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ABSTRACT

In this work, I examine specific families of Diophantine equations and prove that

they have no solutions in positive integers. The proofs use a combination of classi-

cal elementary arguments and powerful tools such as Diophantine approximations,

Lehmer numbers, the modular approach, and earlier results proved using linear forms

in logarithms. In particular, I prove the following three theorems.

Main Theorem I. Let a, b, c, k ∈ Z+ with k ≥ 7. Then the equation

(a2cXk − 1)(b2cY k − 1) = (abcZk − 1)2

has no solutions in integers X, Y , Z > 1 with a2Xk 6= b2Y k.

Main Theorem II. Let L, M , N ∈ Z+ with N > 1. Then the equation

NX2 + 2L3M = Y N

has no solutions with X, Y ∈ Z+ and gcd(NX, Y ) = 1.

Main Theorem III. Let p be an odd rational prime and let N , α, β, γ ∈ Z with

N > 1, α ≥ 1, and β, γ ≥ 0. Then the equation

X2N + 22α52βp2γ = Z5

has no solutions with X, Z ∈ Z+ and gcd(X,Z) = 1.
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Chapter 1

Introduction

In Alexandria, circa 250 A.D., Diophantus authored the multi-volume book Arith-

metica, sparking the development of mathematical notation and algebraically solving

various equations [23]. It is for this reason that equations solved in integers are named

for Diophantus. Specifically, a Diophantine equation is a polynomial equation in one

or more variables with integer coefficients. Diophantine analysis is the process of

solving Diophantine equations and inequalities for integer solutions.

In the early seventeenth century, Pierre de Fermat wrote, in the margins of his

edition of Arithmetica, that he had proven that the Diophantine equation

XN + Y N = ZN

has no integer solutions with XY Z 6= 0 and N > 2. His claim was named Fermat’s

Last Theorem and remained unsolved for hundreds of years. The final piece of the

proof was completed by A. Wiles [81] and Taylor and Wiles [71]. Now, the proof is

one of the most widely known examples of how Diophantine analysis has led to new

tools and techniques in mathematics.

1



2 CHAPTER 1. INTRODUCTION

Diophantine analysis continues to provide a multitude of alluring problems and

beautiful results. In this work, we prove three new results, as stated in the abstract,

showing that some specific families of Diophantine equations have no positive integer

solutions (see also [36–38]).

In Chapter 2, we review definitions and results that are relevant to the proofs

of the main theorems. Specifically, in Section 2.1, we review some algebraic number

theory including binary quadratic forms, which are used to construct Lehmer pairs

in the proof of Main Theorem II. In Section 2.2, we describe some results on Dio-

phantine approximations used to prove Main Theorem I. Lehmer pairs are defined

and discussed in Section 2.3. Finally, in Section 2.4, we state versions of the Modu-

larity Theorem. This theorem is key to the modular approach used in proving Main

Theorem III.

In each of the next three chapters, we restate one of the main results, give a brief

history of the problem, provide the necessary related results, and present the proof

of that main theorem.



Chapter 2

Background

2.1 Algebraic Number Theory

In this section, we give a short review of relevant terminology and results from al-

gebraic number theory. We define binary quadratic forms and relate these forms to

the class numbers of quadratic number fields (see [52,68] for more information on

algebraic number theory and [25,27,40] specifically for binary quadratic forms).

A number α ∈ C is called an algebraic number if it is a zero of a nonzero polynomial

f(X) =
∑k

i=0 aiX
i ∈ Q[X] with ak 6= 0. If f(X) is an irreducible polynomial, then

f(X) is called the minimal polynomial of α, ak is the leading coefficient of f(X), and

deg(f(X)) = k is its degree. We also say that k is the degree of α. The set of algebraic

numbers forms a subring of C, denoted Q. Fix Q for the remainder of this work.

A number field is a finite extension field of the rational numbers Q contained in

C. Let K be an arbitrary number field. Let α ∈ K and let f(X) be its minimal

polynomial. The zeros of f(X), denoted α(j) for 1 ≤ j ≤ deg(f(X)) are called the

conjugates of α. The product of all of the conjugates of α is given by the norm map.

For θ ∈ K, the norm, N : K → Q is defined by N(θ) =
∏k

j=1 θ
(j) ∈ Q.

3



4 CHAPTER 2. BACKGROUND

If α is a zero of some nonzero monic polynomial in Z[X], then α is called an

algebraic integer. The ring of integers of K, denoted OK , is the set of all algebraic

integers in K. It is well-known that OK is a finitely generated free abelian group and

thus has an integral basis {α1, α2, . . . , αk} where k = [K : Q]. The discriminant of

OK is disc(OK) = (det[α
(j)
i ])2, for 1 ≤ i, j ≤ k.

In OK , every nonzero ideal can be factored uniquely (up to order) into a product

of prime ideals. Let F ⊆ K be number fields and let p ⊆ OK and q ⊆ OF be prime

ideals. If qOK ⊆ p, then we say that p lies over q or q lies under p. Further, since

every number field contains Q, each prime ideal p lies over a unique rational prime p.

Given two ideals I, J ⊆ OK , the usual sum and product of I and J are the ideals

defined by

I + J = {a+ b | a ∈ I, b ∈ J}

and

IJ =

{
d∑
i=1

aibi | ai ∈ I, bi ∈ J, d ∈ Z+

}
.

Ideals I and J are equivalent if and only if αI = βJ for some α, β ∈ OK . The

equivalence class of I, denoted [I], is called an ideal class. The ideal classes form the

ideal class group under the multiplication induced by the product of ideals, [I][J ] =

[IJ ]. The identity element is the class of principal ideals, [OK ]. Therefore, s ∈ Z+ is

the order of an ideal class [I] if and only if s is the smallest integer such that Is is a

principal ideal. The size of the ideal class group, hK , is called the class number of K.

Thus, if s is the order of an ideal class, then s | hK . Note that hK = 1 if and only if

OK is a principal ideal domain.

A quadratic field is a number field of degree 2 over Q. We recall the following

well-known properties of quadratic fields. Each quadratic field can be written in the

form F = Q(
√
d) where d ∈ Z is square-free. Let d ∈ Z − {0} be square-free. If
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d 6= −1 or −3, then the only roots of unity in Q(
√
d) are 1 and −1. Further, if

d 6≡ 1 (mod 4), then OF = Z[
√
d] and has disc(OF ) = 4d, while if d ≡ 1 (mod 4),

OF = Z[(1 +
√
d)/2] and has disc(OF ) = d. So, in either case, α ∈ OF can be written

as α = U + V
√
d where U , V ∈ Z or U , V ∈ 1

2
Z− Z.

The class numbers of quadratic fields are closely related to the class numbers of

quadratic forms. A binary quadratic form is a polynomial in Z[X, Y ],

f(X, Y ) = aX2 + bXY + cY 2,

often denoted as f = [a, b, c]. The discriminant of f = [a, b, c] is D = b2 − 4ac. The

form is called positive definite if a > 0 and D < 0. If gcd(a, b, c) = 1, then f is said to

be primitive. Two quadratic forms f and g are equivalent, f ∼ g, if and only if there

exist u, v, w, z ∈ Z with uz − vw = 1 such that g(X, Y ) = f(uX + vY, wX + zY ).

An integer, D ∈ Z, is a fundamental discriminant if D is a discriminant of a

ring of integers of some quadratic number field. In other words, D is a fundamental

discriminant if D 6= 1, is square-free, and D ≡ 1 (mod 4) or if D/4 ≡ 2 or 3 (mod 4),

is square-free. It is easy to see that if f has a fundamental discriminant D, then f is

primitive.

Let k, x0, y0 ∈ Z with gcd(x0, y0) = 1 and let f = [a, b, c] with f(x0, y0) = k.

Then the expression f(x0, y0) is called a representation of k. By [40, Theorem 11.4.1],

there exist u, v, ` ∈ Z such that

x0u− y0v = 1, ` = (2ax0 + by0)v + (bx0 + 2cy0)u, and 0 ≤ ` < 2k. (2.1)

The uniquely defined number ` is called the characteristic number of the representa-
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tion k = f(x0, y0). By [40, Section 11.4], ` = `(f, x0, y0) also satisfies

`2 ≡ D (mod 4k) (2.2)

and

2ax0 + by0 ≡ −`y0 (mod 2k). (2.3)

Further, if two representations of k, f(x0, y0) = k = g(x1, y1), have the same charac-

teristic number, `(f, x0, y0) = `(g, x1, y1), then f ∼ g.

The following lemma, used in the proof of Theorem 22, is a special case of [40,

Theorem 11.4.3].

Lemma 1. Let a, c, k ∈ Z+. Let f = [a, 0, c] be a primitive quadratic form of

discriminant D with |D| > 4. Let x0, y0, x1, y1 ∈ Z with gcd(x0, y0) = gcd(x1, y1) = 1

be such that f(x0, y0) and f(x1, y1) are two representations of k. Then, `(f, x0, y0) =

`(f,−x0,−y0). Further, if `(f, x0, y0) = `(f, x1, y1), then

(x0, y0) = (x1, y1) or (x0, y0) = (−x1,−y1).

Let [f ] denote the equivalence class of a binary quadratic form f . It can be shown

that any two equivalent binary quadratic forms have the same discriminant. Thus,

all of the binary quadratic forms in an equivalence class have the same discriminant.

We call this the discriminant of the class. We now describe a binary operation on

equivalence classes of quadratic forms (see [25, Lemma 14.2.3]).

For equivalence classes [f ] and [g] of discriminant D, there exist primitive forms

f ′ = [a, b, c] ∈ [f ] and g′ = [r, s, t] ∈ [g] such that gcd(a, r) = 1 and b = s. Using this

notation, define the composition of equivalence classes by [f ][g] = [fg] where fg =

[ar, b, (b2−D)/4ar]. The set of equivalence classes of positive definite binary quadratic
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forms of discriminant D forms a finite abelian group of under this composition. For a

fixed D, let fD be a binary quadratic form of discriminant D such that fD(x, y) = 1

is a representation, for some x, y ∈ Z. Then [fD] is the identity element of the group.

It contains all binary quadratic forms of discriminant D that can represent 1.

The number of equivalence classes of positive definite binary quadratic forms of

discriminant D is the class number, denoted h(D). If D is a fundamental discriminant,

then h(D) = hF , where F = Q(
√
D) (see [27, Theorem 5.2.8]).

Let D ∈ Z. Let the Dirichlet character mod |D|, χ : Z→ C, be defined by χ(n) =(
D
n

)
, where (D· ) is Kronecker’s extension of the Legendre symbol. The Dirichlet L-

function of χ is defined by L(s, χ) =
∑∞

n=1 χ(n)n−s, for s ∈ C with <(s) > 1. Since

the Dirichlet characters are periodic and take only roots of unity as values, it can be

shown that, for |D| ≥ 3,

L(1, χ) < 2 + log(|D|)

(see [55, Lemma 8.16] for the proof). If D < 0 is the discriminant of a positive definite

binary quadratic form f , then h(D) is given by the formula

h(D) =
w
√
|D|

2π
L(1, χ),

where w is the number of pairs (x, y) such that f(x, y) = k is a representation,

which all have the same characteristic number (see [40, Theorem 11.4.3 & Theorem

12.10.1]). Further, if D is a fundamental discriminant, then the class number formula

for a quadratic field F = Q(
√
D) with D < 0 is given by

hF =
ω
√
|D|

2π
L(1, χ),

where ω is the number of roots of unity contained in F .
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Combining each of the class number formulas and the bound for the Dirichlet

L-function above yields a bound for the class numbers, stated explicitly in the lemma

below.

Lemma 2. Let D ∈ Z such that D < 0 and |D| ≥ 3. Then

h(D) <
w
√
|D|
π

(
1 + log

(√
|D|
))

.

If D is the discriminant of a field F , then

hF <
ω
√
|D|
π

(
1 + log

(√
|D|
))

.

We use the following two lemmas in proving special cases that arise in Chapter 4.

This first lemma [77, Lemma 3] is used in the proof of Theorem 27.

Lemma 3 (Wang and Wang). Let d ∈ Z+ be square-free. If d > 1, then h(−4d) < d.

Sketch of proof. Let d ∈ Z+ be square-free with d > 1. For a contradiction, suppose

that 16 ≤ d ≤ h(−4d). Since d > 1, −4d < −4 and so, by [40, Theorem 11.4.3],

w = 2. Then, by Lemma 2,

d ≤ h(−4d) <
2
√
| − 4d|
π

(
1 + log

(√
| − 4d|

))
=

4
√
d

π
log
(

2e
√
d
)
.

Let f : [4,∞)→ R be defined by f(z) = z − 4 log(2ez)/π. The authors prove that f

is positive and increasing for z ≥ 4. Thus, z > 4 log(2ez)/π for z ≥ 4. Since d ≥ 16,
√
d ≥ 4 and so d > 4

√
d log(2e

√
d)/π. Comparing this lower bound for d with the

upper bound yields

4
√
d

π
log
(

2e
√
d
)
<

4
√
d

π
log
(

2e
√
d
)
,
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a contradiction.

For the remaining possible values of d, Wang and Wang list the values of h(−4d)

and verify that d > h(−4d).

The next lemma is used in the proof of Main Theorem II. Its proof is similar to

that of Lemma 3.

Lemma 4. Let F = Q(
√
−mn) with m, n > 1 square-free relatively prime integers.

If m ≤ 6, then hF < 2n.

Proof. Let F be as in the statement of the lemma. Then, |D| = | disc(OF )| ≤ 4mn ≤

24n, since m ≤ 6. Also, since mn ≥ 2·2 = 4, the only roots of unity in F = Q(
√
−mn)

are 1 and −1, and so ω = 2. Suppose, for a contradiction, that 2n ≤ hF . By Lemma 2,

2n ≤ hF <
2
√

24n

π

(
1 + log

√
24n
)
,

and so

1 <
2
√

6

π
√
n

(
1 + log

√
24n
)
. (2.4)

Define f : [1,∞)→ R by f(r) = (2
√

6/π
√
r)
(
1 + log

√
24r
)
. The derivative of f

at r ≥ 1 is

f ′(r) =
−
√

6

πr
√
r

(
log
√

24r
)
< 0.

So, f is a decreasing function. By a direct calculation, f(51) < 0.995, and therefore

f(r) < 1 for r ≥ 51. Now, from inequality (2.4), 1 < f(n). Hence, n ≤ 50.

It follows that since m ≤ 6, we have mn ≤ 300. For arbitrary d ∈ Z+, there

are class number tables for Q(
√
−d) (see for example [18, Table 4]). By checking

the values of class numbers for Q(
√
−d) for 0 < d ≤ 300, we find that hQ(

√
−d) ≤ 22.

Since F = Q(
√
−mn) with mn ≤ 300, hF ≤ 22. By assumption, 2n ≤ hF , and so this
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implies that n ≤ 11. Again, using m ≤ 6 we conclude that mn ≤ 66. So, this time

checking the table for d ≤ 66, we find that hF ≤ 8. Again, by assumption 2n ≤ hF

and so n ≤ 4. Repeating this procedure, we find that n ≤ 1, which is a contradiction.

Hence, hF < 2n.

We now define and review some facts about biquadratic fields. We then prove

Lemma 5 which is used in the proof of Main Theorem II. A biquadratic field is a

degree 4 extension of Q with Galois group isomorphic to (Z/2Z) ⊕ (Z/2Z). Let K

be a biquadratic field. Then, there exist m, n ∈ Z distinct and square-free such that

K = Q(
√
m,
√
n). It is easy to see that K contains exactly three quadratic fields,

Q(
√
m), Q(

√
n), and Q(

√
mn).

Information about OK can be gleaned from information about the quadratic sub-

fields of K, as in the following lemma.

Lemma 5. Let K = Q(
√
m,
√
−n) with m 6≡ 1 (mod 4) and n > 1 positive square-

free relatively prime integers. If γ ∈ OK, then

γ = A
√
m+B

√
−n+ C

√
−mn+D

for some A, B, C, D ∈ 1
4
Z. Further, if γ2 ∈ Q(

√
−mn), then A = B = 0 or

C = D = 0.

Proof. Let K be as in the lemma and assume that γ ∈ OK . Let E1 = Q(
√
m), and

E2 = Q(
√
−n). Since m 6≡ 1 (mod 4), OE1 = Z[

√
m] and disc(OE1) = 4m.

If n ≡ 1 or 2 (mod 4), then OE2 = Z[
√
−n] and disc(OE2) = −4n. Since

gcd(m,n) = 1, we have gcd(4m,−4n) = 4 and so, by [52, Theorem 12],

OK ⊆
1

4
Z
[√
m
]
Z
[√
−n
]
.
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Therefore, γ = A
√
m+B

√
−n+ C

√
−mn+D for some A, B, C, D ∈ 1

4
Z.

If n ≡ 3 (mod 4), then OE2 = Z[(1 +
√
−n)/2] and disc(OE2) = −n. Since

gcd(m,n) = 1, we have gcd(4m,−n) = 1. By [52, Theorem 12],

OK ⊆ Z
[√
m
]
Z
[

1 +
√
−n

2

]
.

Hence, γ = A
√
m + B

√
−n + C

√
−mn + D for some A, B, C, D ∈ 1

2
Z, completing

the first part of the lemma.

Now, assume that γ2 ∈ Q(
√
−mn). Letting γ = A

√
m+B

√
−n+C

√
−mn+D,

we have

γ2 =
(
A
√
m+B

√
−n+ C

√
−mn+D

)2
= 2(AD −BCn)

√
m+ 2(ACm+BD)

√
−n+ 2(AB + CD)

√
−mn

+ (A2m−B2n− C2mn+D2)

Since γ2 ∈ Q(
√
−mn), the coefficients of

√
−n and

√
m in this equation must be zero.

So,

AD −BCn = 0 (2.5)

and

ACm+BD = 0. (2.6)

Combining these equations, we have AD2 +AC2mn = 0, implying that either A = 0

or D2 + C2mn = 0.

Assume that C and D are not both zero. Then, we have that D2 + C2mn > 0

and so A = 0. By equations (2.5) and (2.6), this implies that BC = BD = 0. Since

C and D are not both zero, B = 0. Therefore, we have that A = B = 0.
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Hence, either A = B = 0 or C = D = 0.

2.2 Diophantine Approximation

Diophantine approximation is the study of how closely an algebraic number α can

be approximated by a rational number r/s. In this section, we discuss some early

results on Diophantine approximation, we fix notation for and review some standard

properties of continued fractions, and state two results used in Chapter 3. (See [17]

for a brief history and see [45,56] for details on continued fractions.)

Let α ∈ Q − Q be of degree n ≥ 3 and let r/s ∈ Q. Since 1844, mathematicians

sought lower bounds for the difference between α and r/s of the form

∣∣∣α− r

s

∣∣∣ > c

sλ
(2.7)

with c = c(α, λ) and λ ∈ R. Liouville’s work [46], one of the earliest to be published,

proves such a lower bound with λ = n and with an effectively computable value of

c. In 1918, Thue [73] improved the exponent to λ = n/2 + 1, but his proof was not

constructive. In years following, Siegel [64], Dyson [34], Gel’fond [35], and Roth [62]

all made significant improvement toward λ = 2 + ε, for ε > 0. But again, the results

were ineffective, proving only the existence of some c.

On the other hand, given an algebraic number, α, continued fractions provide one

approach to finding rational approximations r/s ∈ Q such that |α−r/s| is small. Let

α ∈ Q. The simple continued fraction expansion of α,

α = a0 +
1

a1 +
1

a2 +
1

. . .

,
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with a0 ∈ Z and aj ∈ Z+, for j ≥ 1, is denoted α = [a0, a1, a2, . . .]. For j ≥ 0, the

number aj is called the j-th partial quotient of α and the value

pj
qj

= [a0, a1, . . . , aj] = a0 +
1

a1 +
1

. . . +
1

aj

,

where gcd(pj, qj) = 1, is the j-th convergent of α. The sequence of denominators, qj

satisfies the recursive formula, for j > 1,

qj = ajqj−1 + qj−2, (2.8)

with initial values q0 = 1 and q1 = a1. This implies that the sequence qj is increasing

for j > 1,

q0 ≤ q1 < q2 < . . . < qj.

The convergents of α satisfy

1

qj(qj + qj+1)
<

∣∣∣∣α− pj
qj

∣∣∣∣ < 1

q2j
. (2.9)

In fact, the convergents are the best approximations of α. More precisely, if r/s ∈ Q

satisfies the inequality ∣∣∣α− r

s

∣∣∣ < 1

2s2
, (2.10)

then r/s must be equal to one of the continued fraction convergents of α.

Combining inequalities (2.8) and (2.9), there is a standard lower bound using the

j + 1-st partial quotient, for each j > 1,

∣∣∣∣α− pj
qj

∣∣∣∣ > 1

q2j (aj+1 + 2)
. (2.11)
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So, the convergents are very good rational approximations of α, yet we still have lower

bounds for the difference between α and its convergents.

Another property of continued fractions that we use in Chapter 3 includes the fol-

lowing. The odd indexed convergents decrease toward α. Similarly, the even indexed

convergents increase toward α. So, for each j ≥ 0, we have

p2j
q2j

< α <
p2j+1

q2j+1

. (2.12)

Returning to the problem of finding lower bounds for |α−r/s|, we consider results

with α restricted to being of a particular form. In 1964, Baker [4] found an effectively

computable bound for the difference between any rational number and α = (a/b)m/n

with a, b, m, n ∈ Z+. In Chapter 3, we work with an algebraic number of the form

n
√

1 + 1/N with n, N ∈ Z+, and apply Baker’s theorem to obtain bounds.

First, for an integer n ≥ 2, define

µn =
∏

p prime

p|n

p1/(p−1). (2.13)

It is easy to see that µn is a multiplicative function, meaning that for m, n ∈ Z+

relatively prime, µnµm = µnm.

The following special case of Baker’s theorem [4] is used in the proof of Theorem 16.

Theorem 6 (Baker). Let n, N ∈ Z+ such that n ≥ 3. If 4N ≥ n2µn, then for any

r/s ∈ Q, ∣∣∣∣∣ n

√
1 +

1

N
− r

s

∣∣∣∣∣ > 1

4n(2N + 1)(2s)λ
,

where

λ = 1 +
log (2nµn (2N + 1))

log (4N/ (n2µn))
.
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Sketch of Proof. Let n, N ∈ Z+, as in the theorem. Let α = (1 + 1/N)1/n. Define a

hypergeometric function by

F (a, b, c, x) =
∞∑
j=0

(
j−1∏
k=0

(a+ k)(b+ k)

(1 + k)(c+ k)

)
xj,

for x ∈ R and a, b, c, k ∈ Q. Note that F satisfies the differential equation

x(x− 1)
d2F

dx2
+ ((1 + a+ b)x− c) dF

dx
+ abF = 0.

From the function F , Baker obtains sequences of single variable functions indexed by

a parameter t ∈ Z+. For example, he defines At(x) = F (1/n − t,−t,−2t, x). Using

these sequences of functions, he proves the existence of a pair of positive integers

(rt, st), for each t ≥ 1, satisfying 0 < |α − rt/st| < ct/st with ct = 3µn/(4N(4N)t).

Then, for a given r/s ∈ Q, Baker finds t0 ∈ Z+ such that (4N)t0 < 2s < (4N)t0+1.

Using (rt0 , st0), he derives the inequality in the theorem.

In 1997, Bennett [7, Theorem 1.3] improved upon the special case of Baker’s

result given in Theorem 6. In the proof, Bennett uses diagonal Padé approximants,

contour integrals, and counting primes in particular intervals, among other techniques,

to derive a sequence of good rational approximations to numbers of the form α =

(1 + 1/N)1/n. He applies some of Rickert’s work [61] to generate an effective lower

bound of |α− r/s| from the sequence of rational approximations.

Theorem 7 (Bennett). Let n and N be positive integers with n ≥ 3. If(√
N +

√
N + 1

)2(n−2)
> (nµn)n, then, for r, s ∈ Z+,

∣∣∣∣∣ n

√
1 +

1

N
− r

s

∣∣∣∣∣ > 1

(8nµnN)sλ
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with

λ = 1 +

log

((√
N +

√
N + 1

)2
nµn

)
log

((√
N +

√
N + 1

)2
/ (nµn)

) .

2.3 Linear Forms in Logarithms and Lehmer Pairs

In this section, after giving some definitions and a little bit of history, we state some

results on linear forms in two logarithms. These results are used later in this section

and in Chapter 3. We also discuss Lehmer pairs and use them in Chapter 4. (See [28]

for an overview of linear forms in logarithms and [15] for more on Lehmer pairs.)

Throughout this section, for α ∈ Q, let logα denote the branch of the logarithm

in which −π < =(logα) ≤ π. A linear form in logarithms is an expression of the form

n∑
j=1

bj logαj,

with n ∈ Z+ and, for 1 ≤ j ≤ n, αj ∈ Q and bj ∈ Z. Let

D =
[Q(α1, α2, . . . , αn) : Q]

[R(α1, α2, . . . , αn) : R]
.

For α ∈ Q, let k be the degree of α, ak the leading coefficient of the minimal polyno-

mial of α, and α(j) the conjugates of α, for 1 ≤ j ≤ k, as in Section 2.1. The absolute

logarithmic height of α is defined by

h(α) =
1

k

(
log |ak|+

k∑
j=1

max
{

log
∣∣α(j)

∣∣ , 0}) .
In 1935, Gel’fond was the first to publish a lower bound for a linear form in two

logarithms [28]. In 1966, Baker [5] improved on this by finding lower bounds for linear
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forms in logarithms for arbitrary n ∈ Z+. Many results arose from Baker’s work,

including bounds by Waldschmidt [76] and Laurent, Mignotte, and Nesterenko [41].

Below, we state two such results. The first, used in the proof of Theorem 16, is one of

Mignotte’s refinements [53, Theorem 2] of Laurent, Mignotte, and Nesterenko’s work

on linear forms in two logarithms.

Theorem 8 (Mignotte). Let b1, b2 ∈ Z+ and α1, α2 ∈ Q− {0} such that

Λ = b2 logα1 − b1 logα1 6= 0.

Let a1, a2, H, t, ρ ∈ R+ with ρ > 1. Set λ = log ρ and c = H/λ and let c0 ≥ 0 such

that c ≥ c0. Also, set

v = 4c+ 4 +
1

c
and m = max

{
25/2 (1 + c)3/2 , (1 + 2c)5/2 /c

}
.

Define f : (1,∞)→ R by

f(x) = log

√
x(1 +

√
x− 1)

x− 1
+

log x

6x(x− 1)
+

3

2
+ log

(
3

4

)
+

log x− log(x− 1)

x− 1
.

Further, assume that

H ≥ D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ f(dK0e)

)
+ 0.023,

ai ≥ max {1, ρ| logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2),

a1a2 ≥ λ2, A = max{a1, a1},

and

t =
1

λ2

(
1 + 2c

3c

)2

+
1

λ

(
2 + 2

√
1 + 2c

3c

)
,
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where

K0 =
1

λ

(√
2 + 2c0

3
+

√
2 (1 + c0)

9
+

2λ

3

(
1

a1
+

1

a2

)
+

4λ
√

2 + c0
3
√
a1a2

)2

a1a2.

Then

log |Λ| ≥ −1

λ

(
v2

9
+

4λv

3

(
1

a2
+

1

a2

)
+

8λm

3
√
a1a2

)2

a1a2

−max
{
λ (1.5 + 2c) + log(((2 + 2c)3/2 + (2 + 2c)2

√
t)A+ (2 + 2c)), D log 2

}
.

The other one of Mignotte’s refinements [15, Theorem A.1.3] of Laurent, Mignotte,

and Nesterenko’s work is the following theorem which is used in the proof of Theo-

rem 11.

Theorem 9 (Mignotte). Let b1, b2 ∈ Z+ and α ∈ Q such that |α| = 1, but α is not

a root of unity. Let

Λ = b1iπ − b2 logα.

Let λ ∈ R such that 1.8 ≤ λ < 4 and set

ρ = eλ, a = 0.5πρ+Dh(α), B = max{b1, b2, 13},

t =
1

6πρ
− 1

48πρ(1 + πρ/3λ)
, m =

(
1/3 +

√
1/9 + 2λt

λ

)2

,

H = max

{
3λ,D

(
logB + log

(
1

πρ
+

1

2a

)
− log

√
m+ 0.886

)
+

3λ

2
+

1

m

(
1

6πρ
+

1

3a

)
+ 0.023

}
.
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Then

log |Λ| > −(8mπρλ−1H2 + 0.23)a− 2H − 2 logH + 0.5λ+ 2 log λ− (D + 2) log 2.

Baker [6] applied his work on linear forms in logarithms to solving Thue equations.

A Thue equation is a Diophantine equation of the form F (X, Y ) = M , where M ∈ Z

and F (X, Y ) ∈ Z[X, Y ] is a homogeneous irreducible polynomial of degree at least 3.

The auxiliary polynomial of F is the polynomial f(X) = F (X, 1) ∈ Z[X]. In 1909,

Thue [72] proved that any such equation has at most a finite number of solutions. His

proof was not constructive and so did not lead to a method for finding solutions. In

1968, Baker [6] proved an effective version of Thue’s result. By using linear forms in

logarithms, Baker bound the magnitudes of the solutions for a given Thue equation.

However, the bounds were often too large to be practical [74].

It was Baker’s breakthrough that allowed Tzanakis and de Weger [74] to develop

an algorithm for solving Thue equations. They use a combination of lower bounds for

linear forms in logarithms, continued fractions, and a lattice-based reduction method

by Lenstra, Lenstra, and Lovász [44] (the LLL-algorithm). Tzanakis and de Weger’s

algorithm was modified by Bilu and Hanrot [14], who replaced the LLL-algorithm

with another continued fraction argument. They used this method with Voutier to

solve Thue equations in order to prove Theorem 11 on Lehmer pairs. We define Lucas

and Lehmer pairs next.

First, a Lucas pair is a pair (α, β) where α, β ∈ C are the distinct zeros of a

polynomial of the form

X2 − PX +Q

where P , Q ∈ Z − {0} are relatively prime with |P 2 − 4Q| > 4. Given a Lucas pair
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(α, β), define a sequence recursively with U0 = 0 and U1 = 1, by

Un = PUn−1 −QUn−2,

for n ≥ 2. It is easy to show that, for all n ∈ Z+,

Un =
αn − βn

α− β
.

In 1930, D. H. Lehmer [43] observed that if P is replaced by
√
R, where R ∈ Z−{0}

is not a square, then the recursive definition of Un implies that U2n+1 ∈ Z and

U2n ∈
√
RZ. Since α + β =

√
R, U2n/(α + β) ∈ Z. For n ∈ Z+, the n-th Lehmer

number is defined by

Ln(α, β) =


αn−βn

α−β , if n is odd,

αn−βn

α2−β2 , if n is even.

(2.14)

So, Ln(α, β) ∈ Z. Today, the definition of Lehmer pairs includes that of the Lucas

pairs. Specifically, a Lehmer pair is now defined to be a pair (α, β) where α, β ∈ C

satisfy the following

αβ, (α + β)2 ∈ Z− {0}, (2.15)

gcd(αβ, (α + β)2) = 1, (2.16)

and

α

β
is not a root of unity. (2.17)

Two Lehmer pairs (α1, β1) and (α2, β2) are equivalent if α1/α2 = β1/β2 = ik with

0 ≤ k ≤ 3.
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Lehmer used his extension of the Lucas numbers to test the primality of integers,

but he did not study the prime divisors of the Lehmer numbers in depth. In the late

nineteenth century and early twentieth, the prime divisors of the Lucas numbers had

been studied by Zsigmondy [83], Carmichael [24] and others. It was not until 1955

that Ward [78] studied the prime divisors of Lehmer numbers extensively.

A prime divisor, p, of a Lehmer number, Ln(α, β) is called a primitive divisor if

p - (α2 − β2)2L1(α, β) . . . Ln−1(α, β). (2.18)

If Ln(α, β) has no primitive divisors, then (α, β) is called an n-defective Lehmer pair.

Note, in particular, that if Ln(α, β) = ±1, then Ln(α, β) has no prime divisors and

thus (α, β) is n-defective.

In 1974, Schinzel [63] proved the existence of a constant such that, for each n

greater than that constant, there are no n-defective Lehmer pairs. Let n0 ∈ Z+ be

the smallest such constant. A few years later, Stewart [67] proved that n0 ≤ e452467.

In his paper, Stewart described how to reduce the problem of listing all n-defective

Lehmer pairs to a problem of solving certain Thue equations.

In 1995, Voutier [75] used Stewart’s idea and, solving Thue equations with the

algorithms developed by Tzanakis and de Weger [74], determined a complete list of

the n-defective Lehmer pairs for most of the values of n ≤ 30, as seen below.

Theorem 10 (Voutier). Let n ∈ Z+ such that 6 < n ≤ 30 and n 6= 8, 10, or 12. If

(α, β) is an n-defective Lehmer pair, then for some k ∈ {0, 1, 2, 3}, ikα is one of the

values listed in Table 2.1.

In this same paper, Voutier conjectured that n0 = 30. A few years later, Voutier

proved that n0 ≤ 30030, but it was not until 2001 that he, Bilu, and Hanrot [15]

proved his conjecture.
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Table 2.1: Possible values of ikα determined by Voutier.

n ikα, for k ∈ {0, 1, 2, 3}

7
1±
√
−7

2
1±
√
−19
2

√
3±
√
−5

2√
5±
√
−7

2

√
13±
√
−3

2

√
14±
√
−22

2

9
√
5±
√
−3

2

√
7±
√
−1

2

√
7±
√
−5

2

13 1±
√
−7

2

14

√
3±
√
−13

2

√
5±
√
−3

2

√
7±
√
−1

2√
7±
√
−5

2

√
19±
√
−1

2

√
22±
√
−14

2

15
√
7±
√
−1

2

√
10±
√
−2

2

18 1±
√
−7

2

√
3±
√
−5

2

√
5±
√
−7

2

24
√
3±
√
−5

2

√
5±
√
−3

2

26
√
7±
√
−1

2

30 1±
√
−7

2

√
2±
√
−10

2

Theorem 11 (Bilu, Hanrot, and Voutier). If a Lehmer pair is n-defective for n ∈ Z+,

then n ≤ 30.

Sketch of Proof. Suppose, for a contradiction, that there is an n-defective Lehmer

pair (α, β) with n > 30. Bilu, Hanrot, and Voutier show that there exists a primitive

n-th root of unity ξ such that the value of | arg((β/α)ξ−1)| is less than a bound that

they determine by using Stewart’s reduction to Thue equations. This implies an

upper bound for | arg((β/α)n)|. The authors prove that, without loss of generality,

they may assume that π/n < arg(β/α) < π. Define b1 to be the nearest even integer

to n arg(β/α)/π. Thus, 0 < b1 ≤ n and | arg((β/α)n)| = |b1πi− n log(β/α)|. Letting

Λ = b1πi − n log(β/α), they apply Theorem 9. From this, the authors derive a

contradiction for all but a finite number of n. The remaining possible values of n are

eliminated by solving many Thue equations using Bilu and Hanrot’s modifications [14]

of the algorithm by Tzanakis and de Weger.
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2.4 Elliptic Curves and Modular Forms

In this section, we review elliptic curves and modular forms while defining the notation

and terminology needed to state various versions of the Modularity Theorem. The

Modularity Theorem is the backbone of the modular approach, the method we use to

prove Main Theorem III. (See [65,79] for additional information on elliptic curves, [51]

for details on modular forms, and [33] for an expanded discussion of versions of the

Modularity Theorem.)

We use the following standard notation. Let m ∈ Z and let G be an arbitrary

additive abelian group. For any P ∈ G, mP is the sum of m copies of P in G, while

G[m] denotes the subgroup of the elements of G whose order divides m. Recall that

Q is the algebraic closure of Q.

Let K be a field. Let E be a cubic curve defined by the equation

Y 2Z = X3 + AXZ2 +BZ3, (2.19)

with A, B ∈ K. We view E as the set of solutions to this equation in P2, projective

2-space. Since A, B ∈ K, we say E is a curve defined over K. The discriminant of

E is ∆E = −16(4A3 + 27B2). We say that E is nonsingular if ∆E 6= 0; that E has a

cusp singularity if ∆E = 0 and A = 0; and that E has a node singularity if ∆E = 0

and A 6= 0.

If E is nonsingular, then it is called an elliptic curve. If P = [x, y, z] ∈ E with x,

y, z ∈ K, then we say that P is a K-rational point of E. The set of K-rational points

of E is denoted by E(K).

For the remainder of this section, we let E be a fixed elliptic curve defined, over

Q, by equation (2.19). The intersection of E and the projective line defined by Z = 0
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is the point at infinity, O = [0, 1, 0]. All other points in P2 satisfying equation (2.19)

can be written in the form P = [x, y, 1]. When convenient, we view these points

as being in affine space, A2, with [x, y, 1] ∈ P2 corresponding to (x, y) ∈ A2. These

points are solutions to the equation

Y 2 = X3 + AX +B,

obtained by setting Z = 1 in equation (2.19).

It is well-known that the equation for E, defined over Q, can be written as in

equation (2.19) with A, B ∈ Z. The points of E form an abelian group with a well-

defined addition. The subgroup of Q-rational points, E(Q), is called the Mordell-Weil

group.

Let ` ∈ Z be an arbitrary prime. For each R ∈ Z, let R̃ denote the reduction of R

modulo `. Using this notation, reducing the coefficients of the equation for E modulo

` yields the equation

Y 2Z = X3 + ÃXZ2 + B̃Z3.

We call the curve defined by this equation Ẽ. Since Ã, B̃ ∈ F`, Ẽ is defined over F`.

If ∆Ẽ 6= 0, then we say that E is stable. If ∆Ẽ = 0 and Ã 6= 0, then E is semistable.

If ∆Ẽ = 0 and Ã = 0, then E is unstable. The trace of E is defined by

a`(E) = `+ 1− |Ẽ(F`)|.

Next, we define congruence subgroups of SL2(Z), modular curves, and other ter-

minology, before defining modular forms.
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Let

Γ(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣∣∣
a b

c d

 ≡
1 0

0 1

 (mod N)

 .

A subgroup Γ ⊆ SL2(Z) is a congruence subgroup of SL2(Z) if, for some N ∈ Z+,

Γ(N) ⊆ Γ. If N is the smallest such integer, we say that Γ is a congruence subgroup

of level N . Two congruence subgroups of level N , of importance here, are

Γ0(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣∣∣ c ≡ 0 (mod N)


and

Γ1(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣∣∣ a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

 .

Let H = {z ∈ C|=(z) > 0} be the complex upper half plane and H∗ = H∪P1(Q).

The modular curve of Γ1(N) is

X1(N) = Γ1(N) \ H∗.

As is well-known, the modular curve X1(N) can be described as an algebraic curve

defined over Q. This means that it has properties analogous to those of elliptic curves

(see [33, Chapter 7] for a discussion of this).

The divisor group of X1(N) is defined by

Div(X1(N)) =
∐

P∈X1(N)

Z(P ).
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So, an arbitrary element of Div(X1(N)) is of the form D =
∑
mp(P ) with mP ∈ Z

and where the sum is taken over all P ∈ X1(N). Note that (P ) indicates that this is a

formal linear combination of points on X1(N) with integer coefficients. The degree-0

divisor group of X1(N) is the subgroup defined by

Div0(X1(N)) =

 ∑
P∈X1(N)

mP (P ) ∈ Div(X1(N))

∣∣∣∣∣∣
∑

P∈X1(N)

mP = 0

 .

Let P ∈ X1(N) and let g0 and h0 be nonzero polynomials in the coordinate ring

Q[X1(N)]. For MP , the maximal ideal of the local ring Q[X1(N)]P at P , the valuation

of g0 at P is defined by νP (g0) = max{d ∈ Z|g0 ∈ Md
P}. The valuation is extended

to the function field of X1(N), Q(X1(N)), by νP (g0/h0) = νP (g0) − νP (h0). So, a

principal divisor of Div0(X1(N)) is an element of the form div(g/h) =
∑
νP (g/h)(P ),

for some nonzero g/h ∈ Q(X1(N)). The quotient of the degree-0 divisor group by

the set of principal divisors is the (degree-0) Picard group of X1(N), denoted by

Pic0(X1(N)). (See [33, Section 7.2 & 7.3] for more details.)

Now, we define modular forms with respect to a congruence subgroup. For k,

N ∈ Z+, a modular form of weight k with respect to Γ0(N) is a holomorphic function

f : H → C such that

f(Mz) = f

(
az + b

cz + d

)
= (cz + d)kf(z), for each M =

a b

c d

 ∈ Γ0(N) and z ∈ H,

and, letting q = e2πiz, f has a Fourier expansion,

f(z) =
∞∑
n=0

an(f)qn.

The modular form f is of level N , if N is the smallest integer such that the above
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conditions hold. If a0(f) = 0, then f is called a cusp form. If, in addition, a1(f) = 1,

then f is a normalized cusp form. Further, f is called rational if for all n ∈ Z,

an(f) ∈ Q. The vector space of cusp forms of weight 2 and level N is denoted by

S2(Γ0(N)).

If N , N ′, d ∈ Z+ such that dN ′ = N , then the degeneracy map αd : S2(Γ0(N
′))→

S2(Γ0(N)) is defined by f(q) 7→ f(qd). The cusp forms contained in the image of αd

are called oldforms. The orthogonal complement under the Petersson inner product

of the subspace of oldforms is the subspace S2(Γ0(N))new. A basis for this space is a

set of normalized Hecke eigenforms. We follow the standard practice and call those

basis elements newforms of level N .

There is an explicit formula for the dimension of S2(Γ0(N))new (see for example [28,

Proposition 15.1.1]). As a corollary, we have the following lemma.

Lemma 12. There are no newforms of level N if and only if

N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60}.

If f ∈ S2(Γ0(N)) is a newform for someN ∈ Z+ with Fourier expansion
∑
an(f)qn,

then the Dirichlet L-function of f is defined by L(s, f) =
∑∞

n=1 an(f)n−s for s ∈ C

with <(s) > 1. Since f is a newform, its L-function has an Euler product

L(s, f) =
∏

` prime

(
1− a`(f)`−s + χ0(`)`

1−2s)−1 ,
where χ0 is the trivial Dirichlet character mod N .

Now, we define Galois representations. For d, ` ∈ Z+ with ` prime, a d-dimensional

`-adic Galois representation is a continuous homomorphism ρ : Gal(Q/Q)→ GLd(Q`).

Two representations are equivalent, ρ ∼ ρ′, if and only if there exists M ∈ GLd(Q`)
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such that ρ′(σ) = M−1ρ(σ)M for all σ ∈ Gal(Q/Q). We outline the construction

of two important `-adic Galois representations, ρE,` : Gal(Q/Q) → GL2(Q`) for an

elliptic curve E and ρX1(N),` : Gal(Q/Q) → GL2g(Q`), for N ∈ Z+ and g, the genus

of X1(N). (See [33, Section 3.1] for information about the genus.)

First, we construct ρE,`. Define the multiplication-by-` map,

[`] : E(Q)→ E(Q) by [`]P = `P.

Note that [`] is a group homomorphism. For arbitrary P ∈ E[`n+1], `n+1P = O.

Hence, `n([`]P ) = `n+1P = O and so [`]P ∈ E[`n]. Thus, the homomorphism [`]

restricts to a homomorphism E[`n+1]→ E[`n], which we also denote by [`].

It is well-known that, for each n ∈ Z+, E[`n] ∼= (Z/`nZ)2. We choose compatible

bases {Pn, Qn}n∈Z+ so that, for each n ∈ Z+,

{Pn, Qn} is a basis for E[`n], [`]Pn+1 = Pn, and [`]Qn+1 = Qn. (2.20)

Now fix n ∈ Z+. For σ ∈ Gal(Q/Q), σ induces an automorphism σn : E[`n] →

E[`n] defined by σn([x, y, z]) = [σ(x), σ(y), σ(z)]. This action of Gal(Q/Q) on E[`n]

induces

ϕn : Gal(Q/Q)→ Aut(E[`n]) defined by ϕn(σ) = σn.

Let λn+1 : Aut(E[`n+1])→ Aut(E[`n]) be defined by

λn+1(τ) = [`]τ [`]−1 for all τ ∈ Aut(E[`n+1]).

Note that even though [`]−1 is not a single-valued function, λn+1 is a well-defined

homomorphism. For each n ∈ Z+, we obtain the diagram
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Gal(Q/Q)

Aut(E[`n]) Aut(E[`n+1]).

ϕn+1ϕn

λn+1

Since σ ∈ Gal(Q/Q) is a homomorphism, equations (2.20) imply that the diagram

commutes.

For each n ∈ Z+, let ψn : GL2(Z/`nZ)→ Aut(E[`n]) be the standard isomorphism

determined by the basis {Pn, Qn} for E[`n]. In other words, for M ∈ GL2(Z/`nZ),

ψn(M) = τM where M(Pn, Qn)t = (τM(Pn), τM(Qn))t.

For all n ∈ Z+, define a mod `n Galois representation of E,

ρ̄E,`n : Gal(Q/Q)→ GL2(Z/`nZ)

by ρ̄E,`n = ψnϕn, which yields the inverse system

Gal(Q/Q)

GL2(Z/`Z) GL2(Z/`2Z) GL2(Z/`3Z) · · · .

ρ̄E,`
ρ̄E,`2

The inverse limit of this system is the representation ρ′E,` : Gal(Q/Q) → GL2(Z`).

Finally, letting ι : GL2(Z`) → GL2(Q`) be inclusion, we have the `-adic Galois

representation that arises from E

ρE,` : Gal(Q/Q)→ GL2(Q`)

defined by ρE,` = ιρ′E,`.

Next, we outline the construction of ρX1(N),`, for N ∈ Z+. Viewing X1(N) as an
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algebraic curve of genus g, the construction of the representation is similar to that of

the elliptic curve, which has genus 1.

Let [`] : Pic0(X1(N))[`n+1] → Pic0(X1(N))[`n] be multiplication by ` (repeated

addition) in the group Pic0(X1(N))[`n+1]. Choosing compatible bases of Pic0(X1(N))[`n] ∼=

(Z/`nZ)2g, for all n ∈ Z+, we obtain the commutative diagram

Gal(Q/Q)

Aut(Pic0(X1(N))[`n]) Aut(Pic0(X1(N))[`n+1]).

Together with the standard isomorphism GL2g(Z/`nZ)→ Aut(Pic0(X1(N))[`n]), this

yields the inverse system

Gal(Q/Q)

GL2g(Z/`Z) GL2g(Z/`2Z) GL2g(Z/`3Z) · · · .

The inverse limit composed with the inclusion map is the `-adic Galois representation

arising from the modular curve X1(N) with N ∈ Z+,

ρX1(N),` : Gal(Q/Q)→ GL2g(Q`).

(For details of this construction see [33, Section 9.5]).

From ρX1(N),`, for a rational newform, f ∈ S2(Γ0(N)), one obtains the `-adic

Galois representation arising from f , ρf,` : Gal(Q/Q) → GL2(Q`), and the mod `

Galois representation, ρ̄f,` : Gal(Q/Q) → GL2(Z/`Z). It is ρE,` and ρf,` that are at

the heart of the proof of the Modularity Theorem, providing the connection between

newforms and elliptic curves.
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An elliptic curve E defined over Q is modular if there exists a rational newform

f such that ρE,` ∼ ρf,`, for some prime ` ∈ Z+. In 1995, Wiles [81] and Taylor

and Wiles [71] proved that every semistable elliptic curve is modular. This was the

last missing piece to the proof of Fermat’s Last Theorem (see Chapter 1). In 2001,

Breuil, Conrad, Diamond, and Taylor [16, Theorem 1] extended the proof of Taylor

and Wiles to include all elliptic curves defined over Q. First, they prove that ρ̄E,`

is modular, meaning ρ̄E,` ∼ ρ̄f,`, for some prime ` ∈ Z+. Then, they extend their

construction to proving that ρE,` is modular. Thus, proving the initial version of the

Modularity Theorem.

Theorem 13 (Breuil, Conrad, Diamond, and Taylor). If E is an elliptic curve defined

over Q, then E is modular.

From Theorem 13, it can be shown that given an elliptic curve E defined over Q,

there exists a rational newform f of weight 2 and level N ∈ Z+ such that ρE,` ∼ ρf,`.

The smallest such integer N is called the conductor of E.

There are many equivalent definitions of modular that lead to equivalent formu-

lations of the Modularity Theorem (see [33] for even more versions). The following

version is proved from Theorem 13 by using images of Frobenius elements under rep-

resentations. Let F be a finite Galois extension of Q in C and let p be a maximal

ideal in OF lying over a rational prime, p. A Frobenius element of Gal(F/Q) is any

element Frobp ∈ Gal(F/Q) such that Frobp(x) ≡ xp (mod p) for all x ∈ OF .

For an elliptic curve E defined over Q with conductor N , if `, p ∈ Z+ are primes

such that p - `N , an absolute Frobenius element of Gal(Q/Q) is any element of

Gal(Q/Q) that restricts to a Frobenius element of Gal(F/Q) for some finite Galois

extension F over Q. It can be shown that ρ̄E,`(Frobp) has characteristic polynomial

X2 − ap(E)X + p = 0.
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If f ∈ S2(Γ0(N)) is a rational newform and `, p ∈ Z+ are primes such that

p - `N , then ρ̄f,`(Frobp) has characteristic polynomial X2 − ap(f)X + p = 0 and so

Theorem 14 [33, Theorem 8.8.1] follows.

Theorem 14 (Modularity Theorem for a`). Let E be an elliptic curve defined over Q

with conductor N . Then, for some rational newform f ∈ S2(Γ0(N)), a`(f) = a`(E)

for all primes `.

For an elliptic curve E, the conductor N and the values a`(E) are encoded in the

Hasse-Weil L-function of E, defined by

L(s, E) =
∏

` prime

(
1− a`(E)`−s + χ0(`)`

1−2s)−1 ,
where, again, χ0 is the trivial Dirichlet character modulo N .

If, for each ` prime, a`(f) = a`(E), as in Theorem 14, then it is easy to see that

the L-functions for f and E must also be equal. Thus, we have the following version

of the Modularity Theorem on L-functions [33, Theorem 8.8.3].

Theorem 15 (Modularity Theorem for L). Let E be an elliptic curve defined over

Q with conductor N . Then, for some rational newform f ∈ S2(Γ0(N)), L(s, f) =

L(s, E).

This version is quite interesting in that L(s, E) is conjectured to contain extra

information about the curve E. In particular, Birch and Swinneton-Dyer conjectured

that the rank of the Mordell-Weil group E(Q) is the order of vanishing of L(s, E)

at s = 1 (see [33, Conjecture 8.8.5] for more details on the Birch-Swinnerton-Dyer

Conjecture).



Chapter 3

Main Theorem I

In this chapter, we prove Main Theorem I using Diophantine approximation. First,

we give a brief history of the problem. In Section 3.1, we state the known results

that lead up to the main theorem, and in Section 3.2, we present the proof of Main

Theorem I. (See [20,21] for a more detailed history and Section 2.2 for a discussion

of Diophantine approximation notation and results.)

It is reported [21] that Diophantus knew that the set {1/16, 33/16, 17/4, 105/16}

has the property that one plus the product of any two elements in the set is a perfect

square. Fermat found a set of integers, {1, 3, 8, 120}, with this same property. We

are interested in triples of integers of the form {1, A,B} with 1 < A < B such that

one plus the product of any two elements is a k-th power, for some integer k ≥ 2.

The existence of such a set is equivalent to the existence of x, y, z ∈ Z+ satisfying

A+ 1 = xk, B + 1 = yk, and AB + 1 = zk and so (xk − 1)(yk − 1) = zk − 1.

Bugeaud [20] observed that for an integer r > 1, the equation

(r2 − 1)((r + 1)2 − 1) = (r2 + r − 1)2 − 1

33
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provides a formula to find infinitely many solutions to the Diophantine equation

(Xk − 1)(Y k − 1) = Zk − 1 for k = 2. In that same paper, Bugeaud [20, Theorem 2]

considered triples of positive integers of the form {1, A,A2B} such that A+1, A2B+1,

and AB + 1 are all k-th powers. The existence of such a triple is equivalent to the

existence of a solution to the Diophantine equation (Xk − 1)(Y k − 1) = (Zk − 1)2

with Xk − 1 dividing Zk − 1.

Bennett [9] improved Bugeaud’s results and Zhang [82, Theorem 1.1] adapted

Bennett’s methods to prove results for a generalization of (Xk−1)(Y k−1) = Zk−1,

namely, (aXk − 1)(bY k − 1) = abZk − 1 with a, b ∈ Z+.

We consider the following generalization of the equation (Xk − 1)(Y k − 1) =

(Zk − 1)2.

Main Theorem I. Let a, b, c, k ∈ Z+ with k ≥ 7. The equation

(a2cXk − 1)(b2cY k − 1) = (abcZk − 1)2

has no solutions in integers X, Y , Z > 1 with a2Xk 6= b2Y k.

Note that given the prior results, it seems likely that there are also no solutions for

4 ≤ k ≤ 6.

3.1 Preliminary Results

In 2004, Bugeaud [20, Theorem 1] proved the following two results using linear forms

in logarithms (see Section 2.3).

Theorem 16 (Bugeaud). Let k ∈ Z+.
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(a) For k ≥ 75, the Diophantine equation

(Xk − 1)(Y k − 1) = (Zk − 1)

has no solutions in positive integers X, Y , Z with Z > 1. Furthermore, if

min{X, Y } is sufficiently large, then the equation has no solutions for k ≥ 5.

(b) For k ≥ 150, the equation

(Xk − 1)(Y k − 1) = (Zk − 1)2

has no solutions in positive integers X, Y , Z with 1 < X < Y and Xk−1 dividing

Zk−1. Furthermore, if X is sufficiently large, then the equation has no solutions

for k ≥ 8.

The proofs of parts (a) and (b) are very similar. We describe the method that is

used for both.

Sketch of Proof. For a contradiction, suppose that a positive integer solution x, y,

z exists. Derive a lower bound for yk in terms of x and k. For large values of k,

combine the lower bound for yk with a bound derived from Theorem 8 with Λ =

log(1 + 1/(xk − 1))− k log(xy/z), to reach a contradiction.

For the remaining small values of k, suppose that min{x, y} or x is large enough

to satisfy the hypothesis of Theorem 6 with n = k and N = xk − 1. Theorem 6

implies that, for integers n ≥ 3, N ≥ c1, and real number ε > 0,

∣∣∣∣∣ n

√
1 +

1

N
− r

s

∣∣∣∣∣ > c2
s2+ε

, (3.1)

where c1 = n2µn/4, and c2 = 1/(16n(2N + 1)(2)ε) are computable. From this,
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Bugeaud derives an upper bound for yk. Combining this upper bound with the lower

bound mentioned above, leads to a contradiction.

In 2007, Bennett [9, Theorem 1.1] improved both of Bugeaud’s results.

Theorem 17 (Bennett). Let k ∈ Z+.

(a) For k ≥ 3, equation

(Xk − 1)(Y k − 1) = Zk − 1

has only the solutions (X, Y, Z, k) = (−1, 4,−5, 3) and (4,−1,−5, 3) in integers

X, Y , and Z with |Z| > 1.

(b) For k ≥ 4, equation

(Xk − 1)(Y k − 1) = (Zk − 1)2

has no solutions in integers X, Y , and Z with |Z| > 1 and X 6= ±Y .

We sketch the proof of part (a) for k ≥ 4. The case k = 3 is handled separately

using continued fractions. In his paper, Bennett briefly describes the changes that

would be required to prove part (b), using a similar method.

Sketch of Proof. Suppose, for a contradiction, that there is a solution x, y, z in pos-

itive integers, with k ≥ 4. Rather than using linear forms in logarithms, Bennett

derives an upper bound for yk using Theorem 7 with n = k and N = xk−1. Combin-

ing this bound with a lower bound, leads to a contradiction for all but a finite number

of values of x and k. For each of those remaining possible values of x and k, Bennett

uses Theorem 7 again. This time he combines the bound he derives with bounds that

he obtains from the properties of continued fractions to reach a contradiction.

As Bennett indicates, the proof for the negative values of x, y, and z requires only

minor adjustments to the argument described above, except in the special case where
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x or y is −1. This final case is quite different from the rest. It requires completely

solving the Thue equations, Xk − 2Y k = m with k ≥ 4 and |m| ≤ 100. This is

achieved both through computer calculations and the modular approach.

In 2014, Zhang [82, Theorem 1] considered a generalization of the equation in The-

orem 17, part (a). Zhang expands Bennett’s methods to bound the extra components

and prove the theorem.

Theorem 18 (Zhang). Let a, b, k ∈ Z+. For k ≥ 4, the equation

(aXk − 1)(bY k − 1) = abZk − 1

has no solutions in integers X, Y , and Z with |X| > 1 and |Y | > 1.

Notice that k ≥ 4 is the best possible, since, from Bennett’s work, the case

a = b = 1 has solutions for k = 3.

Sketch of Proof. Let a, b, k ∈ Z+. For a hypothetical solution, x, y, z, Zhang derives

a lower bound for byk in terms of a, b, x, and k. Applying Theorem 7 with n = k and

N = axk−1, he obtains an upper bound for byk. Comparing the bounds, Zhang finds

a contradiction for all but a finite number of values of a, x, and k. For the remaining

finite set of possible values, he uses various methods similar to those used by Bennett

to reach a contradiction.

In preparation for proving Main Theorem I, we show that the hypotheses of The-

orem 7 are satisfied for N ≥ 2n and n ≥ 7.

Lemma 19. Let N , n ∈ Z+ such that N ≥ 2n and n ≥ 7. Then

(√
N +

√
N + 1

)2(n−2)
> (nµn)n .
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Proof. Let N , n ∈ Z+ such that N ≥ 2n and n ≥ 7. Then, we have

√
N +

√
N + 1 =

√
N + 1

(√
N

N + 1
+ 1

)
=
√
N + 1

(√
1− 1

N + 1
+ 1

)
.

Since N ≥ 2n ≥ 128, a direct calculation yields

√
N + 1

(√
1− 1

N + 1
+ 1

)
≥
√
N + 1

(√
1− 1

128 + 1
+ 1

)
>
√

2n
(
21/1.01

)
Thus, (√

N +
√
N + 1

)2(n−2)
> 2n(n−2)+(2(n−2)/1.01).

Since n ≥ 7, we have

n(n− 2) + (2(n− 2)/1.01) > n(n− 2 + (2/1.01)− (4/(1.01 · 7))) > n(n− 0.6).

Hence, (√
N +

√
N + 1

)2(n−2)
> (2n−0.6)n.

Define f : [7,∞)→ R by f(t) = (t− 0.6)/ log t. The first derivative of f is

f ′(t) =
t log t− t+ 0.6

t(log t)2
.

Since t log t > t ≥ 7, f is an increasing function. Therefore, n ≥ 7 implies that

f(n) = (n − 0.6)/ log n ≥ (7 − 0.6)/log 7 > 2/ log 2. Thus, (n − 0.6) log 2 > 2 log n

and so 2n−0.6 > n2. Finally, since n ≥ µn, we have

(√
N +

√
N + 1

)2(n−2)
> (2n−0.6)n > n2n ≥ (nµn)n ,
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as desired.

In the proof of Main Theorem I, there are a number of bounds that involve µn for

n ≥ 7. We use the following lemma to bound µn. Recall that µn is a multiplicative

function (see equation (2.13) in Section 2.2 for its definition).

Lemma 20. If n ≥ 7 is an integer, then µn ≤
√
n.

Proof. Let q ∈ Z+ be an odd prime. Since q ≥ 3,

µq = q1/(q−1) ≤ q1/2.

Next, notice that for e ∈ Z+with e ≥ 2, we have

µ2 = 2 ≤ 2e/2.

Now, let n ∈ Z+ such that n ≥ 7. Let e ∈ Z with e ≥ 0 and let ei, qi, t ∈ Z+ with qi

distinct odd primes, for 1 ≤ i ≤ t, such that n = 2e
∏t

i=1 q
ei
i .

If n is odd, then e = 0 and so the multiplicative property of µn, implies that

µn =
t∏
i=1

µqi ≤
t∏
i=1

q
1/2
i =

(
t∏
i=1

qi

)1/2

≤ n1/2.

If 4 | n, then e ≥ 2. Again, since µn is multiplicative,

µn = µ2

t∏
i=1

µqi ≤ 2
t∏
i=1

q
1/2
i ≤ 2e/2

(
t∏
i=1

qi

)1/2

≤ n1/2.

Hence, it remains to consider n such that e = 1. Since n ≥ 7, either there exists

e1 ≥ 2 such that n = 2 · 3e1 or there exists a prime q ≥ 5 such that q | n. First,
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assume that n = 2 · 3e1 with e1 ≥ 2. Then,

µn = µ2µ3 = 2 · 31/2 < (2 · 3e1)1/2 = n1/2.

Finally, assume that q | n such that q ≥ 5. Then n = 2qe2r, for e2, r ∈ Z+

with gcd(2q, r) = 1. Since r is odd, we have µr ≤ r1/2. Thus, by the multiplicative

property of µn,

µn = µ2µqµr = 2q1/(q−1)µr < 21/251/4q1/(q−1)r1/2 ≤ (2qe2r)1/2 = n1/2,

as desired.

3.2 Proof of Main Theorem I

Now, we prove Main Theorem I using the results in Sections 2.2 and 3.1 and the ideas

in the proofs of Theorems 17 and 18.

Proof of Theorem I. Let a, b, c, k ∈ Z+ such that k ≥ 7. Suppose, for a contradiction,

that (X, Y, Z) = (x, y, z) is a solution to the equation (a2cXk − 1)(b2cY k − 1) =

(abcZk − 1)2 with x, y, z > 1 and a2xk 6= b2yk. So,

(a2cxk − 1)(b2cyk − 1) = (abczk − 1)2. (3.2)

Since the right side of this equation is a square, there exist u, v, w ∈ Z+ such that

a2cxk − 1 = uv2 (3.3)
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and

b2cyk − 1 = uw2. (3.4)

By equation (3.2), the product of uv2 and uw2 is

(uvw)2 =
(
abczk − 1

)2
. (3.5)

Since a2xk 6= b2yk, v 6= w and so, without loss of generality, we assume that v < w.

Then, we have that v2 +w2 = (w− v)2 + 2vw > 2vw. So, using equations (3.3)–(3.5),

we have

(a2cxk)(b2cyk) = (uv2 + 1)(uw2 + 1)

= (uvw)2 + u(v2 + w2) + 1

> (uvw)2 + 2uvw + 1 = (uvw + 1)2 = (abczk)2.

Thus, a2b2c2(xy)k > a2b2c2z2k, implying that

xy > z2, (3.6)

and so xy/z2 > 1. This rational number is what we use to approximate the number

k
√

1 + 1/uv2 > 1. For convenience in notation, let

α =
k

√
1 +

1

uv2
(3.7)

and

β =
xy

z2
. (3.8)

Now, k ≥ 7 and uv2 > a2cxk ≥ 2k, since x > 1. Thus, by Lemma 19, the
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hypotheses of Theorem 7 with n = k and N = uv2, are satisfied. Therefore, by

Theorem 7, we have that

|α− β| =

∣∣∣∣∣ k

√
1 +

1

uv2
− xy

z2

∣∣∣∣∣ > 1

8kµkuv2z2λ
, (3.9)

with

λ = 1 +

log

((√
uv2 +

√
uv2 + 1

)2
kµk

)
log

((√
uv2 +

√
uv2 + 1

)2
/(kµk)

) . (3.10)

So, we have a lower bound for |α − β| that involves λ. To bound λ, we define the

following functions.

For each K ≥ 7, define the function ΛK : [2K ,∞)→ R by

ΛK(D) = 2 +
2 log(KµK)

2 log(
√
D − 1 +

√
D)− log(KµK)

. (3.11)

It is easily seen that, for each value of K, ΛK is a decreasing function.

Define the function Λ : [7,∞)→ R by

Λ(K) = 2 +
6 logK

2(K + 1) log 2− 3 logK
.

A straightforward calculation yields

Λ′(K) =
6

K

(
2(K + 1) log 2− 2K (log 2) (logK)

(2(K + 1) log 2− 3 logK)2

)
.

Since K ≥ 7,

2(K + 1) log 2− 2K (log 2) (logK) = (2 log 2)(K + 1−K logK) < 0.
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Thus, Λ′(K) < 0 and so Λ is a decreasing function.

Rewriting λ, from equation (3.10), we have

λ = 1 +
2 log

(√
uv2 +

√
uv2 + 1

)
+ log (kµk)

2 log
(√

uv2 +
√
uv2 + 1

)
− log (kµk)

,

and so

λ = 2 +
2 log (kµk)

2 log
(√

uv2 +
√
uv2 + 1

)
− log (kµk)

= Λk(uv
2 + 1) = Λk(a

2cxk).

Since k ≥ 7, Λk is a decreasing function. So, since a2cxk ≥ 2k,

λ = Λk(a
2cxk) ≤ Λk(2

k). (3.12)

By Lemma 20, µk ≤
√
k and so kµk ≤ k3/2. From equations (3.11) and (3.12),

λ ≤ Λk(2
k) ≤ 2 +

2 log(k3/2)

2 log
(√

2k − 1 +
√

2k
)
− log k3/2

.

Since 2k − 1 > 2k−1, we have

√
2k − 1 +

√
2k > 2(k−1)/2 + 2k/2 > 2(k−1)/2 + 2(k−1)/2 = 2(k+1)/2.

Hence,

λ < 2 +
2 log(k3/2)

2 log (2(k+1)/2)− log k3/2
< 2 +

6 log k

2(k + 1) log 2− 3 log k
= Λ(k). (3.13)

We use the bounds for λ in bounding inequality (3.23) for various values of k.
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Next, we use αk and βk to derive an upper bound for |α− β|. We have

αk − βk =

(
k

√
1 +

1

uv2

)k

−
(xy
z2

)k
= 1 +

1

uv2
− (a2cxk)(b2cyk)

(abczk)2
.

Using equations (3.3)–(3.5), we write this equation in terms of u, v, and w,

αk − βk =
uv2 + 1

uv2
− (uv2 + 1)(uw2 + 1)

(uvw + 1)2
=
uv2(2uvw − uv2) + (2uvw + 1)

uv2(uvw + 1)2
(3.14)

Since w > v, we have 2uvw > uv2, implying that αk > βk. Hence, α > β.

Since uv2 > 0, it follows from equation (3.14) that

αk − βk < uv2(2uvw + 2) + (2uvw + 2)

uv2(uvw + 1)2
=

(uv2 + 1)(2uvw + 2)

uv2(uvw + 1)2

=

(
1 +

1

uv2

)
2

uvw + 1
.

Since αk = 1 + (1/uv2), we obtain

αk − βk < 2αk

uvw + 1
. (3.15)

Note that αk − βk factors as

αk − βk = (α− β)
k−1∑
i=0

αk−1−iβi. (3.16)

For each 0 ≤ i ≤ k − 1, we have αk−1−iβi > 1, implying that

αk − βk > (α− β)
k−1∑
i=0

1 = (α− β)k.
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Thus, α− β < (αk − βk)/k and so inequality (3.15) yields

α− β < 2αk

k(uvw + 1)
. (3.17)

We combine the upper and lower bound for |α− β|, namely, inequality (3.9) and

the above inequality to obtain

1

8kµkuv2z2λ
<

2αk

k(uvw + 1)
<

2αk

kuvw
. (3.18)

Our next step is to work towards an inequality depending only on the values a, c, x,

k, and λ. First, we solve for w to find that

w < 24µkα
kvz2λ. (3.19)

Next, we find an upper bound for z, so that we can eliminate it from this inequality.

From equation (3.5),

zk =
uvw + 1

abc
≤ uvw + 1 = uvw

(
1 +

1

uvw

)
.

Since w > v, 1 + (1/uvw) < 1 + (1/uv2) = αk and so zk < αkuvw. Combining this

with inequality (3.19) yields wk < 24kµkkα
k2vk

(
αkuvw

)2λ
. Again, solving for w, we

obtain

wk−2λ < 24kµkkα
k(k+2λ)u2λvk+2λ. (3.20)
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Next, we find a lower bound for w. Using equations (3.3) and (3.4), we have

(uv2 + 1)(uw2 + 1)− (uvw + 1)2 = (a2cxk)(b2cyk)− (abczk)2

= a2b2c2[(xy)k − (z2)k].

Since, by inequality (3.6), xy > z2,

a2b2c2[(xy)k − (z2)k] ≥ a2b2c2[(z2 + 1)k − (z2)k].

Expanding (z2 + 1)k yields

a2b2c2[(z2 + 1)k − (z2)k] = a2b2c2

(
k∑
i=0

(
k

i

)
z2i − z2k

)
= a2b2c2

k−1∑
i=0

(
k

i

)
z2i.

Since all of the terms in the sum are positive, we have

a2b2c2
k−1∑
i=0

(
k

i

)
z2i > a2b2c2

[(
k

k − 1

)
z2(k−1) +

(
k

k − 2

)
z2(k−2)

]
= a2b2c2

(
kz2(k−1) +

k(k − 1)

2
z2(k−2)

)
.

Hence,

(uv2 + 1)(uw2 + 1)− (uvw + 1)2 > a2b2c2kz2(k−1) + a2b2c2
k(k − 1)

2
z2(k−2). (3.21)

Since a, b, c ≥ 1, and k ≥ 7,

a2b2c2
k(k − 1)

2
z2(k−2) > abczk.

From equation (3.5), uvw = abczk − 1 and w > v, and so abczk = uvw + 1 > uv2.
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Therefore,

a2b2c2
k(k − 1)

2
z2(k−2) > uv2.

Note that uv2+uw2 = (uv2+1)(uw2+1)−(uvw+1)2+2uvw. Thus, inequality (3.21)

implies that

uv2 + uw2 > a2b2c2kz2(k−1) + a2b2c2
k(k − 1)

2
z2(k−2) > a2b2c2kz2(k−1) + uv2.

Hence, uw2 > a2b2c2kz2(k−1). Again, using abczk > uvw, we obtain

(uw2)k >
(
a2b2c2kz2(k−1)

)k
> kk

(
abczk

)2(k−1)
> kk(uvw)2(k−1),

implying that

w2 > kku(k−2)v2(k−1). (3.22)

Combining this lower bound and the upper bound for w, from inequality (3.20), yields

(
kkuk−2v2(k−1)

)k−2λ
<
(
24kµkkα

k(k+2λ)u2λvk+2λ
)2
,

and so (
uv2
)(k−2λ−2)

< 28µ2
kα

2(k+2λ)k−(k−2λ).

Since uv2 = a2cxk − 1 and αk = 1 + (1/uv2) = 1 + 1/
(
a2cxk − 1

)
, this implies that

(
a2cxk − 1

)(k−2λ−2)
< 28µ2

k

(
1 +

1

a2cxk − 1

)2+(4λ/k)

k−(k−2λ). (3.23)

Having deduced an inequality dependent only on a, c, x, k, and λ, we next show

that there is only a finite number of possible values of k and a2cxk that satisfy this
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inequality. Let

S = {(7, d)|d < 1035 · 27} ∪ {(8, d)|d < 10 · 28}.

Using inequality (3.23), we prove that (k, a2cxk) ∈ S.

Suppose, for a contradiction, that k ≥ 10. Recalling that Λ is a decreasing function

and that, from inequality (3.13), λ < Λ(k), k ≥ 10 implies that Λ(k) ≤ Λ(10). A

straightforward calculation yields Λ(10) < 3.7. Hence λ < 3.7. Since x > 1, by

assumption, a2cxk ≥ 210. Thus, bounding the left hand side of inequality (3.23) we

have (
a2cxk − 1

)(k−2λ−2)
>
(
a2cxk − 1

)10−2·3.7−2 ≥ (210 − 1)0.6 > 63.

On the other hand, by Lemma 20 , µk ≤
√
k, and so, bounding the right hand side

we have

28µ2
k

(
1 +

1

a2cxk − 1

)2+(4λ/k)

k−(k−2λ) ≤ 28

(
1 +

1

a2cxk − 1

)2+(4λ/k)

k−(k−2λ−1).

Again, using a2cxk ≥ 210, λ < 3.7, and k ≥ 10,

28

(
1 +

1

a2cxk − 1

)2+(4λ/k)

k−(k−2λ−1) < 28

(
1 +

1

210 − 1

)3.48

10−1.6 < 7.

Thus, inequality (3.23) implies that 63 < 7, a contradiction. Hence, k ≤ 9.

Using a similar method, suppose that k = 9. Then, from inequality (3.12) with

a2cx9 ≥ 29 and a calculation, λ ≤ Λ9(2
9) < 3.2. Since µ9 =

√
3, inequality (3.23)

yields (
a2cx9 − 1

)(9−2λ−2)
> (29 − 1)9−2·3.2−2 > 42
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and

28µ2
9

(
1 +

1

a2cx9 − 1

)2+(4λ/9)

9−(9−2λ) < 28
√

3
2
(

1 +
1

29 − 1

)2+(4·3.2/9)

9−(9−2·3.2)

= 28 · 3
(

1 +
1

29 − 1

)3.43

9−2.6 < 3.

This is another contradiction. Hence, k 6= 9. Since k ≥ 7, by hypothesis, it remains

to consider k = 7 and 8.

Again, for a contradiction, suppose that k = 8 and (8, a2cx8) /∈ S. From the

definition of S, this implies that a2cx8 ≥ 10 · 28. Also, recalling that Λ8 is a decreas-

ing function, inequality (3.12) yields λ ≤ Λ8(10 · 28) < 2.86. Then, since µ8 = 2,

inequality (3.23) implies that

9 < (10 · 28 − 1)8−2·2.86−2 < 28 · 22

(
1 +

1

10 · 28 − 1

)2+4·2.86/8

8−(8−2·2.86) < 9,

another contradiction. Therefore, if k = 8, then (8, a2cx8) ∈ S.

Finally, suppose k = 7 and (7, a2cx7) /∈ S. Then, by the definition of S, a2cx7 ≥

1035 · 27. So, as before, we calculate that λ ≤ Λ7(1035 · 27) < 2.4162 and µ7 = 71/6.

Thus, from inequality (3.23), we find that

7.218 < (1035 · 27 − 1)7−2·2.4162−2 < 2871/3

(
1 +

1

1035 · 27 − 1

)2+4·2.4162/7

7−(7−2·2.4162)

< 7.213,

a contradiction. Hence, (k, a2cxk) ∈ S.

Since S is a specific finite set, knowing that (k, a2cxk) ∈ S, yields a finite set of

possible values of a, c, x, and k. We use continued fractions to complete the proof.
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From equation (3.2), we have

(a2cxk − 1)b2cyk − a2cxk = (abczk)2 − 2abczk. (3.24)

Recalling that a2cxk − 1 = uv2, we have

(uv2)b2cyk − a2cxk = a2b2c2zk
(
zk − 2

abc

)
.

Now, since a2cxk > 0 and b ≥ 1, we obtain (uv2)b2cyk ≥ a2b2c2zk(zk − 2/(ac)).

Multiplying both sides by xk/(uv2b2cz2k) results in

(xy
z2

)k
>
a2cxk

uv2zk

(
zk − 2

ac

)
.

Again, since a2cxk = uv2 + 1 and z ≥ 2, we have

(xy
z2

)k
>
a2cxk

uv2

(
zk − 2/ac

zk

)
=
uv2 + 1

uv2

(
1− 2

aczk

)
≥ αk

(
2kac− 2

2kac

)
.

For convenience, let

R = R(k, a, c) =

(
2kac− 2

2kac

)1/k

.

Then,

βk =
(xy
z2

)k
> αkRk.

Hence, β > αR.

Recalling that α > β, we have

αk − βk = (α− β)
k−1∑
i=0

αk−1−iβi > (α− β)
k−1∑
i=0

(αR)k−1 = (α− β)kαk−1Rk−1.
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Therefore, (α − β) < (αk − βk)/(kαk−1Rk−1). Together with the upper bound for

αk − βk from inequality (3.17), this implies that

α− β < 2α

kRk−1(uvw + 1)
.

Since uvw + 1 = abczk ≥ aczk,

α

x
− β

x
≤ 2α

xkaczk
R−k+1. (3.25)

From the definition of R, we have that

R−k+1 =

(
2kac

2kac− 2

)(
2kac− 2

2kac

)1/k

<

(
2kac

2k−1ac

)(
2kac

2kac

)1/k

= 2.

It is also easy to see that α = k
√

1 + 1/(a2cxk − 1) < 2. Further, recalling that a,

c ≥ 1, k ≥ 7, and x, z > 1, we deduce that

α

x
− β

x
≤ 2α

xkaczk
R−k+1 <

1

2z4
.

Hence, inequality (2.10) is satisfied, implying that β/x = y/z2 is a convergent of the

continued fraction of α/x.

Fix J ≥ 0 such that y/z2 = pJ/qJ . Since pJ/qJ is in lowest terms, we have qJ ≤ z2.

Next, since α > β, we have α/x > β/x. Therefore, inequality (2.12) implies that J is

even. Further, since α < 2 and x > 1, α/x < 1. Thus, from the definition of the 0-th

convergent, p0/q0 = a0 = 0. But pJ/qJ = y/z2 > 0 and so J 6= 0. Hence, J is even

and strictly positive.

Next, we determine an upper bound for J by bounding the value of qJ . Since

qJ ≤ z2, we first derive an upper bound for z2 by combining an upper and lower
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bound for |α/x− β/x|.

The lower bound for |α− β| from inequality (3.9) implies that

1

8kµkuv2z2λx
<
α

x
− β

x
.

Combining this with inequality (3.25), we have

1

8kµkuv2z2λx
<

2α

kaczkx
R−k+1.

Solving for z yields

zk−2λ <
16µkαuv

2

ac
R−k+1.

Thus,

qJ ≤ z2 <

(
16µkαuv

2

ac
R−k+1

)2/(k−2λ)

. (3.26)

Now, for each possible (a, c, x, k) such that (k, a2cxk) ∈ S, we use SAGE [66] to com-

pute the first fifteen partial quotients aj of α/x. Then, we compute the corresponding

values of qj. Comparing those qj values with the upper bound for qJ , we find that,

for some Jmax ≤ 14,

qJmax < (16µkαuv
2R−k+1/(ac))2/(k−2λ) ≤ qJmax+1.

Since qj is increasing for j > 1 and qJ satisfies inequality (3.26), J ≤ Jmax. Hence,

for each (k, a2cxk) ∈ S, we have determined a finite set of possible values of J .

Next, we derive a lower bound for the J + 1-st partial quotient, aJ+1. By inequal-

ity (2.11),

α

x
− y

z2
>

1

q2J(aJ+1 + 2)
≥ 1

z4(aJ+1 + 2)
.
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Combining this with the upper bound in inequality (3.25) yields

1

z4(aJ+1 + 2)
<

2α

xkaczk
R−k+1.

Solving for αJ+1, we find

aJ+1 >
xkaczk−4

2α
Rk−1 − 2. (3.27)

In order to eliminate z from this inequality, we derive a lower bound for z by

using the lower bound for w. From inequality (3.22), w2 > kku(k−2)v2(k−1) and so

(uvw)2 > kkukv2k. Since abczk = uvw + 1 > uvw,

abczk > kk/2uk/2vk.

Reducing equation (3.24) modulo b, we find that a2cxk ≡ 0 (mod b) and so b ≤ a2cxk.

Combining this with the inequality above, we have a2cxkzk > kk/2uk/2vk. So,

z >

√
kuv2

a3/kc2/kx
.

Thus, by inequality (3.27), we have

aJ+1 >
xkac

2α

( √
kuv2

a3/kc2/kx

)k−4

Rk−1 − 2.

For each possible value of (a, c, x, k, J), we compute aJ+1 for α/x and calculate

this lower bound for aJ+1. In each case, we find that aJ+1 is smaller than the bound,

a contradiction. Hence, there are no possible values and so the theorem is proved.
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Chapter 4

Main Theorem II

This chapter focuses on Main Theorem II, which we state below. The proof depends

heavily on the results for Lehmer pairs presented in Section 2.3.

In 1992, Cohn [29] enumerated all of the integer solutions to the equationX2+2L =

Y N with L ∈ Z+ odd and N ≥ 3. Arif and Abu Muriefah [1] made some progress

on the L even case in 1997, proving many special cases. After Bilu, Hanrot, and

Voutier’s major work [15, Theorem 1.4] on Lucas and Lehmer pairs, Arif and Abu

Muriefah [2, Theorem 1] proved the remaining cases.

The following year, Luca [47, Theorem 2.1] solved the equation X2 + 2L3M = Y N

with L, M , N ∈ Z+ and N ≥ 3. Other results on equations of this form were

subsequently solved where the second term has a small number of prime divisors (see

for example [50,57,69]).

In 2011, Wang and Wang [77], considered a variation of the equation studied by

Arif and Abu Muriefah, NX2 + 2L = Y N with L, N ∈ Z+, N > 1, L even, and N

odd. The case, in which L is odd was solved by Wu [80] and independently by Luca

and Soydan [48, Theorem 1].

Inspired by Wang and Wang’s work, in the following theorem we consider a vari-

55
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ation of Luca’s equation.

Main Theorem II. Let L, M , N ∈ Z+ with N > 1. Then the equation

NX2 + 2L3M = Y N , (4.1)

has no solutions with X, Y ∈ Z+ and gcd(NX, Y ) = 1.

In the next two sections, we discuss earlier results and prove a special case of the

main theorem before presenting the proof of Main Theorem II, in the last section.

4.1 Preliminary Results

In this section, we present some results that we use in the proof of Main Theorem II,

then state and prove two technical lemmas. We use the following result of Luca [47,

Theorem 2.1], in proving Lemma 25.

Theorem 21 (Luca). Let L, M , N ∈ Z+ with N ≥ 5. Then the equation

X2 + 2L3M = Y N

has no solutions with X, Y ∈ Z+ and gcd(X, Y ) = 1.

Luca lists all of the solutions for N = 3 and 4, but the statement above is sufficient

for our purposes here. The proofs for N = 3 and 4 are applications of results by de

Weger that appear in his dissertation [32].

Sketch of proof. Suppose for a contradiction, that a solution exists with N ≥ 5. Luca

constructs a Lucas pair from the hypothetical solution and shows that it is an N -

defective Lucas pair. By Theorem 11, this implies that N ≤ 30. A contradiction is
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reached by examining Voutier’s list in [15, Table 1] of Lucas pairs.

Wang and Wang [77] proved that the equation NX2 + 2L = Y N has no solutions

for L even. We state their theorem and sketch the proof below. We use a similar

method to prove Theorem 27 in which we consider equation (4.1) for L and M both

even. Key to their proof is the following result by Heuberger and Le [39, Theorem

6.1 & 6.2]. (See Section 2.1 for a review of binary quadratic forms.)

Theorem 22 (Heuberger and Le). Let d ∈ Z+ with d > 1 square-free and let k > 1

be an odd integer such that gcd(d, k) = 1. If the equation

X2 + dY 2 = kZ

has a solution with X, Y, Z ∈ Z, gcd(X, Y ) = 1, and Z > 0, then there exist

A,B, s, t ∈ Z+ such that

Z = st,

X + Y
√
−d = λ1(A+ λ2B

√
−d)t, with λ1, λ2 ∈ {−1,+1},

A2 + dB2 = ks, gcd(A,B) = 1, and s | h(−4d),

where h(−4d) is the class number of positive definite binary quadratic forms of dis-

criminant −4d.

Sketch of the Proof. Let d, k ∈ Z+ be given as in the theorem. Let

f(X, Y ) = X2 + dY 2.

So, f = [1, 0, d] is a positive definite primitive binary quadratic form with discriminant

−4d. For each x, y, z ∈ Z such that gcd(x, y) = 1, z > 0, and x2 + dy2 = kz, we have
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that f(x, y) is a representation of kz. From equation (2.1), there exist u, v, ` ∈ Z

such that

xu− yv = 1, ` = 2axv + 2dyu, and 0 ≤ ` < 2k.

Then, by congruence (2.2), `2 ≡ −4d (mod 4kz). Notice that 2 | `. By [39, Lemma

5.1], there exists a unique ¯̀ = ¯̀(f, x, y) ∈ Z+ such that ¯̀≡ ±`/2 (mod k), 0 < ¯̀<

k/2,

¯̀2 ≡ −d (mod k), (4.2)

and gcd(k, 2¯̀, (¯̀2 + d)/k) = 1. By equation (2.3), 2x ≡ −`y (mod 2kz), implying

that

x ≡ ±¯̀y (mod k). (4.3)

Assume that x0, y0, z0 ∈ Z such that gcd(x0, y0) = 1, z0 > 0, and f(x0, y0) = kz0 .

Since f(x0, y0) = f(−x0, y0), Heuberger and Le assume, using congruence (4.3), that

x0 ≡ −¯̀y0 (mod k).

Define

S = {(x, y, z) ∈ Z3|f(x, y) = kz, gcd(x, y) = 1, z > 0, ¯̀(f, x, y) = ¯̀(f, x0, y0)},

S+ = {(x, y, z) ∈ S|x ≡ −¯̀y (mod k)},

and

S− = {(x, y, z) ∈ S|x ≡ ¯̀y (mod k)}.

For convenience, let

T+ = {z ∈ Z+|∃x, y ∈ Z s.t. (x, y, z) ∈ S+}
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and

T− = {z ∈ Z+|∃x, y ∈ Z s.t. (x, y, z) ∈ S−}.

Note that by congruence (4.3), S = S+ ∪ S−. Also, (x0, y0, z0) ∈ S+ and so S+ 6= ∅.

Thus T+ 6= ∅. Let (x̂, ŷ, ẑ) ∈ S+ such that ẑ is the minimum of T+.

Let g = [k, 2¯̀, (¯̀2 + d)/k]. Then, g is a primitive binary quadratic form with

discriminant −4d. Heuberger and Le prove that for each z ∈ T+, [g]z = [f ]. Since

f = [1, 0, d], f(1, 0) = 1 is a representation of 1 and so [f ] = [f0], the identity element

in the group of equivalence classes of binary quadratic forms of discriminant −4d.

Since z0, ẑ ∈ T+, this implies that [g]z0 = [g]ẑ = [f0]. By [39, Lemma 6.4], the order

of [g] is in T+. Since ẑ ∈ T+ is the minimum, |[g]| = ẑ. So, ẑ | h(−4d) and ẑ | z0.

Let t ∈ Z+ such that

z0 = ẑt.

Then f(x0, y0) = kz0 = (kẑ)t = f(x̂, ŷ)t.

Let xt, yt ∈ Z such that

xt + yt
√
−d = (x̂+ ŷ

√
−d)t. (4.4)

Notice that xt + yt
√
−d, x̂ + ŷ

√
−d ∈ Q(

√
−d). Applying the norm map to equa-

tion (4.4) yields f(xt, yt) = (f(x̂, ŷ))t = (kẑ)t = kz0 .

Expanding equation (4.4) and comparing the real and imaginary parts,

xt =

[t/2]∑
j=0

(
t

2j

)
x̂t−2j ŷ2j(−d)j

and

yt =

[(t−1)/2]∑
j=0

(
t

2j + 1

)
x̂t−2j−1ŷ2j+1(−d)j.
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Since (x̂, ŷ, ẑ) ∈ S+ with ¯̀ = ¯̀(f, x0, y0), x̂ ≡ − ¯̀̂y (mod k). Then, congruence (4.2)

implies that

xt ≡ x̂t
[t/2]∑
j=0

(
t

2j

)
≡ 2t−1x̂t (mod k),

since
∑[t/2]

j=0

(
t
2j

)
= 2t−1. Similarly, yt ≡ 2t−1x̂t−1ŷ (mod k). Combining the congru-

ences yields xt ≡ −¯̀yt (mod k).

Suppose that q is prime dividing gcd(xt, yt). Then, q | f(xt, yt) and so q | k.

Hence, 0 ≡ xt ≡ 2t−1x̂t (mod q). Since k is odd, q is also odd. Thus, this implies

that q | x̂. It follows that q | ŷ. But this is a contraction, since gcd(x̂, ŷ) = 1. Hence,

gcd(xt, yt) = 1 and therefore f(xt, yt) = kz0 is a representation.

Finally, it is easy to show that `(f, xt, yt) = `(f, x0, y0). Since the representations

f(xt, yt) = kz0 = f(x0, y0) have the same characteristic number, by Lemma 1, x0 +

y0
√
−d = ±(xt + yt

√
−d). Set A = |x̂| and B = |ŷ|, and let λ1, λ2 ∈ {1,−1} such

that

x0 + y0
√
−d = λ1(A+ λ2B

√
−d)t.

The theorem follows by setting s = ẑ.

Theorem 23 (Wang and Wang). Let L, N ∈ Z+ with L even and N > 1. The

equation

NX2 + 2L = Y N

has no solutions with X, Y ∈ Z+ and gcd(NX, Y ) = 1.

Sketch of Proof. Using Theorem 22, Wang and Wang construct a t-defective Lehmer

pair (α, β) for an integer t dividing N . Using Theorems 10 and 11, they show that

t must be one of only a few values. They use congruence arguments to derive a

contradiction for each of these values.
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Wu [80] proved that the equation NX2 + 2L = Y N has no solutions for L odd

and N > 3. He used the same type of arguments that are used in the proof of

Theorem 23, but replaced Theorem 22 with an earlier result of Le [42, Theorem 3].

Luca and Soydan [48, Theorem 1] independently proved a slightly stronger result.

Theorem 24 (Luca and Soydan). Let L, N ∈ Z+ with L odd and N > 3. The

equation

NX2 + 2L = Y N

has no solutions with X, Y ∈ Z+ and gcd(X, Y ) = 1.

Sketch of proof. From a hypothetical solution with N 6= 5 or 15, Luca and Soydan

construct a 2t-defective Lehmer pair for some t, with t | N . Then, the results in

Theorem 10 and 11 yield a contradiction. For each of the remaining N , they translate

the problem to one of either solving a Thue equation or finding points on an elliptic

curve, both of which they solve with computer calculations.

Next, we show that in proving Main Theorem II, it is sufficient to consider N

square-free.

Lemma 25. Let L, M , N , X, Y ∈ Z+ with N > 1 and gcd(NX, Y ) = 1. If

NX2 + 2L3M = Y N , then there exist N ′, X ′, Y ′ ∈ Z+ with N ′ > 1 square-free and

gcd(N ′X ′, Y ′) = 1 such that N ′(X ′)2 + 2L3M = Y ′N
′
.

Proof. Suppose that (N,X, Y, L,M) = (n, x, y, `,m) is a solution in positive integers

to the equation NX2 + 2L3M = Y N so that

nx2 + 2`3m = yn (4.5)

with n, x, y, `, m ∈ Z+, n > 1, and gcd(nx, y) = 1.
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Let p = 2 or 3. The assumption that `, m ≥ 1 implies that p | 2`3m. By

equation (4.5), p | (yn − nx2). Thus, we see that p | y if and only if p | nx. Since

gcd(nx, y) = 1, p - y and p - nx. Hence, gcd(nxy, 6) = 1, and so n ≥ 5.

Let u, v ∈ Z+ such that n = uv2 with u square-free. Suppose that u = 1. Then

n = v2 and so, by equation (4.5), (vx)2 + 2`3m = yv
2
. Notice that gcd(vx, y) = 1

and v2 = n ≥ 5. Thus, (N,X, Y, L,M) = (v2, vx, y, `,m) is an integer solution to

X2 + 2L3M = Y N , with N ≥ 5. By Theorem 21, this is a contradiction. Therefore,

u > 1.

Since n = uv2 with u > 1 and gcd(nx, y) = 1, we have gcd(uvx, yv
2
) = 1.

Equation (4.5) implies that u(vx)2 + 2`3m = (yv
2
)u. Therefore, (N,X, Y, L,M) =

(u, vx, yv
2
, `,m) is a solution to the equation NX2 + 2L3M = Y N with N = u > 1

square-free, as desired.

For completeness, we include a proof of the following technical lemma on sums of

certain binomial coefficients.

Lemma 26. If t ∈ Z+, then

(a)
∑t

j=0

(
2t+1
2j+1

)
= 22t and

(b)
∑t

j=0

(
2t+1
2j+1

)
(−1)j = ±2t.

Proof of (a). Let t ∈ Z+. Let f1(t) =
∑t

j=0

(
2t+1
2j

)
and g1(t) =

∑t
j=0

(
2t+1
2j+1

)
. Then,

f1(t) + g1(t) =
t∑

j=0

(
2t+ 1

2j

)
+

t∑
j=0

(
2t+ 1

2j + 1

)
=

2t+1∑
k=0

(
2t+ 1

k

)

=
2t+1∑
k=0

(
2t+ 1

k

)
12t+1−k1k = (1 + 1)2t+1 = 22t+1. (4.6)
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Similarly, we find that

f1(t)− g1(t) =
t∑

j=0

(
2t+ 1

2j

)
−

t∑
j=0

(
2t+ 1

2j + 1

)

=
t∑

j=0

(
2t+ 1

2j

)
(−1)2j +

t∑
j=0

(
2t+ 1

2j + 1

)
(−1)2j+1

=
2t+1∑
k=0

(
2t+ 1

k

)
(−1)k =

2t+1∑
k=0

(
2t+ 1

k

)
12t+1−k(−1)k = (1− 1)2t+1 = 0.

Thus, f1(t)− g1(t) = 0 and so f1(t) = g1(t). Combining this with equation (4.6), we

have that 2g1(t) = 22t+1. Hence, g1(t) = 22t, as desired. �

Proof of (b). Let t ∈ Z+. Let f2(t) = −i
∑t

j=0

(
2t+1
2j

)
(−1)j and g2(t) =

∑t
j=0

(
2t+1
2j+1

)
(−1)j.

Then,

if2(t) + ig2(t) =
t∑

j=0

(
2t+ 1

2j

)
(−1)j + i

t∑
j=0

(
2t+ 1

2j + 1

)
(−1)j

=
t∑

j=0

(
2t+ 1

2j

)
i2j +

t∑
j=0

(
2t+ 1

2j + 1

)
i2j+1

=
2t+1∑
k=0

(
2t+ 1

k

)
ik =

2t+1∑
k=0

(
2t+ 1

k

)
12t+1−kik = (1 + i)2t+1.

Similarly,

if2(t)− ig2(t) =
t∑

j=0

(
2t+ 1

2j

)
(−1)j − i

t∑
j=0

(
2t+ 1

2j + 1

)
(−1)j

=
t∑

j=0

(
2t+ 1

2j

)
(−i)2j +

t∑
j=0

(
2t+ 1

2j + 1

)
(−i)2j+1

=
2t+1∑
k=0

(
2t+ 1

k

)
(−i)k = (1− i)2t+1.
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Combining these two equations yields

2ig2(t) = (1 + i)2t+1 − (1− i)2t+1 = (1 + i)2t(1 + i)− (1− i)2t(1− i)

= (2i)t(1 + i)− (−2i)t(1− i) = (2i)t
(
(1 + i)− (−1)t(1− i)

)
=

 2t(±i)2, if t is odd,

2t(±1)(2i), if t is even,

= ±2t(2i).

Therefore, g2(t) = ±2t.

4.2 Proof of a Special Case

We now prove the special case of Main Theorem II in which L and M are both even.

Theorem 27. Let L, M , N ∈ Z+ such that L and M are both even and N > 1. The

equation

NX2 + 2L3M = Y N (4.7)

has no solutions with X, Y ∈ Z+ and gcd(NX, Y ) = 1.

Proof. Let `, m, n ∈ Z+ with ` and m both even and n > 1. For a contradiction,

suppose that (N,X, Y, L,M) = (n, x, y, `,m) is a solution to equation (4.7) with x,

y ∈ Z+ and gcd(nx, y) = 1. So, we have

nx2 + 2`3m = yn. (4.8)

By Lemma 25, we assume that n is square-free. Since `, m ≥ 1, as in the proof of

Lemma 25, gcd(nxy, 6) = 1, and so n ≥ 5.
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By assumption, ` and m are both even. Therefore, there exist k, k′ ∈ Z+ such

that ` = 2k and m = 2k′. So, equation (4.8) can be rewritten as

(
2k3k

′
)2

+ nx2 = yn. (4.9)

Since n > 1 is square-free, y > 1 is odd, and gcd(n, y) = 1, the hypotheses of

Theorem 22 are satisfied. Hence, there exist A, B, s, t ∈ Z+ such that

n = st, (4.10)

2k3k
′
+ x
√
−n = λ1(A+ λ2B

√
−n)t, with λ1, λ2 ∈ {+1,−1}, (4.11)

A2 + nB2 = ys, gcd(A,B) = 1, (4.12)

and

s | h(−4n). (4.13)

Let

γ = A+B
√
−n

and

δ = −A+B
√
−n

in Q(
√
−n). We prove that (γ, δ) is a t-defective Lehmer pair, after proving some

preliminary results. First, we show that t > 1.

Suppose, for a contradiction that t = 1. Then by equation (4.10), n = s. Since

n > 1 is square-free, Lemma 3 implies that n > h(−4n). However, by equation (4.13)

we have n | h(−4n) and so n ≤ h(−4n), a contradiction. Therefore, t > 1.

Since gcd(n, 6) = 1, equation (4.10) implies that t is odd. Let t1 ∈ Z such that
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t = 2t1 + 1. Since t > 1, we have that t1 ≥ 1. Expanding λ1
(
A+ λ2B

√
−n
)t

in

equation (4.11) yields

2k3k
′
+ x
√
−n = λ1

t∑
i=0

(
t

i

)
At−i

(
λ2B
√
−n
)i

= λ1

(
t1∑
j=0

(
t

2j

)
At−2j(λ2B

√
−n)2j +

t1∑
j=0

(
t

2j + 1

)
At−2j−1(λ2B

√
−n)2j+1

)
.

Comparing the real and imaginary parts, we find that

2k3k
′
= λ1

t1∑
j=0

(
t

2j

)
At−2j(λ2B

√
−n)2j

and

x
√
−n = λ1

t1∑
j=0

(
t

2j + 1

)
At−2j−1(λ2B

√
−n)2j+1.

Factoring and taking the absolute value of each sum, noting that A and B are positive

and λ1, λ2 ∈ {±1}, we find that

2k3k
′
= A

∣∣∣∣∣
t1∑
j=0

(
t

2j

)
At−2j−1(−nB2)j

∣∣∣∣∣
and

x = B

∣∣∣∣∣
t1∑
j=0

(
t

2j + 1

)
At−2j−1(−nB2)j

∣∣∣∣∣ .
Thus, A | 2k3k′ and B | x. For ease in notation, let

S =

t1∑
j=0

(
t

2j

)
At−2j−1(−nB2)j

and so

2k3k
′
= A|S|. (4.14)
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Our next goal is to show thatA = 2k3k
′
and S = ±1. Since gcd(nxy, 6) = 1, x2 ≡ 1

(mod 6) and yn ≡ y (mod 6). By equation (4.9), n ≡ y (mod 6) and n ≡ y ≡ ys

(mod 6), since s is odd. Then, considering equation (4.12) modulo 6, we have

A2 + nB2 ≡ n (mod 6). (4.15)

Since gcd(x, 6) = 1 and B | x, gcd(B, 6) = 1, and so B2 ≡ 1 (mod 6). Hence,

A2 + n ≡ n (mod 6). Thus, A2 ≡ 0 (mod 6), and so 6 | A.

Reducing S modulo 6 yields

S =

t1∑
j=0

(
t

2j

)
At−2j−1(−nB2)j ≡

(
t

t− 1

)
(−nB2)t1 ≡ t(−nB2)t1 (mod 6). (4.16)

We know that gcd(n, 6) = 1 and t | n, so n ≡ ±1 (mod 6) and t ≡ ±1 (mod 6).

Additionally, since B2 ≡ 1 (mod 6), t(−nB2)t1 ≡ ±1 (mod 6). Therefore, congru-

ence (4.16) yields S ≡ ±1 (mod 6). By equation (4.14), S | 2k3k′ and therefore

S = ±1 and A = 2k3k
′
. (4.17)

Lemma 28. The pair (γ, δ) is a t-defective Lehmer pair.

Proof. In order to show that (γ, δ) is a Lehmer pair as defined in Section 2.3, we show

that the conditions (2.15)–(2.17) are satisfied. In other words, we show that γ and δ

are algebraic integers such that (γ+ δ)2 and γδ are relatively prime nonzero integers,

and that γ/δ is not a root of unity.

Recall that Q(
√
−n). Since A, B ∈ Z+, A + B

√
−n ∈ OQ(

√
−n) and so γ and δ
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are nonzero algebraic integers. From the definition of γ and δ, we have

(γ + δ)2 =
[(
A+B

√
−n
)

+
(
−A+B

√
−n
)]2

= −4nB2 ∈ Z− {0}

and

γδ =
(
A+B

√
−n
) (
−A+B

√
−n
)

= −A2 − nB2 = −ys ∈ Z− {0}. (4.18)

Suppose, for a contradiction, that p is a prime dividing gcd((γ+δ)2, γδ) = gcd(4nB2, ys).

It follows that p | gcd(2nB, y) and so, since B | x, p | gcd(2nx, y). But gcd(nx, y) = 1

and y is odd, so this is a contradiction. Hence, gcd((γ + δ)2, γδ) = 1.

Now, γ/δ ∈ Q(
√
−n). Since n ≥ 5, the only roots of unity in Q(

√
−n) are 1 and

−1. Since A and B are nonzero,

γ = A+B
√
−n 6= ±

(
−A+B

√
−n
)

= ±δ

and so γ/δ 6= ±1. Hence, γ/δ is not a root of unity. Therefore, (γ, δ) is a Lehmer

pair.

It remains to show that (γ, δ) is t-defective. Since t is odd, the t-th Lehmer number

is

Lt(γ, δ) =
γt − δt

γ − δ
. (4.19)
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Recalling that t = 2t1 + 1 yields

γt − δt = (A+B
√
−n)t − (−A+B

√
−n)t

=
t∑
i=0

(
t

i

)
At−i(B

√
−n)i −

t∑
i=0

(
t

i

)
(−A)t−i(B

√
−n)i

=
t∑
i=0

(
t

i

)(
At−i − (−A)t−i

)
(B
√
−n)i

= 2

t1∑
j=0

(
t

2j

)
At−2j(−nB2)j

= 2A

t1∑
j=0

(
t

2j

)
At−2j−1(−nB2)j = 2AS. (4.20)

Since γ − δ = 2A, γt − δt = (γ − δ)S. Therefore,

Lt(γ, δ) =
γt − δt

γ − δ
= S = ±1,

by equation (4.17). Thus, Lt(γ, δ) = ±1 has no prime divisors and, as noted in

Section 2.3, this means that Lt(γ, δ) has no primitive divisors. Hence, (γ, δ) is a

t-defective Lehmer pair. �

By Theorem 11, t-defective Lehmer pairs can only exist for t ≤ 30. For 0 ≤ d ≤ 3,

we compare idγ = id(A + B
√
−n) to the values in Table 2.1. Since with 6 | A and

gcd(B, 6) = 1, we conclude that t ≤ 6 or t ∈ {8, 10, 12}. However, gcd(t, 6) = 1 and

t > 1. Thus, t = 5.

Finally, by equation (4.17), A = 2k3k
′

and S = ±1. So, t = 5 implies that

±1 = S =
2∑
j=0

(
5

2j

)
A5−2j−1(−nB2)j = 24k34k′ − 10 · 22k32k′nB2 + 5n2B4.

Recalling that k ≥ 1 and 2 - nB, we have that ±1 ≡ 5n2B4 ≡ 5 (mod 8), a contra-
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diction.

Hence, there are no solutions to equation (4.7) with L, M ∈ Z+ even.

4.3 Proof of Main Theorem II

Finally, we prove the main result of this chapter. We use Theorem 27 and results

from Section 4.1.

Proof of Main Theorem II. Let `, m, n ∈ Z+ with n > 1. For a contradiction,

suppose that (N,X, Y, L,M) = (n, x, y, `,m) is a solution to equation (4.1), with x,

y ∈ Z+ and gcd(nx, y) = 1. So,

nx2 + 2`3m = yn. (4.21)

Using Lemma 25, we assume that n is square-free and, using Theorem 27, we assume

that ` and m are not both even. As in the proof of Lemma 25, `, m ≥ 1 implies that

gcd(nxy, 6) = 1 and so n ≥ 5. Note that, `, m ≥ 1, also implies that y > 1.

We use the following notation. Let k, k′ ∈ Z+ and e, e′ ∈ {0, 1} such that ` = 2k+e

and m = 2k′ + e′. Let K = Q(
√
w,
√
−n), and let F = Q(

√
−wn) with w = 2e3e

′
.

Since ` and m are not both even, e and e′ are not both zero. So, w ∈ {2, 3, 6}.

Rewriting equation (4.21), we have

22k+e32k′+e′ + nx2 = yn.

Factoring this equation in K yields

(
2k3k

′√
w + x

√
−n
)(

2k3k
′√
w − x

√
−n
)

= yn.
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Let

a = 2k3k
′√
w + x

√
−n

and

b = 2k3k
′√
w − x

√
−n,

and so ab = yn. Note that b is the complex conjugate of a. Since x 6= 0, we have a,

b ∈ K − F , whereas,

a2 =
(

2k3k
′√
w + x

√
−n
)2

= 2`3m − nx2 + 2k+13k
′
x
√
−wn (4.22)

and

b2 =
(

2k3k
′√
w − x

√
−n
)2

= 2`3m − nx2 − 2k+13k
′
x
√
−wn, (4.23)

are elements of F .

Next, we prove that a2OF and b2OF are relatively prime by working in the bi-

quadratic field, K. First, suppose, for a contradiction, that p is a prime ideal in

OK such that p divides each of the ideals aOK and bOK . So, p divides the prod-

uct and the sum of aOK and bOK . In particular, p divides (aOk)(bOK) = abOK =

(yn)OK = (yOK)n and so p | yOK . Let p ∈ Z be the prime lying under p. Then,

p | y. The ideal aOK + bOK contains the element a + b and so contains the ideal

(a + b)OK = (2k+13k
′√
w)OK . Therefore, p | (2k+13k

′√
w)OK . Since w ∈ {2, 3, 6},

p | 6OK . Thus, p | 6 and so p | gcd(y, 6). This is a contradiction, since gcd(y, 6) = 1.

Hence, aOK and bOK are relatively prime.

Now, suppose, for a contradiction, that q is a prime ideal in OF such that q divides

both a2OF and b2OF . Let p ⊆ OK be a prime ideal that lies over q. Then, p | a2OK

and p | b2OK . Since a, b ∈ K, a2OK = (aOK)2 and b2OK = (bOK)2 and so p | aOK

and p | bOK . However, aOK and bOK are relatively prime, so this is a contraction.
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Hence, a2OF and b2OF are relatively prime.

Since ab = yn, (a2OF ) (b2OF ) = (a2b2)OF = y2nOF = (yOF )2n. Therefore,

since a2OF and b2OF are relatively prime, there exists an ideal I ⊆ OF such that

a2OF = I2n. Let s ∈ Z+ be the order of I in the ideal class group of OF . So, Is is a

principal ideal. Let α ∈ OF generate Is,

αOF = Is.

Since I2n = a2OF is also principal, we have that s | 2n. Let t ∈ Z such that

2n = st.

Then,

a2OF = I2n = Ist = (Is)t = (αOF )t = αtOF .

Therefore, there exists a unit, ε ∈ O×F such that a2 = εαt. Since F = Q(
√
−wn) is

a quadratic field with wn ≥ 2 · 5 = 10, the only units in OF are 1 and −1. Hence,

ε = ±1.

To see that t > 1, first recall that hF is the class number OF . Since s is the order

of I in the ideal class group of OF , s | hF and so s ≤ hF . By Lemma 4, n > 1 implies

that hF < 2n = st ≤ hF t. Thus, t > 1.

Next, suppose for a contradiction that t is even. Then there exists t0 ∈ Z+ such

that t = 2t0. Since ε = ±1, we have that a2 = ±α2t0 . This implies that (a/αt0)2 = ±1

in K. Suppose that (a/αt0)2 = −1. Then K contains an element whose square is −1,

meaning that i ∈ K. Since i is of degree 2 over Q, it must be in one of the quadratic

subfields of K. Since w > 1 and n ≥ 5, the only roots of unity in the subfields Q(
√
w),

Q(
√
−n), and Q(

√
−wn) are 1 and −1. So, i /∈ K. Thus, (a/αt0)

2
= 1, implying that
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a = ±αt0 . Since α ∈ F , this implies a ∈ F , which is a contradiction. Therefore, t is

odd.

Since t is odd and ε = ±1, ε = εt and so a2 = εαt = (εα)t = (±α)t. Noting that

−α and α both generate Is, we can rename −α as α. Thus, we assume that

a2 = αt. (4.24)

Let t1 ∈ Z+ such that t = 2t1 + 1. Now, we define a pair (γ, δ) by

γ =
a

αt1

and

δ = γ.

Our goal is to prove that (γ, δ) is a 2t-defective Lehmer pair. First, we prove several

preliminary results.

Since a ∈ K − F and α ∈ F , we have that γ ∈ K. Further, the equation a2 = αt

implies that

γ2 =
( a

αt1

)2
=

αt

α2t1
= α. (4.25)

Thus, γ is a zero of the monic polynomial X2 − α with α ∈ OF . By [68, Theorem

2.10], this implies that γ ∈ OK . Since δ = γ, δ ∈ OK , as well.

Applying Lemma 5, we have γ = A
√
w + B

√
−n + C

√
−wn + D for some A, B,

C, D ∈ 1
4
Z. Further, since γ2 = α ∈ OF , Lemma 5 implies that A = B = 0 or

C = D = 0.

Suppose, for a contradiction, that A = B = 0. Then γ = C
√
−wn+D ∈ OF . So,
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we have

(γOF )2 = γ2OF = αOF = Is.

Since st = 2n and t is odd, s is even. Thus, γOF = Is/2, a principal ideal. But this

is a contradiction to s being the order of I. Therefore, γ /∈ OF and so C = D = 0.

Hence, we have A, B ∈ 1
4
Z such that

γ =
a

αt1
= A
√
w +B

√
−n, (4.26)

and so

δ = A
√
w −B

√
−n. (4.27)

Since α ∈ OF = Z[
√
−wn], there exist U , V ∈ Z or U , V ∈ 1

2
Z− Z such that

α = U + V
√
−wn.

Combining this with equations (4.25) and (4.26), we have A2w−B2n+2AB
√
−wn =

U + V
√
−wn. Comparing the real and imaginary parts, we find that

U = A2w −B2n (4.28)

and

V = 2AB. (4.29)

Lemma 29. Let A, B, U , V be defined as above.

(a) If U , V ∈ Z, then A, B ∈ Z.

(b) If U , V ∈ 1
2
Z− Z, then w = 3, n ≡ 1 (mod 4), and A, B ∈ 1

2
Z− Z.

Proof. Since A, B ∈ 1
4
Z, there exist r, s ∈ Z such that A = r/4 and B = s/4. By
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equations (4.28) and (4.29), we have

16U = r2w − s2n (4.30)

and

8V = rs. (4.31)

First, assume U , V ∈ Z. Equation (4.31) implies that 8 | rs and so at least one

of r or s is even. We consider multiple cases based on the parity of r and s. If r is

odd, then r2 ≡ 1 (mod 8) and s2 ≡ 0 (mod 8). Reducing equation (4.30) modulo 8

yields 0 ≡ 16U ≡ r2w−s2n ≡ w (mod 8). Since w ∈ {2, 3, 6}, this is a contradiction.

Similarly, if s is odd, then equation (4.30) implies that 0 ≡ 16U ≡ r2w − s2n ≡ −n

(mod 8), another contradiction. Hence, r and s are both even and so r = 2r1 and

s = 2s1 for some r1, s1 ∈ Z. Since 8 | rs at least one of r1 and s1 is also even.

If r1 is odd, then r21 ≡ 1 (mod 4) and s21 ≡ 0 (mod 4). Therefore, equation (4.30)

yields 0 ≡ 16U ≡ 4r21w − 4s21n ≡ 4w (mod 16), again a contradiction. Similarly,

if s1 is odd, then equation (4.30) implies that 0 ≡ 4r21w − 4s21n ≡ −4n (mod 16),

a contradiction. Thus, r1 and s1 are both even. In other words, r and s are both

divisible by 4 and so A = r/4 and B = s/4 are both rational integers. Hence, A,

B ∈ Z.

Next, assume U , V ∈ 1
2
Z− Z. Since α = U + V

√
−wn ∈ OF , we have −wn ≡ 1

(mod 4). So, w ∈ {2, 3, 6} implies that

w = 3 and n ≡ 1 (mod 4).

Reducing equation (4.31) modulo 4 yields 0 ≡ 4(2V ) ≡ rs (mod 4). Therefore, at

least one of r and s is even. If r is odd, then equation (4.30) implies that 0 ≡ 8(2U) ≡
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3r2 − s2 ≡ 3 (mod 4), a contradiction. Similarly, if s is odd then equation (4.30)

implies that 0 ≡ 8(2U) ≡ 3r2−s2 ≡ −1 (mod 4), another contradiction. Thus, r and

s are both even. Since V ∈ 1
2
Z− Z, using equation (4.31), we have 2V = (r/2)(s/2)

is odd, implying that r/2 and s/2 are both odd. Hence, A, B ∈ 1
2
Z− Z. �

Combining equations (4.22) and (4.24), and multiplying by 2t,

2tαt = 2t+`3m − 2tnx2 + 2t+k+13k
′
x
√
−wn. (4.32)

Since α = U + V
√
−wn, expanding as usual, we have

2tαt = (2U + 2V
√
−wn)t =

t∑
i=0

(
t

i

)
(2U)t−i(2V

√
−wn)i

=

t1∑
j=0

(
t

2j

)
(2U)t−2j(2V

√
−wn)2j +

t1∑
j=0

(
t

2j + 1

)
(2U)t−2j−1(2V

√
−wn)2j+1,

(4.33)

where 2U , 2V ∈ Z. Comparing the real and imaginary parts of equations (4.32)

and (4.33), we find that

2t+`3m − 2tnx2 = (2U)

t1∑
j=0

(
t

2j

)
(2U)t−2j−1(2V )2j(−wn)j (4.34)

and

2t+k+13k
′
x = (2V )

t1∑
j=0

(
t

2j + 1

)
(2U)t−2j−1(2V )2j(−wn)j. (4.35)

For ease in notation, let T =
∑t1

j=0

(
t

2j+1

)
(2U)t−2j−1(2V )2j(−wn)j so that

2t+k+13k
′
x = (2V )T . (4.36)
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Since x > 0, this implies that 2V 6= 0. So, by equation (4.29),

A 6= 0 and B 6= 0.

Suppose, for a contradiction, that 3 - 2V w. Since w = 2e3e
′
, this implies that

e′ = 0. Since m = 2k′ + e′ > 0, we have k′ > 0. Then, 3 divides equation (4.36) and

so 3 | T . Next, since 3 - nx, equation (4.34) implies that 3 - 2U . This, together with

the supposition that 3 - 2V , yields

T ≡
t1∑
j=0

(
t

2j + 1

)
(2U)t−2j−1(2V )2j(−wn)j ≡

t1∑
j=0

(
t

2j + 1

)
(±1)j (mod 3).

By Lemma 26,
∑t1

j=0

(
t

2j+1

)
(±1)j = 2t−1 or ±2t1 and so T ≡

∑t1
j=0

(
t

2j+1

)
(±1)j ≡ ±1

(mod 3). However, 3 | T and so we have a contradiction. Thus,

3 | 2V w. (4.37)

From equation (4.26) and (4.27), we have that γ + δ = 2A
√
w and so

γ + δ√
w

= 2A ∈ Z. (4.38)

Combining equation (4.24) with the definition of γ and t = 2t1 + 1, we have

γt =
( a

αt1

)t
=

at

a2t1
=
a2t1+1

a2t1
= a. (4.39)

Recalling that ab = yn and b = ā, we have δt = γt = a = b. Thus, γt + δt = a + b =

2k+13k
′√
w and so

γt + δt√
w

= 2k+13k
′ ∈ Z. (4.40)
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Let S =
∑t−1

i=0(−1)iγt−1−iδi = (γt + δt)/(γ+δ). Since γ, δ ∈ OK , we have S ∈ OK .

Since K = Q(
√
w,
√
−n), there are four automorphisms of K over Q, each determined

by where it sends
√
w and

√
−n. These automorphisms send γ = A

√
w + B

√
−n

to γ, δ, −δ, and −γ. Thus, S is fixed by each of the automorphisms. Hence, S ∈

OK ∩Q = Z. Then, since

(γt + δt)/
√
w

(γ + δ)/
√
w

=
γt + δt

γ + δ
= S ∈ Z,

as integers (γ + δ)/
√
w divides (γt + δt)/

√
w. By equations (4.38) and (4.40),

2A | 2k+13k
′

(4.41)

and so

γt + δt

γ + δ
=

2k+13k
′

2A
∈ Z. (4.42)

We are now ready to prove the following lemma.

Lemma 30. The pair (γ, δ) is a 2t-defective Lehmer pair.

Proof. First, we verify that (γ, δ), satisfies the conditions (2.15)–(2.17). Starting with

condition (2.15), we write γ and δ in terms of A, B ∈ 1
2
Z− {0} and find that

γδ =
(
A
√
w +B

√
−n
) (
A
√
w −B

√
−n
)

= A2w +B2n ∈ Q+, (4.43)

(γ + δ)2 =
[
(A
√
w +B

√
−n) + (A

√
w −B

√
−n)

]2
=
(
2A
√
w
)2

= (2A)2w ∈ Q+,

and

γ

δ
=
γ2

γδ
=
A2w −B2n+ 2AB

√
−wn

A2w +B2n
.

This shows that γδ and (γ + δ)2 ∈ Q − {0}. Since they are also in OK , we have
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γδ, (γ+δ)2 ∈ Z−{0}. Now, suppose that p ∈ Z is a prime dividing gcd(γδ, (γ+δ)2).

Since 2A | 2k+13k
′
and w | 6, we have that (γ+δ)2 | 6(2k+13k

′
)2. Therefore, p | (γ+δ)2

yields p = 2 or 3. Further, p | γδ. From equation (4.39), (γδ)t = γtδt = ab = yn.

Therefore, p | gcd(y, 6), a contraction since gcd(y, 6) = 1. Thus, gcd(γδ, (γ+δ)2) = 1.

Notice that γ/δ ∈ F . Since A 6= 0 and B 6= 0, we have γ = A
√
w + B

√
−n 6=

±
(
A
√
w −B

√
−n
)

= ±δ. Since the roots of unity in F = Q(
√
−wn) with wn ≥

2 · 5 = 10 are 1 and −1, and since γ/δ 6= ±1, γ/δ is not a root of unity. Hence, (γ, δ)

is a Lehmer pair.

Finally, we show that (γ, δ) is 2t-defective. For a contradiction, let p be a rational

prime such that p | L2t(γ, δ) and p - (γ2 − δ2)2L1(γ, δ) . . . L2t−1(γ, δ). From the

definition of L2t(γ, δ),

L2t(γ, δ) =
γ2t − δ2t

γ2 − δ2
=

(γt + δt)

(γ + δ)

(γt − δt)
(γ − δ)

.

Since t is odd, Lt(γ, δ) = (γt − δt)/(γ − δ) and from equation (4.42), we have that

(γt + δt)/(γ + δ) = 2k+13k
′
/2A. So,

L2t(γ, δ) =
2k+13k

′

2A
Lt(γ, δ).

Thus, p ∈ {2, 3} or p | Lt(γ, δ). By supposition, p - Lt(γ, δ) and so p = 2 or 3.

To show that p 6= 3, consider

(γ2 − δ2)2 =
[(
A
√
w +B

√
−n
)2 − (A√w −B√−n)2]2

=
[(
A2w −B2n+ 2AB

√
−wn

)
−
(
A2w −B2n− 2AB

√
−wn

)]2
=
(
4AB

√
−wn

)2
= −4(2AB)2wn = −4V 2wn = −(2V )2wn
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since V = 2AB. By equation (4.37), 3 | 2V w and so 3 | (γ2 − δ2)2. Hence, p 6= 3.

It remains to consider the case p = 2. Suppose that V ∈ Z. Then (γ2 − δ2)2 =

−(2V )2wn is even implying that 2 | (γ2 − δ2)2L1(γ, δ) . . . L2t−1(γ, δ), contradicting

the assumption. Hence, V /∈ Z.

Since V ∈ 1
2
Z − Z, by Lemma 29, we have that w = 3, n ≡ 1 (mod 4), and A,

B ∈ 1
2
Z−Z. Hence, 2A and 2B are odd integers, and so (2A)2 ≡ (2B)2 ≡ 1 (mod 8).

From equation (4.43), 4γδ ≡ (2A)2 · 3 + (2B)2n ≡ 3 + n (mod 8). Since (γδ)t = yn is

odd, 4γδ ≡ 4 (mod 8). Hence,

n ≡ 1 (mod 8). (4.44)

By the definition of L3(γ, δ), 4L3(γ, δ) = 4(γ3 − δ3)/(γ − δ) = 4 (γ2 + γδ + δ2).

Then,

4L3(γ, δ) = 4
(

(A
√

3 +B
√
−n)2 + (3A2 +B2n) + (A

√
3−B

√
−n)2

)
= 4

(
2(3A2 −B2n) + (3A2 +B2n)

)
= 4

(
9A2 −B2n

)
= 9(2A)2 − (2B)2n

≡ 9− n ≡ 0 (mod 8),

since n ≡ 1 (mod 8). Thus, 2 | L3(γ, δ), contradicting the supposition, since t ≥ 3.

Hence, for all primes p | L2t(γ, δ), we have p | (γ2− δ2)2L1(γ, δ) . . . L2t−1(γ, δ) and

so (γ, δ) is 2t-defective, as claimed. �

Theorem 11 implies that the Lehmer pair (γ, δ) can be 2t-defective only if 2t ≤ 30.

For 0 ≤ d ≤ 3, we compare the possible values of idγ = id(A
√
w + B

√
−n) to the
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values in Table 2.1 for 2t ≤ 30. Since 2A | 2k+13k
′
, we conclude that idγ is not listed

in the table. Therefore, 2t ∈ {2, 4, 6, 8, 10, 12}. Since gcd(t, 6) = 1 and t > 1, this

implies that 2t = 10 and so t = 5. Thus, it remains to prove the following lemma.

Lemma 31. Let A, B, U , V , and t be defined as above. Then t 6= 5.

Proof. For a contradiction, suppose that t = 5. We rewrite equations (4.34) and (4.35)

as

2`3m − nx2 = U
(
U4 − 10U2V 2wn+ 5V 4w2n2

)
(4.45)

and

2k+13k
′
x = V

(
5U4 − 10U2V 2wn+ V 4w2n2

)
. (4.46)

Next, combining equations (4.26) and (4.39), and comparing the real and imagi-

nary parts, we find that

2k+13k
′
= A

(
A4w2 − 10A2B2wn+ 5B4n2

)
(4.47)

and

x = B
(
5A4w2 − 10A2B2wn+B4n2

)
. (4.48)

First, assuming that U , V ∈ Z, by Lemma 29, A, B ∈ Z. So, equation (4.29)

implies that V is even. Since 2 - nx and ` ≥ 1, 2 - (2`3m − nx2) and so, by equa-

tion (4.45), 2 - U . Then, 2 - (5U4 − 10U2V 2wn + V 4w2n2) and so equation (4.46)

implies that 2k+1 | V .

Since x is odd and B | x, we have that B is odd. If k > 0, then 2k+1 | V implies

that 4 | V . So, V = 2AB implies that 4 | 2AB. Then, since 2 - B, 2 | A. If k = 0,

then ` = 2k + e = e. So, ` ≥ 1 with e ∈ {0, 1} yields e = 1. Thus, w = 2e3e
′

is even.

Hence, in either case, 2 | Aw.
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By equation (4.47), (A4w2 − 10A2B2wn + 5B4n2) | 2k+13k
′
. Since 2 | Aw and

2 - Bn, we consider A4w2− 10A2B2wn+ 5B4n2 modulo 8. First, if 2 | A, then it easy

to see that

A4w2 − 10A2B2wn+ 5B4n2 ≡ 5 (mod 8).

Now, if 2 - A, then 2 | w, and so

A4w2 − 10A2B2wn+ 5B4n2 ≡ 4− 4 + 5 ≡ 5 (mod 8).

Thus, 2 - (A4w2−10A2B2wn+5B4n2) implying that A4w2−10A2B2wn+5B4n2 = 3j

for some 0 ≤ j ≤ k′. So, for any integer j,

5 ≡ A4w2 − 10A2B2wn+ 5B4n2 = 3j ≡ 1 or 3 (mod 8),

which is a contradiction. Hence, U , V 6∈ Z.

Next, since U , V ∈ 1
2
Z − Z, by Lemma 29, we have w = 3, n ≡ 1 (mod 4), and

A, B ∈ 1
2
Z− Z. Multiplying equations (4.47) and (4.48) by 25 yields

2k+63k
′
= 2A

(
(2A)4 · 32 − 10(2A)2(2B)2 · 3n+ 5(2B)4n2

)
and

32x = 2B
(
5(2A)4 · 32 − 10(2A)2(2B)2 · 3n+ (2B)4n2

)
. (4.49)

Since 2B is odd, equation (4.49) implies that 32 divides 5(2A)4w2−10(2A)2(2B)2wn+
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(2B)4n2. We have

5(2A)4 · 32 − 10(2A)2(2B)2 · 3n+ (2B)4n2

= 4((2A)2 · 3)2 + ((2A)2 · 3− (2B)2n)2 − 8(2A)2(2B)2 · 3n. (4.50)

We now reduce each term in this expression modulo 32. First, we have ((2A)2 ·3)2 ≡ 1

(mod 8) and so

4((2A)2 · 3)2 ≡ 4 (mod 32).

Since V ∈ 1
2
Z−Z, by congruence (4.44), n ≡ 1 (mod 8). Thus, (2A)2·3−(2B)2n ≡

2 (mod 8) implying that

((2A)2 · 3− (2B)2n)2 ≡ 4 (mod 32).

Similarly, −(2A)2(2B)2 · 3n ≡ 5 (mod 8) implies that

−8(2A)2(2B)2 · 3n ≡ 8 (mod 32).

Hence,

0 ≡ 4((2A)2 · 3)2 + ((2A)2 · 3− (2B)2n)2 − 8(2A)2(2B)2 · 3n

≡ 4 + 4 + 8 ≡ 16 (mod 32),

a contradiction. �

Hence, the theorem is proved.
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Chapter 5

Main Theorem III

In this chapter, we describe the modular approach to solving Diophantine equations,

state some results that use that approach, and prove Main Theorem III. The modular

approach can be used to solve many kinds of Diophantine equations, especially those

that are variations on the equation in Fermat’s Last Theorem. One such extension is

called a generalized Fermat equation.

Let r, s, t ≥ 2 be integers. A generalized Fermat equation is an equation of the

form Xr + Y s = Zt. We say that the signature of this equation is (r, s, t). Darmon

and Granville [31, Theorem 2] proved that given a generalized Fermat equation of

fixed signature (r, s, t) satisfying 1/r + 1/s+ 1/t < 1, there are only a finite number

of solutions X, Y , Z ∈ Z− {0} with gcd(X, Y, Z) = 1.

There are numerous papers proving that for a specific signature (r, s, t) the gen-

eralized Fermat equation has no solutions in relatively prime integers. For instance,

Bennett, Chen, Dahmen, and Yazdani [11, Propositions 21–22] studied equations with

the signatures (2m, 2, 10) and (2m, 2, 15), for m > 1. Earlier, Poonen [58, Theorem

1] considered equations with signature (5, 5, 2). (See [11, Tables 1–3] for a list of

currently known results of this form.)

85



86 CHAPTER 5. MAIN THEOREM III

For equations of signature (2, 2, n), there are many results where Y is restricted

to product of specific primes. For example, Arif and Abu Murifah [2, Theorem 1]

studied the equation X2 + 22` = Zn, with `, n ∈ Z+, and Luca and Togbé [50,

Theorem 1.1] considered X2 + 2`5m = Zn, with `, m, n ∈ Z+. (For other examples,

see [47,49,57,70].) Solving such equations typically uses the construction of Lucas and

Lehmer pairs, as seen in Chapter 4. A key to those proofs is knowing exactly which

primes divide Y . When those primes are large, this method can have too many cases

to be practical. It is also ineffective for treating the case in which Y has an arbitrary

prime divisor.

In this chapter, we consider a generalized Fermat equation of signature (2N, 2, 5),

with N > 1, where Y is restricted to being an integer with a small number of prime

divisors, possibly an unspecified prime, as in the theorem below.

Main Theorem III. Let p be an odd prime and let N , α, β, γ ∈ Z+ such that

N > 1, α ≥ 1, and β, γ ≥ 0. The equation

X2N + 22α52βp2γ = Z5 (5.1)

has no solutions with X, Z ∈ Z+ and gcd(X,Z) = 1.

5.1 Preliminary Results

In this section, we present a number of results that we use in proving Main Theo-

rem III. Many of these rely on the modular approach, which we describe below.

Note that the term modular approach pertains to solving any equation of the form

aXr+bY s = cZt, for r, s, t ∈ Z+, using this type of method. We outline the approach
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for an equation of the form aXn+bY n = cZ2, for a, b, c, n ∈ Z and n ≥ 7 prime. First,

suppose that a solution exists, say axn + byn = cz2. This solution is used to define an

elliptic curve, E, with rational coefficients. By Theorem 13, there exists a newform

f of weight 2 and level N , where N is the conductor of the elliptic curve such that

ρE,` ∼ ρf,`, for some prime ` ∈ Z+. By Ribet’s Level-lowering Theorem [59, Theorem

1.1], there exists a newform f ′ of weight 2 and level Nn, where Nn | N . If this level-

lowering is successful, then there are a number of results, that can be used to find

solutions or to reach contradictions. In 2007, Siksek [28, Chapter 15], summarized this

method for solving certain Diophantine equations. He compiled many results from

the work of Bennett and Skinner [12] into a single theorem [28, Theorem 15.8.2], of

which we state a special case.

Theorem 32 (Bennett-Skinner). Let a, b, c, n, x, y, z ∈ Z with n ≥ 7 prime, c

square-free, gcd(ax, by, cz) = 1, and

axn + byn = cz2.

If, for all rational primes q, vq(a), vq(b) < n, v2(by
n) ≥ 6, z ≡ c (mod 4), and

xy 6= ±1, then the elliptic curve, E, given by the equation

Y 2 +XY = X3 +
cz − 1

4
X2 +

bcyn

64
X

is nonsingular and has conductor

N =

 2−1c2 rad(abxy), if v2(by
7) = 6,

c2 rad(abxy), if v2(by
7) ≥ 7.
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Further, there exists a newform, f , of weight 2 and level

Nn =


c2 rad(ab), if v2(b) 6= 0, 6,

2c2 rad(ab), if v2(b) = 0,

2−1c2 rad(ab), if v2(b) = 6

associated to E.

In their paper, Bennett and Skinner apply the modular approach to prove the

following two results [12, Theorem 1.2 & Theorem 1.5].

Theorem 33 (Bennett and Skinner).

(a) Let N ≥ 7 be a rational prime. If α ∈ Z+ such that α ≥ 6, then the equation

XN + 2αY N = 5Z2

has no solutions in nonzero pairwise relatively prime integers X, Y , Z with

XY 6= ±1.

(b) Let N ≥ 11 be a rational prime, p an odd prime, α, β, integers with α ≥ 6 and

β ≥ 1. Then the equation

XN + 2α5βY N = Z2

has no solutions in pairwise relatively prime integers X, Y , Z.

Sketch of Proof. For a contradiction, suppose that a solution exists. Applying the

modular approach to that solution produces a newform of weight 2 and level Nn. For

part (a), the particular value of the level Nn is one found in the set in Lemma 12,

an immediate contradiction. For part (b), Bennett and Skinner take advantage of
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various results relating the Fourier coefficients of the newform to the trace of the

elliptic curve to reach a contradiction.

The following lemma is a classical parametrization that we use in the proof of

Main Theorem III and in Theorem 35 (see [28, Section 14.2.2] for a discussion of this

parametrization). We include the details of the proof.

Lemma 34. Let a, b, c ∈ Z − {0} such that gcd(a, b) = 1 and a2 + b2 = c5. Then,

there exist u, v ∈ Z− {0} that are relatively prime and of opposite parity such that

a = u(u4 − 10u2v2 + 5v4) and b = v(v4 − 10u2v2 + 5u4).

Proof. Let a, b, c ∈ Z− {0} satisfy gcd(a, b) = 1 and

a2 + b2 = c5. (5.2)

Without loss of generality, we assume that a and b are positive integers. Since

gcd(a, b) = 1, a and b are not both even. If a ≡ b ≡ 1 (mod 2), then 2 ≡ c5

(mod 8) which is impossible. Therefore, a and b are not both odd and so c is odd.

Factoring equation (5.2) in Z[i], we have

(a+ bi)(a− bi) = c5.

Suppose that q ∈ Z[i] is a prime such that q divides a+bi and a−bi. Then, q divides

2a and 2bi. Since gcd(a, b) = 1, q | 2. So, N(q) | N(2). Since 2 splits in Z[i], N(q) = 2.

But q | (a + bi) implies that 2 | N(a + bi). Since N(a + bi) = (a + bi)(a − bi) = c5,

2 | c, a contradiction. Therefore, (a+ bi) and (a− bi) are relatively prime.

Thus, there exist 0 ≤ k ≤ 3 and α ∈ Z[i] such that a + bi = ikα5. Notice
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that (ik)5 = ik and so ikα5 = (ikα)5. Let u, v ∈ Z such that ikα = u + iv. So,

a+ bi = (ikα)5 = (u+ iv)5. Comparing the real and imaginary parts yields

a = u(u4 − 10u2v2 + 5v4)

and

b = v(v4 − 10u2v2 + 5u4).

Since a and b are nonzero, relatively prime, so are u and v.

Since a and b are of opposite parity, we assume, without loss of generality, that

2 | a. Then, 2 - b. Since v | b, we have that 2 - v. Similarly, 2 - (v4 − 10u2v2 + 5u4).

Now, if 2 - u, then 2 | (v4 − 10u2v2 + 5u4), a contradiction. Therefore, 2 | u. Hence,

u and v are also of opposite parity.

In 2006, Bennett [8, Theorem 1] used the modular approach in proving the fol-

lowing theorem.

Theorem 35 (Bennett). If N ≥ 2 is an integer, then the Diophantine equation

X2N + Y 2N = Z5

has no solutions in nonzero integers X, Y , and Z, with gcd(X, Y ) = 1.

Sketch of Proof. For a hypothetical solution x, y, z and n ≥ 2, Bennett uses Lemma 34

to write xn and yn in terms of integers u and v. For n ≥ 7, Bennett applies the mod-

ular approach [12] to reach a contradiction. For the remaining 3 ≤ n ≤ 6, Bennett

uses various known results on equations of this form and for n = 2 he uses a 2-descent

argument.
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The following results of Bruin [19, Theorem 1.1] and Bennett and Chen [10, The-

orem 1] imply that Main Theorem III holds for N = 2 and 3.

Theorem 36 (Bruin). The equation

X2 + Y 4 = Z5

has no solutions X, Y , Z ∈ Z with gcd(X, Y, Z) = 1 and XY Z 6= 0.

Sketch of Proof. For a finite extension L of a number field K, Bruin uses the arith-

metic of an elliptic curve, E over L, to find K-rational points on an algebraic curve

that covers E. Then, using p-adic analytic methods, Bruin finds that there are no

solutions.

Theorem 37 (Bennett and Chen). Let N ≥ 3 be an integer. Then the equation

X2 + Y 6 = ZN

has no solutions X, Y , Z ∈ Z+ with gcd(X, Y ) = 1.

Sketch of Proof. Suppose that a solution x, y, z, and n ≥ 3 exists. Bennett and

Chen use this solution to define multiple elliptic curves defined over number fields,

not necessarily Q. Using a broader variant of the modular approach, they examine the

associated Galois representations and newforms to derive contradictions for n ≥ 7.

For the small values of n, the authors apply congruence arguments and prior results

to finish the proof.

In the proof of Main Theorem III, we use the following two theorems to show

that it is sufficient to prove the result for N prime. Both theorems are proved using

Lucas pairs in a technique that is similar to the proof of Main Theorem II (see
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Section 2.3 for the definition of a Lucas pair). First, we state Arif and Abu Muriefah’s

result [2, Theorem 1].

Theorem 38 (Arif and Abu Muriefah). Let L, N ∈ Z+ with L even and N > 1 odd.

Then the Diophantine equation

X2 + 2L = Y N

has a unique solution X, Y ∈ Z with gcd(X, Y ) = 1, namely, with N = 3, (L,X, Y ) =

(1, 11, 5).

Next, we state a simplified version of a result of Luca and Togbé [50, Theorem

1.1].

Theorem 39 (Luca and Togbé). Let L, M , N ∈ Z+ with N ≥ 3. The equation

X2 + 2L5M = Y N

has a finite number of solutions with X, Y ∈ Z+ and gcd(X, Y ) = 1. In particular,

for N = 4, there are two solutions (L,M,X, Y ) = (4, 1, 1, 3) and (6, 1, 79, 9), and for

N = 5, (L,M,X, Y ) = (1, 3, 401, 11).

Finally, we present a lemma for resolving a particular case in the proof of Main

Theorem III. We prove this using a sequence of congruence arguments, though it

could instead be proved by solving a Thue equation with computer software.

Lemma 40. Let p 6= 5 be an odd prime, α ≥ 1, and β, γ ≥ 0 be integers. If u, v ∈ Z

such that v is even, gcd(u, v) = 1, and 2α5βpγ = v(v4 − 10u2v2 + 5u4), then

v4 − 10u2v2 + 5u4 6= 5.
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Proof. Assuming the hypothesis, suppose for a contradiction that

v4 − 10u2v2 + 5u4 = 5. (5.3)

Note that this implies that β > 0. Combining 2α5βpγ = v(v4 − 10u2v2 + 5u4) and

equation (5.3), we have 2α5βpγ = 5v which yields

v = 2α5β−1pγ. (5.4)

Now, adding 4v4 to equation (5.3) yields 5(v2−u2)2 = 5+4v4 and so 5 | v. Combining

this with equation (5.4), dividing by 5 and subtracting 1 yields (v2 − u2)2 − 1 =

24α+254β−5p4γ. Factoring we find that

(u2 − v2 + 1)(u2 − v2 − 1) = 24α+254β−5p4γ. (5.5)

Let d = gcd(u2− v2 + 1, u2− v2− 1), then d divides the difference (u2− v2 + 1)−

(u2 − v2 − 1) = 2. Therefore, d = 1 or 2. Since v is even and u is odd, by hypothesis,

u2 − v2 + 1 and u2 − v2 − 1 are even. Thus, gcd(u2 − v2 + 1, u2 − v2 − 1) = 2.

Further, u2 − v2 + 1 ≡ 2 (mod 4), so that 2 || (u2 − v2 + 1). So, by equation (5.5),

24α+1 || (u2 − v2 − 1). Therefore, there exist k, k′, `, `′ ∈ Z+ such that

u2 − v2 + 1 = 2 · 5kp` (5.6)

and

u2 − v2 − 1 = 24α+15k
′
p`

′
. (5.7)

Since gcd(u2 − v2 + 1, u2 − v2 − 1) = 2, {k, k′} = {0, 4β − 5} and {`, `′} = {0, 4γ}.
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Combining (5.6) and (5.7) we have 2 · 5kp` − 24α+15k
′
p`

′
= 2 implying that

5kp` − 24α5k
′
p`

′
= 1. (5.8)

By assumption, p 6= 5 is prime and so p4 ≡ 1 (mod 5). Then, since {`, `′} = {0, 4γ},

p` ≡ p`
′ ≡ 1 (mod 5).

Reducing equation (5.8) modulo 5 yields 5k − 5k
′ ≡ 1 (mod 5). Therefore, k = 0

and k′ = 4β − 5, yielding

p` − 24α54β−5p`
′
= 1.

So, ` > 0 implying that ` = 4γ and `′ = 0. Thus, rewriting this equation, we have

1 + 24α54β−5 = p4γ. (5.9)

Hence, (L,M,X, Y ) = (4α, 4β−5, 1, pγ) is a solution to the equation X2+2a ·5b = Y N

withN = 4. Since gcd(1, pγ) = 1, and α and 4β−5 are positive integers, equation (5.9)

satisfies the hypotheses of Theorem 39. Therefore, (4α, 4β − 5, 1, pγ) is equal to one

of the solutions listed for N = 4. In particular, (4α, 4β − 5, 1, pγ) = (4, 1, 1, 3) or

(6, 1, 79, 9). Since β ∈ Z+, we have a contradiction. Hence, v4−10u2v2+5u4 6= 5.

5.2 Proof of Main Theorem III

Proof of Main Theorem III. Let p be an odd prime, and let α ≥ 1, β, γ ≥ 0 be

integers. Suppose, for a contradiction, that (N,X,Z) = (n, x, z) is a solution to the

equation X2N + 22α52βp2γ = Z5 with n > 1 and gcd(x, z) = 1. Then,

x2n + 22α52βp2γ = z5. (5.10)
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We first show that it is sufficient to prove the theorem for n prime. Since n > 1,

n has a prime divisor `. So, n = `d for some d ∈ Z+, and we have

(xd)2` + 22α52βp2γ = z5.

Since ` > 1 and 1 = gcd(x, z) = gcd(xd, z), we have that (N,X,Z) = (`, xd, z) is a

solution to the equation X2N + 22α52βp2γ = Z5 with N = ` prime. Thus, we assume

that n is prime. Further, by Theorems 36 and 37 (switching order of X and Y ), n 6= 2

or 3. Hence, we assume that n ≥ 5.

Let q ∈ Z+ be a prime such that q | 22α52βp2γ. By equation (5.10), q | (z5 − x2n).

Thus, q | z if and only if q | x. But gcd(x, z) = 1, by assumption, and so q - z and

q - x. Hence, gcd(xz, 2α5βpγ) = 1.

Suppose for a contradiction that p = 5 or γ = 0, then equation (5.10) implies that

x2n + 22α52(β+γ) = z5.

If β+γ > 0, then (L,M,X, Y ) = (2α, 2(β+γ), xn, z) is a solution to X2+2L5M = Y N

with N = 5. Since gcd(x, z) = 1, Theorem 39 implies that (2α, 2(β + γ), xn, z) =

(1, 3, 401, 11). This is a contradiction, since α ∈ Z+.

If β+γ = 0, then equation (5.10) yields x2n+22α = z5 and so (L,X, Y ) = (α, xn, z)

is a solution to the equation X2 + 2L = Y N , with N = 5. By Theorem 38, this is

another contradiction. Hence, p 6= 5 and γ 6= 0.

Assume, for now, that n ≥ 7. This allows us to use Theorems 32 and 33. At the

end of the proof, we use congruence arguments to show that n 6= 5. (Alternatively,

the case n = 5 could be eliminated using [58, Theorem 1].)

Rewriting equation (5.10) as (xn)2+
(
2α5βpγ

)2
= z5, we apply Lemma 34 to obtain
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u, v ∈ Z− {0}, such that gcd(u, v) = 1, u 6≡ v (mod 2),

xn = u(u4 − 10u2v2 + 5v4), (5.11)

and

2α5βpγ = v(v4 − 10u2v2 + 5u4). (5.12)

We use these equations to determine the possible values of v.

Since gcd(xz, 2α5βpγ) = 1 and α ≥ 1, 2 - x. By equation (5.11), we have 2 - u.

Since u and v have opposite parity, 2 | v and so 2 - (v4 − 10u2v2 + 5u4). Thus,

equation (5.12) implies that 2α || v.

Note that gcd(v, v4−10u2v2+5u4) = gcd(v, 5u4). Since gcd(u, v) = 1, gcd(v, 5u4) =

gcd(v, 5) = 1 or 5. We consider these two cases separately.

First, if 5 | v, then 5 - u and gcd(v, v4 − 10u2v2 + 5u4) = gcd(v, 5) = 5. Further,

v4 − 10u2v2 + 5u4 ≡ 5u4 ≡ 5 (mod 25) and so 5 || (v4 − 10u2v2 + 5u4). Since, from

equation (5.12), 5β || v(v4 − 10u2v2 + 5u4), we have 5β−1 || v.

Still assuming that 5 | v, suppose for a contradiction that pγ | v. Since 2α || v, this

implies that v = 2α5β−1pγ and v4 − 10u2v2 + 5u4 = ±5. Since v4 − 10u2v2 + 5u4 ≡ 5

(mod 25), it must be that v4 − 10u2v2 + 5u4 = 5, which contradicts Lemma 40.

Therefore, pγ - v. Thus, when 5 | v,

v4 − 10u2v2 + 5u4 = ±5pγ

and

v = ±2α5β−1. (5.13)

On the other hand, if 5 - v, then gcd(v, v4 − 10u2v2 + 5u4) = gcd(v, 5) = 1. Since
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5 - v, 5 - (v4 − 10u2v2 + 5u4). So, equation (5.12) implies that β = 0. Again, suppose

for a contradiction that pγ | v. Then, by equation (5.12), v4 − 10u2v2 + 5u4 = ±1

and v = ±2αpγ. Since 2 | v and 2 - u, ±1 ≡ v4 − 10u2v2 + 5u4 ≡ 5 (mod 8) which is

a contradiction. Therefore, when 5 - v,

v4 − 10u2v2 + 5u4 = ±pγ

and

v = ±2α. (5.14)

Hence, letting k = 0 if 5 - v and k = β − 1 if 5 | v, we have that

v = ±2α5k. (5.15)

Next, we consider equation (5.11). For ease in notation, let w ∈ Z such that

w = u2 − 5v2. Note that gcd(u, u4 − 10u2v2 + 5v4) = gcd(u, 5v4) = 1 or 5. So, again,

we have two cases: when 5 | u and when 5 - u. In each case, we use the information

gained from equation (5.15).

Suppose, for a contradiction that 5 | u. Then 5 - v and gcd(u, u4 − 10u2v2 +

5v4) = gcd(u, 5) = 5. So, u4 − 10u2v2 + 5v4 ≡ 5v4 ≡ 5 (mod 25). Therefore,

5 || (u4 − 10u2v2 + 5v4) and 5n−1 | u, by equation (5.11). Again, by equation (5.11)

and gcd(u/5n−1, (u4 − 10u2v2 + 5v4)/5) = 1, we find that each of these is an n-th

power. So, there exist A,B ∈ Z such that

u/5n−1 = An,
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and

(u4 − 10u2v2 + 5v4)/5 = Bn (5.16)

where 5 - B. (Note that since n is odd, a factor of −1 can be absorbed into the integers

A and B.) Multiplying equation (5.16) by 5, then adding 20v4 yields (u2 − 5v2)2 =

5Bn + 20v4. Since (u2 − 5v2)2 = w2, this implies that

w2 = 5Bn + 20v4. (5.17)

Hence, 5 | w, and so let w1 = w/5 ∈ Z. Since w1 = u2/5 − v2, and 5 - v, 5 - w1.

Further, from equation (5.15) with k = 0, we have that v = ±2α. Consequently,

equation (5.17) yields

Bn + 24α+2 = 5w2
1. (5.18)

Recalling that v is even and u is odd, w1 is also odd. This then implies that B is

odd. So, by equation (5.18), B, 5w1, and 2 are pairwise relatively prime. Reducing

equation (5.18) modulo 8, we have that B ≡ Bn ≡ 5 (mod 8) implying that B 6= ±1.

Also, α ≥ 1 and so 4α + 2 ≥ 6. Therefore, (N,X, Y, Z) = (n,B, 1, w1) is a solution

in positive integers to the equation XN + 24α+2Y N = 5Z2 with N = n ≥ 7. By

Theorem 33 (a), this is a contradiction. Thus, 5 - u.

Since 5 - u, gcd(u, u4 − 10u2v2 + 5v4) = 1. So, equation (5.11) implies that there

exist C, D ∈ Z− {0} relatively prime such that x = CD,

u = Cn,

and

u4 − 10u2v2 + 5v4 = Dn. (5.19)
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(Again, the unit −1 can be absorbed into the integers C and D.) Adding 20v4 to

equation (5.19),

w2 = (u2 − 5v2)2 = Dn + 20v4. (5.20)

Since 5 - u, 5 - w. Similarly, since v is even and u is odd, w is odd. Therefore,

gcd(w, 10) = 1, and so D, w, and 10 are pairwise relatively prime.

By equation (5.15), v = ±2α5k and so equation (5.20) yields

Dn + 24α+25k+1 = w2. (5.21)

Since 4α + 2 ≥ 6, (N,X, Y, Z) = (n,D, 1, w) is a positive integer solution to XN +

24α+25k+1Y N = Z2, with N = n ≥ 7. By Theorem 33 (b), there are no solutions for

n ≥ 11 prime and so n ≤ 7. Since, by assumption, n ≥ 7, n = 7.

Now, recalling that 5 - u, by equation (5.21),

D7 + 24α+25k+1 = w2. (5.22)

We use Theorem 32, to derive a contradiction. In order to do this, we rewrite the

exponents of 2 and 5 in the above equation. Let r1, r2, s1, s2 ∈ Z with 0 ≤ r1, r2 < 7

such that 4α+ 2 = 7s1 + r1 and k+ 1 = 7s2 + r2. Then, equation (5.22) is equivalent

to

D7 + 2r15r2 (2s15s2)7 = w2. (5.23)

Since gcd(u, v) = 1, u and v are not both divisible by 3. Therefore, w2 ≡ (u2 −

5v2)2 ≡ 1 (mod 3). Reducing equation (5.22) modulo 3 yields D7 + 2 ≡ 1 (mod 3)

so that D ≡ −1 (mod 3). Thus, D 6= 1. Further, since α ≥ 1 and w is odd, reducing

equation (5.22) modulo 8 yields D7 ≡ 1 (mod 8) and so D 6= −1. Hence, D 6= ±1.
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Applying Theorem 32 to equation (5.23) with b = 2r15r2 , we find that there exists a

newform f of weight 2 and level N7. Notice that rad(b) = rad(2r15r2) ∈ {1, 2, 5, 10}.

Thus, since c = 1, N7 ∈ {1, 2, 5, 10}. However, by Lemma 12 there do not exist

newforms of weight 2 and level 1, 2, 5, or 10. Hence, we have a contradiction.

Finally, suppose n = 5. Then, equation (5.10) is simply

x10 + 22α52βp2γ = z5.

Thus,

22α52βp2γ = z5 − x10, (5.24)

implying that

22α52βp2γ = (z − x2)(z4 + z3x2 + z2x4 + zx6 + x8). (5.25)

Dividing z − x2 into z4 + z3x2 + z2x4 + zx6 + x8, we find that

(z − x2)(4z3 + 3z2x2 + 2zx4 + x6) + (z4 + z3x2 + z2x4 + zx6 + x8) = 5z4,

and so gcd(z−x2, z4 +z3x2 +z2x4 +zx6 +x8) = gcd(z−x2, 5z4). Since gcd(x, z) = 1,

we have gcd(z − x2, z4 + z3x2 + z2x4 + zx6 + x8) = 1 or 5.

Since 2 - xz, z − x2 is even and z4 + z3x2 + z2x4 + zx6 + x8 is odd. Thus,

equation (5.25) implies that 22α || (z − x2). We consider two cases.

First, if β = 0, then equation (5.25) yields

22αp2γ = (z − x2)(z4 + z3x2 + z2x4 + zx6 + x8)

and gcd(z − x2, z4 + z3x2 + z2x4 + zx6 + x8) = 1. For a contradiction, suppose that
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p2γ | (z − x2). Then, z4 + z3x2 + z2x4 + zx6 + x8 = ±1. This is impossible, since x

and z ≥ 1. Therefore, when β = 0,

z4 + z3x2 + z2x4 + zx6 + x8 = p2γ

and

z − x2 = 22α. (5.26)

Next, if β 6= 0, then from equation (5.24), 5 | (z5− x10) and so z5 ≡ x10 (mod 5).

Since gcd(x, z) = 1, we have 5 - xz. So, z ≡ z5 ≡ x10 ≡ (x2)5 ≡ x2 (mod 5).

Since 5 - x, x2 ≡ ±1 (mod 5). Consequently, z ≡ x2 ≡ ±1 (mod 5) implying that

z4+z3x2+z2x4+zx6+x8 ≡ 0 (mod 5). Thus, gcd(z−x2, z4+z3x2+z2x4+zx6+x8) = 5.

Writing z = 5q1 ± 1 and x2 = 5q2 ± 1, for some q1, q2 ∈ Z, the expression

z4 + z3x2 + z2x4 + zx6 + x8 is equal to

(5q1± 1)4 + (5q1± 1)3(5q2± 1) + (5q1± 1)2(5q2± 1)2 + (5q1± 1)(5q2± 1)3 + (5q2± 1)4.

Note that since z ≡ x2 (mod 5), the positive and negative signs agree. Reducing each

term in the above expression modulo 25 yields

(±20q1 + 1) + (15q1 ± 1) (5q2 ± 1) + (±10q1 + 1) (±10q2 + 1) + (5q1 ± 1) (15q2 ± 1)

+ (±20q2 + 1)

≡ (±20q1 + 1) + (±15q1 ± 5q2 + 1) + (±10q1 ± 10q2 + 1) + (±5q1 ± 15q2 + 1)

+ (±20q2 + 1)

≡ ±50q1 ± 50q2 + 5

≡ 5 (mod 25).
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Therefore, 5 || (z4 + z3x2 + z2x4 + zx6 + x8). Then, from equation (5.25), we have

that 52β−1 || (z − x2).

Since gcd(z − x2, z4 + z3x2 + z2x4 + zx6 + x8) = 5, p2γ divides either z − x2 or

z4 + z3x2 + z2x4 + zx6 + x8. Suppose for a contradiction that p2γ | (z − x2). Then,

22α52β−1 | (z − x2) and equation (5.25) implies that z4 + z3x2 + z2x4 + zx6 + x8 = 5.

Since x, z ∈ Z+, it must be that x = z = 1. By equation (5.24), this is impossible.

Thus, when β 6= 0,

z4 + z3x2 + z2x4 + zx6 + x8 = 5p2γ

and

z − x2 = 22α52β−1.

Let j = 0 if β = 0, and let j = 2β − 1 if β 6= 0. Then, the above equation implies

that

z − x2 = 22α5j. (5.27)

Combining this with equation (5.24) yields

22α52βp2γ =
(
22α5j + x2

)5 − x10.
Expanding and simplifying, we find that

52βp2γ = 28α55j + 26α54j+1x2 + 24α+153j+1x4 + 22α+152j+1x6 + 5j+1x8. (5.28)

If β = 0, then j = 0, and so this equation yields

52βp2γ = 28α + 26α5x2 + 24α+15x4 + 22α+15x6 + 5x8.
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Since α ≥ 1, reducing modulo 8 yields 52βp2γ ≡ 5x8 (mod 8). Since 2 - x, this implies

that 1 ≡ 5 (mod 8), which is a contradiction.

Finally, if β 6= 0, then j = 2β − 1, and so equation (5.28) implies that

52βp2γ = 28α510β−5 + 26α58β−3x2 + 24α+156β−2x4 + 22α+154β−1x6 + 52βx8.

Reducing this equation modulo 3 yields

p2γ ≡ 2 + 2x2 + 2x4 + x6 + x8 (mod 3).

It is easy to see that, regardless of whether 3 | x or not, 2 + 2x2 + 2x4 + x6 + x8 ≡ 2

(mod 3). Thus, n 6= 5, completing the proof of the theorem.
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[73] A. Thue, “Berechnung aller Lösungen gewisser Gleichungen von der Form axr−

byr = f” , Vid. selskap. Skrifter (Kristiania) I (1918), no. 4, 1–9.

[74] N. Tzanakis and B. M. M. de Weger, “On the practical solution of the Thue

equation”, J. Number Theory 31 (1989), 99–132.

[75] P. M. Voutier, “Primitive divisors of Lucas and Lehmer sequences”, Math.

Comp. 64 (1995), 869–888.

[76] M. Waldschmidt, “A lower bound for linear forms in logarithms”, Acta Arith.

37 (1980), 257–283.

[77] Y. Wang and T. Wang, “On the Diophantine equation nx2 + 22m = yn”, J.

Number Theory 131 (2011), no. 8, 1486–1491.

[78] M. Ward, “The intrinsic divisors of Lehmer numbers”, Ann. of Math. 62 (1955),

no. 2, 230–236.

[79] L. Washington, Elliptic Curves. Number Theory and Cryptography, 2nd ed.,

Chapman & Hall/CRC, Boca Raton, FL, 2008.

[80] H. Wu, “The Diophantine equation nx2 + 2m = yn”, Adv. Math. (China) 40

(2011), no. 3, 365–369.

[81] A. Wiles, “Modular elliptic curves and Fermat’s last theorem”, Ann. of Math.

(2) 141 (1995), no. 3, 443–551.

[82] Z. Zhang, “The Diophantine equation (axk−1)(byk−1) = abzk−1”, J. Number

Theory, 136 (2014), 252–260.

[83] K. Zsigmondy, “Zur Theorie der Potenzreste”, (German) Monatsh. Math. Phys.

3 (1892), no. 1, 265–284.



VITA

Eva Goedhart was born in the Netherlands, but lived most of her early life in

various parts of Virginia. Prior to completing a Doctorate of Philosophy degree in

mathematics from Bryn Mawr College in 2015, she received a Bachelor of Science

degree from James Madison University in 2003. She then moved to North Carolina

to attend Wake Forest University for graduate school, where she wrote a thesis under

the supervision of Kenneth Berenhaut. She completed the Master of Arts degree in

2005.

After graduating from Bryn Mawr College, she hopes to teach the next generation

of mathematicians and to share her research interests in algebraic number theory and

Diophantine analysis.

113


	Bryn Mawr College
	Scholarship, Research, and Creative Work at Bryn Mawr College
	2015

	Nonexistence of Solutions to Certain Families of Diophantine Equations
	Eva G. Goedhart
	Custom Citation


	tmp.1431543632.pdf.Ivhtf

