
Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College

Physics Faculty Research and Scholarship Physics

2013

Nonlinear instability in simulations of Large Plasma
Device turbulence
B. Friedman

T. A. Carter

M. V. Umansky

David A. Schaffner
Bryn Mawr College, dschaffner@brynmawr.edu

I. Joseph

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/physics_pubs

Part of the Physics Commons

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/physics_pubs/87

For more information, please contact repository@brynmawr.edu.

Custom Citation
B. Friedman, T. A. Carter, M. V. Umansky, D. Schaffner, and I. Joseph. 2013. Nonlinear instability in simulations of Large Plasma
Device turbulence. Phys. Plasmas 20, 055704.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship, Research, and Creative Work at Bryn Mawr College | Bryn Mawr College...

https://core.ac.uk/display/214021489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/physics_pubs?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/physics?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/physics_pubs?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/physics_pubs/87
mailto:repository@brynmawr.edu


ar
X

iv
:1

30
1.

05
36

v2
  [

ph
ys

ic
s.p

la
sm

-p
h]

  1
5 

M
ay

 2
01

3

Nonlinear instability in simulations of Large Plasma Device turbulence

B. Friedman,1, a) T.A. Carter,1 M.V. Umansky,2 D. Schaffner,1 and I. Joseph2

1)Department of Physics and Astronomy, University of California, Los Angeles,

California 90095-1547, USA

2)Lawrence Livermore National Laboratory, Livermore, California 94550,

USA

Several simulations of turbulence in the Large Plasma Device (LAPD) [W. Gekelman

et al., Rev. Sci. Inst. 62, 2875 (1991)] are energetically analyzed and compared

with each other and with the experiment. The simulations use the same model,

but different axial boundary conditions. They employ either periodic, zero-value,

zero-derivative, or sheath axial boundaries. The linear stability physics is different

between the scenarios because the various boundary conditions allow the drift wave

instability to access different axial structures, and the sheath boundary simulation

contains a conducting wall mode instability which is just as unstable as the drift

waves. Nevertheless, the turbulence in all the simulations is relatively similar because

it is primarily driven by a robust nonlinear instability that is the same for all cases.

The nonlinear instability preferentially drives k∥ = 0 potential energy fluctuations,

which then three-wave couple to k∥ ̸= 0 potential energy fluctuations in order to

access the adiabatic response to transfer their energy to kinetic energy fluctuations.

The turbulence self-organizes to drive this nonlinear instability, which destroys the

linear eigenmode structures, making the linear instabilities ineffective.

a)Electronic mail: friedman@physics.ucla.edu
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I. INTRODUCTION

Hydrodynamic turbulence often occurs in the absence of linear instability, e.g. turbulence

in pipe flow (Pouseille flow)1. Although many robust linear instabilities exist in magnetized

plasmas, nonlinear instability can arise as has been shown in many turbulence simulations.

Sometimes the instabilities were found to be of the subcritical2–7 or supercritical8,9 variety,

while at other times the nonlinear instability simply overpowered a particular linear instabil-

ity to drive the turbulence10–18. In the scenario applicable to turbulence in the Large Plasma

Device (LAPD)19 – in which the magnetic fields lines are straight and without shear – several

studies showed the turbulence to be driven by a nonlinear instability of this last type, where

the nonlinear instability imposed itself over a linear drift-wave instability10,11,14,18. One of

these18 used LAPD experimental parameters and profiles in the simulation and demonstrated

that the nonlinear instability was necessary to drive turbulence with characteristics similar

to that of the experiment. Now, these studies10,11,14,18 all ascertained that the mechanism

driving the nonlinear instability relies upon axial wavenumber transfers between k∥ = 0 and

k∥ ̸= 0 structures. The reason is that the turbulence self-organizes to preferentially drive

k∥ = 0 density and temperature fluctuations, taking energy from the density and tempera-

ture equilibrium gradients. But in order to access the adiabatic response, which transfers

energy into the dynamically critical E×B flows, the k∥ = 0 fluctuations must transfer their

energy through nonlinear three-wave decay into k∥ ̸= 0 fluctuations.

All of these straight magnetic field simulations, however, employed periodic boundary

conditions in the axial (field-aligned) direction. One can justifiably question the use of

periodic axial boundary conditions to model LAPD and wonder whether the nonlinear in-

stability is an artifact of this choice. The use of this boundary condition, for example,

prevents the fastest growing linear drift-waves in LAPD from being captured in the simu-

lation: with periodic boundary conditions the longest wavelength mode has its wavelength

equal to the length of the device whereas the fundamental mode (half-wavelength equal to

the device length) has a higher growth rate. This may be the reason why the simulations

produce k∥ = 0 structures. Would these disappear if the simulations are allowed access

to longer wavelength structures through different boundary conditions? Furthermore, the

actual LAPD axial boundary includes conducting structures; it is well known that sheaths

on metal walls can drive linear instabilities like the conducting wall mode20. Clearly, pe-
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riodic boundary simulations miss this wall physics. Axial boundary conditions do in fact

have a significant affect on the linear stability properties of the system, which is shown

in detail in Section III. And since the nonlinear instability relies upon very-long-parallel-

wavelength modes to operate, it is reasonable to speculate that the boundaries also might

have a significant affect on the nonlinear instability properties.

The real axial boundaries in LAPD are complicated. One side of the device contains a

hot, emissive cathode behind a mesh anode, and in front of that sits a biased limiter with

radius slightly less than the cathode radius21. The other side contains a floating mesh plate,

which is likely shielded by a layer of neutral gas (the plasma may be detached from the

plate on this end). Not only is it difficult to determine what the actual axial boundary

conditions are, it is also difficult to develop and implement models for the boundaries.

Thus, this paper takes a simpler approach of exploring the affect of non-periodic axial

boundary conditions on the nonlinear turbulent dynamics using various idealized boundaries,

leaving the calculation and implementation of physically realistic boundary conditions to

future work. The different axial boundary conditions used here include zero-value, zero-

derivative, and perfectly conducting metal plates, which can be modeled with a Bohm

sheath condition. The main finding is that the nonlinear instability is robust to changes

in boundary conditions: while the linear stability properties are modified significantly with

different boundary conditions, the nonlinear instability still dominates the turbulent drive

in all cases. In fact, the qualitative properties of the turbulence and the turbulent dynamics

are similar between the simulations. Quantitatively, there are some differences between the

simulations such as varying fluctuation levels and varying degrees to which the nonlinear

instability dominates the linear ones.

The paper is organized as follows: Section II presents the model and boundary conditions

used in the simulations, while Sec. III goes over the origins and properties of the linear

instabilities in the different simulations. Section IV develops the energetics equations that

are used in Sec. V to reveal the details of the nonlinear instability in the simulations.

Finally, Sec. VI explores the effect of the nonlinear instability on the mode structure of the

turbulence.
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II. THE SIMULATION MODEL

A Braginskii-based fluid model22 is used to simulate global drift wave turbulence in LAPD

using the BOUT++ code23. The evolved variables in the model are the plasma density, N ,

the electron fluid parallel velocity v∥e, the potential vorticity ϖ ≡ ∇⊥ · (N0∇⊥φ), and the

electron temperature Te. The ions are assumed cold in the model (Ti = 0), and sound wave

effects are neglected (vi = 0). Details of the simulation code, derivations of the model, grid

convergence studies, and analyses of simplified models may be found in previously published

LAPD simulation studies18,24–27.

The equations are developed with Bohm normalizations: lengths are normalized to the

ion sound gyroradius, times to the ion cyclotron time, velocities to the sound speed, densities

to the equilibrium peak density, and electron temperatures and potentials to the equilibrium

peak electron temperature. These normalizations are constants (not functions of radius) and

are calculated from these reference values: the magnetic field is 1 kG, the ion unit mass is

4, the peak density is 2.86 × 1012 cm−3, and the peak electron temperature is 6 eV. The

equations are:

∂tN = −vE ·∇N0 −N0∇∥v∥e + µN∇
2
⊥N + SN + {φ, N}, (1)

∂tv∥e = −
mi

me

Te0

N0
∇∥N − 1.71

mi

me

∇∥Te +
mi

me

∇∥φ− νev∥e + {φ, v∥e}, (2)

∂tϖ = −N0∇∥v∥e − νinϖ + µφ∇
2
⊥ϖ + {φ,ϖ}, (3)

∂tTe = −vE ·∇Te0 − 1.71
2

3
Te0∇∥v∥e +

2

3N0
κ∥e∇

2
∥Te

−
2me

mi

νeTe + µT∇
2
⊥Te + ST + {φ, Te}. (4)

In these equations, µN , µT , and µφ are artificial diffusion and viscosity coefficients used

for subgrid dissipation. They are large enough to allow saturation and grid convergence27,

but small enough to allow for turbulence to develop. In the simulations, they are all given

the same value of 1.25 × 10−3 in Bohm-normalized units. This is the only free parameter

in the simulations. All other parameters such as the electron collisionality νe, ion-neutral

collisionality νin, parallel electron thermal conductivity κ∥e, and mass ratio mi

me
are calculated

from experimental quantities. There are two sources of free energy: the density gradient due

to the equilibrium density profile N0, and the equilibrium electron temperature gradient in
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Te0, both of which are taken from experimental fits. N0 and Te0 are functions of only the

radial cylindrical coordinate r, and they are shown in Fig. 1. The mean potential profile

φ0 is set to zero in the model, and terms involving φ0 are not included in Eqs. 1-4. The

justification for this is that biasable azimuthal limiters in LAPD allow for the mean E ×B

flow and flow shear to be varied with high precision, even allowing the flow to be nulled

out21. The simulations in this paper use the N0, Te0, and φ0 profiles from the nulled out

flow experiment, justifying setting the mean potential profile to zero in the simulations.

Simulations also use density and temperature sources (Sn and ST ) in order to keep the

equilibrium profiles from relaxing away from their experimental shapes. These sources sup-

press the azimuthal averages (m = 0 component of the density and temperature fluctuations)

at each time step. The azimuthal average of the potential φ is allowed to evolve in the simula-

tion, allowing zonal flows to form, although they are relatively unimportant to the turbulent

dynamics18.

The terms in Poisson brackets are the E×B advective nonlinearities, which are the only

nonlinearities used in the simulations. The numerical simulations use finite differences in all

three dimensions and use cylindrical annular geometry (12 < r < 40 cm). The radial extent

used in the simulation encompasses the region where fluctuations are above a few percent in

the experiment. Therefore, the radial boundaries are fixed to zero value. The grid contains

128 radial points, 1024 azimuthal points, and 32 axial points. The grid resolves ρs in the

perpendicular plane and allows for spatial convergence of the solution27.

This study analyzes five turbulent simulations which will be referred to as (1) the periodic

simulation, (2) the n = 0 suppressed simulation (n is the axial wavenumber), (3) the sheath

simulation, (4) the Dirichlet simulation, and (5) the Neumann simulation. The periodic

and n = 0 suppressed simulations were also analyzed in a previous paper18. Both of these

simulations enforce periodic boundary conditions in the axial (z) direction. The n = 0

suppressed simulation adds an artificial sink-like contribution to Eqs. 1-4 which removes the

axial average (k∥ = 0 contribution, where n = k∥l∥/2π) of the fluctuations at each time step.

This n = 0 suppression eliminates nonlinear instability drive and allows the linear instability

to take over the turbulent drive18. The n = 0 suppressed simulation, therefore, serves as a

contrast to the periodic simulation in which a nonlinear instability drives the turbulence.

The sheath simulation, as its name implies, uses sheath boundary conditions on the

axial machine ends. Specifically, the sheath boundary condition for the parallel current is a
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linearized Bohm condition:

J∥ = N0(φ+ log
√

4πme/mi Te) (5)

where J∥ = −N0v∥e. The axial boundary for φ is set using this relation along with

Ohm’s law: mi

me
∇∥φ = νev∥e. The axial boundaries for the density and temperature fields are

implemented with zero-second-derivative boundary conditions. This is somewhat arbitrary,

and it is noted that stringent analytical and numerical calculations have recently been made

for such fields in the magnetic pre-sheath region28, but those have not been applied in

this simulation. The fourth (Dirichlet) simulation uses fixed zero-value axial boundary

conditions, while the fifth (Neumann) employes zero-first-derivative conditions to all fields.

As a first comparison, Fig. 2 shows a few statistical characteristics of the density fluctu-

ations for each of the five simulations along with the corresponding characteristics from the

experiment. The periodic simulation clearly has the most similar characteristics to those of

the experiment while the n = 0 suppressed simulation is most dissimilar. The fluctuations of

the sheath, Dirichlet, and Neumann simulations have similar statistical properties as those

from the experiment, however, the amplitude of the fluctuations is a bit smaller than the

experimental fluctuations in general.

FIG. 1. The profiles of density N0 and electron temperature Te0 used in the simulations normalized

to their peak values of 2.86 × 1012 cm−3 and 6 eV, respectively.
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FIG. 2. A comparison of the statistical turbulent properties of the density field. The figures show

a) the frequency spectrum, b) the pdf and c) the RMS level of the fluctuations as a function of

radius. The data are calculated from the experiment (black), periodic simulation (red), the sheath

simulation (blue), the n = 0 suppressed simulation (green), the Dirichlet simulation (magenta),

and the Neumann simulation (yellow). This color scheme is consistent throughout the paper.
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III. LINEAR INSTABILITIES

FIG. 3. The linear growth rates of the four simulations (the n = 0 suppressed simulation has the

same linear growth rate as the periodic simulation) along with the growth rate of the conducting

wall mode (CWM) as a function of azimuthal wavenumber m.

The model described by the equations of Section II contains a few linear instabilities that

can all act at the simulated scales. Two of these instabilities are of the electrostatic drift

wave type - one is driven by the density gradient and the other by the electron temperature

gradient. Both of these instabilities supply energy to the electrostatic potential through

parallel compression, called the adiabatic response, and are made unstable by the electron-

ion collisional dissipation. These instabilities act under all choices of parallel boundary

conditions.

The other instability is called the conducting wall mode (CWM) since it is driven by

the conducting wall sheaths on the parallel boundaries. Various terms in Eqs. 1-4 can be

eliminated to isolate the conducting wall mode. The reduced set of linearized equations is:
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∂tv∥e =
mi

me

∇∥φ− νev∥e, (6)

∂tϖ = −N0∇∥v∥e − νinϖ + µφ∇
2
⊥ϖ, (7)

∂tTe = −vE ·∇Te0 +
2

3N0
κ∥e∇

2
∥Te −

2me

mi

νeTe + µT∇
2
⊥Te, (8)

along with the axial boundary condition given in Eq. 5. The free energy source for this

instability is the electron temperature gradient, which is also the free energy for the thermally

driven drift waves. However, the adiabatic response is replaced here with a coupling to the

potential through the axial boundary condition.

For the experimental parameters and profiles used in the turbulent simulations, the linear

growth rates for the drift waves and the CWM are comparable. The growth rates of the

fastest growing linear eigenmode at a given azimuthal wavenumber are shown in Fig. 3. The

periodic, sheath, Dirichlet, and Neumann growth rate curves are found by simulating the

linearized versions of Eqs. 1-4 with their respective axial boundary conditions in BOUT++.

Therefore, both the density- and temperature-driven drift wave contributions are present

for these curves. The CWM curve is obtained by simulating Eqs. 6-8 with the sheath axial

boundary condition of Eq. 5, so there is no drift wave contribution to this curve due to the

absence of the adiabatic response in these equations.

The linear growth rates for the Dirichlet and Neumann simulations are markedly different

from those of the periodic simulation because the zero-value and zero-derivative boundary

conditions allow for more freedom of the axial structure. In other words, they allow for the

axial wavenumber n ≡ k∥l∥/2π to take on non-integer values (about 1/2 in this case) that

are more unstable than the n = 1 eigenmodes that are enforced by the periodic boundaries.

The sheath boundary condition has this affect as well, but more importantly it affects the

linear stability properties of the system at low azimuthal wavenumber m due to the presence

of the CWM contribution. The CWM is more unstable than the drift waves for m ! 30

but less unstable for m " 30, and the eigenmode with the highest growth rate has m = 20

for the sheath simulation as opposed to m = 60 for the pure drift wave simulations. The

linear sheath eigenmodes also reflect which of the linear instabilities is active at which

wavenumber. In other words, the sheath eigenmodes have CWM character at m ! 30 and

drift wave character at m " 40. This manifests itself as differences in axial and radial

structure as well as in phase relations between the different scalar fields. However, the
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linear differences are only significant in the end if they affect the turbulence dynamics. And

following a previous paper18, an effective way to study the turbulence dynamics is with an

energy dynamics analysis of the turbulent simulations.

IV. ENERGETICS FORMALISM

In order to perform an energy dynamics analysis on the simulations, expressions for the

energy and energy evolution must be derived from Eqs. 1-4. To start, an expression for the

normalized energy of the wave fluctuations in the model is defined as:

E =
1

2

∫

V

[

P0

(

(N/N0)
2 +

3

2
(Te/Te0)

2

)

+N0

(

me

mi

v2∥e + (∇⊥φ)
2

)]

dV, (9)

where P0 = N0Te0 is the equilibrium pressure. The 1
2P0(N/N0)2 term is the potential

energy due to density fluctuations, 3
4P0(Te/Te0)2 is the electron temperature fluctuation

potential energy, 1
2N0

me

mi
v2∥e is the parallel electron kinetic energy, and 1

2N0(∇⊥φ)2 is the

E × B perpendicular kinetic energy.

A more detailed look at the energetic processes comes from a spectral energy analysis. To

do this, each fluid field (N, Te, v∥e,φ) at a given time is Fourier decomposed as F (r, θ, z) =
∑

k⃗ fk⃗(r)e
i(mθ+kzz), where the subscript k⃗ represents the spectral wavenumbers, (m,n), and

both positive and negative wavenumbers are included in the sums. m is the azimuthal

wavenumber while n is the axial integer wavenumber. Note that the radial direction is not

spectrally decomposed because it’s not essential here. With this, the energy of each Fourier

k⃗ = (m,n) mode is

Etot(k⃗) =
1

2

〈

Te0

N0
|nk⃗|

2 +
3N0

2Te0
|tk⃗|

2 +
me

mi

N0|vk⃗|
2 +N0

∣

∣

∣

∣

∂φk⃗

∂r

∣

∣

∣

∣

2

+N0
m2

r2
|φk⃗|

2

〉

, (10)

where the brackets ⟨⟩ represent the radial integral:
∫ rb
ra

rdr. The energy evolution for each

Fourier mode of each field has the form:

∂Ej(k⃗)

∂t
= Qj(k⃗) + Cj(k⃗) +Dj(k⃗) +

∑

k⃗′

Tj(k⃗, k⃗
′). (11)

The index j stands for each field, (N, T, v,φ), and the sum over j gives the total energy

evolution. The derivation of Eq. 11 is given in the previous work18. Tj(k⃗, k⃗′) is the nonlinear
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energy transfer function that comes from the advective nonlinearities. It describes the

nonlinear energy transfer rate of fluctuations with k⃗′ = (m′, n′) to fluctuations with k⃗ =

(m,n). For example, a positive value of TN(k⃗, k⃗′) indicates that density fluctuations at

wavenumber k⃗ gain energy from density fluctuations at wavenumber k⃗′, with the process

mediated by flow fluctuations at wavenumber k⃗ − k⃗′.

The linear terms are broken up into three contributions in Eq. 11. Dj(k⃗) represents

energy dissipation due to collisions, artificial diffusion and viscosity, and the density and

temperature sources. Each contribution to Dj(k⃗) is negative. Cj(k⃗) contains the linear

terms dubbed “transfer channels”15. They are:

CN(k⃗) = Re
{〈

−ikzTe0vk⃗n
∗
k⃗

〉}

(12)

Cv(k⃗) = Re
{〈

−ikzTe0nk⃗v
∗
k⃗
+ ikzN0φk⃗v

∗
k⃗
− 1.71ikzN0tk⃗v

∗
k⃗

〉}

(13)

Cφ(k⃗) = Re
{〈

ikzN0vk⃗φ
∗
k⃗

〉}

(14)

CT (k⃗) = Re
{〈

−1.71ikzN0vk⃗t
∗
k⃗

〉}

(15)

First, note that the real part operators are written explicitly in these expressions since

the imaginary part of these expressions would cancel with the imaginary part of the corre-

sponding terms with −k⃗. Second, notice that CN(k⃗) + Cv(k⃗) + Cφ(k⃗) + CT (k⃗) = 0. This is

the reason why these terms are called transfer channels. They represent the transfer between

the different types of energy of the different fields (N,φ, Te ↔ v∥e), but taken together, they

do not create or dissipate total energy from the system. The only energy transfer between

different fields in this system is through the parallel electron velocity (parallel current) dy-

namics. There is no direct transfer between the state variables N,φ, and Te. Altogether,

the coupling through the parallel current is called the adiabatic response. It is an essential

part of both the linear and nonlinear drift wave mechanisms15,17. The adiabatic response

moves energy from the pressure fluctuations to the perpendicular flow through the parallel

current.

Finally, the Qj(k⃗) terms represent the fluctuation energy sources. They are:
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QN (k⃗) = Re

{〈

−
imTe0

N0r
∂rN0φk⃗n

∗
k⃗

〉}

(16)

Qv(k⃗) = 0 (17)

Qφ(k⃗) = 0 (18)

QT (k⃗) = Re

{〈

−
3

2

imN0

Te0r
∂rTe0φk⃗t

∗
k⃗

〉}

(19)

QN(k⃗) is the energy extraction from the equilibrium density profile into the density

fluctuations. This term may have either sign depending on the phase relation between φk⃗

and nk⃗, so it can in fact dissipate fluctuation potential energy from the system as well as

create it at each k⃗. QT (k⃗) is completely analogous to QN(k⃗) but for the temperature rather

than the density. Qv(k⃗) and Qφ(k⃗) are zero because the parallel and perpendicular flow

fluctuations obtain energy only through the adiabatic response, not directly through the

free energy in the equilibrium gradients.

V. ENERGY DYNAMICS RESULTS

The diagrams in Fig. 4 summarize the flow of energy for the periodic and sheath simula-

tions. Each of the functions, such asQN(m,n), is a function ofm and n, making visualization

of all of these functions difficult. So the terms in the diagrams are summed over m. Addi-

tionally, all of the n ̸= 0 terms are summed over as well. The n = 0 contribution is separated

from the other n components because the n = 0 ↔ n ̸= 0 dynamic is the primary factor that

determines whether the linear instability or the nonlinear instability dominates the energy

drive18.

In these diagrams, the source of energy into the fluctuations is free energy in the equilib-

rium gradients, ∇N0 and ∇Te0. The arrows labeled QN and QT represent energy injection

from the equilibrium gradients into the fluctuations, n(k⃗) and t(k⃗). The four Q arrows con-

tain values that sum to 100 (by choice of normalization). Since the Q pathways are the only

pathways that deposit net energy into the fluctuations, the numbers in all arrows represent

a percentage of the total energy injected into the system. Now, a majority of the energy

deposited into the fluctuations (71% for the periodic simulation and 56% for the sheath

simulation) is from the density gradient into the n = 0 density fluctuations. This is not a
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FIG. 4. Summary of the energy dynamics for the a) periodic case and b) sheath boundary case.

Each arrow contains the sum over all m. The 0’s in the parentheses represent the n = 0 modes

while the !0’s represent a sum over the n modes for n ̸= 0. The values in the arrows represent the

percentage of total energy that goes through the channel represented by the arrow. The size of

the arrows gives a rougher but more visual indication of the amount of energy going through each

channel.

path allowed by the linear drift-wave instabilities in the system since they can only deposit

energy into n ̸= 0 fluctuations. In fact, in this turbulent state, more energy is transfered

by nonlinear three-wave coupling into n ̸= 0 fluctuations than by direct injection from the

equilibrium gradients. The three-wave coupling is represented by the TN and TT arrows.

The direction of these arrows is from n = 0 → n ̸= 0, which is opposite to that expected

from the common cascading type turbulent paradigm where the linear instability dominates

the turbulent injection dynamics and three-wave processes transfer energy to waves that are

linearly stable.

The reason why all of the non-dissipated energy that is injected into n = 0 density and

temperature structures goes into n ̸= 0 density and temperature potential energy structures
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rather than into n = 0 kinetic energy structures is that potential to kinetic energy transfer

can only work through the adiabatic response, which requires n ̸= 0. Actually, in the sheath

simulation, potential energy can transfer to kinetic energy through the axial boundaries, but

this still requires n ̸= 0 and it works only through the temperature fluctuations, which are

less important than the density fluctuations in the simulations. Note, in fact, that boundary

contributions aren’t included in the energy dynamics calculations as they are insignificant.

So the main transfer channel from potential to kinetic energy, shown by the CN , CT , and

Cφ arrows, is the adiabatic response. The adiabatic response takes energy from the n ̸= 0

density and temperature fluctuations and transfers it into the parallel velocity fluctuations

(CN and CT , respectively). It then transfers some of this energy into n ̸= 0 potential

fluctuations (Cφ), while much of the fluctuation energy is ohmically dissipated (Dv).

The final step of the energy dynamics process is a three-wave axial wavenumber transfer

from potential fluctuations at n ̸= 0 to potential fluctuations at n = 0, which are of course

neccessary in making the QN(0) and QT (0) terms finite. Meanwhile, dissipation acts on all

fluctuations, which is quantified by theD arrows throughout. A couple of interesting features

are evident from the diagrams in Fig. 4. First, the turbulent dynamics in both simulations

are dominated by the nonlinear instability process described above and in Friedman et

al.18 rather than the paradigmatic process of linear instability energy injection followed by

nonlinear cascading. And second, the periodic and sheath simulations have qualitatively

similar dynamics despite the fact that the linear stability properties of the two cases are

qualitatively different. This is also true of the Dirichlet and Neumann simulations, although

their diagrams are not shown in Fig. 4. This speaks to the robustness of the nonlinear

instability.

A more compact way to see the similarity of the instability process in all of the simulations

is shown in Fig. 5. This figure shows the turbulent growth rate of the five simulations. The

turbulent growth rate is defined as the net energy injection into the fluctuations minus the

dissipation out of them, all divided by the total energy. The conservative transfers (C’s and

T ’s) are of course not part of the growth rates. Formally,

γ(k⃗) =

[

∑

j

Qj(k⃗) +Dj(k⃗)

]

/2Etot(k⃗), (20)

where the index j represents the different fields. Since the growth rates sum over the
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fields, it’s not as difficult to view them in their full wavenumber space (both in m and

n). However, almost all of the energy in the simulations is contained in n = 0 and n = 1

fluctuations, so n > 1 fluctuations are not shown in the figure. It should be noted, however,

that Fourier decomposing the non-periodic simulations (sheath, Dirichlet, and Neumann)

in the axial direction is less ideal than doing so in the periodic simulations (periodic and

n = 0 suppressed). Fourier modes are not as natural a basis in the non-periodic simulations,

and the n = 1 Fourier mode does not perfectly represent the linear eigenmode structure

as it does for the periodic simulations. A more detailed discussion of this point is left to

the Appendix, but in summary, the n = 1 Fourier mode does capture enough of the linear

eigenmode structures of the non-periodic simulations to make the Fourier decomposition

useful for this simulation.

Figure 5 illustrates the true dominance of the nonlinear instability in the generally positive

n = 0 energy growth rate and generally negative n = 1 growth rate for all of the simulations

except the n = 0 suppressed simulation. Take the periodic simulation as the clearest example

of this point since there is no ambiguity in the Fourier transform for this simulation. Fig. 3

shows the linear growth rate as a function of m only, but implicitly, n = 1 for the periodic

curve. The reason is that the linear eigenmodes of the periodic simulation are Fourier

modes and all eigenmodes with n > 1 have smaller γlin(m) than the n = 1 eigenmodes

and all n = 0 flute eigenmodes have large negative γlin(m) because the linear instability

mechanism doesn’t work when n = 0. On the other hand, the turbulent growth rate curves

in Fig. 5 for the periodic simulation have a very different nature than the corresponding

linear growth rate curves. For low m, the n = 0 turbulent growth rate is positive, while the

n = 1 turbulent growth rate is negative for all m. This reversal in sign is indicative of the

nonlinear instability. The sheath, Dirichlet, and Neumann simulations are not as easy to

analyze because when their most unstable linear structures are axially Fourier decomposed,

they contain pieces of all n components (their eigenmodes are not Fourier modes). However,

it’s clear that the turbulent growth rates are quite similar between these simulations and

to the periodic one, indicating that the same nonlinear instability mechanism is acting in

each of these cases as well. The similarity in the turbulent structures (see Fig. 2) also

points to this conclusion. This is in stark contrast to the n = 0 suppressed simulation,

which has an n = 1 growth rate similar to the linear growth rate (Fig. 3) and a negative

n = 0 growth rate. Note that even though the n = 0 fluctuation components are removed
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from the n = 0 suppressed simulation at each time step, n = 0 fluctuations are nonlinearly

excited (by three-wave transfer) by the n ̸= 0 fluctuations, and therefore, they do have

small but finite amplitude prior to their removal, which can be used to calculate the growth

rate of these modes. Furthermore, the turbulent growth rate of the n = 1 component of

the n = 0 suppressed simulation is slightly less than the linear growth rate due to the fact

that eigenmodes other than the fastest growing ones are nonlinearly excited in the turbulent

simulation, thus damping the growth rate. But this n = 0 suppressed growth rate picture

is just that of the turbulence paradigm of linear instability with cascading dynamics, which

is significantly different than the nonlinear instability picture of the other simulations.

FIG. 5. The turbulent growth rates with γ defined in Eq. 20. The n = 0 (solid) and n = 1

(dashed) growth rates are displayed as a function of m. The different colors represent different

simulations, consistent with the scheme used in Fig. 2

VI. LINEAR VS NONLINEAR STRUCTURE CORRELATION

Now it may be the case that in simulations dominated by a linear instability, the fastest

growing linear eigenmode dominates the system, nonlinearly transfering some energy to more

weakly unstable or even stable eigenmodes. In this case, a large portion of the energy may

remain in the fastest growing linear eigenmode29. In the case where a nonlinear instability is
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dominant, the linear eigenmode should have little bearing on the structure of the turbulence

and therefore little energy should be contained in this eigenmode. Therefore, a gauge of

whether a linear or nonlinear instability dominates a system is the fraction of energy in a

turbulent system that is contained in the fastest growing linear eigenmode. This may be

calculated by projecting the fastest growing eigenmode onto the turbulent state.

Formally, in the model considered in this study, the turbulent state is fully described by

four independent fields, which can be appended into a single vector of the spatio-temporal

field functions: fturb(r⃗, t) = {N(r⃗, t), Te(r⃗, t),∇⊥φ(r⃗, t), v∥e(r⃗, t)}. This vector may be de-

composed in a complete basis:

fturb(r⃗, t) =
∑

i,m

ci,m(t)ψi,m(r, z)e
imθ, (21)

where ψi,m(r, z) are time-independent spatial complex basis functions of the form ψi,m(r, z) =

{ni,m(r, z), ti,m(r, z),∇⊥φi,m(r, z), vi,m(r, z)}, and ci,m(t) are the complex time-dependent

amplitudes. The θ dependence of the basis functions has been explicitly imposed as a

Fourier basis. The total number of linearly independent basis functions is the number of

total grid points used in the simulation times the number of independent fields, which is four

in this case. Now, ψi,m(r, z) can be any linearly independent set of functions and need not

be the linear eigenfunctions of the system. In fact, the linear eigenfunctions of the equations

used here are not orthogonal, and are thus not very useful to consider. However, it is quite

useful to set ψ0,m(r, z) to the fastest growing linear eigenmode because this is the structure

of interest that is to be projected onto the turbulence. The other ψi ̸=0,m(r, z) comprise the

remainder of the orthonormal basis, and they must be different from the remaining linear

eigenfunctions in order to complete the orthogonal basis. It isn’t necessary for the purpose

of this study to actually compute these other basis functions, but if one were to compute

them, one might start with all of the linear eigenmodes and perform a Gram-Schmidt or-

thogonalization procedure, making sure to start with the fastest growing eigenmode in order

to preserve it. Using this procedure, Hatch et al.29 found that a significant fraction (∼ 50%)

of the energy in a turbulent state of ITG turbulence was contained in the fastest growing

linear eigenmode at each perpendicular wavenumber. Such a result, however, doesn’t require

knowledge of the other basis functions, and thus they are not computed here.

Now, to compute this fraction, first define an inner product that is energetically mean-
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ingful and that sets the orthonormality of the basis functions:

⟨ψi,m,ψj,m⟩ =

∫

wψ∗
i,m · ψj,mdV = δi,j . (22)

The weighting w is such that ⟨fturb, fturb⟩ = Eturb. Now from Eqs. 21 and 22, ⟨fturb, fturb⟩ =

Eturb =
∑

i,m |ci,m|2 and ⟨fturb,m, fturb,m⟩ = Eturb,m =
∑

i |ci,m|
2. Then, the amount of en-

ergy contained in the fastest growing mode (for each m) is given by the square of the

projection of the mode onto the turbulence: E0,m = |⟨ψ0,m, fturb,m⟩|
2 = |c0,m|2. The ratio

Rm = E0,m/Eturb,m is a measure of the fraction of turbulent energy contained in the fastest

growing linear eigenmode.

Of course, Eturb,m is easily calculated from the turbulent state, but E0,m in the turbulent

state can only be found with knowledge of the fastest growing eigenfunction. The fastest

growing eigenfunction, though, can be found easily by running a simulation from a random or

turbulent state with all of the nonlinearities removed from the model equations as was done

in Section III. After some time, the fastest growing eigenfunctions will come to dominate

the fluctuation structure. Then, a Fourier decomposition in m space will separate the

fastest growing eigenfunctions at each m, including the real and imaginary part of the

eigenfunctions (up to a time dependent complex constant, which is removed by normalizing

the eigenfunction). These eigenfunctions can then be projected onto the turbulent state

with the inner product defined in Eq. 22, giving E0,m.

The ratio Rm is shown in Fig. 6 for the five simulations. For the most part, the simulations

other than the n = 0 suppressed one have a small value of the ratio (Rm < 0.25) for all m.

This confirms that the turbulence largely self-organizes without regard to the linear physics.

The one exception is the Dirichlet simulation for m > 50, which has Rm ∼ 0.5. Most of

the energy in this and the other simulations, however, is at low m where the turbulent

growth rates are largest18, so these larger m eigenmodes don’t make a large impact on the

overall structure of the turbulence. In fact, Rm is below 0.1 for m < 40 for the periodic,

Dirichlet, and Neumann simulations, precisely the area where n = 0 structures dominate the

energy spectrum18. It is not surprising then that the fastest growing linear eigenfunctions,

which have little or no flute character, don’t make up much of the energy of the signal.

The sheath simulation shows more linear eigenmode dominance at low m because of the

relatively large CWM growth rate, but Rm is still only about 0.2, which isn’t enough for

the linear eigenmodes to dominate the turbulent structure. Also not surprising is that the
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fastest growing eigenfunctions make up a significant fraction of the energy in the n = 0

suppressed simulation. Where the linear drift wave instability (and the turbulent growth

rate) is the strongest (at m ∼ 50), Rm ∼ 0.5. The linear physics controls the n = 0

suppressed simulation, and the linear eigenmode structure certainly asserts itself in the

turbulence, but only to a certain degree (50%). Overall, Fig. 6 shows the relative strength

of the linear instabilities compared to nonlinear effects for each of the simulations. While the

nonlinear instability is dominant for all of the simulations other than the n = 0 suppressed

one, the linear instabilities do still act to varying degree in all of the simulations.

FIG. 6. The ratio Rm of the turbulent energy in the fastest growing linear eigenmode to the total

energy at each m for all of the simulations.

VII. CONCLUSION

The observation of filamentary k∥ = 0 structures is common in many different kinds

of experiments and simulations30–32. Not surprisingly, the presence of these structures is

usually attributed to linear flute-like instabilities such as flow-driven Kelvin-Helmholtz or

interchange instabilities rather than to nonlinear instabilities30–32. Due to natural limita-

tions in plasma turbulence experiments, one usually has to resort to indirect evidence to

gain insight into physical mechanisms of observed turbulence. On the other hand, numerical
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simulations have all spatial and temporal information available which allows one to per-

form detailed turbulence analyses, such as the energetics analysis performed in this paper.

This can make turbulence simulations (provided they are validated on observable data) an

important tool for uncovering underlying physical mechanisms.

Through simulation of a particular LAPD experiment, this paper has shown a nonlinear

instability to be the driving force behind the turbulence. More acurately, this paper has

extended earlier work18 that showed this. However, this extension is important because it

deals with the matter of axial boundary conditions, and the nonlinear instability depends

on axial wave dynamics, so the boundary conditions could have greatly affected this. And

although the various boundary conditions used here do have significant qualitative and/or

quantitative effects on the linear instabilities of the system, they do not affect the turbulence

in a significant way. Specifically, the nonlinear instability that preferentially drives k∥ = 0

structures remains robust to the change in boundary conditions. Quantitatively, the sheath,

zero-value, and zero-derivative boundary conditions do cause the linear instability to be

more competitive with the nonlinear instability, but this effect is not large enough to change

the qualitative picture.
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Appendix A: Non-periodic Fourier Decomposition

It is well known that Fourier reconstructions of signals that contain discontinuities or

non-periodic boundaries are subject to Gibbs phenomena. A clear indication of this is

the convergence properties of the Fourier reconstructions. Take a discrete signal with the

following Fourier decomposition:

f(x) =
N
∑

k=−N

f̂ke
2πikx, (A1)
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FIG. 7. Dn for a) The simulation with periodic axial boundaries displaying exponential convergence

and b) the simulation with sheath axial boundaries displaying algebraic convergence.

where the f̂k are ordered in the sum by the size of their absolute value with f̂0 being the

largest Fourier coefficient. The Fourier reconstruction of order n < N is then:

gn(x) =
n

∑

k=−n

f̂ke
2πikx (A2)

There are several types of convergences of the gn, one of which is the L1 norm. Defining

the difference between the original signal and the Fourier reconstruction of order n as Dn =
∑

x |f(x) − gn(x)|, one can look at the convergence of Dn as a function of n. For periodic

signals, Dn converges exponentially, while it only converges algebraically (power law) for

non-periodic or discontinuous signals.

Dn is plotted for the cases of the periodic and sheath simulations in Fig. 7. Even though
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the x-axis label n indicates the mode with the nth largest amplitude by construction of

Eq. A2, it also happens to correspond to the axial mode number for all but the last few

n. In other words, in both simulations, most of the energy is contained in n = 0 modes

followed by n = 1 modes and so on. Therefore, in reality, the axial Fourier decomposition

is a useful tool for even the sheath simulation despite the fact that Fourier modes are not

natural eigenmodes in this case.
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