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Mutual information, strange attractors, and the optimal estimation of dimension
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It has been shown that the appropriate setting of data windows is crucial to a successful estimation of
a time-series correlation dimension using the Grassberger-Procaccia algorithm [Physics 9D, 189 (1983);
Phys. Rev. Lett. 50, 346 (1983)], and it has been proposed that the first minimum of the corresponding
mutual-information function may be an appropriate window value. We have tested this hypothesis
against data generated by the Rossler equations, the Lorenz equations, and a three-dimensional irration-
al torus. We conclude that mutual information is not consistently successful in identifying the optimal
window.

PACS number(sj: 05.45.+b, 02.60.+y

I. INTRODUCTION: OPTIMAL SETTING
OF WINDOWS AND DIMENSION ESTIMATES

This paper considers the question of optimal setting of
windows of a time series when estimating dimension.
Therefore, we must address three issues. (i) Why is the
dimension of a time series potentially important? (ii)
Why is the setting of windows a crucial issue? (iii) How
can an optimal window be identified? Estimating a
signal's dimension is often an important step in its
dynamical characterization. In ideal cases when large
sets of high-quality data are available, the dimension esti-
mate can be used to infer something about the dynamical
structure of the system generating the signal. However,
even in circumstances where this is impossible, dimension
estimates can be an important empirical characterization
of a signal's complexity. In many instances where data
limitations preclude reliable calculations of an absolute
value of dimension, the variation of the estimate in
response to changing conditions can be a valuable quanti-
tative measure of system behavior. A variety of pro-
cedures for estimating dimension is available. The most
popular is to estimate the correlation dimension using the
Grassberger-Procaccia algorithm [1,2]. In this pro-
cedure measurements v, , v2, . . . , v~ are obtained from a
single dynamical variable. The time interval between
each measurement, the sampling interval, will be denoted
by T, . (Generalizations to multichannel recordings are
straightforward. ) The measured values are used to create
points in an N-dimensional space,

X) =(V), U2). . . , UN),

X2 —(V2, U3, . . . , UN+1),

XK (VK) UK+1) ' ' . , UM )

where E =M —N+1; N is the embedding dimension,
and [X]= IX„.. . , XK ] is the embedding set. (There are
other equally valid embedding protocols. ) Takens [3] and
Mane [4] have shown that if certain conditions are met,
the dimension of set {X]is the same as the dimension of
the attractor. It should be noted that the embedding di-
mension N is an arbitrary positive integer. While the ex-
amples used in subsequent calculations are low dimen-
sional, the procedure, in principle, generalizes to higher-
dimensional attractors. There are, however, severe prac-
tical difficulties associated with extensions to higher-
dimensional objects [5,6].

The Grassberger-Procaccia algorithm estimates the di-
mension by first calculating the correlation integral

K K
C (r)=(liN ) g g e(r —

~X;
i =1 j=i+1

where e is the Heaviside function,
~ ~

is the Euclidean
distance operator, and N is the number of distinct pairs
of points X;,X in the N-dimensional space. Grassberger
and Procaccia [1,2] demonstrated that if the embedding
dimension and the number of data points are large
enough and if the data are sufficiently noise free, then the
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function lnC~(r) vs 1n(r) has a linear region, called the
scaling region. The slope of the function in that linear re-
gion is D2, the correlation dimension. Therefore, graphs
of dlnC&(r)/din(r) vs 1n(r) should have a horizontal re-
gion called the plateau. The value of the derivative in
the plateau region is the dimension.

Unless care is exercised, spurious estimates of dimen-
sion can result [7—10]. It is necessary to impose a series
of convergence conditions on these calculations.

(i) The plateau must be fiat. The degree of variation of
the derivative in the scaling region must not exceed some
specified standard. Typically a limit of 15' of D2 is set.

(ii) The scaling region must meet a minimum-length re-
quirernent. For example, we can require that ln(r) varies
over a factor of at least 1.5. This corresponds to a factor
of5inr.

(iii) The estimated value of D2 must be stable as the
embedding dimension is increases. We usually impose a
limit of 15%%uo deviation over four consecutive embeddings.

If these criteria are imposed, it is frequently impossible
to produce a dimension estimate. This is especially true
of small sets of noisy experimental data.

When analyzing experimental data, methodological
considerations become crucial to the success of dimen-
sion estimation. Specifically, the choice of sample inter-
val T, and embedding dimension N can dramatically
effect the plateau. This is shown in Fig. 1, which uses
data generated by a three-torus.

3t . 3&2t . 9&3t
500 250 500

where the time interval between each sample, T„is 1.
Figure 1 shows the difference in plateau that can result

when N and T, are varied. [In this and later figures
dlnC&(r)/din(r) is plotted against 1 (rn/r, „),where r,„
is the largest interpoint distance in the iV-dimensional
embedding set {X];r,„will vary with embedding di-
mension. As will be seen presently, this normalization fa-
cilitates comparison of computations with different
embeddings. ] Figure 1 shows that the choice of T, and N
can have a dramatic effect on the plateau. An inap-
propriate choice can result in the unnecessary failure to
resolve the dimension of the data set.

The results summarized in Fig. 1 suggest that the selec-
tion of N and T, are crucial in estimating dimension. To
cast more light on this, we begin with the definition of
window as the time interval spanned by a point in {X]:
if
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0.0
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I
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FIG. 1. Plot of dlnC&(r)/din(r) vs ln(r/r, „) for a three-
torus. 1000 vectors were used in each calculation. Curve A:
N =9, T, =5, 8' =40; curve B: N = 11, T, = 11, W = 100; curve
C: N=10, T, =20, 8'=180.

70--
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I 40--
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tives superimpose. This has been investigated for other
systems [11]. The same result is obtained; the superposi-
tion shown in Fig. 2 is not limited to the three-torus.

These results provide the answer to the second ques-
tion stated in the opening paragraph: why is the setting
of windows a crucial issue? The window is important be-
cause, first, as indicated by Fig. 2, the product T, (N —1)
determines the characteristics of the correlation integral.
Second, as indicated by Fig. 1, correlation integrals are
extremely sensitive to window values. For some values of
window, a measurable plateau is completely absent even
when high-quality data are examined. Thus, an inap-
propriate value of window can result in an unnecessary
failure to resolve a time-series dimension. We operation-
ally define an optimal window as one that gives the larg-
est plateau. This leads us to the third question: how can
an optimal window be identified? The rest of this paper

Xj —(vj, vj +1, . . . , vj +N 1) 2.0--

and the time interval between the measurement of each
value of v is T, . The window is the time interval spanned
by X, namely, T, (N —1). Results in Fig. 2 indicate that
the window, rather than T, and N separately, determine
the characteristics of the plateau. In that diagram, com-
puted with the same three-torus data used in Fig. 1, the
values of Xand T, are different for each curve. However,
the windows are approximately equal. When plotted
against the normalized variable 1n(r/r, „), the deriva-

0.0
-6.0 -4.0 -2.0

In (r/r }

0.0 2.0

FIG. 2. Plot of dlnC~(r)/din(r) vs 1n(r/r, „) for a three-
torus. 1000 vectors were used in each calculation. The three
curves correspond to (N, T„window) =(6,20, 100), (8,14,98),
(11,10,100).
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addresses this question.
Albano et al. [11]performed calculations to determine

if a signal's autocorrelation function could be used to pre-
dict the optimal window. Three dynamical systems (the
Lorenz attractor, the Rossler attractor, and the three-
torus) were examined. "Optimal" windows for each sys-
tem were determined empirically by calculating
dlnC&(r)/din(r) for different windows. The optimal
windows were compared with the signal's autocorrelation
time (the time required for the autocorrelation function
to drop to 1/e of its original value), the time at the first
minimum of the autocorrelation function, and the time at
the first zero of the autocorrelation function. It was
found that none of these measures provided a reliable
prediction of the optimal window.

The Wiener-Khinchin theorem establishes that the
Fourier transform of the autocorrelation function is equal
to the power spectrum. The power spectrum in turn, un-
der the z transform, can be expressed as a Laurent series.
Thus the autocorrelation function can be examined in
terms of the poles of its corresponding Laurent series
[12—14]. An alternative approach to the problem of win-
dow estimation would be an examination of the success of
these poles as estimators. Two arguments have en-
couraged the investigation of the autocorrelation func-
tion in the time domain presented in Albano et al. [11].
First, the time-domain characterization of the autocorre-
lation function is more commonly used in signal analysis.
This makes it possible to relate the results obtained here
with a substantial body of literature and with our own in-
vestigations of the autocorrelation times of biological sig-
nals. Second, the window of an embedded data set as
defined here, (X —1)T„ is itself expressed in units of
time. Thus an examination in the time domain seems
more natural for this problem. However, this alternative
approach raises an attractive possibility for further inves-
tigations. Another possible approach to the problem of
window estimation is the examination of higher-order
correlation functions. This possibility has been explored
by Albano et al. [15]. Their preliminary results suggest
that this method is a successful window estimator, at
least in cases using high-quality, numerically generated
data obtained from low-dimensional strange attractors.

Fraser and Swinney [16(a)] suggested that mutual in-
formation may identify an optimal window. This possi-
bility is explored in the following sections of this paper.

H (Q) is defined analogously.
The mutual information of the S and Q systems is

denoted by I(Q, S). Given a measurement of s, I(Q,S) is
the number of bits of q, on average, that can be predicted,

I (Q, S)=H (Q)+H (S)—H (S,Q),

where H(Q) and H(S) are the entropies of system Q and
system S, respectively. H (S,Q) is the joint entropy func-
tion. H (S,Q) is the average amount of information
gained from measuring (s, q) pairs, where the joint-
probability distribution, denoted P,~(s;;q~ ), is th.e proba-
bility that s =s; and q =q,

H (S,Q) = —g g P, (s;,q )logzP, ~(s;, q~ ) .

Because H (S,Q) =H (Q,S), we see that I (Q, S)=I (S,Q).
Suppose a variable v is being investigated by being digi-

tized with a sample interval T, . To put this process into
the context of system S and system Q, let s be the mea-
surement of v at time t, and let q be the measurement at
time t + T, . Using these measurements to define systems
S and Q, mutual information I(S,Q) can be calculated.
Thus, mutual information becomes a function of T, . For
this problem, mutual information will be the number of
bits of u ( t +T, ) that can be predicted, on average, when
u(t) is known. One wants to pick T, so that the max-
imurn amount of new information is obtained from each
measurement. Therefore, T, should be chosen so that
u (t + T, ) is as unpredictable as possible. Maximum
unpredictability occurs at a minimum of predictability;
that is, at a minimum in the mutual information. Be-
cause of the exponential divergence of chaotic trajec-
tories, the first minimum of I(Q,S), rather than some
subsequent minimum, should probably be chosen for the
sampling interval.

An extension of this argument is applicable to the
question of window selection. In the case of window
selection, one is selecting the temporal length of trajecto-
ry fragment to be used in a dimension calculation. Each
fragment should provide the greatest amount of new in-
formation to the algorithm. Therefore, according to this
argument, the window length, (N —1)T, (not the sam-

pling rate T, alone), should be related to the first

minimum of the mutual information.
It can be shown that

II. MUTUAL INFORMATION

The development and notation given here follows that
in Fraser and Swinney [16(a)]. For simplicity, these
definitions are stated in terms of discrete systems. They
can be generalized to continuous variables.

Consider systems S and Q consisting of discrete sets of
possible messages [s„sz, . . . , s„] and [q„qz, . . . , q
with associated probabilities [P,(s, ), . . . , P, (s„)] and

[P~(qi), . . . , P~(q )]. The entropy H(S) is the average
amount of information gained from a measurement of S

n

H (S)= —g P, (s, )logzP, (s, ) .
i=1

P,q(s;, q, )
I(Q,S)= g gP, (s;,q )logz P s-P

It is seen that the central issue in estimating mutual in-
formation is estimating probability densities, particularly
P,q. Estimation of probability densities from data is an
active research area [17].

It is necessary to estimate the joint-probability density

P,~
on the S-Q plane. The S-Q plane is partitioned into

elements, and P, on any given element is estimated by
dividing the number of points in that element by the total
number of points. We have implemented the Fraser-
Swinney algorithm [16(a)j. In this algorithm the parti-
tion is nonuniform and adaptive. A finer partition is con-
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structed in regions of the plane where P, has a detailed
structure. A sequence of partitions Go, G, , G2, . . . , G is
constructed. Each partition is a grid of 4 elements gen-
erated by dividing each axis into 2 equiprobable seg-
ments. Let R (K ) denote an element of partition G
(K =0, 1, . . . , 2 —1). Let N (R (K )) be the num-

ber of points in this element and let Xo denote the total
number of elements. Then

=x+0.2y,
dt
dz =4+xz —5.7z,
dt

where T, =0.05.
It is seen in Fig. 3 that success in locating the extrema

of mutual information varies with the system examined.

P, (R (K )}=N(R (K )}/No .

Fraser and Swinney demonstrate that i, the correspond-
ing approximation of mutual information, is

i =2m+ gP, (R (K )}logzP, (R (K )} .
K

Partitioning the S and Q axes into equiprobable elements
is essential to obtaining this relationship for i . The par-
titioning continues element by element until P, is uni-
form on each element. Pzq is said to be uniform on ele-
ment R (K ) if P, values on its subdivisions
R +I(K,j} are approximately equal as specified by
some statistical criterion. This elegant approach to es-
timating P, results in the calculation of mutual informa-
tion as a recursive function. Details are given in Fraser
and Swinney [16(a)].

We have performed the calculations for the examples,
given later, using both our program and a version of
Fraser's program. The y criterion used to define "de-
tailed structure" differ slightly between the two pro-
grams. Our criterion is the one described in Fraser and
Swinney [16(a)], while Fraser's current program [16(b)]
uses a simpler procedure in an attempt to speed calcula-
tions. Therefore, there is occasionally a difference in the
subdivision depth. This results in different numerical
values for mutual information, but does not significantly
alter the positions of minima and maxima, or other de-
tails required for the conclusions we wish to draw. It is
clear that some research is required into the sensitivity of
the calculations to structure criteria, but this does not
affect the work we are describing here. The graphs we
show were all calculated using Fraser's program.

5.0

4.0—
C0

~~
E
c5 3.0-

C

6$2.0—

1 0--

0.0
0.0

50--

0
E 30--
0

2.0--

1 0--

0.0
0.0

2.0--

I I I I I
~ I I

1.0 2.0
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~ I

0.2 0.4
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0.6
I ~ a . I
I

~ I ~
I

I s a s I
I I ~

0.8 1.0

I ~ ~ I I
~ ~ ~

4.0 5.0

III. MUTUAL-INFORMATION CALCULATIONS
WITH SMALL DATA SETS

Three systems were examined. The first, a three-torus,
was specified in Sec. II. The second is the Lorenz attrac-
tor

dx = —10(x —y),dt

c 15--0
E
g$

0
1 0--

C5

0.5--

=x (28 —z) —y,dt

dz=
dt 3

=xy —( —')z,
0.0

0.0 50.0 100.0

Time

150.0 200.0

I I I I I I
I

' ' ' ' I ' ' ' '
I

where T, =0.01. The third is the Rossler attractor

dx
dt

= —y —z,

FIG. 3. Mutual-information function for (a) the Rossler at-
tractor, (b) the Lorenz attractor, and (c) the three-torus. Calcu-
lations were performed with 8192 data points. Essentially iden-
tical functions result from 2000, 4000, and 8000 data points.
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The Rossler data produce a mutual information function
that is essentially identical for 2000, 4000, and 8000 data
points. The location of the first maximum and minimum
agrees with that obtained using 65 000 data points [16(a)].

While the mutual-information function obtained with
Lorenz data is reasonably stable in response to changes in
data set size, the minima and maxima are not as well
defined as for the Rossler system. These difficulties are
even more severe with the three-torus data. Irrational
tori are unstable objects. The difficulties encountered in
estimating extrema of the mutual information of a three-
torus is consistent with the difficulty in numerically es-
timating its correlation dimension.

A helpful perspective can be gained by comparing the
mutual-information functions for these three systems
with those obtained using random numbers and a sine
function corrupted with low-level noise. The pseudoran-
dom numbers were generated using the random number
utility on a VAX 11/750. The sine function is
x(t)=sin[0. 062(t —1)]+@„T,=1. Here e, is equal to
0.0001 multiplied by a pseudorandom number in [0,1],
generated independently for each value of t. The reason
for adding noise is that the mutual information is not
defined for a pure sine function, and neither our nor

Fraser's program gives useful results in such a case. In
the case of a corrupted sine wave, we see, Fig. 4(a), that
there are sharp peaks at half-period intervals, with essen-
tially zero values at other lag values. In the case of the
random numbers, Fig. 4(b), the very low ordinate values
should be noted. As anticipated, chaotic attractors are
thus seen to be intermediate to pseudorandom and
periodic time series.

Given the results of Fig. 4(b), it was speculated that
mutual-information calculations might be helpful in as-
sessing the quality of random-number generators. This,
evidently, is not the case. Five programs from Press
et al. [18] for generating uniform deviates were tested.
The pseudorandom numbers used in the calculation
shown in Fig. 5(a) were produced by an intentionally bad
linear congruential generator. The data set of Fig. 5(b)
was generated by combining the generator of Fig. 5(a)
with a randomizing shufHe described in Knuth [19], to
give output that if effectively free of sequential correla-
tion. Though the second program is far more successful
as a random number generator„comparison of Figs. 5(a)
and 5(b) does not reveal a dramatic difference in their
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FIG. 4. Mutual-information functions for (a) the sine func-

tion plus noise and (b) numbers generated by a random-number
generator; 8192 data points were used in each calculation.

FIG. 5. Mutual-information functions for (a) the output of a
linear congruential random number generator, and (b) the out-

put of a random number generator that combines a linear

congruential generator with a randomizing shufBe; 8192 data
points were used in each calculation.
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TABLE I. Autocorrelation and mutual-information functions, and the resulting window estimation.

Autocorrelation function
Mutual-information

function Window

Rossler
Lorenz
Three torus

TAC

1.15
0.30

62.0

1.60
1.22

90.0

Tmin-AC

3.00
0.72

122.0

Tmin-MI

1.00
0.17

54.0

Tmax-MI

3.20
0.25

108.0

3.30
1.00

100.0

Rossler
Lorenz
Three torus

T /TAC
2.87
3.33
1.61

T„/T,
2.06
0.82
1 ~ 11

Tw /Tmin-AC

1.10
1.39
0.82

Tw /Tmin-MI

3.30
5.88
1.85

Tw /Tm, „MI
1.03
4.00
0.93

mutual-information functions. The mutual-information
function calculated with data from the other programs
were qualitatively similar.

For the results reported in Table I, extrerna of the
mutual-information function were located by visual in-
spection of their graphs and by inspecting a numerical ta-
bulation of all local extrema. Because mutual-
information functions calculated with small data sets are
noisy, it is diScult to construct a numerical procedure for

locating extrema that operates directly on the mutual-
information function. One possible way to automate the
process is to filter the mutual-information function and
locate the extrerna of the filtered function. A variety of
filters was tested, including single-pass two-, five-, ten-,
and twenty-point moving-average filters, and a double-
pass ten-point moving-average filter. Examples are
shown in Fig. 6. Signals in these examples were made
symmetric to zero prior to filtering. Comparison calcula-
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FIG. 6. Mutual-information functions filtered by a double-pass ten-point moving-average filter. Output from each pass is plotted
as a dashed line. Input functions (solid line) were calculated using 8192 data points. (a) Rossler data, (b) Lorenz data, and (c) three-
torus data.
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tions indicate that there is no one single filter that is best
for all mutual-information functions. Thus, to the list of
problems associated with calculating mutual information
from small data sets, a further problem must be added:
what filter or other extremum estimator should be used?

IV. EXTREMA OF MUTUAL INFORMATION
AND OPTIMAL WINDOWS

The results of using mutual-information and autocorre-
lation functions to predict an optimal window are sum-
marized in Table I. T is the value obtained empirically
by determining the window length that gave the largest
scaling region. The details of the empirical process are
given in Albano et al. [11]. Tt,c is the autocorrrelation
time, which is the time required for the autocorrelation
function to reach I/e of its original value. T, is the time
of the autocorr elation function's first zero crossing.
T;„Ac is the time of the autocorrelation function's first
minimum. T;„M& is the time of the first minimum of the
mutual-information function. T,„M, is the time of the
first maximum of mutual information.

It is seen that neither mutual information nor auto-
correlation is consistently successful in identifying the
optimal window. Their use as adjuncts to estimating
correlation dimension using the Grassberger-Procaccia
algorithm is therefore uncertain. However, the impor-
tance of mutual information in estimating metric entropy

remains undisputed [20]. We remark in passing that sub-
sequent calculations have suggested that mutual informa-
tion can be used for pattern recognition of noisy time
series.
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