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1 Introduction

It is di�cult to clearly de�ne the symbolic and subsymbolic paradigms; each is usually de-
scribed by its tendencies rather than any one de�nitive property. Symbolic processing is
generally characterized by hard-coded, explicit rules operating on discrete, static tokens,
while subsymbolic processing is associated with learned, fuzzy constraints a�ecting contin-
uous, distributed representations. In addition, programming languages such as Lisp and
mechanisms such as Turing machines are typically associated with the symbolic paradigm,
while connectionism is frequently associated with the subsymbolic paradigm. Debates con-
trasting the two paradigms sometimes center on these mechanisms, for example comparing
the capabilities of Turing machines with those of connectionist networks (see Adams, Aizawa,
and Fuller in this volume). However, connectionist networks can be proven to be computa-
tionally equivalent to the abstract notion of Turing machines [Franklin and Garzon, 1990].
Therefore the computational mechanism is not the crucial issue in separating the symbolic
and subsymbolic paradigms. What then is the crucial issue?

We believe there are three major issues which distinguish the symbolic paradigm from
the subsymbolic paradigm: (1) the type of representations; (2) the style of composition; and
(3) the functional characteristics. We have summarized the key elements of these di�erences
between the two paradigms in Table 1. However, most cognitive science and classical arti�cial
intelligence (AI) models cannot be completely characterized as either purely symbolic or
purely subsymbolic using these criteria. Instead, most models fall somewhere in between
the two extremes, or in the so-called \Gap." For this reason, it seems appropriate to view
the paradigms as de�ning two opposite corners of a three-dimensional continuum as shown in

�To appear in Closing the Gap: Symbolism vs. Connectionism, J. Dinsmore, editor. 1992, Lawrence

Erlbaum Associates.
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Subsymbolic Symbolic

Representation distributed atomic
continuous discrete
emergent static
use a�ects form arbitrary

Composition superimposed concatenated
context-sensitive systematic

Functionality microsemantic macrosemantic
holistic atomistic

Table 1: Comparison of the Subsymbolic and Symbolic Paradigms

Figure 1.1 In the following introductory sections we examine each of the issues from Table 1 in
detail and then discuss where to place some existing models within this symbolic/subsymbolic
continuum.

1.1 Representation

As Smolensky has noted, the term subsymbolic paradigm is intended to suggest symbolic
representations which are built out of many smaller constituents: \entities that are typically
represented in the symbolic paradigm by symbols are typically represented in the subsymbolic
paradigm by a large number of subsymbols." Smolensky suggests that for the purposes of
relating these two paradigms, it is often important to analyze subsymbolic models at a higher
level: \to amalgamate, so to speak, the subsymbols into symbols." 2 One problem with this
type of analysis is that a conglomerate of subsymbols does not form a traditional symbol.
Classically, symbols have been arbitrary labels, such as strings of letters, which are atomic,
discrete, and static. In contrast, a symbol in the subsymbolic paradigm is distributed over a
collection of subsymbols, and each subsymbol may be associated with continuous numerical
values. In addition, the subsymbolic paradigm is strongly committed to learning at the
subsymbolic level. Through learning, an amalgamated symbol gradually emerges in such a
way that its form reects its function, or use, in the training tasks. We will see examples of
this in the experiments described in Section 5.

Typical symbols in a symbolic model might be the letter strings waiter or customer. These
symbols may be placed into structured relationships with other symbols, and may be bound
to a variety of values during the course of processing, but the forms of the symbols themselves
never change. The symbolic model would work equally well if waiter were replaced by xyz

throughout the model's data structures, since waiter is simply an atomic label possessing no
internal structure of its own. In contrast, a typical symbol in a subsymbolic model might be
the pattern of continuous values [+0.562 -0.891 -0.143 -0.382 +0.966]. During processing,
this might evolve to the slightly di�erent but similar pattern [+0.589 -0.900 -0.139 -0.412

1Table 1 and Figure 1 were inspired by Robert Port and Timothy van Gelder. They conceived of viewing

classical and connectionist models as varying along a number of abstract dimensions which de�ne a space of

possible representational schemes. They were speci�cally interested in representations for natural language

[Port and van Gelder, 1991]. We have extended these ideas by contrasting paradigms in general rather than

focusing solely on representational issues.
2[Smolensky, 1988, page 3]
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Figure 1: Subsymbolic/symbolic continuum: This �gure illustrates the three dimen-
sional space of paradigms de�ned by the three characteristics from Table 1: representation
(across the bottom), composition (extending out), and functionality (up the side). The Gap
between the symbolic (front, lower, right corner) and subsymbolic (back, upper, left corner)
paradigms can be viewed as the central region of the cube. Five models are shown in their
approximate position in the space. Font size reects distance from the front of the box.
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+0.999], which, although distinct from the original symbol, still behaves in a closely related
way. However, the subsymbolic model would produce very di�erent results if this symbol
were replaced by some other completely arbitrary pattern.

These fundamental di�erences in representation between the two paradigms directly in-
uence the functional capacities and compositional styles exhibited by each.

1.2 Composition

One of the main criticisms that has been leveled against the subsymbolic approach is that the
representations developed by subsymbolic models are unable to exhibit useful compositional
structure [Fodor and Pylyshyn, 1988]. It is claimed that the representations operated on by
subsymbolic computation cannot be combined into higher-order composite representations
which preserve the integrity of the constituent parts out of which they are assembled. This
capability is clearly present in symbolic models. One need only imagine a model which
operates on representations encoded as symbols organized into structured trees or lists. These
representations can be easily decomposed into their constituent parts by using standard
destructuring operations, such as the car or cdr operators in Lisp, and then reassembled into
new representations using standard concatenative operations, such as the cons operator in
Lisp.3

Pollack has developed a subsymbolic model, called Recursive Auto-Associative Memory
or RAAM, that provides a direct counterexample to the claims that subsymbolic models
cannot exhibit useful compositional structure [Pollack, 1988, Chalmers, 1990b]. This chapter
will focus on the RAAM model as an exemplar of the subsymbolic paradigm. However, we
do not wish to claim that RAAM is an accurate model of human cognition; we simply feel
that it provides a clear illustration of the characteristics of the subsymbolic region of the
continuum.

The basic purpose of RAAM is to allow familiar recursive data structures such as trees and
lists to be encoded into distributed representations suitable for processing by connectionist
networks. However, the result of subsymbolic composition is very di�erent from the explicit
concatenative compositional structures created in the symbolic paradigm. A RAAM produces
�xed-length distributed patterns of continuous numerical values which encode compositional
structure implicitly. Since the length of the distributed patterns cannot expand or contract
to match the size and depth of the compositional structures to be represented (like a Lisp
list does as elements are consed onto it), the structure must be superimposed across the �xed
subsymbols. In this way, a composite of symbols in RAAM is itself a symbol, and has the
same general form and functionality as the original symbols it was constructed from. The
details of how a RAAM constructs and decomposes compositional structures is a major focus
of this chapter and will be examined extensively in subsequent sections.

When symbols are composed in a symbolic style, they form well-de�ned structures with
a systematic organization. This explicit structuring allows for precise relationships between
symbolic symbols. For instance, the form of waiter in a symbol structure will not be altered
by using that symbol in two slightly di�erent ways, such as (he gave it to the waiter) and
(she handed it to a waiter). On the other hand, the subsymbolic paradigm allows for context

3Given that x is bound to the list (1 2 3) in Lisp, (car x) returns 1, (cdr x) returns (2 3), and (cons 4 x)

returns (4 1 2 3).
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to play a role in a compositional representation. In a subsymbolic system, the same symbol
used in slightly di�erent contexts may reect that di�erence in its form. Although some
systematicity is useful, too much can make a system inexible. This context-sensitivity may
allow for the functionality of a subsymbolic system to take advantage of information which
has been abstracted out of the symbols in a symbolic system.

1.3 Functionality

The functionality of the two paradigms depends directly on their style of representations.
Subsymbolic representations reect the tasks encountered in the training process, in that
the generalizations needed to successfully perform the tasks tend to be captured within the
internal structure of the representations themselves. In this way, symbols used similarly will
develop similar representations. This gives subsymbolic symbols internal relationships to
one another, or a microsemantics. In contrast, symbolic symbols are arbitrary and atomic,
and have no internal semantics. The complete functionality of symbolic systems rests on
the structured relationships existing between the arbitrary symbols, or a macrosemantics

[Dyer, 1990]. In e�ect, a microsemantics is internal to symbols and a macrosemantics is
external to symbols.

Probably the most important di�erence in the functionality of the two paradigms lies in
the methods by which symbols can be operated upon. If a composite structure in a symbolic
system, say a Lisp list, were to have its fourth element tested for some criterion, one must
�rst remove the �rst three elements of the list to get to the fourth. In fact, to do anything to
the list involving the elements of that list, one must �rst decompose it. Thus, symbolic list
structures can only be operated on atomistically. Since many AI practitioners have exclusively
used concatenative data structures, the need for this initial deconstruction step seems to be a
natural consequence of building data structures. In the subsymbolic paradigm, however, an
operation can act holistically on an entire symbol structure [Blank, 1990, Chalmers, 1990a].
In this way, a subsymbolic operation can, in one step, perform a complex function without
decomposing the representation of a symbol structure into its constituent parts. A number of
examples of holistic operations on composite RAAM representations will be described later
in this chapter.

1.4 The Symbolic/Subsymbolic Continuum

Figure 1 depicts the symbolic/subsymbolic continuum as a three-dimensional space delin-
eated by the three main issues given in Table 1. Positioned within this continuum are several
representative models selected to illustrate di�erent aspects of the continuum: formal logical
inference systems which use predicate calculus; three-layer feed-forward connectionist net-
works; BoltzCONS, a constraint-satisfaction memory system; Copycat, an analogy-making
system; and the RAAM model to be discussed in this chapter. The next subsections will
briey discuss these systems and their positions within this continuum.

1.4.1 Predicate Logic

In the predicate calculus, abstract atomic objects are called tokens and can be concatenated
together in recursively de�ned ways to form arbitrarily complicated logical expressions. These
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tokens and structured collections of tokens can be used to represent knowledge by assign-
ing to them some type of semantic interpretation, and specifying transformation rules which
manipulate them in ways consistent with this interpretation. These expressions and trans-
formation rules can be said to model particular aspects of the world to the extent that the
causal relationships which exist among concepts and information in the outside world are
captured by the causal interaction of the tokens and logical expressions as governed by the
rules.

Certain tokens are assigned unique interpretations, perhaps as variables or logical opera-
tors such as And, ForAll, or ! (implication). We could perhaps represent the fact that all
dogs are mammals by the expression:

[ForAll(x) [Dog(x)!Mammal(x)]]

and the fact that Fido is a dog by the expression Dog(Fido). These representations can then
be manipulated by transformation rules in order to extract useful information from them.
Given the fact Dog(Fido) and the previous implication expression, an inference system might
deduce the fact Mammal(Fido) by �rst breaking these expressions up into their constituent
tokens and then recombining them using logical transformation rules such as uni�cation and
resolution.

The inference process is atomistic and based entirely on the macrosemantics of the to-
kens. The database facts are represented concatenatively and the inference rules are applied
systematically to these facts. The tokens are static, discrete, and arbitrary. Therefore stan-
dard inference systems based on predicate calculus, such as described above, are prototypical
examples of the symbolic paradigm and have been positioned in the symbolic corner of the
continuum in Figure 1.

1.4.2 Three-layer Feed-forward Networks

An example of a connectionist subsymbolic architecture is a network of processing units
arranged into hierarchical layers. These layers are usually shown with input coming in from
the bottom and output exiting from the top (see Figure 2). Each unit in any given layer
(except the output layer) is connected by weighted connections to each unit in the layer
above it. Various amounts of activation are applied to each of the units in the bottom layer,
representing some particular pattern being presented as input to the network. This activation
then ows across the connections to higher layers of the network, with the weights on the
connections mediating the amount of activation that is passed on to successive units. The
�nal pattern of activation present on the topmost layer is considered to be the output pattern
produced by the network from the given input pattern.

A learning algorithm such as back-propagation [Rumelhart et al., 1986] can be repeat-
edly applied to the network, enabling it to learn to associate arbitrary pairs of input and
output patterns by gradually adjusting the weights on the connections between units. These
input/output patterns can be interpreted as representing information received from and sent
to the network's surrounding environment. As a result of this training process, the network
learns to recode each of the input patterns into di�erent patterns of activation at each succes-
sive intermediate layer of units (called hidden layers), so that the appropriate output pattern
may be successfully generated at the output layer. This process of learning to recode input
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Figure 2: Basic connectionist network: This schematic diagram of a simple network
depicts layers as rectangles, units as shaded circles, and weights as arrows. In this standard
feed-forward three-layer network, activation begins at the bottom in the Input Layer, proceeds
upwards through the Hidden Layer, and ends in the Output Layer. Learning is accomplished
by propagating errors from the Output Layer back through the network to the Input Layer.

patterns into intermediate patterns of activation spread across the hidden layers amounts
to the development of distributed internal representations of the input information by the
network itself.

The ability of connectionist models to develop their own distributed internal representa-
tions|or hidden representations|is an extremely important property of this class of models,
and provides the basis for placing them in the subsymbolic corner of Figure 1. Individual
hidden units participate in the simultaneous creation of many di�erent hidden representa-
tions, which are superimposed on top of each other in the network, since di�erent hidden
representations are activated across the same set of hidden units depending on the current
input to the network. In this way individual units can be viewed as playing di�erent roles,
depending on which hidden representation is currently active.

1.4.3 BoltzCONS

BoltzCONS [Touretzky, 1990] is a system which stores and processes traditional symbolic
data structures such as lists and trees in a nontraditional fashion (see also Barnden in this
volume). The central component of BoltzCONS is a distributed memory which allows Lisp-
like data structures to be stored and retrieved. After storing a complex nested list structure
(i.e. a tree) in memory, the tree may be traversed by performing associative retrieval on the
distributed memory. The memory is implemented as a constraint-satisfaction connectionist
network containing a large number of units, each of which is con�gured to respond to a
randomly-speci�ed subset of all possible trees. The presence or absence of a speci�c tree in
memory is determined by how many of the tree's associated units are activated. Storing a tree
in memory is accomplished by activating all of the tree's associated units; similarly, deleting
a tree is accomplished by turning o� all of the units. Over time, due to the distributed nature
of the representations, storing and deleting from the memory causes a gradual degradation
of the memory's contents.
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In terms of Table 1, BoltzCONS's representations could be considered subsymbolic. The
symbol for a tree is distributed across many units in the memory and may be superimposed
over other symbols, as in many connectionist models. At any given moment, trees are present
in memory to some degree, depending on the total activation across their associated units,
rather than always being either completely present or absent. Thus, symbols in BoltzCONS
are more continuous than they are discrete and the ability to accurately retrieve them depends
on the current contents of the memory. On the other hand, these representations contain no
microsemantics; they are arbitrary and static. The nodes in the memory which will respond
to a given set of trees are �xed initially and remain bound to the same trees throughout
the processing. As in many symbolic systems, the representations in BoltzCONS rely on the
macrosemantics between the symbols for their functionality.

BoltzCONS combines aspects of both symbolic and subsymbolic paradigms, but does
not seem to be completely characterizable as either. Its representations are continuous and
distributed but are also static and arbitrary. For this reason it has been positioned in the
middle of the representation dimension of the continuum. Its composition is context-sensitive
and superimposed, positioning it on the subsymbolic end of the composition dimension of the
continuum. Finally its functionality depends on macrosemantics and therefore it has been
positioned at the symbolic end of the functionality dimension.

1.4.4 Copycat

Another system which lies in the Gap is Copycat, a program designed to solve idealized anal-
ogy problems [Hofstadter, 1984, Hofstadter and Mitchell, 1991]. These analogies are stated
in terms of letter strings: given that letter-string1 changes into letter-string2, what does
letter-string3 change into? A typical problem might be: \if abc! abd then ijk!?"

When presented with a particular analogy problem, Copycat gradually builds an internal
representation of the problem in terms of a set of basic concepts intrinsic to the program.
Constructing this representation entails building a mapping between corresponding pieces
of the problem, which then serves as a guide for producing a reasonably analogous answer.
Building the mapping is accomplished over time by the collective e�orts of a large number of
independent, small, locally-acting processes known as codelets executing in parallel. Individ-
ual codelets are responsible for building only small pieces of the overall mapping structure. At
any given time there may be several incompatible pieces of structure competing for inclusion
in the �nal mapping, in which case the winner is generally chosen according to the degree to
which it strengthens the consistency of the context in the already-existing structures. The
quality of the �nal answer produced by Copycat directly depends on the construction of a
strong �nal mapping, and the central task of the program is essentially to search for such a
mapping through a vast space of possibilities.

However, there is no overarching executive process monitoring the construction of the
mapping, or controlling the activity of the codelets. The global course of the processing|the
search for a good characterization of the problem through the space of all possible mappings|
emerges at a higher level, out of the sustained activities of many hundreds of codelets. Thus,
Copycat has a strong subsymbolic avor, at least along the functional dimension.

On another dimension, the representations developed by Copycat, namely the mappings
between letter strings constructed by the codelets, retain many of the qualities of tradi-
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tional symbolic representations. Structural components included in the �nal mapping are
either present or absent, although it is possible for representational structures to be only
tentatively present during the course of building the mapping. These virtual structures may
eventually acquire a permanent status in the �nal mapping, or they may be replaced by
stronger structures. The notion of partially-present representational components exists in
Copycat despite the symbolic nature of its representations, although to a lesser degree than
in BoltzCONS. Therefore Copycat has been placed in the upper, front, right corner in Figure
1.

In this section, we have positioned several models within the symbolic/subsymbolic con-
tinuum. In the remainder of the chapter we will examine the RAAM model in terms of the
three dimensions in Figure 1 and demonstrate that it belongs in the subsymbolic corner of
the continuum.

2 Recursive Auto-Associative Memory

Recall that RAAM is designed to allow traditional symbolic data structures such as trees
to be represented subsymbolically as distributed patterns of activation. The general archi-
tecture of RAAM is a three-layer feed-forward network of processing units, in which the
input and output layers contain equal numbers of units to allow for auto-association of the
patterns presented to the network. That is, given some pattern on the input layer, the net-
work must reproduce that same pattern on the output layer by �rst encoding the input into
some internal representation distributed across the hidden layer, and then decoding this hid-
den representation back to the original pattern on the output layer. The back-propagation
learning algorithm is used to perform the auto-association. Furthermore, the hidden layer
must be smaller than the input and output layers in order to force the network to accom-
plish the auto-associative mapping by creating compressed hidden representations. The set
of connections from the input layer to the hidden layer serve as the encoding (or composing)
mechanism, and the set of connections from the hidden layer to the output layer serve as the
decoding (or decomposing) mechanism.

Using the auto-association technique, a RAAM can encode general tree structures of vari-
able depth and �xed branching size into �xed-length distributed representations. The depth
may be arbitrary in that no speci�c upper bound is placed on the depth of the trees encoded,
just as there is no speci�c upper bound on the number of trees which may be stored in a single
RAAM network. Of course, as with any connectionist model, the number of patterns which
may be stored and retrieved accurately by any particular RAAM depends on the network's
size and the number of training patterns involved. But in principle, the RAAM model is
capable of encoding arbitrarily large recursive data structures into distributed, compositional
representations, and then recovering the underlying constituent structures out of which these
representations are composed.

Consider a tree to be represented in a RAAM as being structured in the following manner:
the leaves of the tree correspond to individual elements stored in the tree, and the internal
branching nodes specify the way these elements are related in the tree. Suppose we represent
each of the leaf elements by some unique pattern of activation of length n. The particular
encoding we choose for the elements is arbitrary, but the chosen patterns must all be distinct.
A RAAM for encoding a set of trees with �xed branching size k will consist of input and
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n units n units n units n units...

n units n units n units n units...

branch 1 branch 2 branch k-1 branch k

branch k-1 branch kbranch 2branch 1

Output Layer

Hidden Layer

Input Layer

Figure 3: General RAAM architecture: The general RAAM architecture is de�ned for
encoding and decoding trees of arbitrary branching factors. Here k branches, each of n units,
are compressed into n units.

output layers which both contain k groups of units|one group for each possible branch of a
tree node|with n units in each group, for a total of k � n units in each layer. The hidden
layer consists of a single group of n units (see Figure 3).

Starting with the representations for the leaves, we recursively construct representations
for each intermediate branching node by compressing the representations for each of its k

child nodes into a single representation for the branching node, of length n. The encodings
created for the internal branching nodes are saved and placed in the appropriate input slots
when creating the encoding for their internal parent node. We continue this process up the
tree until we have a compressed representation for the root node, which corresponds to a
single, encoded representation for the entire tree structure. We can encode a number of trees
using the same RAAM by simply performing this process for every tree we would like to
encode.

Once we have an encoded representation of a tree, we may reconstruct the entire tree by
utilizing the trained connections from the hidden layer to the output layer in the RAAM,
which e�ectively serve as a decoding mechanism. The representation for the root node is �rst
placed on the hidden layer, and the representations for each of the root node's children are
recovered by propagating the root node pattern through the hidden/output layer connections.
The rest of the tree is then recovered by recursively performing this operation on each of the
resulting child node representations, until the leaves are recovered. A decision procedure
must be speci�ed to determine when leaves have been recovered. Since the representations
for the leaves were chosen a priori, the decision procedure merely speci�es the allowable
range of continuous numerical values which will designate one of the original representations.
Concrete examples of the encoding and decoding procedures will be presented in the next
section.

The encodings produced by a RAAM do not explicitly reect the structure they represent.
Understanding the implicit structure in the representations often requires the use of analytical
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techniques such as cluster analysis and principal component analysis. In the next section we
describe a very simple experiment in which the RAAM encodings are small enough to be
dissected and examined without resorting to these more complicated analytical tools.

3 Analysis of a Simple Sequential RAAM Model

In the experiments described in this chapter, we shall use a slightly restricted version of the
general RAAM model discussed above, called a sequential RAAM. The sequential model is
just like the general version, except that the data structures which are stored and retrieved are
ordered lists or sequences of elements, rather than general trees. Any sequence of elements can
be represented as a simple left-branching or right-branching binary tree, so the sequential
model is really just a special case of the more general model. However, in the general
model, the size of the hidden layer representations must be exactly the same as that of
the representations chosen for the leaf elements, because for arbitrary trees it is impossible
to know beforehand whether a particular branch out of a branching node will contain the
representation for a leaf, or the representation for some other branching node. This is not
the case for a binary tree representation of a sequence of elements, since the left (or right)
branch always contains the representation for some leaf, and the other branch always contains
the representation for some other branching node. Thus, the representations chosen for
our sequence elements, and the compressed representations created by the network for the
sequences themselves, can di�er in length. One advantage of employing the sequential model
is that it allows us to use a larger number of processing units for the compressed hidden
representations, in order to improve the information storage and retrieval capacity without
having to change the representational scheme chosen for the sequence elements. There is also
no need to arbitrarily decide how the sub-trees will be grouped; the sequential model will
always branch to the side.

It is useful to consider how a sequential RAAM is analogous to a stack4 data structure.
The compression step is like the stack push operation and the decoding step is like the stack
pop operation. When a sequence of elements (represented as a left or right branching tree)
is compressed, the next element to be pushed and the current stack are given to the RAAM
as input. It then creates an updated version of the stack, containing the new element, on
its hidden layer. When a sequence is decoded, the representation of a stack is placed on the
hidden layer. The topmost element and the remainder of the stack are produced as output.

To gain some intuition into the types of representations formed by a sequential RAAM,
we devised the following very simple experiment. We trained a RAAM to encode sequences
of two symbols, A and B. The symbols were represented by a single bit, a binary digit, either
0 or 1. The training sequences consisted of all the possible combinations of length three of
the two symbols (see Table 2.) The input and output layers contained three units each|one
to represent the symbol (either A or B) and two to represent the encoded internal tree nodes.
The hidden layer contained two units. This architecture is referred to as a 3-2-3 RAAM and
is pictured in Figure 4.

After many learning trials with the training corpus, the RAAM's representational ac-
curacy was tested by �rst encoding one of the sequences into a compressed representation

4A stack is a data structure similar to a plate dispenser at a cafeteria. You may push a plate onto the top

of the stack, or you may remove (pop) a plate from the top. This is also known as last-in-�rst-out processing.
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Number Sequence

1 AAA
2 BAA
3 ABB
4 BBB
5 AAB
6 BBA
7 ABA
8 BAB

Table 2: Sequences in the Training Corpus of the 3-2-3 RAAM

Hidden Layer

Input Layer

Output Layer

h1 h2

w1
w2

o1 o2 o3

i1 i2 i3

h1 h2

i1 i2 i3

h1 h2

w1
w2

o1 o2 o3

Full RAAM Encoder Portion Decoder Portion

Figure 4: 3-2-3 sequential RAAM: This simple sequential RAAM takes in one symbol at a
time on the i1 unit. Units i2 and i3 take in the previous hidden layer activations (from units
h1 and h2). The leftmost diagram shows the entire RAAM network; the middle diagram
shows the encoder portion of the network; and the rightmost diagram shows the decoder
portion of the network.
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Empty A

B

B

Empty 
A

B

B

[B + [A + Empty]]

[B + [B + [A + Empty]]]

[B + [B + [A + Empty]]]

[B + [A + Empty]]

[A + Empty]

[A + Empty]

Encoding Decoding

Figure 5: Encoding and decoding in 3-2-3 RAAM: The left half of this �gure depicts the
encoding of the sequence ABB, and the right half depicts the decoding of the same sequence.
Notice that the decoding removes the symbols in the reverse order from that of the encoding.

and then immediately decoding that representation back into its constituent elements. If the
decoded constituents match the original sequence elements, then the RAAM has learned to
adequately represent that particular sequence.

Figure 5 depicts the steps required to encode and decode one of the sequences, ABB, in
the 3-2-3 RAAM. To encode it, the representation for an A, a 0, was placed in the input
symbol slot (unit i1 in Figure 4), and the representation for the empty stack, (0.25, 0.25),
was placed in the previous hidden layer slot (units i2 and i3 in Figure 4). Propagating
these activations forward produced a compressed representation of [A+Empty] on the hidden
layer. Next, the representation for B, a 1, was placed on unit i1, and the representation of
[A+Empty] created in the previous step was placed on units i2 and i3. Propagating these
activations forward produced a compressed representation of [B+[A+Empty]] on the hidden
layer. Finally in the third encoding step, a compressed representation of the entire sequence
is obtained. To decode, this compressed representation [B+[B+[A+Empty] is placed on the
hidden layer and activations are propagated forward to produce activations on the output
layer. Decoding the entire sequence also requires three steps, as shown on the right of Figure
5.

The testing revealed that the RAAM was unable to learn all eight sequences perfectly.
It produced decoding errors on the �rst element of sequences 4 and 8. This di�culty in
mastering the training corpus was due to the very restricted size of the hidden layer. However,
because the hidden layer was limited to two units, we could examine the RAAM's encodings
directly by plotting them in a two-dimensional graph, as follows.

First, a graph was constructed in which the y-axis represented the value of hidden unit
h2 and the x-axis represented the value of the hidden unit h1.5 Both of these values ranged

5This area is often called the representational space of a connectionist network. For every unit in the

hidden layer, there is a dimension in representational space. This example, containing two hidden units, can

be mapped in two dimensions.
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Figure 6: Plot of all 8 sequences of the 3-2-3 RAAM: This diagram shows the decoding
plots of each of the sequences from Table 2. Each plot begins with its sequence number in a
small box, travels in a clockwise motion, and ends at an arrowhead. The decision line de�nes
where the activation of unit o1 (see Figure 4) is 0.5.

between 0.0 and 1.0. Next, the RAAM's encoding of an entire sequence was plotted as the
�rst point. Then the RAAM was allowed to decode the last item in a sequence.6 After
decoding the last item, the encoding of the remainder of the sequence appeared on the two
rightmost output units (o2 and o3 in Figure 4). This was plotted as the second point. Then
the middle item of the sequence was decoded. Again the encoding of the remaining sequence
was plotted. This process was continued until the entire sequence had been decoded. Thus
each plot contains 4 points: (1) the encoding of the tree which represents the entire sequence;
(2) the encoding of the tree which represents the �rst two elements; (3) the encoding of the
tree which represents the �rst element; and (4) the encoding of the empty tree.

Figure 6 shows the decoding plots formed by all eight sequences trained in the 3-2-3
RAAM. The numbered boxes mark the beginning and the the arrowheads indicate the end
of each plot. Notice that each plot moves in a clockwise progression through the space.
Let us examine sequence 3, ABB, more closely. The point at the box represents the entire
sequence, in reverse order as on a stack|BBA. The next point represents the encoding of the
remainder of the tree after the �nal element has been decoded or popped o� the stack|BA.
The third point represents the tree after the middle element has been decoded|A. The �nal
point represents the empty tree.

How has the RAAM partitioned the hidden layer space to represent these sequences?

6Recall that the RAAM builds up its representation of a sequence from left to right, but when it decodes
the sequence it must reverse the process. So the elements of the sequence are returned in reverse order.
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One way to determine this is to examine the activations of unit o1 in the output layer of the
RAAM. When the activation of o1 is less than 0.5, an A has been decoded (since an A is
designated by a 0), and when the activation is greater than 0.5 a B has been decoded (since
a B is designated by a 1). If we could determine when unit o1's activation is 0.5, we could
see how the RAAM has used the hidden layer activations to encode the sequences. Referring
to Figure 4, o1's activation is given by the equation:

act(o1) = sigmoid((act(h1)� w1) + (act(h2)� w2) + bias(o1))

where act(x) is the activation of unit x, bias(x) is the internal threshold of unit x, and
sigmoid(y) = 1

1+e
�y . By setting act(o1) to 0.5 and substituting in the known values for w1,

w2, and bias(o1), the following equation is found, representing a line in the space of hidden
unit activations:

act(h2) = (1:78� act(h1))� 0:801

This line has been plotted in Figure 6 and labeled as the \Decision Line," since it divides the
representational space into an \A Side" and a \B Side."

So we can now see that the RAAM has clustered all of the encodings according to whether
the topmost element in the stack is an A or a B. All points to the right of the diagonal line
designate encodings containing a B as the next element to be decoded, while all points to the
left of the diagonal designate encodings containing an A as the next element to be decoded.
The two sequences that were decoded incorrectly, 4:BBB and 8:BAB, both returned an A as
the �rst element rather than a B. This is reected in the fact that the third point in each of
their plots is to the left of the diagonal, instead of to the right, as it should be.

The RAAM has also partitioned the hidden layer space in at least one other way: all plots
which begin above the horizontal line act(h2) = 0:30 (this line is not shown in the �gure),
represent sequences whose middle element is a B (sequences 3, 4, 6, and 7). Similarly, all
plots which begin below this horizontal line represent sequences whose middle element is an
A (sequences 1, 2, 5, and 8).

Even in this very simple experiment, the richness of subsymbolic representations is evi-
dent. Hidden unit h2 can be viewed as a subsymbol which encodes the middle element in
the sequence. The combination of both hidden units can be viewed as a symbol encoding the
current top-most element in the sequence. Additionally, the two hidden units can be seen as
a symbol for the entire composed sequence structure. All of this information is simultane-
ously represented in the continuous numerical values of two simple units with respect to the
RAAM's weighted connections.

It is interesting to note that the values we chose to represent the empty tree had a dramatic
e�ect on how the RAAM partitioned the hidden unit space, and on its ability to accurately
represent all eight sequences. Recall that the empty tree values are the initial values placed
on units i2 and i3 in the �rst step of encoding a sequence. For the results discussed above,
the values 0.25 and 0.25 were used to represent the empty tree. Figure 6 shows that all eight
sequence plots do, in fact, end in the vicinity of this point. We ran other experiments in
which both of the empty tree values were 0.0, 0.5, 0.75, and 1.0. In the 0.0 case, the RAAM
could learn only four of the sequences correctly, and the decision line was much closer to
horizontal (rather than vertical as in the 0.25 case). When we tried the same experiments
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with a 4-3-4 RAAM, these e�ects were not found, suggesting that if given enough hidden
units for a given task, a RAAM can adequately represent the sequences without regard to
the particular empty tree values chosen.

4 Generalization

One of the most useful qualities of connectionist models such as RAAM is their ability to
learn a set of training examples and then to generalize from this training corpus to pro-
duce appropriate output for novel inputs. Connectionist models are often evaluated on their
generalization performance. If a model can respond suitably to the majority of novel inputs
(typically a performance of 75% or greater is considered good), then it must have developed a
veridical representation of the entire task environment and not simply of the trained portion.
More importantly, even when a connectionist model makes mistakes on novel inputs, these
mistakes often reect generalizations of the training task (as we will see in Section 5.3).

Several factors a�ect a network's ability to produce useful generalizations: the complexity
of the environment to be modeled, the contents and size of the training corpus, the number of
exposures to the training corpus, and the size of the hidden layer (in three-layer feed-forward
networks). If the training corpus does not contain a diverse enough sampling of the possible
inputs, the network will only be able to respond reasonably well to novel inputs which are
closely related to the training examples. If the network is trained until it responds perfectly to
all of the training examples, or if the hidden layer is very large, it may succeed at the training
task by simply memorizing every example, rather than forming useful generalizations. Finally,
as we have already seen with the 3-2-3 RAAM, if the hidden layer size is too restricted, the
network may not be able to learn the training examples adequately, although it may still
form useful generalizations about the examples it does learn.

Consider the 3-2-3 RAAM once more. Since it was trained on all of the possible sequences
of length three, there were no remaining novel sequences with which to test its generalization
abilities. Instead, we devised a di�erent kind of generalization test. We again represented
the hidden layer activation space as a two-dimensional graph, just as in Figure 6. Then
we selected a sample point from this activation space, placed it on the hidden layer of the
trained RAAM, and decoded it for a single step. This produced another point in the hidden
layer activation space on the output units o2 and o3. We plotted the original point and its
decoded result as a vector with the arrowhead ending at the decoded result. Figure 7 shows
how a large number of these sample points decoded to produce the next point in sequence.
Although most of these sample points did not correspond to any of the trained sequences,
the RAAM's outputs all followed the same trends observed for the trained sequences. The
vector �eld moves in a counterclockwise direction through the space; vectors originating near
the edges of the space are typically long, often crossing the decision line; and the overall
tendency of the �eld is to converge towards the vicinity of the empty tree point (0.25, 0.25).
The 3-2-3 RAAM's responses to novel inputs closely follow its responses to trained inputs.
It has formed generalizations of the training data in a way that allows it to make reasonable
responses to novel data.

In the remainder of the experiments to be described, we use generalization tests as one
method for evaluating: (1) whether the RAAM itself has developed useful representations,
and (2) whether additional networks which take these RAAM representations as input can
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Figure 7: Generalization in the 3-2-3 RAAM: The same technique as shown in Figure 6
was used, except that the decoding was begun at points all over the plane and was followed
for only one step. This illustrates the generalization ability of the network.

generalize over them in an interesting way.

5 RAAM-encoded simple sentences

The simple sequence experiments performed on the 3-2-3 RAAM reveal some of the potential
o�ered by subsymbolic representations. To explore this potential more fully we devised a sim-
ilar but more complicated set of experiments where sentences were represented as sequences
of words. A corpus of two and three word sentences was created using a small grammar, a
tarzan grammar if you will, and then encoded by a sequential RAAM. Here we will describe
the generation of the sentences from the grammar, specify the RAAM architecture used, and
perform an analysis of the RAAM's encodings of the sentences.

We chose natural language as the domain for these experiments because it requires com-
plex, structure-sensitive operations that have traditionally been modeled in the symbolic
paradigm. These RAAM experiments are presented to illustrate the contrasting styles of
representation, composition, and functionality available in subsymbolic models, and should
not be construed as a linguistic model.

5.1 Creation of Simple Sentences

A trivial program to generate English-like sentences was written to produce two and three
word sentences from a set of 26 words (15 nouns and 11 verbs). An additional word, stop, was
used to indicate the end of a sentence. The words were described by the lexical categories
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Category Members

NOUN-ANIMATE tarzan jane boy cheetah chimp rhino

NOUN-AGGRESSIVE cheetah rhino bigfoot junglebeast

NOUN-EDIBLE coconut banana berries meat

NOUN-SQUISH banana berries

NOUN-MOBILE NOUN-ANIMATE + (bigfoot junglebeast jeep)

NOUN-SWINGER tarzan chimp

NOUN-HUNTER jane

NOUN NOUN-ANIMATE + (bigfoot junglebeast) +
NOUN-EDIBLE + (jeep tree rock)

NOUN-REAL NOUN { (bigfoot junglebeast)

VERB-FLEE ee

VERB-HUNT hunt

VERB-AGGRESS kill chase

VERB-SQUISH squish

VERB-MOVE move

VERB-EAT eat

VERB-PERCEIVE see smell

VERB-INTRANS see smell

VERB-EXIST exist

VERB-SWING swing

Table 3: Categories of lexical items used in sentence generator.
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Template Word1 Word2 Word3

1 NOUN-ANIMATE VERB-FLEE NOUN-AGGRESSIVE
2 NOUN-AGGRESSIVE VERB-AGGRESS NOUN-ANIMATE
3 NOUN-ANIMATE VERB-SQUISH NOUN-SQUISH
4 NOUN-ANIMATE VERB-EAT NOUN-EDIBLE
5 NOUN-ANIMATE VERB-PERCEIVE NOUN
6 NOUN-MOBILE VERB-MOVE
7 NOUN-ANIMATE VERB-INTRANS
8 NOUN-REAL VERB-EXIST
9 NOUN-SWINGER VERB-SWING
10 NOUN-HUNTER VERB-HUNT
11 NOUN-AGGRESSIVE VERB-HUNT

Table 4: Templates used in sentence generator.

given in Table 3. Note that one word may belong to several di�erent categories. For instance,
cheetah is a member of the following categories: NOUN-ANIMATE, NOUN-AGGRESSIVE,
NOUN-MOBILE, NOUN-REAL, and NOUN. The sentence templates given in Table 4 spec-
i�ed the ways that the lexical categories could be combined to form sentences. All of the
sentences were either of the form (NOUN VERB) or (NOUN VERB NOUN). There are 262

possible two-word sequences and 263 possible three-word sequences for a total of 18; 252 pos-
sible sequences; the grammar restricted this to a very small subset of 341 valid sentence. This
grammar was inspired by one used by Elman (1990) in his experiments on sentences for his
simple recurrent network architecture (see also Lee and Gasser, this volume). Table 5 gives
some examples of typical sentences produced by the generation program.

To represent these words as input to a RAAM, each word was randomly assigned an
individual code. The code consisted of 27 bits. We used a localist representation; for each
word one bit was on, the other 26 were o�. Each input symbol was orthogonal to all of the
others and had no microsemantics. For the majority of the experiments described below, the
corpus consisted of 100 unique sentences to be used for training and another 100 to be used
for generalization tests.

5.2 RAAM Processing of Sentences

The structure of the RAAM used is shown in Figure 8. The input is divided into a set of 27
word units and a set of 30 encoded units (from the previous hidden layer activations). Since
the words were given a localist representation, only one of the word units was on at a time.
The number of words used determined the number of word units needed. Determining an
appropriate number of encoding units was not as straightforward; the number should be large
enough to allow the RAAM ample space to successfully compress and reconstruct trees of
the required depth, but small enough to allow useful generalizations to develop. The number
of encoding units was chosen by sampling the RAAM's performance over a small number of
tests with the hidden layer size ranging from 20 to 50. By this trial-and-error process, the
hidden layer size was set to 30 units.

Recall that this is not a general RAAM, but a sequential RAAM (the left set of units
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Template Example sentence

1 jane ee junglebeast
2 cheetah kill chimp
3 boy squish banana
4 rhino eat meat
5 bigfoot see jeep
6 tarzan move
7 chimp smell
8 tree exist
9 tarzan swing
10 jane hunt
11 junglebeast hunt

Table 5: Sentences generated from the categories and templates.

27 Word Units    30 Prior-Hidden Units

30 Hidden Units

30 Prior-Hidden Units27 Word Units    

Output Layer

Hidden Layer

Input Layer

Figure 8: RAAM architecture used for simple sentence experiments: Sentences from
the tarzan grammar were encoded using this network architecture.
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always encodes a single element and the right set of units encodes the rest of the binary tree).
The primary reason we chose to use the sequential model rather than the general model was
that we didn't want to make any prior commitment to a particular syntactic structuring.
With the general model, it would be necessary to structure the input as some form of parse
tree, with the internal units representing syntactic groupings such as noun phrases or verb
phrases. We wanted to make as few assumptions as possible about the form of the input,
and so the simpler sequential version was more appropriate.

Treating each sentence as a sequence of words, we trained a 3-2-3 RAAM network to read
in one word at a time, from left to right, as in the simple RAAM experiment above. The 100
training sentences were presented in a random order. The hidden units were cleared between
sentences. After approximately 21,000 presentations of each sentence, training was halted.

To test the accuracy of the RAAM's performance, the sentences were encoded into a
distributed representation and decoded back into their localist representation. A decoding
was considered an error when the activation of the correct word unit did not exceed 0.5, or if
another word was more strongly active than the correct word unit. The 100 trained sentences
and 80% of the 100 new sentences were decoded perfectly. In 15 of the new sentences which
caused errors, all of the correct word units were activated, but the activation was not above
0.5 for at least one of the words in each sentence. These errors could probably be alleviated
if the RAAM were to be trained for a longer time. In each of the other 5 sentences which
produced decoding errors, one word was decoded as another word. This is a much more
serious error. Some of these severe errors can be explained by examining the training corpus
more closely. The average frequency of the 11 verbs in the 100 trained sentences was 9%.
The average frequency of the 15 nouns was 12.3%. In two of the �ve errors, the RAAM
decoded jane rather than the correct word jeep. In another, it decoded ee instead of swing.
The frequency of jeep (1%) was well below the average for nouns. The RAAM may not have
had enough examples over which to generalize a representation of jeep. In the swing case,
the random sentence generator did not generate a single sentence containing that particular
word for the training corpus. Therefore it is not surprising that the RAAM was unable to
decode it correctly when it was presented with it for the very �rst time.

It is interesting to note that even when the RAAM made a serious mistake such as
decoding the incorrect word, the word it usually returned was of the same grammatical type.
For instance, a noun was often substituted for another noun (i.e. jane for jeep.) Thus it
appears that the RAAM is making useful generalizations in its encodings.

One �nal set of generalization tests reveals the context-sensitive quality of the RAAM's
compositions. We created 20 ungrammatical sentences and tested whether they could be
decoded correctly. Some of these sentences were ungrammatical in very subtle ways. For
example tarzan chase bigfoot is ungrammatical because tarzan is not a member of the NOUN-
AGGRESSIVE category, and bigfoot exist is ungrammatical because bigfoot is not a member
of the NOUN-REAL category. The majority of the test sentences were ungrammatical in
more obvious ways. For instance berries chase meat is ungrammatical because chase requires
a subject from the NOUN-AGGRESSIVE category and an object from the NOUN-ANIMATE
category, while eat tree eat does not even follow the (NOUN VERB NOUN) sentence struc-
ture. The RAAM could only decode 35% of the novel ungrammatical sentences correctly as
opposed to the 80% reported earlier for the novel grammatical sentences. Of the ungram-
matical sentences decoded correctly, 86% were only subtly ungrammatical. Since the RAAM
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had di�culty encoding and decoding ungrammatical sentences, it appears that it has taken
advantage of the regularities in the grammatical training corpus to form its hidden repre-
sentations. Clearly in these experiments, the RAAM's ability to accurately represent novel
sentences was context-sensitive. However, RAAMs can exhibit systematicity within the train-
ing context and on novel inputs which mirror the training environment [Chalmers, 1990a].

5.3 Analysis of Sentence Encodings

To examine the RAAM's development of generalizations more directly, a cluster analysis,
based on Euclidean distance, was performed on the encoded representations of the 100 trained
sentences. This procedure clusters similar patterns together for comparison, collapsing a 30-
dimensional space into a compact tree structure. Figure 9 shows the general structure of the
entire clustering, and one sub-cluster of 26 sentences in detail.

At �rst glance, the clustering seems to be based mostly on the last word of the sentence.
For example, there is a large cluster of sentences near the bottom of Figure 9, all of which
end in boy. Although this is sometimes the case, it is not the whole story. For instance, the
middle cluster, which includes rhino see rhino, contains sentences of the form: aggressive
nouns perceiving aggressive nouns. Some of these sentences end with rhino and some with
bigfoot. Two other sentences ending with rhino (bigfoot chase rhino and bigfoot kill rhino)
have been clustered separately. These two separate sentences contain aggressive verbs, rather
than perceiving verbs as in the middle cluster. Sentences ending with the word meat have
also not all been clustered together; the smelling of meat has been separated from the eating
of it.

On the portion of the cluster analysis not shown in detail, all sentences ending with the
words berries and banana have been clustered together. This cluster is quite far away from the
one shown on the right side of the �gure. The other two edible nouns were coconut and meat.
The only di�erence in the ways these two sets of nouns were used was that berries and banana

were squishable while coconut and meat were not. Clearly the RAAM's representations of
these words are sensitive to the context in which they are used.

Another indication of the RAAM's attention to context is evident in its representations of
sentences of the form NOUN-ANIMATE eat meat and NOUN-ANIMATE smell coconut. In
both of these clusters, the sentences in which NOUN-ANIMATE is also aggressive are closer
together than those sentences in which NOUN-ANIMATE is non-aggressive. So in sentences
where the last two words are identical, the RAAM is using both the actual �rst word and its
context to disambiguate the sentences.

In summary, the cluster analysis of the sentence encodings provides some evidence that
the RAAM has developed generalizations of aggressive animates, squishable edibles, and
aggressive verbs. However, using the clustering of the sentence representations to make
inferences about the word representations is somewhat indirect. Elman has designed a more
direct method to examine his simple recurrent network's internal representations of words
[Elman, 1990]. We also applied this method to the RAAM.

For this method, the 100 sentences in the training corpus were again passed through the
encoder portion of the RAAM after the completion of training. The hidden layer activations
created by each word combined with the context of the current sentence were saved. For
the 286 words in the 100 sentences, we obtained 286 numerical vectors of length 30 (the size
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Figure 9: Sentence cluster analysis: A clustering of the RAAM's representations of the
sentences of the grammar is shown. The left tree shows the entire cluster of the 100-sentence
training corpus, while the right tree is an enlarged view of the boxed area.
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of the hidden layer). All of the vectors produced by a particular word were then averaged
together to create one composite vector for each of the 26 unique words. Each composite
vector reects all of the contexts in which a word has been used in the 100 training sentences.
These composite vectors are shown schematically in Figure 10. Some similarities between
these composite vectors stand out quite clearly; the activation of the sixth hidden unit (shown
in the sixth column in Figure 10) seems to encode whether the word is a verb or a noun. For
all of the verbs, the activation is quite high, and for all of the nouns (with the exception of
jeep), the activation is quite low. As noted previously, jeep only appeared once in the training
corpus, so the RAAM did not have an adequate number of examples to form an appropriate
representation for this word.

To further examine the similarities between these composite word vectors, another cluster
analysis was done (see Figure 11). Again it is clear that the RAAM has made a distinction
between verbs and nouns, although there are eight exceptions. Some of these exceptions
(hunt, jeep, and tree) appeared infrequently in the training corpus and can be explained in
this way. However, the other exceptions appeared more frequently than the average for verbs
and nouns. There are several possible explanations for these anomalies: (1) perhaps the small
size of the training set combined with the relatively large size of the hidden layer allowed the
RAAM to develop special representations for some of the words, and (2) perhaps the 100
sentences randomly selected for the training corpus were not representative of the grammar.
In either case, increasing the size of the training corpus should eliminate or decrease the
anomalous cases.

We tested this hypothesis by creating a new training corpus containing 300 randomly
selected sentences (from the 341 possible sentences) and training a new RAAM. As was ex-
pected, the clustering of the composite word vectors for the RAAM trained on the larger
corpus had fewer exceptions (�ve as opposed to eight). In addition, only two of these ex-
ceptions, jane and cheetah, were the same. The size and contents of the training corpus
clearly a�ected the RAAM's ability to generalize. In Elman's experiments in which he used
a similar grammar, the training corpus contained 10,000 sentences, and all of the network's
composite representations of nouns and verbs appeared in separate clusters [Elman, 1990].
Unfortunately, the simple tarzan grammar we devised restricted the number of valid sentences
drastically, so such an extensive test was not possible.

Further examination of Figure 11 reveals that the RAAM has made more than just
a noun/verb distinction; within the noun cluster there are additional discriminations. The
squishable foods, banana and berries, have been clustered together, as have the non-squishable
foods coconut and meat. The aggressive nouns within the noun cluster, bigfoot and rhino, are
also clustered together.

Although the RAAM was never given any explicit information about the tarzan grammar,
the cluster analyses reveal that its representations of the sentences and words do reect the
grammar's rules to a certain extent. How the words were used (their context) in the example
sentences directly a�ected the form of the RAAM's representations. Furthermore, the cluster
analyses shows that the representations do possess a microsemantics.
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Figure 10: Composite word vectors: The average hidden layer activations associated with
each word in its various contexts are depicted. One column of rectangles is shown for each
of the 30 units in the hidden layer. All activations fall in the range from 0 to 1. The area of
a rectangle encodes the magnitude of the average activation.
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Figure 11: Composite word vector cluster analysis: The clustering of the average hidden
layer activations associated with each word in its various contexts is shown. The number in
parentheses following each word indicates the number of times it appeared in the 100-sentence
training corpus. This is another method of visualizing the information in Figure 10.
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Figure 12: Feed-forward network architecture for detectors: The single output unit
was trained to produce a 1 for positive instances of the detection tasks and a 0 for negative
instances.

6 Holistic Operations

To explore the unique functional capabilities resulting from the accessible microsemantics in
RAAM representations, we designed experiments which take RAAM encoded sentences as
input and operate holistically on these representations to produce output. Three types of
experiments will be described: detectors, decoders, and transformers. Each experiment was
accomplished with a feed-forward network.

6.1 Detectors

All of the detection experiments followed the same basic outline: train a new feed-forward
network to take an encoded sentence representation from the RAAM and produce a simple
YES or NO as output if the presence or absence of some feature (or combination of features)
is detected in the input. This was accomplished by having a single output unit that is trained
to produce a 1 in a positive instance and a 0 in a negative instance. Figure 12 shows the
basic architecture of each detector network.

6.1.1 Aggressive-animal Detector

The premise for this experiment is straightforward: given a sentence, is a member of the
NOUN-AGGRESSIVE category present? For example, tarzan eat banana should produce a
NO, while junglebeast kill chimp should produce a YES. Note that this is not a detector for
an aggressive animal acting in an aggressive manner; the syntactic presence or absence of an
aggressive noun is all that matters. So the sentence bigfoot smell banana is also a positive
example for this detector.

The composed representation of a sentence was placed on the input units. Then the
original sentence was examined to see if one of the aggressive nouns appeared in the sentence,
and the output target was set accordingly. This feed-forward network was trained on 50 of
the sentences from the training corpus for approximately 300 trials.

The other 50 sentences from the original training corpus were then tested in the network
to see if the it had generalized the task. The network made 6 errors getting 88% of these
novel sentences correct. Four of the errors were false NO's, and two were false YES's. No
single characteristic seems to satisfactorily account for all of the errors.
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Following this test of generalization, the 100 sentences not trained in the RAAM where
encoded via the RAAM and tested in this network. This is a double test of generalization:
�rstly in the RAAM, and secondly in the feed-forward network. Surprisingly, the network
performed just slightly less accurately than in the previous test, scoring 85% correct over the
100 sentences.

6.1.2 Aggressive-animal-and-human Detector

This detector is similar to the previous one with an additional constraint: is there a member
of the NOUN-AGGRESSIVE category and a HUMAN in the sentence? This could be viewed
as the logical AND of two smaller detectors where both must be positive for the entire
detector to be positive. However, the network will of course build its own representation of
the problem. The HUMAN category includes the nouns: tarzan, jane, and boy and was not
explicitly part of the grammar.

The training proceeded exactly as above with the added constraints mentioned. The net-
work was trained for approximately 300 trials and performance was nearly identical. Again,
the network was tested on 50 RAAM-trained composite representations this time missing
8, for 84% correct. The network performed nearly the same on the 100 generalized RAAM
sentences missing 15 of 100 for 85% correct.

It is not surprising that 5 of the 6 representations that caused errors in the aggressive-
animal detector were also missed by the aggressive-animal-and-human detector.

It is interesting to note that the RAAM had trouble decoding some of the sentences that
the detectors processed correctly. In fact, of the 15 errors that the RAAM decoder made,
only two of those were ones that a detector had problems with also.

6.1.3 Reexive Detector

Although both of the previous detectors trained easily and generalized quite well, the following
experiment proved to be a tougher problem. A feed-forward detector was trained to produce
a YES if the subject and the object of the encoded sentence were the same. To ensure that the
corpus had adequate examples of these types of sentences and to remove two-word sentences, a
new data set was created. This corpus consisted of 28 reexive sentences(i.e., junglebeast smell

junglebeast), and 40 non-reexive sentences. The following verbs were considered reexive:
ee, chase, kill, smell, and see. Only the animate nouns plus bigfoot and junglebeast could
be used reexively (as de�ned by the grammar). Finally, the architecture of the detector
network was slightly modi�ed. The hidden layer was decreased to 15 units, in an attempt to
force the network to make useful generalizations.

A new version of the sentence encoding RAAM from Figure 8 was trained on the 68
sentence corpus. These encoded sentences were then used to train the new detector network
for 600 trials. After this training, two types of generalizations were tested: (1) generalizations
over the verb, and (2) generalizations over the noun (or the reexive word).

In the �rst case, the network was trained on the representation for sentences such as
bigfoot see bigfoot, and then given the novel representation for bigfoot smell bigfoot. All of
these types of encoded sentences were correctly detected as being reexive. The network
also correctly detected non-reexive encoded sentences over a verb, and therefore generalized
100% correctly.
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In the second case, the network was unable to master generalization over the noun. In the
training corpus, tarzan and jane never appeared in the same sentence together, nor did either
appear in the same sentence twice. The network was then given encoded representations
for sentences of the form tarzan X tarzan and jane X jane where X was one of the possible
reexive verbs. The network did not respond positively to any of these generalization tests.
When the network was given jane X tarzan and vice versa, it correctly responded with a
negative. However, it responded negatively in all cases indicating that it was not performing
the task satisfactorily.

After examining the network and the method of encoding, it seems that the network
was not easily �nding a strong relationship between the representation of a word used in
the �rst position and the representation of the same word used in the third position. If
a general relationship existed between these representations a straightforward method of
deciding if the words were the same would exist. However, the network failed to make this
generalization. We believe that this might have been caused by the fact that the grammar
was too constrained. By developing a more complex grammar, and allowing for deeper trees,
the network would have to conserve the representational space of each symbol. This might
force it to develop generalized representations so that representations of the same word used
in two positions would be more similar.

The three detector experiments show that a feed-forward network can detect the presence
and absence of particular features in the composed sentence representations produced by a
RAAM without decomposing the sentence into its constituent words. The question remains:
Is it only generalized features of the composed structures that are directly accessible in
subsymbolic representations, or are the actual constituents themselves accessible as well?

6.2 Parallel Decoding

We have seen that when a RAAM is trained, an encoder and a decoder are naturally created as
a by-product of auto-associating through a compressed hidden layer. By using these trained
connections, we are able to treat the hidden representation developed by a sequential RAAM
as a stack, so that the last symbol encoded into the stack is the �rst one decoded. But is this
sequential peeling-o� of one symbol at a time the only method to retrieve information from
the composite representation?

To address this question, we designed a feed-forward network to decode all of the words in
composed sentence representation in parallel (see Figure 13). The architecture of this network
is very similar to the detectors, however instead of having a single unit on the output layer,
each word of the sentence is represented on the output layer from left to right. The �rst word
of the sentence is trained to appear in the far left of the output, followed by the second word,
and third (if one exists).

The encoded representations of the �rst 50 sentences from the original RAAM corpus
were trained for approximately 7,200 trials. Attempting to decode the remaining 50 sentences
could result in a possible 150 mistakes: for each of the three-word sentences the decoder had
to correctly produce all three words and for each of the two-word sentences the decoder had
to correctly produce the two words and �ll the third output slot with no activation. The
network successfully decoded all but 29 of the words for an overall score of 81% correct.
When the network made a mistake, it again consistently selected a noun for a noun and a
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Figure 13: Feed-forward network architecture for parallel decoding: This shows the
architecture for decoding composed sentences in one step. The words of each sentence were
trained to appear on the Output Layer, from left to right. If only two words were in a sentence
then the rightmost output slot was trained to give no activation.

verb for a verb, much like the original RAAM.
The parallel decoder experiment demonstrates that the actual constituents of composed

structures in the subsymbolic paradigm are readily accessible.

6.3 Syntactic Transformations

So far the experiments employing the RAAM representations have been detectors and de-

coders, but it is also possible to build transformers which directly convert RAAM encoded
sentence representations into modi�ed RAAM encoded representations [Chalmers, 1990a].
Again, it must be emphasized that these transformations act directly on the subsymbolic
forms|no decoding is done to accomplish the task. Decoding is performed afterwards only
to test the accuracy of the transformation. The transformation task chosen for this exper-
iment was to convert encoded representations of the form X chase Y directly into encoded
representations of the form Y ee X. This transformation is considered syntactic because a
symbolic system need only apply syntactic rules to accomplish the task; no outside informa-
tion about the words or their relationships is needed.

For these experiments it was necessary to train a new RAAM with a new data set that
included sentences of the appropriate type. A new corpus was created with 20 sentences
containing the verb chase, the 20 corresponding sentences containing the verb ee, and 110
miscellaneous sentences. The RAAM architecture from Figure 8 was used. The RAAM was
trained for 3,700 trials on the new 150 sentences. Then every compositional representation
containing the word chase or ee was separated from the rest. In addition, 4 new chase

sentences and the corresponding ee sentences were also encoded in the RAAM and saved.
Sixteen of the RAAM-trained patterns that were formed by encoding the chase sentences

were then trained to be associated via the feed-forward network (shown in Figure 14) to the
sixteen corresponding ee encoded patterns. The feed-forward network quickly mastered the
task in approximately 75 trials.

After training, the feed-forward network was presented with 8 novel sentences, 4 of which
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"cheetah chase tarzan"

"tarzan flee cheetah"

Figure 14: Feed-forward network architecture for transformations: The network
was trained to take an encoded chase sentences as input and to produce the corresponding
encoded ee sentence as output.

had been trained in the RAAM and 4 of which had not. The transformation network success-
fully generalized the correct ee sentence representations 100% of the time for the RAAM-
trained input and 75% of the time for the doubly novel input (novel to the RAAM and to the
transformer). The one error made by the network was only on a single word; it transformed
junglebeast chase chimp into chimp ee cheetah. The accuracy of the transformation was
checked by taking the resulting output from the feed-forward network and decoding it in the
trained RAAM. Figure 15 shows the various steps that were necessary to accomplish this ex-
periment. First the sentence to be transformed was encoded with the trained RAAM. Then
the composed representation of the entire sentence was given as input to the transformation
network and the network converted this composed structure directly into another composed
sentence structure. Finally this output from the transformation network was decoded with
the trained RAAM.

The transformation experiment further demonstrates that subsymbolic representations of
symbol structures can be operated on in a holistic fashion that is not possible in traditional
symbolic systems.

7 Conclusions

In this chapter we have characterized the symbolic and subsymbolic paradigms as two op-
posing corners of an abstract space of paradigms. This space, we propose, has at least three
dimensions: representation, composition, and functionality. By de�ning the di�erences in
these terms, we are able to place actual models in the paradigm space, and compare and
contrast these models in somewhat common terms.

RAAM lies in the subsymbolic portion of the space. We have examined in detail the
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Figure 15: Holistic transformation process: This diagram shows each of the steps in
the transformation process: encoding a chase sentence, holistically transforming the chase

sentence into the corresponding ee sentence, and decoding the ee sentence.
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Figure 16: Temporary �gure: These representations of activations belong in the boxes in
Figure 15. Row 1 is the representation of cheetah + empty; Row 2 is chase + cheetah +

empty, etc.
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RAAM architecture, representations, compositional mechanisms, and functionality. In con-
junction with other simple feed-forward networks, we have exhibited detectors, decoders and
transformers which act holistically on the composed, distributed, continuous subsymbolic
symbols created by RAAM. These tasks are accomplished without the need to decode com-
posite structures into their constituent parts, as symbolic systems must do.

The RAAM model, developed quite recently, has extended the functionality of the sub-
symbolic paradigm a great deal. Pollack, the inventor of RAAM, compares RAAM's repre-
sentations to those of classical symbolism:

Like feature-vectors, they are �xed-width, similarity-based, and their content is
easily accessible. Like symbols, they combine only in syntactically well-formed
ways. Like symbol-structures, they have constituency and compositionality. And
like pointers, they refer to larger symbol structures which can be e�ciently re-
trieved. But, unlike feature-vectors, they compose. Unlike symbols, they can be
compared. Unlike symbol structures, they are �xed in size. And, unlike pointers,
they have content.7

In order to achieve the ultimate goal of computationally simulating human cognition, a
complex architecture seems warranted which takes advantage of the characteristics of both
extremes of the continuum|from the systematic macrosemantics of the symbolic paradigm
to the holistic operations and microsemantics of the subsymbolic paradigm. However, many
current models reside near the periphery of this paradigm space, staying close to one paradigm
in all aspects, or taking advantage of the other paradigm primarily along only one dimension.
Recently there has been an increased interest in building hybrid models in order to explore the
power achieved by combining the two paradigms [Dyer, 1990] (see also Kwasny in this volume
and Lange in this volume). It is our expectation that in the future, as systems become more
complex and ambitious, the Gap in the center will gradually be �lled with systems which
blend the capabilities of both paradigms in an e�ective way.
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