View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Scholarship, Research, and Creative Work at Bryn Mawr College | Bryn Mawr College...

Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College

Computer Science Faculty Research and

Scholarship Computer Science

2001

Complexity as Fitness for Evolved Cellular
Automata Update Rules
Em Ward

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Douglas Rolniak

Dale R. Thompson

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/compsci pubs

b Part of the Computer Sciences Commons

Custom Citation

Ward, Em, Blank, Douglas S., Rolniak, Douglas, and Thompson, Dale R. (2001). Complexity as Fitness for Evolved Cellular Automata
Update Rules. In Late Breaking Papers of the 2001 Genetic and Evolutionary Computation Conference.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/compsci_pubs/33

For more information, please contact repository@brynmawr.edu.

https://core.ac.uk/display/214022764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs/33
mailto:repository@brynmawr.edu

Complexity as Fitness for Evolved Cellular Automata Update Rules

Em Ward
EE Department
University of Arkansas
Fayetteville, AR 72701
eward@uark.edu

Douglas S. Blank
CSCE Department
University of Arkansas
Fayetteville, AR 72701
dblank@uark.edu

Abstract

We investigate the state change behavior of
one-dimensional cellular automata during the
solution of the binary density-classification
task. Update rules of high, low and un-
known fitness are applied to cellular au-
tomata, thereby providing examples of high
and low rates of successful classification. A
spread factor, w, is introduced and investi-
gated as a numerical marker of state change
behavior. The nature of w describes complex
or particle-like behavior on the part of the
cellular automata over the middle region of
initial configuration density-distribution, but
breaks down at the ends. Because of the lim-
itation on w, a related jump-out term, jot, is
selected for incorporation into the finess func-
tion for genetic algorithm evolution of update
rules. The inclusion of jot in the fitness func-
tion significantly reduces the number of gen-
erations required to reach high rates of suc-
cessful classification (>90%).

1 INTRODUCTION

This paper investigates state changes of one-
dimensional, binary, cellular automata (CA) through
time and space during attempts to solve the density-
classification task. CAs are viewed as models of dy-
namical systems and computation [10], [11], [4]. The
state of each cell may then change over time. The
frequency of state changes and the spatial distribu-
tion of the state changes may reflect complex behavior
by the CA [12], [6]. Our study looks at these state
changes in CAs updated by rules evolved by a genetic
algorithm (GA) for good performance in the density-
classification task and compares them to those of CAs
updated by evolved rules with poor performance. We

Douglas Rolniak
CSCE Department
University of Arkansas
Fayetteville, AR 72701
drolnia®@uark.edu

Dale R. Thompson
CSCE Department
University of Arkansas
Fayetteville, AR 72701
drt@uark.edu

describe our attempt to find a simple measure that can
represent complex, or particle-like, behavior by CA,
its inclusion in the fitness function for evolving update
rules and its effect on evolution time.

1.1 BACKGROUND

Cellular automata are arrays, or lattices, of cells. Each
cell may be in a finite number of states. At discrete
time steps, the states of the cells are changed according
to update rules [10], [11]. The solution of the density-
classification task may be viewed as nontrivial compu-
tation that requires a CA to determine the majority
state in its initial configuration (IC) and update itself
within a given number of time steps to achieve the
majority state in every cell [9]. Figure 1 shows a time-
space diagram of this computation. The IC contains a
majority of 0 states (off or white). Correct classifica-
tion would require all cells in the lattice to achieve a 0
state. The CA has a solution when two successive time
steps have identical states for all cells. The maximum
number of time steps allowed for a solution is prob-
abilistically determined as a function of the number
of cells in the CA. Previous authors have examined
this scheme and concluded that CAs performing the
density-classification task exhibit a range of behaviors
[12], [6], [9], [3]. When the behavior is one of self-
organized cell state changes through time and space,
it is called ”complex”. or particle-like [12], [9], [5].

Genetic algorithms have been used to evolve these
rules [9], [8]. Mitchell, Hraber and Crutchfield de-
scribed a GA approach by Packard [9]. Previous ap-
plication of GA-evolved update rules have had lower
performance than the Gacs-Kurdyamov-Levin (GKL)
rule, with approximately 95% best performance of cor-
rect classification, with performance decreasing as lat-
tice size increases [9], [8], [5]. The GKL, though not
designed for the density-classification task, has prop-
erties (all 1s or all Os attraction states) that lend it

FELY EEL aE %I' %-

Figure 1: Diagram of a cellular automaton (CA) solv-
ing density-classification.

to successful application to the problem [2], [9]. The
GKL rule consistently maintains approximately 98%
average performance on increasingly large lattice sizes
and number of trials [9], [8]. Investigators at the Santa
Fe Institute found an evolved rule, ¢pq,, which induced
self-organized behavior and performed similarly to the
GKL rule [8].

1.2 RATIONALE

The rationale for examining cellular state changes
through time is based on previous assertions that com-
plex behavior, described by Wolfram as propagating,
localized structures, sometimes long-lived, is required
for computation [12], [6]. Different parameters have
been offered in the literature as markers of complex
behavior, including entropy, mutual-site information
and difference-pattern spreading factor [7], [6], [1].

We investigate a spread factor, w, and a jump out
term, jot, that represent simpler, more intuitive mea-
sures of complex behavior. Incorporation of some mea-
sure of complexity into the fitness function of the GA
rewards behavior. Presumably, this would speed evo-
lution of high-performance update rules.

2 METHODS

2.1 UPDATE RULE GENERATION

We used the following parameters for the evolution of
update rules: intital configuration (IC) length N =
149, radius r = 3, population size p = 100, number

of generations g = 100, and the number of IC trials
t = 100.

Each set of randomly generated ICs had uniform dis-
tribution of 1s and Os. The radius is the number of
cells to either side of the index cell, which constituted
the neighborhood of the index cell. The lattice should
be considered circular, as the neighborhoods wrap
around. The neighborhood of 1s and Os, read from left
to right, served as rule table input. The inputs were
ordered in the rule table from 0 to 22"*1. A genetic
algorithm evolved the output column of the rule table.
Fixed-point crossover, followed by two-point mutation
was the means of reproduction. Twenty percent of
the rule table outputs with highest fitness were kept
in the population for each generation. The remain-
ing 80% of the population were replaced with the pro-
duced children. Fitness was defined as the number
of ICs correctly classified by M time steps, where M
was a Poisson distribution with mean twice the initial
configuration length, 2/V.

2.2 STATE CHANGE INVESTIGATION

From the evolved population of rule table outputs
(rules) five with the highest fitness and five with the
lowest fitness were fitness-tested on a very large set of
trials, t = 10,000. This was done to insure we selected
truly good performers and truly poor performers to
use for the state change investigation. The good rules
had fitness >89% (mean = 90.52%), and the five bad
rules had fitness <51% (mean = 31.05%) on the 10,000
trials. In addition to these ten, five random rules were
generated. The random rules were created as a pop-
ulation with no evolution. Five random rules and the
GKL (fitness = 97.69%) rule were used as benchmark
comparisons to the findings from the good and bad
rules.

Each of the 16 total rules was then applied to ten trial
ICs. The state change characteristics of these ICs were
examined. We defined the state change frequency, f,
as the number of state changes of a cell divided by the
number of time steps before the automaton reached
a fixed point or the maximum number of time steps
allowed (M).

We analyzed f with the following measures: mean and
lattice range (the maximum f in the automaton lattice
minus the minimum f in the automaton lattice). Our
measure of interest, w, was intended to be a measure,
a spread factor, of f across the lattice space and was
defined as

w = range/mean. (1)

Here is an example calculation - For cell #14, there
were six state changes before a fixed point was reached
at the 12th time step: fi4 = 6/12 = 0.5. Across the
lattice (149 cells), the minimum f (of 149) was 0 (no
state change in at least one cell), and the maximum f
(of 149) was 0.833 (ten state changes in at least one
cell). Thus, the range is 0.833. Let the mean f across
the lattice be fue = 0.425:

w = 0.833/0.425 = 1.960. (2)

Since each set of ICs contained a uniform distribution
of 1s, w could give a divide-by-zero error if the ICs were
all 0s. Also, at the ends of the spectrum, w could be
very large, but not representative of complex behav-
ior. Therefore, we also examined w over the section
of the distribution, where 1s density ranges from 10%
to 90% (&). This includes the region of greatest dif-
ficulty for classification, where 1s density approaches
50%. Statistics were examined for each rule and each
rule group (good, bad, random, GKL).

2.3 COMPLEXITY AS FITNESS
FUNCTION

For incorporation into the fitness function, w was ex-
amined and rejected because of the problem with high
w values on the ends of the IC density spectrum. This
posed a problem with online or realtime evolution, as a
correct classification also could be rewarded for a high
w value for solving the almost-all-1s or almost-all-Os
tasks. Therefore, we introduced a jump-out term, jot,
defined as

jot =m/M, (3)

where m is the number of time steps to a solution
and M is the maximum allowed time steps. jot cap-
tures the idea that complex behavior by CA requires
more computational time (long-transients, or long-
lived propagating structures). The normalization was
required for jot to be less than one, since the term was
added to the original performance fitness function, to
reward complex behavior, only for a correct classifica-
tion. Thus, the new fitness function was a real num-
ber with integer and fractional components. In this
scheme, fitness could be greater than 100 (<101), but
the performance, equal to the integer component of
the fitness divided by total number of trials, could not
exceed 100%.

For evaluation of a complexity measure incorporated
into the fitness function, 30 runs with the same pa-
rameters describe above, were performed with each of

Table 1: Spread Factors, w and ©.

| Parameter Rule Group | w | w | n | n |
Good 6.620 | 6.493 | 50 | 40
Bad 2.702 | 2.959 | 50 | 40
Random 3.266 | 3.932 | 50 | 40
GKL 7.514 | 7294 | 10 | 8

n and n are number of trials for calculating w and @,
respectively.

Table 2: Generations to High Performance (>90%).

| Fitness Function \ mean \ s. d. \ variance |
Standard 34.733 | 50.053 | 2505.306
jot 12.133 | 5.894 34.740
Random 26.067 | 41.460 | 1718.892

s. d. = standard deviation

three different fitness functions: standard, standard
with jot and standard with a random number added
to the right of the decimal point. The test group of
100 ICs was maintained for all functions.

3 RESULTS

Table 1 contains w and @ for each rule group. w was
calculated replacing 0/0 (range = 0, mean = 0) terms
with ones. One can clearly appreciate the difference in
w for the good and bad rule groups (6.620 and 2.702,
respectively). The GKL rule spread factor (w = 7.514)
was close in value to the good rule group. The random
rule group has w similar to the bad rule group—3.266.
The values for @ are close to those for w in each rule
group.

Figure 2 is a representative plot of state change fre-
quency, f across the cell lattice for a computation from
a good rule (w = 5.787, averaged over ten ICs. Fig-
ure 3 is f from a bad rule (w = 0.152), averaged over
ten ICs. These two plots show the frequency range
across the lattice and will be discussed in the next
section. There were instances in all groups where the
minimum and maximum frequencies and the mean fre-
quency were zero. In our samples, a bad rule rarely
produced plots with state changes every single time
step.

Table 2 shows the comparisons between the standard,
standard with jot, and standard with random fitness
functions with regard to number of generations to high
performance (>90%).

03

"boodA.avg,de" _—

02

01r

0

L L L L L L L
0 20 40 60 80 100 120 140 160

Figure 2: State change frequency, f, across space, good
rule (w = 5.787). The vertical axis is f; the horizontal
axis is cell number of the lattice. f is averaged over
ten ICs.

0.894 T T
"bad4.avg.vbd" ——
0.892 |-
0.89
0.888
0.886 [
0.884 |-
0.882 |
0.88
0.878 |-

0.876 [

0.874 |-

o872 0 2‘0 4‘0 (;0 B‘D 1(;0 1‘20 11‘10 160
Figure 3: State change frequency, f, across space, bad
rule (w = 0.152). The vertical axis is f; the horizontal
axis is cell number of the lattice. f is averaged over
ten I1Cs.

Table 3: Data Analysis of w.

| Comparison | Result | Confidence |
Wy VS. wp Wy > wyp >99.9%
Wg V8. Wy Wy > Wy >99.9%
Wg VS. WGKL | Wg = WGKL NR

Subscripts indicate the following: g - good rule group,
b - bad rule group, r - random rule group, and GKL -
GKL rule group. NR = not rejected

4 DISCUSSION

4.1 DATA ANALYSIS

Difference of means tests for w were applied to three
group comparisons: good vs. bad, good vs. random
and good vs GKL. The hypotheses tested were that
the average w for good rules are significantly higher
than for bad or random rules and the same as the
GKL rule. Table 3 contains the findings. With a high
degree of confidence (> 99.9%), the spread factor, w,
is significantly larger for a high rate of classification
success than it is with a low rate of classification suc-
cess. The analysis of & gave the same results, except
the confidence of W, > , was 98.8%.

4.2 COMPLEX BEHAVIOR

In reports of computational models, the dynamical be-
havior of the computing entity has been studied [12],
[6], [9]. Wolfram described four classes of behavior:

1. Homogeneous state

II. Separated simple stable or periodic
structures

III. Chaotic pattern

IV. Complex localized structures [12].

In our investigation, w and @ represent patterns of
state changes of a CA through time. Our results in-
dicate that successful computation, or correct classi-
fication, occurs more reliably when lattice segments
undergoing a high state change frequency are inter-
spersed with segments of low state change frequency
(see Figure 2). Classification is less successful when f
is relatively uniform across the lattice (see Figure 3).
This is consistent with the patterns of long-transients
previously described [12], [6], [9], [8].

Table 4: Data Analysis of Fitness Functions.

| Comparison | Result | Confidence |
standard vs. jot | standard > jot =99.3%
standard vs. rnd | standard = rnd NR

rnd = random, NR = not rejected

4.3 FITNESS FUNCTION

Evolved GA update rules have had best performance
ranging from 90% to 95%, occurring, generally, by
the generation 40 [9]. When an evolved rule induces
particle-like, or complex, behavior in the CA, the num-
ber of generations to high performance decreases [8].
We believe that our spread factor, w, represents such
behavior on the part of the CA. However, a limitation
to w is that it will be falsely high at the ends of the 1s
density spectrum of the IC. This is a byproduct of the
forced bias of uniform distribution of states across the
initial configuration—-a move to reduce the likelihood
of having to classify difficult densities (near 0.5). This
problem can be reduced with a form of @ as described
above, though @ is not easily incorporated into the fit-
ness function during online or realtime evolution. We
believe w would speed evolution on ICs with random
distribution, since the probability of almost-all-1s and
almost-all-Os would be very low. This is left as future
work. Another comparison to investigate is the range
of f (the numerator of w) as a fitness function, remov-
ing the problem with the denominator being zero or
very small, giving very high w.

A simpler parameter, jot, represents computation time
by the CA, an indicator of complex behavior. When
jot is incorporated into the fitness function, complex-
ity, in addition to performance, is awarded. When
this happens, the number of generations to high per-
formance is significantly reduced. Table 4 contains the
analysis results for the number of generations to high
performance for these comparisons: standard vs. jot
and standard vs. random. Our samples did not pro-
vide support for rejecting the hypothesis that speed
of evolution is the same for the standard fitness and
standard with random number added.

5 CONCLUSIONS

This paper describes an investigation into the state
change frequency of cellular automata during perfor-
mance of the density classification task. We intro-
duced a spread factor, w, whose value was significantly
higher when CAs had a high rates of successful clas-
sification compared to low rates. w is the range of

state change frequencies of the cells in the CA lattice
divided by the average state change frequency. It is
a numerical representation of the activity of the CA
and consistent with previous descriptions of complex
behavior required for computation.

A jump out term, jot, captures the idea that com-
plex behavior by CA requires more computational time
(long-transients, or long-lived propagating structures).
When jot is incorporated into the fitness function for
evolving CA update rules with a GA, the number of
generations to high performance rules is significantly
reduced.

Acknowledgments

We thank Ross Williamson for his significant program-
ming contributions and Russell Deaton for his helpful
commentary.

References

[1] R. Badii and A. Politi. Thermodynamics and
complexity of cellular automata. Physical Review
Letters, 78(3):444-447, 1997.

[2] P. Gonzaga de Sa and C. Maes. The Gacs-
Kurdyumov-Levin automaton revisited. Journal
of Statistical Physics, 67(3/4):507-522, 1992.

[3] M. Garzon. Models of Massive Parallelism: Anal-
ysis of Cellular Automata and Neural Networks,
chapter 8, Classification, pages 141-166. Springer,
New York, 1995.

[4] J.R. Koza. Genetic Programming, chapter 14,
Entropy-Driven Evolution, pages 395-417. MIT
Press, 1992.

[5] M. Land and R.K. Belew. No perfect two-state
cellular automata for density classification exists.
Physical Review Letters, 74(25):5148-5150, 1995.

[6] C.D. Langton. Computation at the edge of chaos:
Phase transisitons and emergent computation.
Physica D, 42:12-37, 1990.

[7] W. Li, N.H. Packard, and C.G. Langton. Transi-
tion phenomena in cellular automata rule space.

Physica D, 45:77-94, 1990.

[8] M. Mitchell, J.P. Crutchfield, and R. Das. Evolv-
ing cellular automata with genetic algorithms: A
review of recent work. In Proceedings of the First
International Conference on Fvolutionary Com-
putation and its Applications, Moscow, 1996. Rus-
sian Academy of Sciences.

[9]

M. Mitchell, P.T. Hraber, and J.P. Crutchfield.
Revisiting the edge of chaos: Evolving cellular au-
tomata to perform computations. Complex Sys-
tems, 7:89-130, 1993.

J. von Neumann. John von Neumann Collected
Works, chapter 9, The General and Logical The-
ory of Automata, pages 288-328. Pergamon
Press, New York, 1961.

S. Wolfram. Statistical mechanics of cellular au-
tomata. Reviews of Modern Physics, 55:601-644,
1983.

S. Wolfram. Universality and complexity in cel-
lular automata. Physica D, 10:1-35, 1984.

	Bryn Mawr College
	Scholarship, Research, and Creative Work at Bryn Mawr College
	2001

	Complexity as Fitness for Evolved Cellular Automata Update Rules
	Em Ward
	Doug Blank
	Douglas Rolniak
	Dale R. Thompson
	Custom Citation

	tmp.1489251153.pdf.JsYRC

