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Abstract 

 Orexins are hypothalamic neuropeptides that have a documented role in 

mediating the acute stress response.  However, their role in habituation to repeated 

stress, and the role of orexin receptors (OX1R and OX2R) in the stress response, has 

yet to be defined.  Orexin neuronal activation and levels in the cerebrospinal fluid were 

found to be stimulated with acute restraint, but were significantly reduced by day five of 

repeated restraint.  As certain disease states such as panic disorder are associated with 

increased central orexin levels and failure to habituate to repeated stress, the effect of 

activating orexin signaling via Designer Receptors Exclusively Activated by Designer 

Drugs (DREADDs) on the hypothalamic-pituitary-adrenal (HPA) response was 

evaluated after repeated restraint.  While vehicle-treated rats displayed habituation of 

Adrenocorticotropic Hormone (ACTH) from day 1 to day 5 of restraint, stimulating 

orexins did not further increase ACTH beyond vehicle levels for either acute or repeated 

restraint.  We delineated the roles of orexin receptors in acute and repeated stress by 

using a selective OX2R antagonist (MK-1064).  Pretreatment with MK-1064 reduced day 

1 ACTH levels, but did not allow further habituation on day 5 compared with vehicle-

treated rats, indicating that endogenous OX2R activity plays a role in acute stress, but 

not in habituation to repeated stress.  However, in restrained rats with further stimulated 

orexins by DREADDs, MK-1064 decreased ACTH levels on day 5.  Collectively, these 

results indicate that the OX2R plays a role in acute stress, and can prevent habituation 

to repeated stress under conditions of high orexin release. 

 

Key words: MK-1064, orexin receptor, Hypocretin, Stress, Habituation, DREADDs 
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 Orexins (also called hypocretins) are peptides generated from the prepro-orexin 

precursor that is exclusively localized in cells of the lateral and posterior hypothalamic 

region (de Lecea et al., 1998; Sakurai et al., 1998).  Prepro-orexin is cleaved into two 

highly structurally related and highly conserved peptides, orexin A and orexin B, which 

bind to two G-protein coupled orexin receptors, orexin 1 and orexin 2 receptors (OX1R 

and OX2R, respectively) (de Lecea et al., 1998; Sakurai et al., 1998).  Orexin A has 

nearly equal affinities for both receptors, while Orexin B has higher affinity for OX2R 

(Gotter et al., 2012b).  While many brain regions express both receptors, some regions 

exhibit differential expression (Marcus et al., 2001).  For example, the cingulate cortex 

and locus coeruleus selectively express OX1R, while the paraventricular nuclei of the 

hypothalamus (PVN) and shell neurons of nucleus accumbens preferentially express 

OX2R (Marcus et al., 2001; Trivedi et al., 1998). 

 Orexins are implicated in a wide variety of neuroendocrine and behavioral 

responses including arousal, food intake, cognitive function, autonomic responses, 

emotional memory, and the stress response (Sakurai, 2014).  The most salient 

phenotype of orexin knockouts is reduced arousal resulting in narcolepsy-like behavior, 

which has led to the identification and development of OXR antagonists for the 

pharmacological treatment of insomnia (Gotter et al., 2012a).  Conversely, i.c.v.  

administration of exogenous orexin A to rats or orexin receptor agonists to mice 

promote arousal and wakefulness (Hagan et al., 1999; Nagahara et al., 2015).  Orexins 

are also important in regulating the neurobiological systems that respond to stressful 

stimuli.  For example, orexins promote the hypothalamic-pituitary-adrenal (HPA) axis 

response (Winsky-Sommerer et al., 2004, 2005; Berridge et al., 2010; Johnson et al., 

2012).  Specifically, central orexin administration (either Orexin A or Orexin B) increases 

HPA hormones (Jászberényi et al., 2000; Kuru et al., 2000; Spinazzi et al., 2006).  

Conversely, orexin neurons are activated by corticotropin releasing hormone and 

respond to stressors such as forced swim stress (Winsky-Sommerer et al., 2005; Chang 

et al., 2007; Furlong et al., 2009; Chen et al., 2013).  Both orexin 1 and 2 receptors 

have been implicated in acute stress; the role of each receptor appears dependent on 

the paradigm of stress used (Chang et al., 2007; Gozzi et al., 2013; Bonaventure et al., 

2015).   
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 While this evidence indicates a role for orexins in activating the HPA activity 

under conditions of acute stress, the role of orexin signaling in response to repeated 

stress is not known.  With repeated exposure to moderately intense stressors, 

individuals typically habituate to that stress as indicated by decreasing responsivity in 

behavioral, HPA and autonomic measures (Grissom et al., 2008; Grissom and 

Bhatnagar, 2009).  Failure to habituate to a stressor is a hallmark of stress-related 

illnesses such as post-traumatic stress disorder (PTSD) and panic disorder (Johnson et 

al., 2012).  Moreover, patients with panic anxiety symptoms have higher levels of orexin 

in their cerebrospinal fluid (CSF) (Johnson et al., 2010).  If involved in habituation to a 

stressor, orexins may be a good target for treatment for some of these stress-related 

psychiatric illnesses.   

 To determine the role of orexins in acute and repeated restraint, we first 

characterized orexin neuronal activation and levels in the CSF in both conditions.  We 

found these measures to be increased with acute restraint, but they significantly 

decreased with repeated restraint.  In order to increase orexin activation prior to each of 

five daily 30-min restraints (to model higher orexin levels as observed in panic disorder), 

we used Designers Receptors Exclusively Activated by Designer Drugs (DREADDs) 

driven by the orexin promoter.  We found that even with additional orexin stimulation, 

HPA activation habituated by day 5 of restraint.  However, we were able to delineate the 

roles of orexin receptors in acute and repeated stress using a selective OX2R specific 

antagonist (MK-1064) (Roecker et al., 2014).  Prior to this, the roles of orexin receptors 

in the stress response, whether acute or repeated, had not yet been fully characterized.  

As OX2R is abundant in the PVN and is known to play a role in arousal, it may mediate 

excitatory effects at this site where the HPA response is initiated (Shirasaka et al., 2001; 

Gotter et al., 2012b).  In support of this, we found that OX2R receptor promotes the 

acute stress response, and it partially prevents habituation to repeated stress only in 

conditions of high orexin release. 
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EXPERIMENTAL PROCEDURES 

Animals 

 Adult male Sprague Dawley rats (225-250g) were obtained from Charles River 

Laboratories (Wilmington, MA, USA).  Rats were singly housed in polycarbonate 

enclosures with standard bedding and with food and water available ad libitum.  Animals 

were acclimated to a 12-h light-dark cycle with lights on at 06:15 and lights off at 18:15 

in a temperature controlled vivarium for at least 5 days prior to administration of any 

stress protocols.  All experiments took place during the inactive phase between 0800-

1200 (Zeitgeber Time 01:45-05:45).  Experiments followed the NIH Guide for the Care 

and Use of Laboratory Animals and were approved by the Children’s Hospital of 

Philadelphia Research Institute’s Animal Care and Use Committee.   

 

Stereotaxic delivery of DREADDS-containing viruses 

 Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are 

constructs packaged into viruses that contain synthetic G protein coupled receptors 

(GPCRs) and can be activated by the otherwise pharmacologically inert ligand 

Clozapine-N-Oxide (CNO).  We obtained the CMV-hM3Dq-mCitrine plasmid from Dr.  

Bryan Roth (University of North Carolina, Chapel Hill, NC).  Slice electrophysiology has 

demonstrated that CNO application to cells expressing this Gq coupled designer 

receptor causes depolarization and increases firing rate (Alexander et al., 2009).  We 

next obtained a 1295 bp promoter for human preproorexin gene (Ple112) from Addgene 

plasmid No.  29004 (gift of Dr.  Elizabeth Simpson, Univ.  of British Columbia).  This 

promoter was subcloned upstream of the hM3Dq-mCitrine region to replace the 

construct's CMV promoter to drive transgene expression specifically in orexin neurons.  

The fragment Ple112-hm3Dq-mCitrine was then subcloned between the Inverted 

Terminal Repeats (ITRs) of the AAV2 genome.  In a separate study, we found AAV1 

serotype displayed optimal tropism for Sprague Dawley rat hypothalamic neurons when 

we delivered in vivo and compared to AAV5,8,9 expression of GFP reporters driven by 

common constitutively active promoters Synapsin and CB7.  Based on this finding, The 

University of Pennsylvania Vector Core produced a recombinant adenovirus rAAV2/1-

Ple112-hM3Dq-mCitrine (using AAV1 serotype capsid for optimal transduction in orexin 
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neurons) for our use.    

 Surgeries were performed in aseptic conditions.  Animals were anesthetized 

using a cocktail of ketamine, xylazine, and acepromazine.  Using stereotaxic technique, 

DREADDs-containing virus (109 titer, 1ul bilaterally) was injected into the lateral 

hypothalamus (coordinates: 2.5 mm caudal to bregma, 1.8 mm from mid-line and 8 mm 

ventral to dura mater).  After surgery, animals were injected with meloxicam (2mg/kg).  

Animals recovered for 4 weeks while virus expressed before any further experiments 

were performed.   

 Immunofluorescence staining for visualizing the virus tag was conducted as 

follows.  Rats were rapidly decapitated and brains were flash frozen in 2-methyl butane.  

Coronal sections for the lateral hypothalamus were cut on a cryostat into six serial sets 

of 20-um-thick sections directly onto the slide.  Rostral-caudal coordinates (relative to 

bregma) for the lateral hypothalamic area analyzed were -2.12 mm to -3.60 mm.  Tissue 

was fixed for 30 minutes in 4% paraformaldehyde (Electron Microscopy Sciences; 

Hatfield, PA).  Sections were washed several times with Phosphate Buffered Saline 

(PBS; pH 7.4) with 0.3% Triton-X (Sigma-Aldrich; St Louis, MO), and then incubated 

with primary antibodies for both Orexin A (1:250, sc-8070; Santa Cruz Biotechnology, 

Santa Cruz CA) and GFP (1:500, ab290; AbCam, Cambridge, UK) in a solution of PBS 

with 5% Normal Donkey Serum (EMD Millipore; Billerica, MA) and 0.3% Triton-X 

overnight.  As the mCitrine tag on the DREADDs-containing virus originates from 

Aquorea victoria jellyfish, GFP antibodies are known to react with these proteins (Le et 

al., 2006).  Sections were rinsed several times in PBS, followed by the addition of 

AlexaFluor488 Donkey anti-goat and AlexaFluor647 Donkey anti-rabbit (1:200, A-11055 

and A-31573; Life Technologies, Carlsbad, CA).  Sections were given a final set of 

washes and coverslipped with fluoromount.  Images were acquired with a Leitz DMR 

microscope with a digital camera (Leica Microsystems; Buffalo Grove, IL).  The NIH 

Image J colocalization plugin was used to determine percent orexin cells transduced by 

the virus. Quantification revealed 71 + 5.4% of neurons within the lateral hypothalamus 

exhibited the DREADDs tag. Roughly 1% of these cells were not dual labeled with 

orexin A antibody.  
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Drugs 

 Clozapine N-Oxide (CNO; Sigma-Aldrich; St Louis, MO) was dissolved in saline 

and 8% DMSO and injected intraperitoneally at 2 mg/kg in a 5 mg/mL solution.  This 

dose is in accordance with doses used in previous DREADDs studies in rats (Farrell 

and Roth, 2013).  MK-1064, a selective OX2R antagonist, ( Roecker et al., 2014) was 

dissolved overnight in 20% Vitamin E d-a-tocopherol polyethylene glycol 1000 succinate 

(Vit E-TPGS) (Sigma-Aldrich; St Louis, MO).  Rats were orally administered either 20% 

Vit E-TPGS as vehicle or 30 mg/kg MK-1064, both at 1mL/kg for consistent volume.  All 

animals were given a vehicle dose 1 day prior to the start of the restraint paradigm to 

habituate to the oral gavage procedure.  Animals received injections of vehicle (20% Vit 

E TPGS, p.o.) or MK-1064 and vehicle (saline and 8% DMSO, i.p.) or CNO 90 minutes 

prior to the start of the 30-minute restraint.  This timing was chosen based on the fact 

that both MK-1064 and CNO have been shown to promote behavioral effects in the rat 

within 30 minutes of administration and effects last up to 4 hours after administration 

(Alexander et al., 2009; Farrell and Roth, 2013; Hasegawa et al., 2014; Roecker et al., 

2014).  Additionally, CNO was given at the time of MK-1064 injection to minimize the 

effects of repeated handling prior to restraint. 

 

Assaying orexin levels in the cerebrospinal fluid (CSF) 

 DREADDs-expressing rats were injected IP with either vehicle or CNO 90 

minutes prior to either CSF collection. In a separate experiment, DREADDs-expressing 

rats were injected IP with vehicle or CNO 90 minutes prior to stress exposure. 

Specifically, rats were either exposed to 1 or 5 days of 30-min restraint (IP injections 

were given daily prior to each restraint for the 5-day group). Animals were restrained in 

Plexiglas restrainers (9 x 3.5 inches) made from the University of Pennsylvania Machine 

Shop.  Plexiglas inserts (7.5 x 3.25 inches) were placed inside the restrainers 

appropriate for the size of each male rat so that they could not turn around in the 

restrainer.  As orexins are known to exhibit a circadian rhythm (Taheri et al., 1999; Fujiki 

et al., 2001; Zeitzer, 2013), animals were restrained within 2 hours after lights on, a time 

at which orexin levels reach a nadir.  At 15 min into the 1st or 5th restraint, CSF was 

collected (rough 105 minutes post IP injection). Briefly, rats were anesthetized with a 
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cocktail of ketamine and xylazine, placed in the ear bars of a stereotaxic apparatus with 

their nose pointing downward, and a 25-gauge needle was used to extract 100 uL of 

CSF from the cisterna magna. CSF was ejected into eppendorf tubes and frozen at -

80°C until radioimmunoassay.  CSF levels of orexin were assayed with a 

Radioimmunoassay kit from Phoenix Pharmaceuticals (Burlingame, CA).  The minimum 

levels of detection for orexin was 80 pg/ml.  Intra-and interassay variability was 5-7% 

and 12-15%, respectively. 

  

Assaying orexin neuronal activation  

 Two additional groups of rats were injected with the DREADDs construct and 

exposed to either 1 or 5 days of restraint with injections of vehicle or CNO administered 

as previously described.  Brains were collected for one group of rats on Day 1 of 

restraint (30 min after restraint ended), while brains were not collected in the other 

cohort until Day 5 of restraint.  The lateral hypothalamus of these brains were further 

analyzed for orexin neural activation.  Specifically, sections of the lateral hypothalamus 

were cut and fixed as described above in DREADDs immunofluorescent staining.  

Sections were incubated with c-Fos antibody (1:1250, sc-52; Santa Cruz Biotechnology, 

Santa Cruz, CA) followed by Biotin-SP-conjugated AffiniPure Donkey-Antirabbit IgG 

(1:200, Jackson Immunoresearch), which was visualized with a 3’3’-diaminobenzidine 

reaction (Sigma-Aldrich, St Louis, MO).  Sections were then stained for orexin A (1:50, 

sc-8070; Santa Cruz Biotechnology, Santa Cruz CA) followed by biotinylated Horse 

Anti-Goat antibody (1:500, BA-9500; Vector Laboratories, Burlingame, CA.), which was 

visualized with a Nova Red reaction (SK-4800, Vector Laboratories, Burlingame, CA).  

Sections were mounted with permount (Electron Microscopy Sciences, Fort 

Washington, PA).  Images were acquired with a Leitz DMR microscope with a digital 

camera (Leica Microsystems; Buffalo Grove, IL).  4 sections per animal (with rostral-

caudal coordinates (relative to bregma) ranging from -2.04 to -3.24) were analyzed 

using NIH Image J. Specifically, a standardized box encompassed the lateral 

hypothalamus (calculated using Paxinos & Watson Rat Brain Atlas) and dual labeled 

cells were counted by hand.  All image analysis was performed with the experimenter 

blind to the treatment groups. 
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Assessing HPA reactivity to acute or repeated restraint with orexin manipulations 

 A naïve cohort of rats injected with DREADDs-containing virus was exposed to 

either 1 or 5 consecutive days of restraint with injections of vehicle or CNO IP and either 

vehicle or MK-1064 administered PO 90 min prior to each restraint.  See Fig. 3A for 

depiction of experimental paradigm.  Animals were weighed on Day 1 and Day 5 of 

restraint.  Video cameras were set up above the restrainers in order to record struggle 

behavior on day 2 of restraint.  While rats are in the restrainer for 30 minutes, most of 

the struggle behavior occurs within the first 10 minutes.  Therefore, we analyzed 

struggle behavior during this time period.  A trained investigator blind to experimental 

groups hand scored struggle behavior – defined as attempts to escape, or intense 

movement of the animal while in the restrainer.  Blood was collected on Day 1 and Day 

5 of restraint to assess the HPA response to acute and repeated restraint, respectively.  

Briefly, on day 1, tail blood was taken at 0 minutes (prior to being placed in restraint), 

again at 15 minutes and 30 minutes (during restraint), and at 60 minutes (recovery time 

point in the home cage).  Plasma corticosterone and ACTH were assayed with a 

Radioimmunoassay kit from MP Biomedical (Orangeburg, NY).  The minimum levels of 

detection for ACTH and corticosterone were 5.7pg/ml and 0.6μg/dl, respectively.  Intra-

and interassay variability was less than 10%.   

 

Statistical Analysis 

 Data are presented as the mean ± the standard error of the mean. For 

habituation of vehicle-treated animals, a 2-way ANOVA assessed Day and Time 

variables (Day 1 and 5 were compared, as well as the time point throughout restraint). A 

t-test was used to evaluate orexin neural activation and orexin levels in the CSF in 

control versus CNO treated animals on Day 1 and Day 5 of restraint.  A 2-way ANOVA 

assessed Day and Drug variables for orexin neural activation and orexin A in the CSF 

throughout repeated restraint. For struggle behavior and body weight, a 2-way ANOVA 

assessed CNO and 2-SORA variables.  For all other ACTH data, a 2-way ANOVA 

assessed Drug and Time variables on Day 1 and Day 5 separately. When warranted, 

Tukey’s-corrected t-tests were performed.  All hypothesis tests used =0.05 as the 
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criterion level of significance.  Statistical analysis was conducted with GraphPad Prism 

(GraphPad Software, La Jolla, CA, USA) in order to identify statistical differences.   

 

RESULTS 

Orexin levels habituate with repeated stress 

Habituation of the HPA response to 5 days of restraint stress was assessed by 

evaluating plasma ACTH levels prior to, during and after 30 minutes of restraint stress 

on day 1 and day 5 of restraint (paradigm and data in Fig. 1A).  Consistent with 

previous results (Grissom and Bhatnagar, 2009), male rats in this paradigm habituated 

to 5 days of repeated restraint with regard to plasma ACTH levels.  This effect was 

significant at 30 minutes of restraint.  However, we did not observe habituation or group 

differences in our corticosterone assays, consistent with previous lab results that it 

takes 8-10 days of restraint to see corticosterone effects ((Grissom et al., 2008); data 

not shown). 

 After demonstrating ACTH habituation to repeated restraint, we examined 

changes in orexins from one day to five days of daily 30-min restraint.  To assess this, 

orexin neuronal activation and CSF levels of orexin were evaluated on both day 1 and 

day 5 of restraint.  Representative images of the cFos/orexin dual stain on day 1 and 

day 5 of restraint are displayed in Fig. 1B.  An average of 40 orexin cells per section 

were dual labeled with cFos after a single 30-min restraint, and this was significantly 

reduced to nearly half that amount by day 5 of restraint stress. In terms of percentages 

of total orexin neurons present, a single 30-min restraint activated 75% of orexin 

neurons, whereas only 40% were active on day 5 of restraint stress (data not shown).  

Orexin A levels in CSF showed a similar pattern to orexin neuronal activation, since 

orexin A levels in CSF habituated after 5 days of restraint stress (Fig. 1C).  Specifically, 

orexin A levels were significantly reduced to approximately 66% of the day 1 value.  In 

summary, both HPA and orexin activity decreased with repeated restraint stress. 
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Stimulation of orexins prior to each of five daily 30-min restraints 

As certain disease states such as panic disorder are associated with increased central 

orexin levels and failure to habituate to repeated stress, we further stimulated orexins 

prior to each of five daily 30-min restraints.  To do this, DREADDs were injected and 

expressed selectively in orexin neurons to activate these neurons.  Representative 

fluorescent images of DREADDs expression at four weeks are displayed in Fig. 2A, 

along with a depiction of the spread of viral expression along four levels of Bregma 

(anterior to posterior) in Fig. 2B.  Quantification revealed 71 + 5.4% of neurons within 

the lateral hypothalamus exhibited the DREADDs tag (data not shown). Orexin levels in 

the CSF are quantified for vehicle- or CNO-treated DREADDs-expressing rats in non-

stress conditions in Fig. 2C.  Relative to vehicle, CNO significantly increased the level 

of orexins in the CSF compared with vehicle-treated rats when evaluated 90 minutes 

after treatment.  These data validated the functionality of the DREADDs construct. 

Moreover, orexin neuronal activation with DREADDs stimulation prior to each of 

five daily 30-min restraints were quantified (Fig 2D).  Compared with vehicle treatment, 

CNO significantly increased the number of orexin neurons dual labeled with cFos (and 

hence neural activation) on day 1 of restraint. The level of CNO-induced orexin neuron 

recruitment on day 5, however, remained significantly below that seen on day 1 of 

restraint stress after CNO (just as was seen with vehicle-treated groups on day 1 

compared with day 5). 

Lastly, orexin levels in the CSF with DREADDs stimulation prior to each of five 

daily 30-min restraints were quantified (Fig 2E). Relative to vehicle-treated animals, 

CNO induced orexin A in CSF to significantly greater levels on day 1, verifying that 

DREADDs-mediated CNO activation of orexin neurons resulted in augmented release 

of orexin A neuropeptide. While CNO treatment also increased orexin A levels on day 5 

of restraint compared with vehicle treatment, CNO-treated animals exhibited 

significantly reduced orexin A levels on day 5 compared with day 1 of restraint, just as it 

did in vehicle-treated animals.  Together, these data indicate that the DREADDs 

constructs increased orexin activation and levels in the CSF, but repeated restraint 

stress partially counteracts these effects by lowering orexin activity and levels in the 

CSF compared to day 1 of restraint. 
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OX2R underlies struggle behavior and body weight change during restraint stress 

 The contribution of orexin receptor signaling in both struggle behavior and body 

weight change in response to restraint stress was determined through use of a selective 

OX2R antagonist, MK-1064.  Specifically, after DREADDs expression, rats underwent 5 

consecutive days of 30-minute restraint, with either vehicle or CNO to stimulate 

DREADDs prior to each restraint, and with either vehicle or MK-1064 to antagonize the 

orexin 2 receptor (paradigm depicted in Fig. 3A).  Struggle behavior indicates the 

number of attempts to escape during restraint, which is an important component of the 

stress response and habituates with repeated restraint (Grissom et al., 2008).  As 

demonstrated in Fig. 3B, the CNO/vehicle group spent significantly more time struggling 

than the other three treatment groups.  Essentially, stimulating orexins with CNO 

increases struggle behavior, and blocking OX2R with MK-1064 reverses this effect.  

Coincident with changes observed in struggle behavior, body weight decreased from 

the first to last day of restraint in levels of high orexin, but this was eliminated with MK-

1064 pretreatment (Fig. 3C).  Thus, while all rats lost weight over the 5 days of restraint 

stress, further stimulating orexins prior to each 30-min restraint exacerbated this effect 

and these results appear mediated through OX2R. 

 

OX2R is involved in the ACTH response to acute restraint stress 

 The role of orexin signaling in the HPA response to acute restraint stress was 

determined by measuring plasma ACTH levels in response to 30 minutes of restraint in 

DREADDs-expressing rats pretreated with either vehicle or CNO in combination with 

either vehicle or the OX2R antagonist, MK-1064.  CNO pretreatment did not increase 

ACTH levels compared with that from vehicle-treated rats (Fig. 4A). Pretreatment with 

MK-1064, however, significantly attenuated the ACTH response in combination with 

either vehicle (Fig. 4B), or CNO pre-treatment (Fig. 4C), indicating that OX2R is 

responsible for mediating at least part of the ACTH response to acute restraint.  

Importantly, the ACTH response was similarly attenuated by MK-1064 in either the 
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presence or absence of CNO (Fig. 4D), indicating that activation of orexin signaling 

through mechanisms not involving OX2R contributes little to the ACTH response on this 

first day of restraint stress. 

 

Orexin signaling through OX2R and non-OX2R mechanisms have opposing 

influences on ACTH responses to repeated restraint stress   

 The role of orexin signaling in mediating the HPA response to repeated stress 

was evaluated in Fig. 5.  Specifically, rats were evaluated for plasma ACTH levels on 

the 5th day of restraint stress following treatment with CNO and/or MK-1064.  CNO 

treatment did not change ACTH levels on day 5 of restraint compared with vehicle-only 

controls (Fig. 5A).  In the absence of CNO, blockade of endogenous OX2R activity by 

MK-1064 also did not further affect plasma levels of ACTH compared with vehicle (Fig. 

5B), unlike that seen on the first day of restraint stress.  However, in rats treated with 

CNO to induce orexin neuron activation in combination with MK-1064, the ACTH 

response was attenuated further (Fig. 5C).  Because ACTH levels are elevated 

following stimulation of orexin neuron activation (CNO/Vehicle) relative to that following 

stimulation of orexin neuron activation plus antagonism of the OX2R (CNO/MK-1064), 

these results indicate that OX2R activity has the capacity to increase ACTH levels after 

5 days of restraint stress.  In other words, exogenous OX2R activity prevents the full 

habituation to repeated restraint.  Indeed, ACTH responses are reduced by the 

CNO/MK-1064 manipulation relative to the Vehicle/MK-1064 treatment (Fig. 5D). This 

comparison evaluates the influence of total orexin neuron activity minus that of OX2R,  

indicating that possibly OX1R, or other mechanisms induced by orexin neuron activity, 

has the capacity to further reduce ACTH responses to repeated restraint stress.   

 

DISCUSSION 

 While orexins are known to play a role in the acute stress response, it was 

unclear how they mediated the response to repeated stressors, and the contribution of 

orexin receptors to both acute and repeated stress was undetermined.  With repeated 
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exposure to modest stressors, individuals typically habituate to that stress by 

decreasing responsivity, particularly in HPA measures (Grissom et al., 2008; Grissom 

and Bhatnagar, 2009).  Failure to habituate is a hallmark of stress-related illnesses such 

as post-traumatic stress disorder (PTSD) and panic disorder (Johnson et al., 2012).  

The present studies demonstrated HPA habituation to repeated restraint in male 

rodents, and determined that both orexin neuronal activation and levels in the CSF 

decrease after repeated restraint.  As central orexins are augmented in some disease 

states such as panic disorder (where patients fail to habituate to repeated stress), high 

levels of orexin were stimulated via DREADDs prior to each of five daily 30-min 

restraints.  Our data confirm that our DREADDs construct was efficacious in stimulating 

orexin neuronal activation and increasing orexin levels in the CSF in non-stress 

conditions, as well as in acute and repeated restraint.  We were also able to discern the 

contribution of orexin receptor signaling in acute and repeated stress through use of a 

selective OX2R antagonist, MK-1064.  We found that the OX2R contributed to struggle 

behavior and body weight decrease during repeated restraint.  Moreover, the OX2R 

played a role in the plasma ACTH response to acute stress and repeated stress, 

although the latter was only in conditions of high orexin release.   

 Orexins and the HPA axis reciprocally interact.  Specifically, central orexin 

increases corticosterone and ACTH, whereas CRH depolarizes orexin neurons (Russell 

et al., 2001; Samson et al., 2002; Winsky-Sommerer et al., 2004).  The activation of 

orexin neurons during acute stress has been examined by a limited number of studies 

using a wide variety of stress paradigms (Chang et al., 2007; Furlong et al., 2009; Chen 

et al., 2013).  As much of the previous literature has focused on the role of orexin A in 

stress (Ida et al., 2000; Russell et al., 2001; Sakamoto et al., 2004), our studies 

specifically examined orexin A activity both through dual labeling of orexin A neurons 

with cFos (a measure of neural activation) and orexin A levels in the CSF in acute and 

repeated stress.  Importantly, our results indicate that acute restraint stress induces 

very high levels of orexin neuron activation (75%), accompanied by increased levels of 

orexin A in the CSF.  We also show, for the first time, that orexin activity decreases with 

habituation to repeated stress.  Thus, with repeated exposure to a moderately intense 

stressor, both the HPA and orexin response diminish.  When inducing additional orexin 
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activation via DREADDs prior to each of five daily 30-min restraints, we were unable to 

increase orexin neuron activation to the levels seen with acute stress. Based on the 

literature, CNO does not appear to become less effective after repeated administration, 

so this is likely not the cause for these results (Kozorovitskiy et al., 2012). Moreover, 

this reduced responsiveness of orexin neurons does not appear due to depletion of 

available orexin neuropeptide stores, since DREADDs-induced CSF levels of orexin A 

and orexin neuron activation as measured by c-fos expression were both attenuated 

during habituation. It is important to note that Orexin B also plays an important role in 

the stress response (Kuru et al., 2000; Shirasaka et al., 2001; Spinazzi et al., 2006), so 

assessing orexin B levels in the future may shed more light on how the orexins are 

involved in repeated stress. 

Struggle behavior and body weight changes are important components of the 

response to stressful stimuli.  Our data show that exogenous orexin stimulation 

increased struggle behavior and decreased body weight.  This was reversed by the 

OX2R antagonist, indicating that OX2R plays a role in these components of the stress 

response in conditions of high orexin release.  This effect on struggle behavior is 

consistent with literature support for the OX2R in promoting arousal (Gotter et al., 

2012b). Moreover, arousal is an important component of the stress response (Giardino 

and de Lecea, 2014), so it is likely that DREADDs-induced orexin activation is 

increasing struggle behavior by increasing arousal. However, our data indicate that 

DREADDs differentially modulate the HPA response and struggling behavior, thus, 

mechanisms above and beyond those regulated by orexins may be involved. Although 

orexin antagonists are known to promote sleep (Gotter et al., 2016), they still allow 

arousability to salient stimuli (Tannenbaum et al., 2014, 2016). Thus, it is unlikely that 

reduction in struggle behavior is due to the sedative effects of the OX2R antagonist. 

However, as we did not directly measure sleep using telemetry devices, this possibility 

cannot be ruled out. 

It is unclear where OX2Rs are acting to regulate struggle behavior and body 

weight gain.  Previous literature has indicated that rats with high amygdala excitability 

show increased struggling behavior (Anisman et al., 1997; McIntyre et al., 1999).  Given 
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that OX2Rs are expressed in medial but not central amygdala, this subnuclei of the 

amygdala could be an important substrate for regulating struggle behavior (Marcus et 

al., 2001).  Alternatively, both central and peripheral regions may play a role in OX2R 

mediation of body weight gain.  For example, central orexins acting on hypothalamic 

and dopaminergic brain regions have been implicated in increasing spontaneous 

physical activity and nonexercise thermogenesis (Kotz et al., 2012).  Moreover, orexins 

acting on white adipose tissue have been shown to promote lipolysis (Perez-Leighton et 

al., 2014).  Thus, it is possible that the reduction in body weight observed with CNO 

treatment is a result of increased energy expenditure and lipolysis by animals in this 

treatment group. 

 There have been few studies delineating the contribution of each orexin receptor 

to the acute HPA response.  One study reports that pretreatment with an OX2R 

antagonist prevents forced swim-induced increases in plasma ACTH and corticosterone 

(Chang et al., 2007).  This is consistent with our findings that OX2R contributes to the 

HPA response induced by acute restraint stress.  However, as MK-1064 pretreatment 

only reduced the HPA response by half, it is still possible that the other components of 

the stress response may play a role in regulating the acute HPA response to restraint.  

Possible components would not include the contribution of OX1R, however, as the 

ACTH response was similarly attenuated by MK-1064 in either the presence or absence 

of CNO.  As OX2R is preferentially expressed (over OX1R) in the paraventricular 

nucleus of the hypothalamus, antagonizing OX2R (but not necessarily OX1R) would 

likely reduce the acute HPA response (Shirasaka et al., 2001; Gotter et al., 2012b).  

However, other sites expressing OX2R such as the amygdala, paraventricular nucleus 

of the thalamus (PVT), and hippocampus may also be involved (Marcus et al., 2001). 

 We found that under endogenous orexin levels elicited by restraint alone, 

blocking OX2R had no effect on ACTH levels on day 5 of restraint.  Thus, in these 

conditions, OX2R does not affect habituation.  However, our data measuring orexin 

levels in the CSF revealed that compared with one day of 30-min restraint, orexin levels 

decreased by five days of daily 30-min restraint.  Hence, blocking OX2R in low orexin 

conditions may not have an effect.  However, when orexins are stimulated with 
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DREADDs, blocking OX2R further attenuates ACTH responses. This indicates OX2R 

plays a role in repeated restraint stress only in conditions of high orexin release.  This 

also indicates that OX2R desensitization does not appear to be involved in typical 

habituation. However, the ultimate effects of orexins throughout stress might be 

dependent on the balance of signaling from both orexin receptors (Scott et al., 2011). 

Though, not much is known about orexin receptor regulation after stress. While the 

OX2R activity promotes ACTH release and prevents habituation in high levels of orexin 

such as that seen during acute stress conditions, one possibility is that OX1R activated 

by orexin release could promote habituation, as CNO/MK-1064 treated animals have 

even lower plasma ACTH levels than Vehicle/MK-1064 treated animals after repeated 

restraint. Thus, one interpretation of the results is that OX1R underlies habituation. 

Direct tests of OX1R function are required to confirm this interpretation.  Interestingly, 

previous data from our lab indicates that the OX1R in the posterior paraventricular 

thalamus is necessary in adapting to repeated swim stress, allowing facilitation to a 

novel restraint stressor (Heydendael et al., 2011). However, it is not clear whether 

orexins are involved in facilitation after habituating to repeated restraint.  Overall, we 

believe the evidence suggests that orexin neuron has the capacity to influence 

habituation through opposing OX2R and non- OX2R mechanisms. 

 The results from this study improve our understanding of the role of orexin 

receptors in regulating the HPA response to both acute and repeated stress.  We have 

confirmed the involvement of OX2R in acute stress, and have shown that it has the 

capacity to promote ACTH levels opposing habituation to repeated stress in conditions 

of exogenously elevated orexin signaling. Future studies should identify not only the 

neuronal pathways regulating the reduced responsiveness of orexin neurons during 

habituation, but also investigate the specific brain regions where each receptor may be 

acting to influence these changes in HPA activity, struggle behavior, and body weight 

gain.  While there are high concentrations of OX2R in the PVN, the locus coeruleus 

preferentially expresses OX1R (Peyron et al., 1998; Marcus et al., 2001).  Additionally, 

other stress regulatory regions with high concentrations of orexin input include the PVT 

and the amygdala.  These experiments would allow for a greater understanding of 
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mechanisms associated with hyperactivation of orexin signaling observed in psychiatric 

illness such as panic disorder. 
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Figure Legends 

Fig. 1. Orexin levels habituate with repeated restraint stress (n = 10/group).  (A) Left: 

Depiction of Restraint Paradigm and Blood collection. Right: Plasma ACTH data for Day 

1 and Day 5 of restraint. Vehicle/Vehicle-treated animals display habituation over the 5 

days of restraint stress, with decreased plasma ACTH values on day 5 compared to day 

1 (2-Way ANOVA, Day: F(1, 67) = 8.2, p = 0.006; Time: F(1,67) = 12.7, p<0.0001).  (B) 

Total orexin neurons dual labeled with cFos on day 1 versus day 5 of restraint stress (T 

test, p<0.05).  Right, representative 10x magnification images of the lateral 

hypothalamus with cFos (black) and orexin (red) dual stain on Day 1 and 5 of restraint.  

(C) Orexin levels in the CSF on day 1 and 5 of restraint stress (T test, p<0.05).  *p<0.05, 

**p<0.01, ***p<0.0001 

 

Fig. 2.  Stimulation of orexins prior to each of five daily 30-min restraints (n = 10/group).  

(A) Representative images of DREADDs expression in the lateral hypothalamus at 20x 
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magnification.  Orexin Neurons = red, DREADDs tag = green, orexin neurons 

transfected with virus = yellow.  (B) Viral expression along four levels of Bregma 

(anterior to posterior) in a cartoon using rat brain atlas images.  Each red dot represents 

10 cells expressing the viral tag.  (C) Orexin A levels in CSF following vehicle or CNO 

treatment (non-restraint stress conditions; T test, p<0.001).  (D) Total orexin neurons 

dual labeled with cFos in acute and repeated restraint stress following either vehicle or 

CNO pretreatment (2-Way ANOVA, Day: (F(1,62) = 9.6, p<0.001; CNO: F(1,62) = 4.1, 

p<0.05, Interaction: F(1,62) = 0.01, p = 0.95).  (E) Orexin A levels in the CSF following 

acute and repeated restraint stress with either vehicle or CNO pretreatment (2-Way 

ANOVA, Day: (F(1,37) = 26.47, CNO: p <0.0001; Interaction: F(1,37) = 15.05, p = 

0.0004; F(1,37) = 2.6, p = 0.11).  *p<0.05, ***p<0.001  

 

Fig. 3.  OX2R underlies struggle behavior and body weight change during restraint stress 

(n=7/group).  (A) Timeline of experimental procedures.  DREADDs-containing viruses 

were injected into the lateral hypothalamus 4 weeks prior to the start of the restraint 

paradigm.  MK-1064 and CNO were administered orally or subcutaneously, respectively, 

90 minutes prior to each 30-minute restraint for 5 consecutive days.  Tail blood was 

collected at 0, 15, 30, and 60 minutes on day 1 of restraint for hormone assays.  Struggle 

Behavior was quantified on Day 2 of restraint.  Tail blood was collected at 0, 15, and 30 

minutes on day 5 of restraint.  Rats were euthanized at 60 minutes, with both blood and 

brain collected at this time.  (B)  Orexin activation by CNO increases struggle behavior 

(2-Way ANOVA, CNO: (F(1,22) = 9.8, p = 0.005; MK-1064: F(1,22) = 7.4, p = 0.013; 

Interaction: F(1,22) = 4.7, p = 0.042).  (C) Body weight change after 5 days of restraint 

stress in rats differentially treated with CNO and/or MK-1064 (2-Way ANOVA, MK-1064: 

(F(1,23) = 4.3, p = 0.049; Interaction: F(1,23) = 3.1, p = 0.09).  **p<0.01  

 

Fig. 4.  OX2R is involved in the ACTH response to acute restraint stress (n = 12/group).  

ACTH levels were evaluated on the first day of restraint stress following vehicle/vehicle 

versus CNO/vehicle pretreatment to evaluate orexin neuron activation (A; no 

significance by ANOVA), vehicle/vehicle versus vehicle/MK-1064 pretreatment to 
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evaluate the role of endogenous OX2R (B; significant: 2-Way ANOVA, MK-1064: 

(F(1,63) = 9.3, p = 0.003), CNO/MK-1064 versus CNO/vehicle pretreatment to assess 

the effect of exogenous OX2R activity induction (C; significant: 2-Way ANOVA, Drug: 

F(1,71) = 4.6, p = 0.035), or Vehicle/MK-1064 versus CNO/MK-1064 pretreatment to 

understand the role of orexin-induced mechanisms other than OX2R (D; no significance 

by ANOVA). *p<0.05, **p<0.01  

 

Fig. 5.  OX2R and non-OX2R mediated orexin mechanisms have opposing influences on 

ACTH responses to repeated restraint stress.  (n=12/group) ACTH levels were evaluated 

on the fifth day of restraint stress following vehicle/vehicle versus CNO/vehicle 

pretreatment to evaluate orexin neuron activation (A; no significance by ANOVA), 

vehicle/vehicle versus vehicle/MK-1064 pretreatment to evaluate the role of endogenous 

OX2R (B; no significance by ANOVA), CNO/MK-1064 versus CNO/vehicle pretreatment 

to assess the effect of exogenous OX2R activity induction (C; significant: 2-Way ANOVA, 

Drug: F(1,45) = 13.1, p = 0.001), or Vehicle/MK-1064 versus CNO/MK-1064 pretreatment 

to understand the role of orexin-induced mechanisms other than OX2R (D; significant: 2-

Way ANOVA, Drug: F(1,40) = 12.02, p<0.01).  *p<0.05, **p<0.01  
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