
Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College
Computer Science Faculty Research and
Scholarship Computer Science

2009

A music context for teaching introductory
computing
Ananya Misra

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Deepak Kumar
Bryn Mawr College, dkumar@brynmawr.edu

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/compsci_pubs

Part of the Computer Sciences Commons

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/compsci_pubs/52

For more information, please contact repository@brynmawr.edu.

Custom Citation
Ananya Misra, Douglas Blank, and Deepak Kumar. A Music Context for Teaching Introductory Computing. ACM SIGCSE Bulletin -
ITiCSE '09 41.3 (September 2009): 248-252.

http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs/52
mailto:repository@brynmawr.edu

A Music Context for Teaching Introductory Computing

Ananya Misra
Princeton University

35 Olden St.
Princeton, NJ, USA

amisra@cs.princeton.edu

Douglas Blank
Bryn Mawr College
101 N. Merion Ave.

Bryn Mawr, PA, USA
dblank@cs.brynmawr.edu

Deepak Kumar
Bryn Mawr College
101 N. Merion Ave.

Bryn Mawr, PA, USA
dkumar@cs.brynmawr.edu

ABSTRACT
We describe myro.chuck, a Python module for controlling
music synthesis, and its applications to teaching introduc-
tory computer science. The module was built within the
Myro framework using the ChucK programming language,
and was used in an introductory computer science course
combining robots, graphics and music. The results sup-
ported the value of music in engaging students and broad-
ening their view of computer science.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Design, Experimentation

Keywords
CS1, computer science, education, pedagogy, music, Python

1. INTRODUCTION
Computers and music have a long association. Years ago,

Ada Lovelace had hypothesized that the Analytical Engine
“might compose elaborate and scientific pieces of music of
any degree of complexity or extent” [6]. Although modern
computers have realized this hypothesis in many ways, this
aspect of computing is often invisible to introductory stu-
dents. However, given accessible tools, music can serve as
a powerful means to engage students in introductory com-
puter science courses (CS1), highlighting the creative as well
as analytical sides of computing. Our goal was to introduce
music as an application of computers and employ it to teach
computer science concepts to new students.

Many traditional CS1 courses are taught with the pro-
gramming language as the focus. We believe that students
learn better when the focus is a particular context, and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’09, July 6–9, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-381-5/09/07 ...$5.00.

programming language supports those goals. Contexts al-
ready successfully explored at Bryn Mawr College include
robotics as part of the Institute for Personal Robots in Ed-
ucation (IPRE) initiative, and games [12, 1, 17]. In these
classes, creative tasks such as making the robot dance pro-
vided the motivation to learn. Students used the Python-
based Myro library (see Section 2.1) to control robots, cre-
ate graphics, and design games. We wanted to retain the
advantages of these tools and also present music as yet an-
other context, taking a “the more, the merrier” perspective.
Existing support for music in Myro included commands to
make the robot or computer beep with specified frequencies
and durations, and to write songs composed of successive
beeps. However, programming music has wider scope, even
at an introductory level. Thus, we sought richer music pro-
gramming tools that would suit first-time programmers and
complement and enhance the Myro framework.

Existing work on teaching CS1 via sound or music includes
the use of high-level Java MIDI implementations [11, 5], as
well as sample-level sound synthesis in the Squeak environ-
ment [8]. The Princeton Laptop Orchestra (PLOrk) teaches
students to program music for live performance, exposing
some computer science concepts while focusing on the end
product [15]. Musical composition has also contributed to
teaching more advanced topics, such as design patterns [9].
Most of the existing pedagogical tools, however, use lan-
guages other than Python; we hesitated to confuse novices
by teaching in multiple languages. While introductory ma-
terial based on media computing offer Python APIs to ma-
nipulate sound [7], we also hoped to focus on the experience
of “creating music” rather than “processing sound”.

Current Python systems for synthesizing music include
an interface to the music programming language CSound
[2] and SWIG bindings to the music analysis and synthe-
sis framework MARSYAS [13]. Python scripting to control
sound synthesis is also available in the PySndObj module
[10]. These are excellent tools for computer musicians, but
have not been designed for pedagogical purposes. CSound,
for instance, includes a potentially confusing distinction be-
tween the score file and the orchestra file of a piece. PyS-
ndObj and MARSYAS offer low-level control over sound
synthesis, but do not offer a wide range of readymade instru-
ments to play, as present in music programming languages
or in the Synthesis ToolKit (STK)[4].

Hence, we developed a Myro module for synthesizing mu-
sic, offering a simple Python interface coherent with the rest
of Myro, and outsourcing the synthesis to the real-time au-
dio programming language ChucK [14]. The module was

248

deployed in a CS1 course at Bryn Mawr College. The rest
of this paper describes the system, presents some code ex-
amples and student feedback, and discusses the results.

2. THE MYRO/CHUCK SYSTEM
The components and architecture of the Myro/ChucK sys-

tem are described below, followed by a brief discussion of the
support it provides for teaching computer science concepts.

2.1 Myro
Myro is the name of the Python module developed by the

Institute for Personal Robots in Education (IPRE). Myro
was designed to allow introductory students to quickly and
easily begin to explore interesting computational problems
through simple, low-cost robots. Using imperative com-
mands, students can explore programs that move a robot,
read sensors, take pictures, and perform basic image pro-
cessing on the resulting images. Myro supports a variety
of interfaces for exploring graphics, games, artificial intelli-
gence, and now music.

2.2 ChucK
ChucK is a specialized audio programming language that

allows precise control over audio synthesis, performance and
analysis, at any time granularity [14]. For our purposes, one
of its key strengths is that the audio synthesis takes place
in real-time. Since sound is produced while the ChucK code
runs, it is also possible to modify the sound on-the-fly based
on input from external devices or programs, using message
passing protocols. ChucK includes a set of built-in unit gen-
erator objects that output different types of sounds. In par-
ticular, it incorporates many of the instruments from STK
[4], providing easy access to their parameters and output.
ChucK has been used extensively in PLOrk [15].

2.3 Putting them together
Combining Myro and ChucK in a student-friendly way

involves several levels of translation (see Figure 1). A stu-
dent’s Python code invokes functions and objects from a
special myro.chuck Python module. This module uses the
Open Sound Control (OSC) protocol [16], via the simpleOSC
API, to communicate with ChucK. Each function in the
myro.chuck module sends out an OSC message with a spe-
cific label and value, containing all the information needed
to update the sound synthesis appropriately.

When myro.chuck is initialized, it starts running a sepa-
rate ChucK server that listens for the OSC messages. The
ChucK code includes a static instance of each instrument
offered in myro.chuck. On receiving an OSC message, the
ChucK server modifies the corresponding instrument param-
eters accordingly. The sound produced by ChucK goes di-
rectly to the computer’s speakers or headphones. Brief up-
dates are printed to a terminal or command window every
time an OSC message is received, for debugging or logging.

2.4 Teaching computer science concepts
The interface for students hides the technical details de-

scribed above. From the student’s perspective, sound is
made by creating an instrument, connecting it to the speaker,
and performing actions on it in some order. Many instru-
ment types exist: saxophone, sitar, mandolin, voice, shakers,
and more. All share common functionalities, but some can

Front-end
Python
code

Speakers
Terminal /
command
window

ChucK
server

myro.chuck
Python
module

OSC messages

Synthesized
sound

Log
statements

Figure 1: A diagram of the Myro/ChucK system.

be further manipulated in specific ways. Thus, program-
ming music supports the teaching of imperative program-
ming, introduces the notion of objects and polymorphism,
and familiarizes students with Python object syntax. More
abstractly, it continues the mapping between code and real-
life actions present in the rest of Myro.

Parallelism is another concept well-suited to study through
music. Programmatically, parallelism could be implemented
via threads. However, rather than grappling with the tech-
nical details of creating and managing threads for CS1 stu-
dents, we introduced a new programming construct: doTo-

gether(f1, f2, ...), where f1, f2 are names of Python
functions each individually controlling a single instrument.
doTogether, provided in the Myro library, takes care of man-
aging and executing all functions in parallel threads. This
way, we have managed to introduce the idea of parallelism
to CS1 students as well as the notion of using functions as
first class arguments. The name “doTogether” comes from
a function of the same name, but different usage, in Alice
[3]. We found that students also extended their use of this
construct to control graphics and robot dances in parallel
with music synthesis. Myro includes several other similar
programming constructs that were designed to facilitate be-
ginners to conceptualize computational ideas in the applica-
tion context without succumbing to the often “dirty” details
of their underlying implementation.

One of the greatest strengths of programming music in
an introductory computer science class is that it provides
a broader perspective, early on, of what we can do with
computers. The more possibilities offered, the better chance
students have to “bond” with computing. Learning about
music, robots, and graphics in the same class shows students
the widespread applications of computers.

3. EXAMPLES
We shall now describe and give examples of Python code

for writing music in Myro/ChucK.

3.1 The basics
To begin, the myro.chuck module is imported and initial-

ized as follows:

from myro.chuck import *

initChuck()

This sets up the communication and synthesis framework

249

and makes the myro.chuck instruments available for use. An
instrument can then be created and used like this:

s = SineWave() # create a SineWave generator

s.connect() # connect it to sound output device

wait(2) # wait 2 seconds

s.disconnect() # disconnect it from sound output

A SineWave is a simple instrument that generates a con-
tinuous tone. The above code results in a pure tone at 220
Hz., played for 2 seconds. Most other myro.chuck instru-
ments, like physical instruments, require a little more work
to produce sound. The following example sets up a saxo-
phone and plays two notes on it, separated by half a second
of silence:

x = Saxophone() # create a virtual Saxophone

x.connect() # connect it to sound output

x.noteOn(1) # start playing a note on it

wait(.5) # wait .5 seconds

x.noteOff(1) # stop playing the note

wait(.5) # wait .5 seconds in silence

x.noteOn(.5) # start playing a softer note

wait(1) # keep playing for 1 second

x.noteOff(.5) # stop playing the note

x.disconnect() # disconnect from sound output

Some instruments, such as plucked string instruments, do
not require a noteOff call as their sound automatically de-
cays as in their physical counterparts. Still, the following
operations are available for all instruments:

connect(): connect to sound output device
disconnect(): disconnect from sound output
noteOn(velocity): start playing a note
noteOff(velocity): stop playing a note
setGain(gain): set instrument gain/amplitude/loudness1

setFrequency(freq): set instrument frequency/pitch2

In addition, several instruments have more specialized op-
erations, such as control over vibrato, the size or stiffness
of the instruments, or other ways to change the timbre of
the sound played. These controls passed from STK [4] to
ChucK [14] to myro.chuck. Some of the specialized opera-
tions are redundant; wind instruments, for instance, have a
startBlowing function, indistinguishable from the general
noteOn function. This was a conscious choice, since having
many ways to achieve the same goal is a common computer
science scenario.

A complete list of myro.chuck instruments and functions
is available at http://wiki.roboteducation.org/ChucK.

3.2 More sophisticated examples
These building blocks suffice for programming interesting

melodies and rhythms. A melody for one instrument can be
created via a series of setFrequency, setGain, noteOn, wait
and noteOff operations. The repetition of this sequence of
operations for each note motivates a discussion on organiz-
ing code into re-usable blocks. A helper function for playing
a note on an instrument might look like this:

1Loudness is not equivalent to gain, but closely related.
2Pitch is not equivalent to frequency, but closely related.

play a note on the given instrument, according to

the parameters specified

def playNote(instrument, freq, gain, duration):

instrument.setFrequency(freq)

instrument.setGain(gain)

instrument.noteOn(1)

wait(duration)

instrument.noteOff(1)

A larger program to play a melody on an instrument can
then invoke the helper function repeatedly:

play a short melody

1. set up the instrument

x = Saxophone()

x.connect()

2. play the tune

playNote(x, 262, 0.8, 0.5) # C

playNote(x, 330, 0.9, 0.5) # E

playNote(x, 392, 1.0, 1.0) # G

3. shut down the instrument

x.disconnect()

In practice, students have further clarified their code by
storing standard note frequencies as variables (e.g. C = 262)
or defining an array of frequencies to be played in order.
Some have devised more creative solutions such as defining
two arrays, one with frequencies to be played sequentially
and another with corresponding note durations. One stu-
dent discovered dictionaries in the Python documentation
and used one to associate note names with frequencies.

A further level of sophistication consists of playing mul-
tiple scores simultaneously. Below, we illustrate how two
instruments, a shaker and a struck bar, can be controlled
to play different scores together in parallel using the doTo-

gether construct described in Section 2.4:

helper function

def playOnce(instrument, time, strength):

instrument.noteOn(strength)

wait(time)

score 1

def playShakers():

s = Shakers()

s.connect()

beat = 0.4

for i in range(5):

playOnce(s, beat, 1)

score 2

def playBar():

b = StruckBar()

b.connect()

beat = 0.4

for i in range(5):

playOnce(b, beat/2, .8)

playOnce(b, beat/2, 1)

play both scores together

doTogether(playShakers, playBar)

Playing the functions in parallel via doTogether is similar

250

to a band’s performing a piece together, with each musician
playing her own part. While this is a simple example to
demonstrate the concept, students have used similar con-
structs to create more complex and melodious pieces.

4. EVALUATION

4.1 Usage
The myro.chuck framework was used in a 23-student in-

troductory class with a combination of would-be majors,
non-majors, and undecided majors. The first half of the
course focused on robots; music was introduced in the second
half, and graphics towards the end. Students programmed
two assignments using myro.chuck, although many also chose
to integrate it into their final projects.

The first music assignment asked students to turn their
robot into a real-time sound controller by mapping its sen-
sor data to musical instrument parameters. They chose the
specific sensors, instruments, and mappings to use. This
served as a transition from robots to music, and also offered
an alternate perspective on both. The second assignment
supported more standard musical orchestration, asking stu-
dents to use doTogether to create music with two or more
instruments. The focus lay on ensuring that they under-
stood the programming constructs, but it also led to complex
pieces and further exploration of Python by several students
(http://cs.brynmawr.edu/music/).

A number of students also chose to use myro.chuck for
their final project (which was to do something interesting
with robots, graphics, and/or music). Memorable projects
involving myro.chuck include:

• A gamepad-controlled jukebox playing a selection of
programmed songs,

• A synchronized song-and-dance sequence in which a
robot danced in time to synthesized music,

• Several projects combining graphics/animation and mu-
sic synthesis.

4.2 Student feedback
At the end of the course, student feedback was gathered

from written answers to a question on what they learned
about computing and what role robots, music and graphics
played in the process. The responses supported the inclusion
of music in several ways, summarized below.

Feedback referring solely to the music component included
statements of surprise, such as, “The music was something
I never really associated with computing, but it was some-
thing interesting and new.” A student who had played in-
struments from an early age wrote, “The intricacies behind
creating music in Myro surprised and challenged me. That
was most instrumental in my growth of Python and com-
puting knowledge.” Another, who had difficulties with her
robot, mentioned, “Music definitely rekindled my interest.”
Some were inspired by a particular aspect of music. One stu-
dent described an interest in algorithmic composition com-
bining“the deterministic calculability of computer code”with
“random variation”. Another wrote, “The most interesting
part of the course was working with music and computers.
This led to a revelation of the scope of possibilities that com-
puter science provides. Before this, I never would have con-
sidered the possibility that robots and computers can work

together to form their very own orchestra.” Thus, music syn-
thesis made the course more appealing to certain students.

Other comments referred to combinations of the different
course components: “I was genuinely pleasantly surprised
that ‘computing’ did not apply exclusively to the calcula-
tion of numbers. It encompasses a wide range of things.”
Some students enjoyed both music and graphics because
“they clearly tied computers to art and then the computer
just became another medium to express myself,” or because
“I could really see myself using computer science in a real
world setting.” Others were amazed that “one language,
Python, could be used to program so many different things,”
or further observed that “even though the end products can
be very different, the basic concepts are similar.”

It was also interesting to note what students had learned
about computing in general, from the entire course. Several
described it as“a problem-solving process”or“logic puzzles”.
Some shared their insights into the programming process,
such as“how programming can build on itself—starting from
extremely simple code and leading to something very intri-
cate and complex.” One student was “always amazed by the
dozens of different ways that students in the class solved the
same task. I was surprised to find that the working process
was less mathematical and precise than I had expected it to
be—it’s analytical but also requires a degree of creativity.”
Others also mentioned “the enormous amount of creativity
in designing programs.” As one wrote, “I’ve always thought
that I was bad at math and good at the arts and humanities
because my mind was better at dealing with abstract ques-
tions and ideas than dealing with concrete rules, but I’m
starting to wonder if the two are really all that different.”

Not all the feedback was as encouraging. One student, for
instance, wrote, “The music taught me to respect electronic-
based bands who work with that sort of thing for a living,
and the graphics baffled me entirely. As to how this course
may impact my future studies, I will leave you with a quote
from that recalled Barbie: ‘Math is hard!”’ However, the
overall reaction to the course seemed more in line with the
following comment: “I also learned that computer science
and technology are more accessible than I realized. They
don’t always have to be daunting, boring material reserved
for physicists or engineers.”

5. DISCUSSION AND CONCLUSIONS
The student feedback suggests that teaching CS1 with

myro.chuck was overall promising. 4 of the 23 students en-
rolled in CS2 the following semester, comparable to 6 of 22
students from a parallel CS1 section not focusing on music.
The small numbers of students make it difficult to obtain re-
liable statistics; we would like to perform better assessment
with a more targeted survey instrument and/or a longitudi-
nal study in the future. The open-ended remarks indicate
that the music module especially engaged students who al-
ready had musical interests, and broadened others’ ideas of
what computer science entails. It exposed creative aspects of
computing but also retained the logic needed to design and
implement a program that behaves as desired. The use of
music in conjunction with robots and graphics was especially
valuable, as it led to a more well-rounded understanding of
computer science and of the underlying concepts that serve
as a common factor between these diverse areas.

Specific aspects of myro.chuck that worked include the
use of an API similar to the rest of Myro. This helped

251

students transition between the different components, and
highlighted that the computing behind these components
was essentially the same. Having access to a range of musi-
cal instruments to synthesize made the material more inter-
esting, as well as providing an opportunity to discuss object-
oriented programming concepts. The doTogether program-
ming construct was also popular; students used it to trans-
late musical scores into programs, and to bring together dif-
ferent components of the course in their final projects. Al-
though the details of threads and parallelism were not dis-
cussed, we hope a familiarity with using these concepts will
help students understand how they work in later classes.

Interestingly, students seemed more excited to reproduce
known music than to create original music. This is, of
course, acceptable in an introductory computer science class,
and may have resulted from the lack of in-class focus on
composing as well as from students’ not seeing themselves as
“composers”. A related observation is that some instrument-
specific operations, such as setting vibrato or stiffness, were
seldom used. Future courses may benefit from more atten-
tion to these aspects, as they could lead students to a new
level of exploration and discovery. A “robot orchestra” (see
Section 4.2) is also an exciting topic to investigate, through
a series of group projects or even an entire course.

Some improvements can be made to the system. A draw-
back of the current version is that it allows only one instance
of each instrument type. Students have at times wanted
to create multiple instances of the same instrument, which
makes sense from an object-oriented programming perspec-
tive. This limitation can be removed by running a set of
more complex ChucK programs in the background, instead
of the current relatively simple one. Another area for im-
provement is to offer more sophisticated control over the syn-
thesized sound. The current options of synthesizing different
instruments and manipulating their parameters scratch the
surface of computer music. ChucK also offers many audio
processing modules and effects, such as reverberation, echo,
and customizable digital filters. A more rounded treatment
of making music with computers would include these fre-
quently used tools. Of course, doing them justice would
also require spending more time on the music unit.
Myro.chuck may be adapted for any CS1 class. A course

without robots or graphics may use it to teach imperative
programming, functions, syntax, and logic, via tasks such as
exploring particular instrument parameters, programming a
pre-defined score, or generating music algorithmically. Thus,
it serves as a useful tool for a section on programming mu-
sic. Because it is integrated in Myro, it is easy to use in
conjunction with other Myro modules, resulting in an even
more richly engaging introduction to computer science.

6. ACKNOWLEDGMENTS
We would like to thank Perry Cook and Melissa Lawson at

Princeton, and Dianna Xu at Bryn Mawr, for their support.
We would also like to thank Microsoft Research for initial
funding of the Institute for Personal Robots in Education.

7. REFERENCES
[1] D. Blank. Robots make computer science personal.

Communications of the ACM, 49(12):25–27, December
2006.

[2] R. Boulanger. The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal Processing,

and Programming. MIT Press, Cambridge,
Massachusetts, 2000.

[3] M. Conway, S. Audia, T. Burnette, D. Cosgrove,
K. Christiansen, R. Deline, J. Durbin, R. Gossweiler,
S. Kogi, C. Long, B. Mallory, S. Miale, K. Monkaitis,
J. Patten, J. Pierce, J. Schochet, D. Staak, B. Stearns,
R. Stoakley, C. Sturgill, J. Viega, J. White,
G. Williams, and R. Pausch. Alice: Lessons Learned
from Building a 3D System for Novices. In Proceedings
of the SIGCHI conference on Human factors in
computing systems, pages 486–493, 2000.

[4] P. R. Cook and G. Scavone. The Synthesis ToolKit
(STK). In Proceedings of the 1999 International
Computer Music Conference, October 1999.

[5] T. J. Cortina. Using the Java MIDI package to create
music in CS1. Journal of Computing Sciences in
Colleges, 21(2):86–88, 2005.

[6] J. Fuegi and J. Francis. Lovelace & Babbage and the
Creation of the 1843 ‘Notes’. IEEE Annals of the
History of Computing, 25(4):16–26, October 2003.

[7] M. Guzdial. A media computation course for
non-majors. In Proceedings of the 8th Annual
Conference on Innovation and Technology in
Computer Science Education, pages 104–108, 2003.

[8] M. Guzdial and E. Soloway. Teaching the Nintendo
generation to program. Communications of the ACM,
45(4):17–21, April 2002.

[9] J. Hamer. An approach to teaching design patterns
using musical composition. ACM SIGCSE Bulletin,
36(3):156–160, 2004.

[10] V. Lazzarini. Musical signal scripting with PySndObj.
In Proceedings of the 5th International Linux Audio
Conference, 2007.

[11] M. P. Rogers. Making Music in CS I. The Journal of
the Consortium of Computer Sciences in Colleges,
20(1), October 2004.

[12] J. Summet, D. Kumar, K. O’Hara, D. Walker, L. Ni,
D. Blank, and T. Balch. Personalizing CS1 with
Robots. Proceedings of SIGCSE 2009 Conference,
Chattanooga, TN, 2009.

[13] G. Tzanetakis, R. Jones, C. Castillo, L. G. Martins,
L. F. Teixeira, and M. Lagrange. Interoperability and
the Marsyas 0.2 Runtime. In Proceedings of the 2008
International Computer Music Conference, August
2008.

[14] G. Wang and P. R. Cook. ChucK: A concurrent,
on-the-fly, audio programming language. In
Proceedings of the 2003 International Computer Music
Conference, September 2003.

[15] G. Wang, D. Trueman, S. Smallwood, and P. R. Cook.
The laptop orchestra as classroom. Computer Music
Journal, 32(1):26–37, 2008.

[16] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the 1997 International Computer
Music Conference, pages 101–104, September 1997.

[17] D. Xu, D. Blank, and D. Kumar. Games, Robots and
Robot Games: Complementary Contexts for
Introductory Computing Education. In Third Annual
Microsoft Academic Days Conference on Game
Development in Computer Science Education, 2008.

252

	Bryn Mawr College
	Scholarship, Research, and Creative Work at Bryn Mawr College
	2009

	A music context for teaching introductory computing
	Ananya Misra
	Doug Blank
	Deepak Kumar
	Custom Citation

	A music context for teaching introductory computing

