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The  molecular and  crystal structure of  3-(trifluoromethyl)phenanthrene has  been  determined by  X-ray 

diffraction. The structure of the isolated molecule has been calculated using electronic structure methods at 

the HF/3-21G, HF/6-31G*, MP2/6-31G* and B3LYP/6-31G* levels. The potential energy surfaces for the 

rotation of the CF3   group in both the isolated molecule and cluster models for the crystal were computed 

using electronic structure methods. The barrier height for CF3  rotation in the isolated molecule was calculated 

to be 0.40 kcal mol-1   at B3LYP/6-311+G**//B3LYP/6-311+G**. The B3LYP/6-31G* calculated CF3 

rotational barrier in a 13-molecule cluster based on the X-ray data was found to be 2.6 kcal mol-1. The latter 

is in excellent agreement with experimental results from the NMR relaxation experiments reported in the 

companion paper (Beckmann, P. A.; Rosenberg, J.; Nordstrom, K.; Mallory, C. W.; Mallory, F. B. J. Phys. 

Chem. A 2006, 110, 3947). The computational results on the models for the solid state suggest that the 

intermolecular interaction between nearest neighbor pairs of CF3   groups in the crystal accounts for roughly 

75% of the barrier to rotation in the solid state. This pair is found to undergo cooperative reorientation. We 

attribute the CF3  reorientational disorder in the crystal as observed by X-ray diffraction to the presence of a 

pair of minima on the potential energy surface and the effects of librational motion. 
 

 
Introduction 

 

We report the structure of  3-(trifluoromethyl)phenanthrene 

as determined by X-ray  diffraction and ab initio electronic 

structure calculations. The potential energy surfaces (PES) for 

the rotation of the CF3  group in both the isolated molecule and 

models for the crystal are explored using electronic structure 

approaches. X-ray diffraction and solid-state NMR relaxometry 

studies of catacondensed aromatic hydrocarbon derivatives with 

internal  rotational  degrees  of  freedom  have  provided  new 

insights into the reorientation of methyl and tert-butyl groups.1 

The two methods give access to quite different time regimes. 

The diffraction of X-rays by an electron density  distribution 

occurs on the order of 10-19  s, which is much faster than the 

reorientation motions (on the order of 10-10  to 10-5  s) and so 

yields a time average of an ensemble of instantaneous structures. 

The  much  longer  time  scale  investigated  by  nuclear  spin 

relaxation  studies is well matched to these intramolecular 

reorientations. 

Ab initio electronic structure calculations are a useful adjunct 

to these two techniques, as they provide information about the 

classical potential energy surface for the reorientations. In ad- 

dition, structural information can be obtained beyond that gen- 

erally available from X-ray diffraction, including accurate hy- 

drogen positions and improved positions for disordered nuclei. 

We have  computed the classical potential energy surface for 
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the rotation of the CF3  group in both the isolated molecule and 

models of the crystal using ab initio electronic structure methods. 

To our knowledge, this represents the first example in which 

the effects of neighboring molecules in  a single crystal on a 

barrier to internal rotation are explicitly modeled using a com- 

bination of electronic structure theory and results from X-ray 

diffraction. The approach we have taken is similar to that used 

by  Zimmerman et al.2   to explore photoreactions in the solid 

state, in which a subset of the experimentally determined crystal 

lattice is considered explicitly using quantum mechanical meth- 

ods. The effective barrier for rotation of the CF3  group in both 

the isolated molecule and the cluster models of the solid state 

can be determined from the computed potential energy surfaces 

and compared with the “effective activation energy” obtained 

from solid-state NMR nuclear spin relaxation experiments. 

Solid state 19F and 1H spin-lattice relaxation rate measure- 

ments in polycrystalline  3-(trifluoromethyl)phenanthrene are 

reported in the companion paper.3  The nuclear spin relaxation 

is complicated by the simultaneous presence of like (F-F) and 

unlike  (F-H)  spin-spin  interactions. (No  H-H  spin-spin 

interactions are modulated by CF3   rotation.)  One interesting 

result from the solid-state relaxation rate study is a parameter 

that characterizes the contribution of H-F spin-spin interac- 

tions  to  the  1H  and  19F  spin-lattice  relaxation rates.3    

The structure of the  molecule and of the crystal can be 

used to compute  this  parameter. The  ability  of  electronic 

structure calculations to accurately place the hydrogen and 

fluorine atoms relative   to  the  carbon  framework  is  critical  

because  this parameter depends strongly on both the H-F and 

F-F distances. C-H distances obtained from X-ray 

diffraction are known to be too short by more than 0.1 Å. 

Also, we find we are able to 
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TABLE 1:  Comparison of Calculated ab Initio Structures of 
the Isolated Molecule with X-ray Diffraction Results for 
3-(Trifluoromethyl)phenanthrene 

 
parametera 

HF/ 
3-21G 

HF/ 
6-31G* 

MP2/ 
6-31G* 

B3LYP/ 
6-311+G** X-ray 

 

C1C2 1.360 1.361 1.379 1.375 1.364 
C2C3 1.398 1.406 1.409 1.409 1.398 
C3C4 1.361 1.365 1.383 1.380 1.375 
C4C13 1.407 1.412 1.413 1.412 1.403 
C13C12 1.458 1.460 1.452 1.456 1.454 
C13C14 1.402 1.402 1.426 1.423 1.418 
C12C5 1.408 1.411 1.414 1.413 1.403 
C12C11 1.403 1.404 1.426 1.424 1.418 
C5C6 1.366 1.367 1.385 1.381 1.376 
C6C7 1.400 1.403 1.407 1.406 1.395 
C7C8 1.364 1.365 1.382 1.378 1.359 
C8C11 1.406 1.409 1.414 1.413 1.409 
C11C9 1.438 1.440 1.432 1.433 1.427 
C9C10 1.338 1.340 1.364 1.358 1.344 
C10C14 1.438 1.439 1.431 1.433 1.432 
C14C1 1.409 1.411 1.415 1.415 1.402 
C3C15 1.483 1.501 1.495 1.503 1.490 
C15F1 1.351 1.323 1.353 1.351 1.316 (1.332)b 
C15F2 1.354 1.326 1.356 1.357 1.345 (1.315)b 
C15F3 1.354 1.326 1.356 1.357 1.357 (1.310)b 

(C3C15F1) 112.1 112.7 112.8 113.0 109.3 (113.5)b 
(C3C15F2) 112.0 111.5 111.3 111.8 116.0 (111.8)b 
(C3C15F3) 112.0 111.5 111.3 111.8 111.9 (113.9)b 

φ (C4C3C15F1) 0.0 0.0 0.0 0.0 89 (70)b 
φ (C4C3C15F2) -120.8 -120.6 -120.6 -120.6 -154 (-166)b 
φ (C4C3C15F3) 120.8 120.6 120.6 120.6 -33 (-48)b 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  (a) Structure of 3-(trifluoromethyl)phenanthrene and (b) unit 
cell from single crystal X-ray diffraction. Only the major positions of 
the  fluorines are  shown, as  discussed in  the  text.  There are  four 
chemically equivalent molecules per unit cell. 

 
use electronic structure calculations to resolve the ambiguities 

in the fluorine positions determined by X-ray diffraction. 

We consider here the relationship between the molecular and 

crystal  structure of  3-(trifluoromethyl)phenanthrene  and  the 

dynamics of the CF3  group motions in the solid. 
 

Methods 
 

Crystallographic Characterization of 3-(Trifluoromethyl)- 

phenanthrene. The X-ray  diffraction structure of 3-(trifluo- 

romethyl)phenanthrene  and its numbering scheme are shown 

in Figure 1; selected structural parameters are collected in Table 

1.  The  complete  structure  may  be  found  as  supplemental 

information for this paper. Suitable crystals were obtained by 

recrystallization from methanol.4 Data were obtained on a four- 

circle Bruker P4 diffractometer equipped with an APEX CCD 

detector and an LT2 cryostat from a crystal mounted on a fine 

glass  fiber.  The  space   group  (P21/c)  was  unambiguously 

assigned from systematic absences in the diffraction data. The 

structure was solved by direct methods. All non-hydrogen atoms 

were  refined  with  anisotropic  thermal  parameters  and  all 

a   See Figure 1 for numbering scheme. Values for parameters are in 
ångstroms and degrees. b   Parenthetic values indicate minor positions 
of fluorines, see text. 
 

hydrogen atoms were idealized. Two orientations were seen for 

the  fluorine  atoms  in  the  CF3     group  in  an  80/20   

ratio. Refinement was constrained to maintain unit 

occupancies for the fluorine atoms. All software was contained 

in the SMART, SAINT and SHELXTL libraries  maintained 

by Bruker AXS, Madison, WI. 

Electronic Structure Calculations. All electronic structure 

calculations were carried out using the Gaussian  03 suite of 

programs.5   Models of  3-(trifluoromethyl)phenanthrene in the 

crystal environment were constructed from the refined single- 

crystal X-ray structure using code developed in-house. Clusters 

included all the molecules with any atom falling into a sphere 

of radius 6.5 Å having its center located at the target sp3 carbon 

atom of the trifluoromethyl group (C15). The radius was chosen 

to include a sufficient number, twelve in this case, of neighbor- 

ing molecules to reasonably model the local environment for 

the CF3  group of interest on the center molecule. Zimmerman 

and Nesterov find that this first shell around the molecule of 

interest is the most critical to consider.6 

Structure optimizations of the isolated molecule were carried 

out using a variety of theoretical models including HF/3-21G,7 

HF/6-31G*8 and B3LYP/6-31G*.9 Calculations on clusters made 

use of the HF/3-21G and B3LYP/6-31G* models.  The small 

size of the HF/3-21G basis set and its reliability with respect to 

the calculation of these types of structures allowed rapid and 

thorough explorations of the potential energy surface for CF3 

rotation in the clusters. The relative computational efficiency 

of hybrid density functional  methods compared to Hartree- 

Fock approaches, as well as the ability to capture more electron 

correlation than Hartree-Fock (which lacks a good description 

of the correlation of electrons with antiparallel spins), makes 

B3LYP an attractive choice, in particular for the cluster models 

where  short  to  medium  range  intermolecular   interactions 

potentially play a significant role. B3LYP has been shown to 

well-reproduce solid-state experimental  structures of simple 
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Figure  2.   Calculated HF/6-311+G**//HF/6-31G*  potential  energy 
surface for CF3    rotation in isolated  3-
(trifluoromethyl)phenanthrene. The smooth curve represents the 
sinusoidal fit to the computed points. 

 

TABLE 2:  Computed CF3   Rotational Barriers for an 
Isolated 3-(Trifluoromethyl)phenanthrene 
Molecule 

method barrier (kcal/mol) 
 

HF/3-21G//HF/3-21G 0.69 Figure 3.  (a) 13-molecule cluster model and (b) relative orientation 
HF/6-311+G**//HF/6-31G* 0.66 of the pair of molecules having the closest CF3   contacts. The boxes 
B3LYP/6-31G*//B3LYP/6-31G* 0.40 are aids to visualization and do not demarcate the unit cell. 
B3LYP/6-311+G**//B3LYP/6-311+G** 0.40  
MP2/6-31G*//MP2/6-31G* 0.46 

 
catacondensed hydrocarbons, such as anthracene and phenan- 

threne.10 This model is capable of accurately locating hydrogen 

atoms, yielding results in good  agreement with those from 

neutron diffraction.11
 

Relaxed potential energy surfaces (PES) for rotation around 

the C3-CF3  axis in the isolated molecule were obtained at the 

HF/6-311+G**//HF/6-31G* level. Energy calculations on the 

isolated molecule in the ground and rotational transition states, 

used to compute barrier  heights, were done using the HF/ 

6-311+G**//HF/6-31G*,12   B3LYP/6-31G*//B3LYP/6-31G*, 

B3LYP/6-311+G**//B3LYP/6-311+G**  and  MP2/6-31G*// 

MP2/6-31G*13  theoretical models. Barriers were not corrected 

for zero point energy, as we and others14   find the corrections 

to be negligibly small.  Likewise, we find that corrections to 

the rotational barriers for basis set superposition errors (BSSE) 

are small, and generally insensitive to the orientation of the CF3 

group.  Counterpoise corrections15   to B3LYP calculations for 

pairs of 3-(trifluoromethyl)phenanthrene molecules suggest that 

barriers corrected for BSSE are about 10% higher than uncor- 

rected values. 

 
Results and Discussion 

 

Isolated Molecule Structure, Potential Energy Surface and 

Barrier. The structure of 3-(trifluoromethyl)phenanthrene was 

calculated at four levels: HF/3-21G, HF/6-31G*, MP2/6-31G* 

and  B3LYP/6-311+G**. Results are shown in Table 1. As 

expected,10,11  all four methods reproduce the X-ray diffraction 

structure well. For the carbon-carbon bond distances, the RMS 

deviations of the calculated structures  from X-ray diffraction 

results are 0.013, 0.004, 0.010, and 0.005 Å respectively. HF/ 

6-31G* bond lengths are generally shorter than those predicted 

by  B3LYP/6-311+G**.  Calculated  bond   distances  in  the 

isolated molecule at both of these levels are all slightly longer 

than those determined by X-ray diffraction. Meaningful com- 

parisons of C-F bond distances with the X-ray data are more 

difficult to make due to the observed disorder  in  the X-ray 

diffraction experiment, but the mean experimentally determined 

C-F  distance (1.329 Å)  is  comparable to  the  mean value 

predicted by HF/6-31G* (1.325 Å), and somewhat shorter than 

the B3LYP/6-311+G** mean value (1.355 Å). 

A plot of the HF/6-311+G**//HF/6-31G* calculated PES for 

rotation about the C-C bond in 3-(trifluoromethyl)phenanthrene 

is shown in Figure 2. The atom numbering scheme is shown in 

Figure 1. The ground state conformation is found when φ(C4- 

C3-C15-F3) is 0  ; the transition state for rotation about the 

C3-C15 bond is found at φ ) 60 . Results for both the ground 

states and transition structures were confirmed as minima and 

saddle points, respectively, on the PES by normal-mode analyses 

at the HF/6-31G* level. The rotational barriers for 3-(trifluo- 

romethyl)phenanthrene, defined as the energy difference  be- 

tween the structures having a dihedral angle φ(C4-C3-C15- 

F3)  of  0   and  of  60 ,  at  the  HF/6-311+G**//HF/6-31G*, 

B3LYP/6-31G*//B3LYP/6-31G*, B3LYP/6-311+G**//B3LYP/ 

6-311+G** and MP2/6-31G*//MP2/6-31G* levels are given in 

Table 2. Increasing the size of the basis set does not affect the 

B3LYP barriers, and they are comparable to those computed at 

the MP2/6-31G* level. MP2 calculations of  small barriers in 

aromatic systems, such as halogenated phenol derivatives and 

o-fluorotoluene, are likely reliable to within 0.1 kcal mol-1.16
 

The insensitivity of the B3LYP calculated barriers to the choice 

of basis set is not unprecedented.17,18
 

Solid  State  Structure,  Potential  Energy  Surface  and 

Barrier. To explore the rotation of the CF3   group  in 3-(tri- 

fluoromethyl)phenanthrene in the solid state, we constructed a 

cluster model based on the single crystal X-ray structure, which 

is shown in Figure 3. The X-ray diffraction results show there 

is only a single type of molecule in the unit cell, so the local 

environments of all the CF3  groups are the same. 
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Disorder in the X-ray data precluded the precise location of 

the CF3  groups experimentally. Such disorder is characteristic 

of these kinds of hindered rotors.19 The positions of the hydrogen 

atoms were determined by fixing the phenanthrene carbon atom 

skeleton at the  crystallographically determined position and 

optimizing at the HF/3-21G level. At the same time, we resolved 

the disorder with respect to the fluorine positions in our model 

by optimizing the positions of the CF3  groups. All the C15-F 

bond lengths were allowed to relax individually,  as were the 

CCF bond angles and related dihedrals. The placements of the 

CF3 group relative to the phenanthrene skeletons, i.e., the C15- 

C3 bond distances, were also  optimized to allow as much 

flexibility in the positions of the fluorines as possible without 

altering the experimentally determined structure of the phenan- 

threne skeleton. This  cluster model structure is the basis for 

computation of all  the barriers and rotational PES discussed 

below. 

Taking  the  orientation  of  the  CF3    group  on  the  

central molecule of the 13-molecule cluster described in the 

preceding paragraph to be representative of the CF3  groups in 

the crystal, we replace the CF3 groups in the 12 neighboring 

molecules with duplicates of the CF3 group on the central 

molecule. An estimate of the barrier to CF3 rotation in the 

crystal is obtained by rigidly rotating the CF3  group on the 

central molecule. The barrier to rotation for this model (A) is 

calculated to be 7.32 kcal mol-1 at HF/3-21G and 8.52 kcal 

mol-1  at the B3LYP/6-31G* level. These  estimates are so 

far in excess of the  experimentally determined effective 

barrier to rotation in the crystal3  of 2.7 ( 

0.2 kcal mol-1   that we can conclude that such  independent 

rotation does not take place. 

We subsequently allowed the cluster to adopt a more realistic 

structure where the CF3 groups exhibit a distribution of rotational 

conformations by permitting the CF3   groups in the cluster to 

relax independently of one another. Again, all the parameters 

related to the CF3  groups were allowed to vary, including the 

C3-C15 distances, all C-F distances, the C-C-F angles and 

the  C-C-C-F  dihedrals.  The  resulting  “relaxed”  cluster 

(model B) has  a distribution of C4-C3-C15-F3  dihedrals 

ranging from -20   to -40  . This is consistent with the disorder 

observed in the X-ray diffraction structure, where the two CF3 

positions are characterized by C4-C3-C15-F3 dihedral angles 

of -32   (80% position) and -48   (20% position). We realize 

that by so severely truncating the infinite crystal, the variations 

in the computed dihedral angles could result from edge effects. 

This procedure generates a set of reasonable and energetically 

accessible rotational states for the CF3   groups, which we can 

take as an extremely rough model of a distribution that might 

be observed in a selected section of the crystal. 

To generate a somewhat more realistic PES for the  CF3 

rotation, we fixed the parameters of the 12 molecules  in the 

first “shell” at those determined in model B. The C4-C3-C15- 

F3 dihedral of the central molecule was then varied from -60 

to +60  in 15   increments (without  permitting the structural 

parameters of the CF3  group to relax) to compute the potential 

energy curves shown in Figure 4 for the rigid internal rotation 

of the CF3  group on the central molecule of this cluster using 

the  HF/3-21G  and  B3LYP/6-31G* theoretical models. The 

critical  points of the PES are identical at both levels. The 

minimum was found to be at the -20   conformation, and the 

transition state corresponds to +30 . 

The computed classical barrier height for model B is  4.52 

kcal mol-1  at HF/3-21G and 5.74 kcal mol-1  at the  B3LYP/ 

6-31G* level. These estimated barriers are roughly an order of 

magnitude larger than those for the isolated molecule (0.69 kcal 

 

 

Figure  4.   B3LYP/6-31G* potential energy surfaces for  rigid CF3 

rotation  in  the  13-molecule cluster  model  for  3-(trifluoromethyl)- 
phenanthrene. The aromatic skeleton structure was fixed at the positions 
determined in the X-ray  crystal structure and the coordinates of 

all CF3   groups were optimized at the HF/3-21G level. The smooth 

curves represent sinusoidal fits to the computed points. 

 
mol-1 at HF/3-21G//HF/3-21G and 0.40 kcal mol-1 at B3LYP/ 

6-31G*//B3LYP/6-31G*). Qualitatively, the differences between 

model B for the CF3  rotation in the solid state and the rotation 

in the isolated molecule are consistent with those determined 

experimentally for similar systems; for example, the barrier to 

methyl rotation in 3-fluorotoluene increases by a factor of 10, 

from 0.05 kcal mol-1  for the  isolated molecule to 0.5 kcal 

mol-1in the solid state.20  Both the HF/3-21G and the B3LYP/ 

6-31G* computed barriers for this model are much higher than 

the results from NMR relaxometry (2.7 ( 0.2 kcal  mol-1),3 

again suggesting that independent rotation of the CF3 groups is 

a poor model for the motion in these systems even when there 

is a distribution of orientations in the ground state. 

The similarities between the HF/3-21G and B3LYP/6-31G* 

computed PES for model B suggest that we can use HF/3-21G 

to  construct  a  partially  relaxed  model  (model  C)  for  the 

transition state for rotation of the central CF3 group. The ground 

state for model C was taken to be that obtained for model B. 

The C4-C3-C15-F3 dihedral angle of the central CF3  group 

was fixed at that of the transition state found in model B (+30  ). 

Parameters associated with the CF3 groups of the 12 molecules 

surrounding the CF3   group of interest were allowed to  

relax. The C3-C15  distance, the C-F  bond lengths, and  

C-C-F angles of the central CF3   were allowed to relax as 

well. The barrier computed for model C is 1.95 kcal  mol-1  

at the HF/ 

3-21G  level  and  2.62  kcal  mol-1   at  B3LYP/6-31G*.  The 

B3LYP/6-31G* value for this partially relaxed barrier is in good 

agreement with the activation energy of 2.7 ( 0.2 kcal mol-1 

measured by nuclear spin relaxation measurements.3 

In the model C transition state, we note the orientation  of 

the  CF3     group  nearest  to  the  central  CF3     group  

changes significantly relative to the ground state for the  

model. The distance between the sp3   carbon atoms of the  

two groups is 

4.154 Å. In the ground state, one C-F  bond in this  nearest 

neighbor CF3  group has a dihedral angle of -28   with respect 

to its C3-C4 bond. When the central CF3  group is rotated by 

50  to model the transition state, the nearest neighbor CF3 group 

responds by increasing its C4-C3-C15-F3 dihedral by 17 , 

to -45 . The next nearest neighbor in the cluster is 5.405 Å 



away (defined by the distance between the sp3  carbon atoms). 



3958   J. Phys. Chem. A, Vol. 110, No. 11, 2006 Wang et al. 
 

 

Figure 5.  Two-dimensional B3LYP/6-31G* potential energy surface 
for  rigid  CF3      rotation  in  the  closest  pair  of  3-
(trifluoromethyl)- phenanthrene, shown in Figure 3b. 

 
No significant change is observed in the structure of this next 

nearest CF3 group in the transition state, nor are there significant 

changes in any of the other 10 neighbors in the cluster. This 

suggests that CF3 rotation involves a “gearing” motion of these 

two closely packed CF3  groups. To further test this conclusion, 

the nearest CF3  group was removed from the cluster in model 

A and replaced by a hydrogen substituent at the 3-position of 

the phenanthrene ring. In the absence of the nearest CF3 group, 

the rigid rotation barrier for the central CF3  group falls to 2.50 

kcal/mol at the  B3LYP/6-31G* level, which is a decrease of 

6.02 kcal/mol from the barrier in the reference cluster, model 

A. 

Resolving the Ambiguity in the X-ray Diffraction Struc- 

ture. The ability to analyze the NMR spin  relaxation data 

presented in the companion paper3   depends  on an accurate 

determination of the locations of  the hydrogen and fluorine 

atoms in the crystal structure. The positions of the hydrogens 

can be easily and directly determined using electronic structure 

techniques. We can also use these methods to unravel the source 

of the disorder in the fluorine positions determined by X-ray 

diffractometry. 

As we show above, the intermolecular interaction between 

the central CF3  group and its closest neighboring CF3  group 

in the cluster is the dominant factor that determines the 

equilibrium orientation of the central CF3  group and its 

rotational barrier. A two-molecule cluster,  which comprises 

the closest pair of molecules  in  the  crystal, was then built 

to  model such an interaction and is shown in Figure 3b. 

The PES with respect to the rigid rotations of the two CF3 

groups was calculated at the B3LYP/6-31G* level by varying 

the two CF3    dihedrals independently from 0   to  60   in 10 

intervals, and is shown in Figure 5. The two molecules of this 

pair  are connected by an inversion  center. Thus, the same 

conformations of the CF3   groups  in the two molecules 

have the same dihedral angle τ(CF3) but with opposite signs. 

To be consistent with the labeling in the 13-molecule cluster, 

the CF3 group with the negative  dihedral in the 2-molecule 

cluster is designated  as  the  center  CF3    group  and  the  

other  one  is designated as the closest neighbor, although in 

this pair model they are completely equivalent. 

The PES in Figure 5 is symmetric about the diagonal line, 

τ(CF3, neighbor) ) -τ(CF3, center), as expected because the 

two molecules are equivalent. There are two equivalent global 

energy minima in Figure 5. One is the  conformation with τ- 

(CF3, center) ) -20   and τ(CF3, neighbor) ) 30  and the other 

is the conformation with  τ(CF3,  center) ) -30   and τ(CF3, 

neighbor) ) 20 . This result is in agreement with the optimiza- 

tion results in the 13-molecule cluster, in which the central CF3 

group is found at τ(CF3) ) -20   and the closest neighbor at 

τ(CF3) ) 28  . Interchange of the orientations of the closest pair 

in the 13-molecule cluster, produces the second minimum point. 

The  conformations with  both  the  CF3    groups  at  the  

same orientation, either -20  /20  or -30  /30 , in the two-

molecule cluster are higher in energy by about 0.13 and 0.12 

kcal mol-1, respectively, than the energy of the two global 

minima. There is a saddle point along the diagonal direction 

close to the -30  / 

30   conformation. These results suggest that the strong inter- 

molecular interaction between the closest pair leads  the two 

neighbors to have a slight preference for orientations that are 

10  apart. This energetic preference is likely one reason for the 

disorder of the CF3   groups in the crystal noted in the  X-

ray data. The conformation with both CF3   groups at 0 , 

which is the ground state conformation for the isolated 

molecule, is the global energy maximum point with a relative 

energy about 10.1 kcal mol-1  higher than either of the two 

global minima. 

The two-dimensional PES in Figure 5 not only provides  a 

thermodynamic motive for the appearance of two CF3  orienta- 

tions in the thermal equilibrium structure of the crystal but also 

suggests that the rotations of the CF3 groups on the closest pair 

are coupled. In the partially relaxed rotation of the central CF3 

group, the closest neighbor CF3 group was found to reorient by 

15   at the rotational transition state of the central CF3  group. 

From Figure 5, it is clear that the minimum energy path involves 

the two global energy minima, which can  interconvert easily 

through a saddle point of about 0.12  kcal mol-1  height. The 

coupling  between  the  two  groups  alleviates  the  otherwise 

significant repulsion between the two. 

The presence of a second minimum is likely not the  only 

factor  underlying  the  disorder  of  the  fluorine  atoms.  The 

harmonic libration of hindered rotors has long been known to 

lead  to  disorder  in  X-ray  diffraction  structure  solutions.19
 

Observation  of  disorder  in  a  structure  with  groups  having 

internal degrees of rotational freedom can be suggestive of a 

high barrier toward rotation of the group. This type of disorder 

is typically manifested as two positions for the “rotating” atoms, 

spanning roughly the limits of the libration. In fact, estimates 

for the barrier can be extracted from X-ray data.21 Cruickshank 

and Bü rgi note that in many cases, the apparent bond lengths 

will be shortened.22  Such disorder is evident in the CF3  groups 

in our structure and suggests that both the presence of additional 

minima and the relatively high barrier play a role in the apparent 

disorder observed for the positions of the fluorine atoms. 

As Figures 2 and 4 show, the classical PES for the rotation 

of a CF3  group attached to a phenanthrene framework is well 

represented  by  a  sinusoidal potential.  The energies for  the 

motion can be found by constructing the matrix representation 

of Ĥ  in the free rotor basis.23  The lowest energy solutions are 

well approximated as  harmonic  librations about the classical 

minimum energy conformation, with a characteristic librational 

frequency in  this case of approximately 40 cm-1  (0.1 kcal 

mol-1). Assuming a Boltzmann distribution among these states 

at 213 K (the temperature at which the X-ray diffraction study 

was carried out), we constructed a probability function for the 

expected distribution of rotational angles. Statistically, 22.5% 

of the rotors are expected to be in the ground state, and 17.3% 

in the first excited state. The first 10 states account for more 
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than 90% of the rotors at this temperature. The quantization of 

the librational motion gives rise to an inherent uncertainty in 

the dihedral angles. The classical turning points for the ground 

state are at approximately (3   and increase to (6   by the third 

excited state, which is significantly populated in the temperature 

range within which we are working. Ninety percent of rotors 

have dihedrals within 11  of the minimum. 

The difference between the dihedrals of the two  locations 

established  for  the  CF3    groups  in  the  experimental  X-

ray diffraction structure is 15 , consistent with the expected 

thermal distribution described above. The mean C-F bond 

lengths in the X-ray structure are 0.026  Å shorter than in 

the B3LYP/ 

6-311+G**  theoretical structure, further suggesting that  one 

source of the apparent disorder is the high barrier to rotation of 

the CF3   group, and that this will augment the disorder due to 

the presence of the two minima on the rotational PES. 

Computation of the Nuclear Spin Relaxation Parameters. 

The information obtained by combining the X-ray diffraction 

data and the ab initio electronic configuration calculations in 

3-(trifluoromethyl)phenanthrene, as  presented  here,  is  very 

helpful for severely limiting the number of adjustable parameters 

used in fitting the 19F and 1H nuclear spin relaxation data.3 The 

temperature dependence of the relaxation at two NMR frequen- 

cies shows considerable structure, the relaxation rate is inher- 

ently biexponential, and the combination of the fact that there 

is a single motion and that F‚‚‚F and F‚‚‚H vectors are specified 

by the results  of this work results in a very stringent test of 

dynamical models for the relaxation. 

An “effective activation energy” of 2.7 ( 0.2 kcal mol-1  is 

extracted from the relaxation data independently of any other 

fitted parameters, or indeed, independently of the  dynamical 

model.  The value of 2.6 kcal mol-1  for  the  barrier height 

presented here provides excellent agreement. 

CF3 rotation modulates intramolecular and intermolecular F‚ 

‚‚F  and  F‚‚‚H  spin-spin  dipolar  interactions and  it  is  the 

modulation of these interactions that allows an excited nuclear 

spin  system to relax. (No H-H  spin-spin  interactions are 

modulated on the NMR time scale by  CF3   rotation in 3-(tri- 

fluoromethyl)phenanthrene.) The  relaxation is dominated by 

intramolecular F‚‚‚F interactions that, in this case, are the same 

as intra-CF3 interactions. As reviewed in detail in the companion 

NMR  relaxation  paper,3    this  dominant  contribution  to  the 

observed relaxation rate can be calculated with relatively high 

precision  using  the  information presented here  and  is  not, 

therefore, an adjustable parameter in fitting the relaxation data. 

A  detailed fit  of the NMR relaxation data provides  two 

additional parameters. One measures the role of intermolecular 

F‚‚‚F spin-spin interactions that, in this case, are the same as 

inter-CF3   dipolar interactions. The  relaxation is only weakly 

dependent on these interactions and the fit of the relaxation data 

suggests that they provide between 5 and 20% of the relaxation 

provided by the  intramolecular F‚‚‚F spin-spin interactions. 

Using the  fluorine positions given here, a figure of 11% is 

computed,3   in good agreement with the experimental value. 

Finally, the fit is very sensitive to the modulation of unlike- 

spin  F‚‚‚H  spin-spin  interactions  by  CF3   rotation,  and  a 

parameter that specifies the contribution of these interactions 

can be determined to within 20% by fitting the relaxation data. 

This parameter can also be calculated from the positional data 

provided here, although  comparing a theoretical and experi- 

mental parameter that is a measure of these interactions is more 

difficult.3    Overall,   this  work  and  the  experimental  NMR 

relaxation work3   taken together provide a very strong test  of 

the model for nuclear spin relaxation. 

 

Conclusions 
 

Ab initio electronic structure calculations on isolated  mol- 

ecules and small cluster models for the crystalline solid state 

have the potential to provide accurate barriers to intramolecular 

rotation of substituents in catacondensed hydrocarbons. These 

calculations also provide an insight into the source of the barrier 

to  reorientation  of  the  CF3    groups  in  3-(trifluoromethyl)- 

phenanthrene. Our calculations suggest that the coupled reori- 

entation of pairs of CF3  groups in the crystal is important. We 

attribute the disorder of the CF3 groups found by X-ray analysis 

of crystalline 3-(trifluoromethyl)phenanthrene to the presence 

of two closely spaced minima on the potential energy surface 

and to the effects of the librational motion resulting from the 

high barrier for CF3    reorientation. The  ability of 

electronic structure methods to locate protons accurately and 

to resolve the ambiguity in the fluorine  positions of CF3   

groups allows computation of key parameters for analyzing 

solid-state NMR relaxometry data. 
 

Supporting Information Available:  Information regarding 

the  X-ray  structure,  as  well  as  Cartesian   coordinates  for 

optimized  geometries of  isolated  3-(trifluoromethyl)phenan- 

threne and for the cluster models are available without charge 

at http://pubs.acs.org. 
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