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1. SUMMARY
Most courses of study in computer science begin with stu-
dents learning to think algorithmically, and to express the
solutions to problems using a programming language. The
choice of which programming language is usually considered
secondary to the choice of concepts, but the reality is that
the vehicle we choose for teaching concepts shapes the way
that students understand those concepts, and enables or in-
hibits the learning of certain concepts.

Most departments use one of a small number of main-
stream languages that are well-established in industry and
are backed by teaching and learning resources. A minority
of departments choose to work with non-mainstream lan-
guages, finding that the advantages of those languages out-
weigh the disadvantages. What issues should we consider
when choosing a programming language for our introduc-
tory courses?

A. Use in the “real world”. A department may be
pressured to use a language that is prevalent in local indus-
try, local feeder schools, or standardized tests. For example,
local companies might like students to be prepared for in-
ternships by being taught in whatever language they use
for production. Unfortunately, “real world” languages of-
ten come with complex features, that, while useful on large
industrial projects, make them unsuitable for students, par-
ticularly beginning students, and have a tendency to become
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less pure, more complex, and harder to teach over time.
B. Available resources. More teaching resources can

mean less work for the instructor and can make life easier
for students looking to answer questions. Unfortunately, it
also means that cheating is easier and that students get lazy.
After all, why figure out your own approach when you can
find the answer on StackOverflow?

C. Pedagogical benefits. Does the language have a
clear syntax that teaches the students the vocabulary of
the programming paradigm? Does it have a straightforward
semantics for expressing algorithms? Does it add to the
essential difficulties of learning how to express algorithms
its own set of “accidental difficulties” that distract students
from learning the essentials?

The idioms natural to a particular language can encourage
beginning students to develop specific programming habits.
Does the language and its libraries encourage habits, such as
clear interfaces, single-responsibility methods or functions,
model-view separation, and test-driven development, that
will serve students well regardless of language? Or does the
language encourage techniques that don’t transfer well to
other languages?

D. Integration with the curriculum. Students need
a path from the introductory language to languages used
in later courses; this argues for using the same or similar
languages. However, students should also be exposed to
a variety of styles of language during their degree program;
this argues for using radically different languages at different
stages in the program.

2. OCAML (PETER-MICHAEL OSERA)
OCaml is a strongly-typed functional programming language
derived from ML. At the University of Pennsylvania, we
start our CS2 course in OCaml and then transition into
Java in the second half. This approach seems to violate
several of the desiderata presented in Section 1: OCaml is
neither a common language found in industry nor elsewhere
in our curriculum and there are comparatively few resources
for teaching OCaml at this level. However, OCaml strongly
supports the type-directed, test-driven design process and
usage of immutable data structures that we emphasize in
the course.

While OCaml possesses object-oriented features, we elect
to use a small functional subset of the language which al-



lows the students to immediately jump into the course and
solve problems without being bogged down in syntax. Fur-
thermore, the fact that OCaml is not widely used becomes
a boon because it “levels the playing field” between our stu-
dents who have a wide range of programming experience,
particularly with Java. Finally, utilizing a functional pro-
gramming language early in the curriculum allows us to
draw meaningful comparisons between the object-oriented
paradigm and other, lesser known paradigms.

3. GRACE (KIM BRUCE)
Grace [2] is by design an object-oriented language for novices,
in the same way that Pascal was by design a procedural
language for novices. It is simpler syntactically and seman-
tically than Java, yet includes more powerful and expres-
sive modern features. It provides better support for object-
oriented features than Python. It omits many of the features
that make industrial languages so hard for novices.

Grace supports two different graphics libraries and a li-
brary for supporting animations. There is also a well-
designed data structures library. A draft textbook, Pro-
gramming with Grace, based on the objectdraw library and
event-driven programming, is freely available. Grace pro-
grams can be written and run in a web browser, so Grace
can be run on all platforms just by visiting a URL.

Dialects (like those of Racket) can be used to add new con-
structs to the language or to restrict the language to allow
students and instructors to focus on key concepts. Grace
has a simple syntax that avoids most of the “noise” that
pollutes code in other languages; for example, there is no
public static void main, and the visibility defaults are
exactly what novices require. Programs can be anywhere
in the spectrum from completely dynamically typed to fully
statically typed.

Grace was designed to make it easy for students to move
on to languages like Java, Scala, and Python. In our expe-
rience, the only difficulty in shifting from Grace to Java is
getting used to the weird special cases in Java that get in
the way of the programmer. Picking up Python should be
even easier. Many of Grace’s features are similar to Scala,
so we see a smooth path from Grace to Scala.

4. JIGSAW, SCHEME, AND PROCESSING
(DOUGLAS BLANK)

Jigsaw is a drag-and-drop, block-oriented language designed
to help transfer knowledge between languages from Scratch
to Python. Jigsaw is one of the languages used in the Calico
system [3], all of which can share libraries. For example,
the same graphics or robot library can be used in Jigsaw
and Python. This allows students to use the same library
API in the two languages. Holding the library constant and
switching languages is thought to enable better migration
between programming paradigms [3]. Scheme is a commonly
mentioned uncommon language for computing, and there
are some very good Schemes designed for use in education
(e.g., Racket [4]). Calysto Scheme is a version of Scheme
implemented in Python that uses all of Python’s libraries
[1]. Thus, Calysto Scheme has many of the advantageous
that make Python popular, including being cross-platform,
and providing an extensive library of functions. Processing
is a language and environment that attempts to make Java
as easy to use as Python, and is designed to allow the cre-

ation of beautiful and compelling art [6]. Processing allows
some Java shorthand, so that the full Java language can be
avoided, and many libraries are included by default.

Although all three of these uncommon languages are ar-
guably better than Python, I argue that none will become
common. In fact, I believe that the set “common languages
for CS1” will remain small. This has little to do with the
details of any particular language. Rather, “common lan-
guages” will comprise those that have the best support com-
munities for teachers.

5. SCALA (MARK LEWIS)
Scala is a functional/OO hybrid language that runs on the
JVM and is #14 on the RedMonk language ranking[5].

A. Scala is a rising language in industry, but does not have
nearly the market penetration of Java, C++, or Python.
Being based on the JVM does make the inevitable task of
learning Java later easier.

B. Scala falls in a middle ground for resources. The ed-
ucational resources are still thin, but there are well over a
million questions that have been answered about the lan-
guage on StackOverflow. Fortunately, it is easy to create
problems for which no online solutions currently exist.

C. Scala is a statically-typed language with a uniform syn-
tax, a REPL, and a scripting environment that encourages
students to develop a Java-like coding style while also allow-
ing coverage of functional concepts. Being a “real” language
evolving to support professional developers does mean that
it has complexities not found in teaching languages.

D. Unlike many languages, Scala is very good at both
programming-in-the-small and programming-in-the-large.
The main professional uses cases are Web Development, Big
Data Processing, and any application that needs to scale
up, so it can work well with later curricular elements. We
adopted it at Trinity because it was good at covering all the
concepts we wanted for CS1 and CS2.
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