1, JDC(,DC)=(2/)[sin{arctan(DC)}]/[(1+2DC
2)

/2] → 

2Poisson/(1+2Poisson
2) with Poisson=DC (for =1) being a single, unique mean time 

between hops characterizing a single Poisson distribution of times between hops. 

Distributions of NMR activation energies for =0.63 and 0.79 for 80 and 250 K are plotted 

in reference 13 and for =0.85 and 100 K in reference 43. This model suggests that for 

=0.63, for example, 20% of the methyl groups have an NMR activation energy E that is 

less that 90% of the ideal crystal value EDC. The model suggests that the methyl groups 

with lower barriers (than those in the ideal crystal structure) reside on the surfaces of 

crystallites or near other crystal imperfections. This is consistent with the SEM images 

(section 2.5) that show the crystallites have (at least) one dimension that is very small. In 

reference [13] we provide a back-of-the-envelop calculation that indicates that if 

crystallites have one dimension of 100 nm then 10% of the molecules would have an 

NMR activation energy different from EDC. One could invent other symmetric distributions 

of NMR activation energies (other than the Davidson Cole distribution) involving 

Gaussians [90, 91] or Lorentzians but then the spectral density would have to be 

computed numerically. This is being considered for future work. There are many other 

phenomenological spectral densities that can be expressed algebraically [92], most from 

dielectric relaxation studies, but none fit data like that presented in Figure 8. 
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2.6.4.  Stretched Exponential Relaxation: The Characteristic Relaxation Rates R* 

and the Stretching Parameters  

If the relaxation of the 1H magnetization M(t) following a perturbation is exponential, it can 

be characterized by M(t)=M(∞)+[M(0) M(∞)][exp{−(Rt)}] with adjustable parameters M(∞) 

(the equilibrium magnetization), M(0) (the initial magnetization following a perturbation), 

and R (the unique relaxation rate). Ideally, M(0)=−M(∞) for a perturbation -pulse (Section 

5.6) but the pulse is not perfect and if M(0) is not taken as an independent adjustable 

parameter, significant systematic errors in the other adjustable parameters can result. 

This single-exponential function works well for both samples of EA at low temperatures. 

In all cases when the relaxation is nonexponential, the entire relaxation curves in both 

samples of EA and all three samples of EAQ at all temperatures could always be fitted to 

a stretched exponential M(t)=M(∞)+[M(0)−M(∞)][exp{−(R*t)}]. This is a purely 

phenomenological representation [93-95] and is used to interpret experimental results in 

many fields of physical science [91, 96-123]. There are four adjustable parameters for 

each recovery curve; M(∞), M(0), R*, and . R* is the "characteristic relaxation rate" and  

is the "stretching parameter". The parameters R* and  are not amenable to interpretation 

by any closed-form NMR relaxation model as far as we are aware but measuring R* and 

 can be done quickly and R* can be determined accurately, usually to ±3%. As such, R* 

is a good phenomenological parameter to use to compare various samples and  is a 

good parameter to quantify the degree of nonexponentiality. 

 R* and  were measured for all samples. LnR* versus T-1 is shown as red squares 

in Figure 8 for samples EA1 and EAQ1 where lnRS (red circles) versus T-1 (discussed in 

Section 2.6.2) is also shown for comparison. R*≤RS always. LnR* versus T-1 and  versus 

T-1 are shown as squares in Figure 9 for samples EA1 and EA2 and in Figure 10 for 

samples EAQ1, EAQ2, and EAQ3. Based on many previous experiments [40, 58],  

versus T-1 can be expected to lie within the two purple lines in Figures 9b and 10b.  For 

EA,  versus T-1 for both samples EA1 and EA2 in Figure 9b is as expected [58] (or 

nearly so) but the different  versus T-1 data for all three samples of EAQ at low 

temperatures in Figure 10b is unusual. 

 



Beckmann et al         

 

12 

2.6.5.  Double Exponential Relaxation in all EAQ Samples at Low Temperatures 

In addition to being fitted by a stretched exponential (which cannot be fitted to an 

algebraic model), the solid state relaxation rate data in samples EAQ1, EAQ2, and EAQ3 

(at lower temperatures only) can also be fitted to a double exponential;  

M(t)=M1(t)+M2(t)=M1(∞)+[M1(0)−M1(∞)][exp{−(R1t)}]+M2(∞)+[M2(0)−M2(∞)][exp{−(R2t)}] 

which is a five-parameter fit; relaxation rates R1 and R2, equilibrium magnetizations M1(∞) 

and M2(∞), and initial magnetization M(0)=M1(0)+M2(0) where not both M1(0) and M2(0) 

are independent. It is convenient to replace the two absolute equilibrium magnetizations 

M1(∞) and M2(∞) with the fractional equilibrium magnetizations 1=M1(∞)/[M1(∞)+M2(∞)] 

and 2=M2(∞)/[M1(∞)+M2(∞)]. The two rates R1 and R2 are shown as triangles in Figure 

11a at temperatures below 142 K for the three samples of EAQ where the stretched 

exponential rates in Figure 10a are also shown as small squares for comparison. The 

fractional equilibrium magnetizations 1 and 2 are shown in Figure 11b. A double 

exponential will not fit the relaxation rate data for the three EAQ samples at temperatures 

above 142 K or the two EA samples at any temperature. These double exponential fits for 

the three samples of EAQ are modeled in Section 3.3: the two magnetizations correspond 

to two different polymorphs. 

 The reason that the R* values in samples EAQ2 and EAQ3 (blue and purple 

squares in Figures 10a and 11a) are greater than the R* values in sample EAQ1 (red 

squares) is now clear. The R2 values for the second polymorph (downward pointing 

triangles in Figure 11a) are greater than the R1 values for the first polymorph (upward 

pointing triangles). The presence of the second polymorph at approximately the 50% level 

in samples EAQ2 and EAQ3 makes the characteristic rate R* values greater in these 

samples. Indeed, they are roughly half way between the R1 and the R2 values. Since 

there is only approximately 10% of the second polymorph in sample EA1, the R* values 

are smaller and very similar to the R1 values in that sample.   

 

3.  Results and Discussion 

3.1 General Comments 

The great strength of the solid state 1H NMR spin-lattice relaxation technique as 

employed in this study is that it investigates properties related to the dynamics of methyl 
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group rotation and as such can be used to learn about anisotropies in the methyl groups' 

intramolecular and intermolecular environments. The technique uses large samples (0.7 g 

in our case) and because of the long range nature of the 1H-1H spin-spin interaction, and 

the interesting complexities associated with the nonexponential relaxation, these 

experiments can probe inhomogeneities in macroscopic samples. There are two distinct 

types of inhomogeneities as presented in Sections 3.2 and 3.3. The models developed to 

interpret the NMR relaxation results are aided greatly by the several other experimental 

techniques employed in this study. 

 

3.2 The Consequences of Very Small Crystallites 

In all five samples studied by NMR relaxation, there is a distribution of activation energies 

for methyl group rotation with only a small fraction of methyl groups having an activation 

energy different from the majority of methyl groups which have a unique single NMR 

activation energy. This strongly suggests a type of inhomogeneity on the microscopic 

scale and is consistent with those molecules near a crystallite surface or other crystal 

imperfection having methyl groups with a rotational barrier different from the majority of 

methyl groups on molecules in the ideal crystal structure. This interpretation is supported 

by the field emission scanning electron microscopy experiments. This distribution of 

activation energies E involves methyl groups on molecules that are evenly spread out 

throughout the sample (on crystal surfaces and at other crystal imperfections) and are 

nearby molecules that have the bulk crystal activation energy EDC. This is because this 

model requires rapid spin-diffusion among all 1H nuclei.  

 

3.3. The Presence of Two Polymorphs in Solid 2-Ethylanthraquinone 

The above discussion pertains to both samples of 2-ethylanthracene (EA) and all three 

samples of 2-ethylenthraquinone (EAQ) investigated by solid state NMR relaxation in this 

study. In the three samples of EAQ, however, there is a different and additional type of 

structural inhomogeneity. In this case, at low temperatures, the NMR relaxation following 

a suitable perturbation is well fitted by a double exponential (Section 2.6.5) suggesting 

that the sample is made up of two different sets of regions consisting of molecules with 

different environments. These two regions do not communicate with each other via the 
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long-range 1H-1H spin-spin (dipolar) interaction, making it very different from the type of 

inhomogeneity discussed in Section 3.2. A region arbitrarily labeled Region One in all 

three samples, characterized by the relaxation rate R1, is the one that corresponds to the 

quantitative fits produced for sample EAQ1: compare the red upward pointing triangles 

(R1) with the red squares (R*) in Figure 11a. As Figure 11b indicates, 90±5% of this 

sample is composed of Region One. In sample EAQ2, 50±15% of the sample is Region 

One and in sample EAQ3, 50±10% of the sample is Region One. We suggest that Region 

One involves the normal region characterized by the determined crystal structure for 

sample EAQ0 (Section 2.1 and Figures 1 and 2). For molecules in the other region, 

arbitrarily labeled Region Two, the relaxation rates are larger (faster relaxation). It is not 

possible to disentangle the parameters that characterize methyl group relaxation for 

Region Two because of the limited temperature region spanned by the data. 

 We exclude the interpretation (of the relaxation rate data) for the two regions in the 

three samples of EAQ that suggests there may be some parts of the sample that are in a 

non-crystalline (glassy) state. This is unlikely because the powder X-ray experiments 

(Section 2.2) use about 10 mg of each of the three samples of EAQ and show crystalline 

structures for all three samples. Glasses produce very different powder X-ray 

diffractograms with much less structure. A second and more likely interpretation is that 

the two regions are both crystalline in nature but correspond to different polymorphs; so 

called concomitant polymorphism [8]. High-resolution 1H NMR spectroscopy, gas 

chromatography−mass spectrometry, powder X-ray diffractometry, and differential 

scanning calorimetry indicate that the samples are all very pure with impurity levels 

significantly below the level that would affect the solid state 1H NMR spin-lattice relaxation 

measurements. We rule out impurities. Although the powder X-ray diffractograms clearly 

show that the dominant polymorph in sample EAQ1 (Region One) is present in samples 

EAQ2 and EAQ3, it may or may not be the case that Region Two in the three samples is 

the same polymorph. It may even be that Region Two contains more than one polymorph. 

Solid state 13C NMR spectroscopy may be helpful in identifying different polymorphs in 

samples such as those studied here [124]. 

 The anomalous NMR relaxation results in the three samples of EAQ are only 

observed at low temperatures. There are five pieces of evidence that suggest the 
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presence of more than one polymorph suggested by these low-temperature NMR 

relaxation results is the case for all temperatures and that this concomitant polymorphism 

is very stable. First, NMR relaxation is much more sensitive (and usually only sensitive) to 

this kind of structural inhomogeneity in this low-temperature long-correlation time limit 

where the mean time between "events" (methyl group 2/3 hops) is long compared with 

the inverse NMR frequency. Second, the differential scanning calorimetry data presented 

in Section 2.4 shows no solid-solid phase transitions in any of the EAQ samples at 

temperatures all the way to the melting points (which are much higher temperatures than 

any of the NMR relaxation experiments were performed). Third, the powder X-ray 

crystallography diffractograms presented in Section 2.2 use about 10 mg of sample and 

are very slightly different for the three samples of EAQ. Fourth, the NMR relaxation 

experiments in the various samples are completely reproducible within the uncertainties 

in the fitted parameters over long periods. Relaxation experiments were conducted over a 

period of five years going up and down in temperature many times and going back and 

forth among the various samples. The fifth piece of evidence is the fact that the first time 

(10 mg of) samples EAQ2 and EAQ3 were melted in the differential scanning calorimetry 

experiments (after the solid state NMR relaxation experiments were completed), either a 

double melting peak (sample EAQ2) or a broadened melting peak (sample EAQ3) was 

observed but on solidification and then remelting, very sharp single peaks were observed 

in both samples. 

 

4 Conclusions 

NMR relaxation experiments and several supporting experimental techniques have been 

used to investigate the relationship between methyl group rotation and structure in 

macroscopic polycrystalline samples of 2-ethylanthracene (EA) and 2-ethylanthraquinone 

(EAQ). Methyl groups in the ideal crystal environments rotate with activation energies 

(similar to rotational barriers) of 18 kJ mol-1 in the single polymorph of EA and 16 kJ mol-1 

in one polymorph of EAQ. The crystallites in the polycrystalline samples are very small 

and methyl groups near crystallite surfaces or near other crystal imperfections have 

barriers that are slightly smaller. EA exists in one polymorph but macroscopic samples of 

EAQ have two (or more) polymorphs that are present in different amounts depending on 
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the manner of sample preparation. The samples prepared using different procedures are 

stable over periods of (at least) several years and are very pure. 

 

5 Experimental Procedures 

5.1 Sample Preparations and Designations 

The compound 2-ethylanthracene (EA) was purchased from Sigma-Aldrich (quoted purity 

98%, mp 152-153 OC). The compound 2-ethylanthraquinone (EAQ) was purchased from 

Sigma-Aldrich (quoted purity 97%, mp 108-111 OC). Two samples of EA and four samples 

of EAQ were prepared.  

 Sample EA1 was zone refined and then sublimed.  Zone refining (also called zone 

melting) [125, 126] is a purification technique in which material to be purified is cast in a 

right circular cylinder. A small heater, typically 0.05- 0.1 times the length of the cylindrical 

sample, is moved from top to bottom of the cylinder, at a temperature just high enough to 

melt the material being treated. As the heater melts a new segment of the sample, it 

leaves behind a solid which is purer than the starting material because impurities are 

retained in the molten zone. The critical benefit of this procedure is that it can be carried 

out iteratively, with each zone passage carrying additional impurity, so that high purity can 

be attained. Further, the operation can be carried out in sealed containers, thereby 

avoiding effects of air, moisture, etc. 

 Samples EA2 and EAQ0 were sublimed. Sample EAQ1 was recrystallized by 

cooling a solution of 2-propanol from 75 OC to 25 OC at 2 OC per hour. Sample EAQ2 was 

recrystallized in the same manner after being zone refined and sample EAQ3 was grown 

from the melt using the Bridgman method [127]. These samples are presented in Table 1.  

 

5.2 Single-crystal X-ray Diffraction 

A single crystal of 2-ethylanthracene was taken from sample EA1 and a single crystal of 

2-ethylanthraquinone was taken from sample EAQ0. They were mounted on Hampton 

CryoLoops with Paratone-N oil and data collected with a Bruker D8 diffractometer using 

an Ultra rotating-anode generator (Mo) equipped with a high-efficiency, multi-layer, 

double-bounce monochromator. All data were collected with 1.0 sec/1.0O correlated 

scans. Structure solution and subsequent refinement used various components of the 
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SHELXTL software package distributed by the Bruker Corporation (G. Sheldrick, Bruker-

AXS, Madison WI). Structure and refinement parameters are presented in Table 2 and 

the molecular and crystal structures are presented in Figures 1 and 2 and discussed in 

Section 2.1. 

 

5.3 Powder X-ray Diffraction 

Powder X-ray diffractograms were observed using sample EA1 of 2-ethylanthrancene 

and samples EAQ1, EAQ2, and EAQ3 of 2-ethylanthraquinone. The samples 

(approximately 10 mg) were ground to a thick paste in mineral oil and spread evenly on a 

fine Nylon loop. Data were recorded using a Cu rotating-anode source and a Vantac 500 

detector at 100K. The data is presented in Figures 3 and 4 and discussed in Section 2.2. 

 

5.4 Differential Scanning Calorimetry 

Samples EA1, EA2, EAQ1, EAQ2, and EAQ3, all about 0.7 g, were used in the solid state 

NMR relaxation experiments. Differential scanning calorimetry (DSC) was performed 

using about 10 mg from each of these samples on a TA Instruments Q2000 to 

characterize thermal transitions. The temperature was taken quickly from room 

temperature (approximately 297 K) down to approximately 120 K and from there to just 

above the melting points (all above 380 K) at 5 K/minute under a helium purge. 

Temperature and enthalpy calibrations were made using indium, and baseline corrections 

were determined from sapphire standards. The data is discussed in Section 2.4. 

 

5.5 Field Emission Scanning Electron Microscopy 

Field emission scanning electron microscopy was performed with all samples except 

sample EAQ0 (see Table 1) using a FEI Quanta 600FEG Field Emission Scanning 

Electron Microscope. Particles were randomly sprinkled on carbon tape. As such we were 

able to achieve a variety of orientations for the particles. This potentially allowed for a 

determination of the smallest particle dimension because some particles were imbedded 

on the carbon tape in an edge-on orientation. The electron beam energy was 5 keV and 

the images were taken under 0.38 Torr air pressure. Images are shown in Figures 5, 6, 

and 7 and discussed in Section 2.5. 
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5.6 Solid State 1H Spin-lattice Relaxation 

1H spin-lattice relaxation measurements were performed using a (perturbation )-t-

(observe /2)-tw pulse sequence at an NMR frequency of 22.5 MHz with both samples of 

EA (EA1 and EA2) between 93 and 290 K and three samples of EAQ (EAQ1, EAQ2, and 

EAQ3) between 105 and 320 K. The wait time tw was always ten times (or more) longer 

than the largest relaxation time being measured. Temperature control and measurement 

is discussed extensively elsewhere [63]. The characteristic relaxation rates R* and the 

stretching parameters  characterizing the stretched exponential were determined for all 

samples throughout the temperature ranges indicated above and are presented in 

Figures 8-11 and discussed in Section 2.6.4. The initial relaxation rates RS were 

determined for samples EA1 and samples EAQ1 at all temperatures indicated above and 

are presented in Figure 8 and discussed in Section 2.6.2. Relaxation rates R1 and R2 in a 

double exponential relaxation process were determined in the three samples of EAQ 

below 142 K. These data are presented in Figure 11 and discussed in Section 2.6.5. 
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Table 1.  Information for the Samples Used 

Compound Sample Preparation Uses and Figures 
 

        

2-ethyl- 
anthracene 
(EA) 

EA1 zone refined,  
then sublimed 

Fig. 1d,e,f.   single crystal X-ray; asymmetric unit 
Fig. 2c,d.     single crystal X-ray; crystal structure 
Fig. 3.    powder X-ray (red line) 
Fig. 5.    scanning electron microscopy images 
Fig. 8a.  RS (red circles), R* (red squares) 
Fig. 9a.  R* (red squares) 

Fig. 9b.   (red squares) 
 

 
 

EA2 sublimed Fig. 9a.  R* (blue squares) 

Fig. 9b.   (blue squares) 
 

    

2-ethyl- 
anthraquinone 
(EAQ) 

EAQ0 sublimed Fig. 1a,b,c.  single crystal X-ray; asymmetric unit 
Fig. 2a,b.     single crystal X-ray; crystal structure 

 EAQ1 recrystallized Fig. 4.     powder X-ray (red line) 
Fig. 6.     scanning electron microscopy images 
Fig. 8b.   RS (red circles), R* (red squares) 
Fig. 10a. R* (red squares) 

Fig. 10b.   (red squares) 
Fig. 11a. R* (red squares) 
               R1 (red upward-pointing triangles) 
               R2 (red downward-pointing triangles) 

Fig. 11b. 1 (red upward-pointing triangles) 

               2 (red downward-pointing triangles) 
 

 EAQ2 zone refined 
then  
recrystallized 

Fig. 4.     powder X-ray (purple line) 
Fig. 10a. R* (purple squares) 

Fig. 10b.   (purple squares) 
Fig. 11a. R* (purple squares) 
               R1 (purple upward-pointing triangles) 
               R2 (purple downward-pointing triangles) 

Fig. 11b. 1 (purple upward-pointing triangles) 

               2 (purple downward-pointing triangles) 
 

     EAQ3 from the melt 
(bridgman 
method) 

Fig. 4.     powder X-ray (blue line) 
Fig. 7.     scanning electron microscopy images 
Fig. 10a. R* (blue squares) 

Fig. 10b.   (blue squares) 
Fig. 11a. R* (blue squares) 
               R1 (blue upward-pointing triangles) 
               R2 (blue downward-pointing triangles) 

Fig. 11b. 1 (blue upward-pointing triangles) 

               2 (blue downward-pointing triangles) 
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 Table 2.  Crystal data and structure refinements 
 

                                              2-ethylanthraquinone         2-ethylanthracene 
 

CCDC identification code  1537735 1538277 

crystal taken from sample EAQ0 EA1 

empirical formula  C16H12O2 C16H14 

formula weight  236.26 206.27 

temperature  100(2) K 298(2) K 

wavelength  0.71073 Å 0.71073 Å 

crystal system  orthorhombic monoclinic 

space group  P 21 21 21 P 21  

unit cell dimensions a = 4.397(4) Å a = 11.8795(13) Å 

 b = 7.709(7) Å b = 7.8020(7) Å 

 c = 34.49(3) Å c = 12.9533(15) Å 

   = 90°   = 90° 

   = 90°   = 106.785(8)°. 

   = 90°   = 90° 

volume 1169.3(18) Å3 1149.4(2) Å3 

Z 4 4 

Z' 1 2 

density (calculated) 1.342 Mg/m3 1.192 Mg/m3 

absorption coefficient 0.088 mm-1 0.067 mm-1 

F(000) 496 440 

crystal size 0.280 x 0.100 x 0.070 mm3 0.417 x 0.353 x 0.278 mm3 

 range for data collection 2.707 to 25.375° 1.642 to 23.257° 

Index ranges −3≤h≤4, −9≤k≤8, −41≤l≤39 −13≤h≤13, −8≤k≤8, 

−14≤l≤14 

reflections collected 4311 3294 

independent reflections 1884 [R(int) = 0.0356] 3294 [R(int) = 0.0445] 

completeness to =25.000° 96.4 %  97.8 % 

absorption correction Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

refinement method Full-matrix least-squares on 

F2 

Full-matrix least-squares on 

F2 

data/restraints/parameters 1884 / 0 / 164 3294 / 1 / 294 

goodness-of-fit on F2 1.054 1.000 

final R indices [I>2(I)] R1 = 0.0672, wR2 = 0.1916 R1 = 0.0652, wR2 = 0.1444 

R indices (all data) R1 = 0.0819, wR2 = 0.2032 R1 = 0.1895, wR2 = 0.2009 

absolute structure parameter −0.8(10) 0.04(9) 

largest diff. peak and hole 0.304 and −0.375 e Å-3 0.215 and −0.161 e Å-3 
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         FIGURE 1 

 

   (a)      (b) 
 

 
 

   (c)      (d) 
 

 

 

   (e)      (f) 
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Figure 1. (a), (b) and (c) Three views of the single molecule in the asymmetric unit of 2-

ethylanthraquinone (EAQ) in the crystal. The single crystal used in the X-ray diffraction 

experiment was taken from sample EAQ0 (see Table 1) which was not used in any other 

experiments. (d), (e), and (f) Three views of the two molecules (A and B) in the 

asymmetric unit of 2-ethylanthracene (EA) in the crystal. The single crystal used in the X-

ray diffraction experiment was taken from sample EA1 (see Table 1) which was used in 

the NMR relaxation experiments. C atoms are black, O atoms are red, methyl group H 

atoms are green, other ethyl group H atoms are magenta, and ring H atoms are blue. The 

unique view of the two molecules in the asymmetric unit of EA in (d) puts the two 

aromatic rings perpendicular to the plane of the page and allows for a comparison with 

the single molecule in the asymmetric unit in EAQ in (c). The single molecule of EAQ in 

(b) can be compared with molecule A of EA in (e) and with molecule B of EA in (f). The 

dihedral angle (C1-C2-C15-C16) is 78O in EAQ and 107O (molecule A) and 123O 

(molecule B) in EA. In the text (Section 2.1) we say that in all cases, the methyl group is 

well out of the aromatic plane [78O in EAQ and 73O (molecule A) and 57O (molecule B) in 

EA]. 
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         FIGURE 2 

              

      (a) 

                    

      (b) 
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      (d) 

 

 

 

 

 



Beckmann et al         

 

30 

Figure 2. The crystal structure of (a) and (b) 2-ethylanthraquinone (EAQ) and of (c) and 

(d) 2-ethylanthracene (EA) in the (a) and (c) 100 and (b) and (d) 010 planes. See Table 2 

for the X-ray parameters. The single crystals used in the X-ray diffraction experiments 

were taken from samples EAQ0 and EA1 (see Table 1). C atoms are black, O atoms are 

red, methyl group H atoms are green, other ethyl group H atoms are magenta, and ring H 

atoms are blue. The asymmetric unit in EAQ (a and b) is a single molecule (Z' = 1). There 

are two molecules (A and B) in the asymmetric unit for EA (Z' = 2) (c and d) and the 

methyl groups on the two molecules are indicated by A and B. Both structures have four 

molecules in the unit cell (Z = 4). The four parts of this figure are not to same scale. 
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         FIGURE 3 
 
 

       
 

      (a) 
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      (c)  
 

Figure 3. A comparison of the powder X-ray diffractogram (black) computed from the 

single crystal X-ray structure (using a small crystal taken from sample EA1) and the 

experimental powder X-ray diffractogram (red) for about 10 mg of sample EA1 of 2-

ethylanthracene (EA). (a) The entire diffractogram (0-50O). (b) The region from 6.5-8.0O 

on an expanded scale. (c) The region from 17-30O on an expanded scale. The broad 

background of the experimental powder diffractogram has been removed and the 

experimental and computed diffractograms have different line broadenings. The vertical 

scales of the two diffractograms were normalized using the peak at 19.3O.  This 

comparison suggests that the small single crystal taken from sample EA1 for use in the 

single crystal diffraction experiment is typical of the entire sample. This diffractogram is 

discussed in the text in Section 2.2. 
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         FIGURE 4 
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       (b)  
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       (d)  
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Figure 4. A comparison of the powder X-ray diffractogram (black) computed from the 

single crystal X-ray structure (using a crystal from sample EAQ0) and the experimental 

powder X-ray diffractograms for samples EAQ1 (red), EAQ2 (purple), and EAQ3 (blue) of 

2-ethylanthraquinone (EAQ). (a) The entire diffractogram (0-40O). (b) The region from 4-

11O on an expanded scale. (c) The region from 11-17O on an expanded scale. (d) The 

region from 20-33O on an expanded scale. The broad backgrounds of the experimental 

powder diffractograms have been removed and the experimental and computed 

diffractograms have different line broadenings. The vertical scales of the four 

diffractograms were normalized using the peaks in the region 23-32O.  The differences 

among these four diffractograms are discussed in the text in Section 2.2. 
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         FIGURE 5 
 

 
 

   (a)            (b)  
 
Figure 5. Scanning electron microscopy images of (a small part of) sample EA1 (see 

Table 1) of 2-ethylanthracene (EA).  (a) A 127 X 109 m part and (b) a 25 X 22 m part 

of the sample. These images are typical of the entire sample. Images using sample EA2 

(not shown) are very similar. These images are discussed in Section 2.5. 
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         FIGURE 6 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   (a)       (b) 
  
 

Figure 6. Scanning electron microscopy images of (a small part of) sample EAQ1 (see 

Table 1) of 2-ethylanthraquinone (EAQ). (a)  A 253 X 218 m part and (b) a 13 X 11 m 

part. These images are typical of the entire sample and are discussed in Section 2.5. 
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         FIGURE 7 
 

    
 

   (a)       (b) 
 
 

Figure 7. Scanning electron microscopy images of (a small part of) sample EAQ3 (see 

Table 1) of 2-ethylanthraquinone (EAQ). (a) A 253 X 218 m part and (b) a 51 X 44 m 

part. These images are typical of the entire sample. Images using sample EA2 (not 

shown) are very similar. These images are discussed in Section 2.5. 
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                FIGURE 8 
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Figure 8. The initial 1H spin-lattice relaxation rates RS (red circles) and the characteristic 

relaxation rates R* (red squares) in (a) sample EA1 of 2-ethylanthracene (EA) and (b) 

sample EAQ1 of 2-ethylanthraquinone (EAQ) versus inverse temperature T-1 at an NMR 

frequency of 22.5 MHz. The uncertainty bars for the R* values are within the sizes of the 

squares. These R* values for sample EA1 are also shown in Figure 9a and those for 

sample EAQ1 are also shown in Figure 10a, both using the same symbols and colors 

used here. The solid lines are fits to RS using the model discussed in Section 2.6.2. The 

R* values are discussed in Section 2.6.4. 
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        FIGURE 9  

               

      (a)  

 

                

      (b)  
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Figure 9. (a) The characteristic 1H spin-lattice relaxation rates R* and (b) the stretching 

parameter  in a stretched exponential fit M(t)=M(∞)+[M(0)−M(∞)][exp{−(R*t)}] of the 

relaxing 1H magnetization following a perturbation for samples EA1 (red squares) and 

EA2 (blue squares) of 2-ethylanthracene (EA) versus inverse temperature T-1 at an NMR 

frequency of 22.5 MHz. In (a) the uncertainty bars are within the sizes of the symbols. In 

(b), the arrow indicates the temperature of the maximum in RS in sample EA1 in Figure 

8a. In (b) the solid horizontal line at =1 corresponds to exponential relaxation. For 

>0.95 (horizontal dashed line), it is difficult to ascertain that the relaxation is 

nonexponential to within experimental uncertainty on an experiment-by-experiment basis. 

The purple lines define the region where  is expected to fall if a single type of methyl 

group rotation is responsible for the rotation as discussed in Section 2.6.4. 
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           FIGURE 10 
 

              

        (a)  

 

               

      (b)  
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Figure 10. (a) The characteristic 1H spin-lattice relaxation rates R* and (b) the stretching 

parameter  in a stretched exponential fit M(t)=M(∞)+[M(0)−M(∞)][exp{−(R*t)}] of the 

relaxing 1H magnetization following a perturbation for samples EAQ1 (red squares), 

EAQ2 (purple squares), and EAQ3 (blue squares) of 2-ethylanthraquinone (EAQ) versus 

inverse temperature T-1 at an NMR frequency of 22.5 MHz. In (a) the uncertainty bars are 

within the sizes of the symbols. In (b), the arrow indicates the temperature of the 

maximum in RS in sample EAQ1 in Figure 8b. In (b) the solid horizontal line at =1 

corresponds to exponential relaxation. For >0.95 (horizontal dashed line), it is difficult to 

ascertain that the relaxation is nonexponential to within experimental uncertainty on an 

experiment-by-experiment basis. The purple lines define the region where  is expected 

to fall if a single type of methyl group rotation is responsible for the rotation as discussed 

in Section 2.6.4. 
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     FIGURE 11 

              

        (a)  

       

        (b)  
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Figure 11. (a) The relaxation rates R1 (upward-pointing triangles) and R2 (downward-

pointing triangles) in a double exponential relaxation process and (b) the equilibrium 

fractional magnetizations 1 (upward-pointing triangles) and 2 (downward-pointing 

triangles) relaxing with these two rates for samples EAQ1 (red), EAQ2 (purple), and 

EAQ3 (blue) of 2-ethylanthraquinone (EAQ) versus inverse temperature T-1 at 

temperatures below 142 K at an NMR frequency of 22.5 MHz. These parameters are 

discussed in Section 2.6.5. In (a) the characteristic rates R* from Figure 10a are indicated 

by small squares for comparison. 
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