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Excitation of Rydberg states in rubidium
with near infrared diode lasers

Donald P. Fahey and Michael W. Noel
Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA

∗mnoel@brynmawr.edu

Abstract: A system of three external cavity diode lasers is used to excite
Rydberg states in rubidium. The 5S→5P→5D transitions are driven using
lasers withλ = 780 and 776 nm respectively. From the 5D state, atoms
fluoresce down to the 6P state. The final transition to Rydberg levels is from
the 6P state with laser light nearλ = 1016 nm. ThenS andnD Rydberg
states are accessible directly and with the application of a modest electric
field nP states can also be excited. As a test of this system, Stark spectra are
collected fornD andnP states.

© 2011 Optical Society of America

OCIS codes: (020.5780) Rydberg states; (140.2020) Diode lasers.
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Diode lasers are a useful tool for high-resolution spectroscopy due to their narrowband out-
put, tunability, low-cost, and ease-of-use. Since their introduction to atomic spectroscopy they
have become a promising alternative to high-power, pulsed lasers for the purpose of exciting
high-lying Rydberg states in alkali metal atoms. The exaggerated properties of Rydberg atoms
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have been exploited in a number of recent experiments with ultracold atoms. Their large polar-
izabilitiesallow pairs of Rydberg atoms to interact strongly over distances of several microns.
With the application of a small electric field, a dipole-dipole energy exchange between pairs
of atoms can be tuned into resonance [1,2]. This interaction can also lead to a blockade effect,
which limits the number of excited Rydberg atoms [3, 4] and can even limit the excitation in a
small sample to a single Rydberg atom [5–7]. Ultimately the Rydberg blockade may be useful
in building a quantum computer [8–12]. In addition to allowing Rydberg atoms to exchange
energy, the dipole-dipole interaction also results in a mechanical force between pairs of atoms.
This force can cause atoms to collide, ionizing the weakly bound electrons, and leading to the
formation of an ultracold plasma [13–16]. The extremely low collision energies between ultra-
cold atoms also makes possible the formation of exotic ultralong-range Rydberg molecules. In
one example of these exotic molecules, a pair of Rydberg atoms is bound together forming a
macrodimer with a size greater than 1µm [17–19]. In a second example, a ground state atom is
trapped in a shallow potential well formed by the Rydberg electron of a second atom [20–22].

In this work, we demonstrate a diode laser system for use in populating Rydberg states of
rubidium atoms in a magneto-optical trap (MOT). As a test of our laser system, we report
spectroscopy of low-angular momentum, high principal quantum number Rydberg states, and
observe the Stark splitting in the presence of a dc electric field. Grating feedback can reduce
the output bandwidth of external cavity diode lasers (ECDLs) to the kilohertz range, and con-
ventional locking techniques can ensure frequency stabilization to sub-megahertz levels [23].
Advances in mount design and assembly have made it possible to tune ECDLs single-mode
over tens of nanometers, making them suitable for high-resolution spectroscopy. The lack of
widely tunable ultraviolet wavelength diode lasers required for the direct excitation from the
ground state to Rydberg states has led to the use of multistep processes involving visible and
near-infrared wavelengths. An early example of this is an experiment by Iu,et al. [24]. Lithium
atoms in an atomic beam were excited ton≃ 15 states by a three-step 2S→2P→3S→nP ladder-
type process. Diode lasers operating atλ = 671 nm andλ = 813 nm were locked to the 2S→2P
and 2P→3S transitions, respectively, while a third diode laser was tuned to then = 15 manifold.
Through a combination of photoionization and field ionization they were able to detect Stark
resonances in an electric field, thereby showing that low-power near-infrared cw diode lasers
can be used for Rydberg excitation.

In the case of rubidium, several multi-step diode laser systems have been developed possess-
ing a range of advantages and disadvantages. Due to dipole selection rules and the energy level
spacings of rubidium (both85Rb and87Rb), pathways using visible single photon transitions
for the first step are limited to the transitions 5S→5P atλ = 780 nm or 5S→6P atλ = 421 nm.
The first of these is often used because of the commercial availability of lasers operating near
λ = 780 nm. For two-step excitation, this means that the final step to Rydberg levels requires
wavelengths nearλ = 480 nm. While laser diodes operating at blue wavelengths are available,
in practice it can be advantageous to frequency-double a longer wavelength laser. One example
where this was realized is Grabowski,et al. [25], who used this excitation scheme to probe the
Stark splitting of the87Rb 41D doublet in a MOT. In this case, an injection-locked frequency-
doubledλ = 960 nm diode laser was used to generate theλ = 480 nm light needed for the
second step. Alternatively, the 5S→6P→nS,nD pathway requires blue laser light for the first
transition and light nearλ = 1015 nm for the second [26]. In this case theλ = 421 nm light is
generated by doubling the amplified light from a 842 nm diode laser.

The need for blue wavelengths is avoided altogether with a three-step diode laser system.
For instance, Thoumany,et al., used the 5S→5P→5D→nP pathway to excite Rydberg states
in 85Rb [27]. All three transitions use light in the near-IR, withλ = 780 nm, 776 nm, and
∼1260 nm. This pathway was also used by Sanguinettiet al. to measure the quantum defects
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Fig. 1. Energy level scheme for the excitation of85Rb to Rydberg states. Included are the
relevant hyperfine splittings (shown in MHz) and fluorescent transitions (dashed lines). By
exciting only the 5P3/2(F = 4) → 5D5/2(F

′ = 5) transition in the second step, only the
6P3/2(F = 4) level is populated, thus allowing for a well-defined pathway tonS or nD
states.

of the 85Rb nP3/2 [28] and by Johnsonet al. to measure the absolute frequency of the85Rb
nF7/2 [29] Rydberg states.

We present an alternative diode laser system for three-step excitation to Rydberg states in
85Rb (see Fig. 1). BothnS andnD states are accessible and with the application of a modest
electric field,nP states can be excited. All three diode lasers operate at near-IR wavelengths
(780 nm, 776 nm, and 1016 nm). The experiments presented here were perfomed in a rubidium
MOT which traps and cools on the 5S→5P transition atλ = 780 nm. This transition also
serves as the first step of our excitation scheme. The 5P→5D transition is driven by a Sharp
GH0781JA2C 784 nm 120 mW laser diode cooled to operate atλ = 776 nm. Atoms may
cascade to the ground state either through the 5P3/2 or 6P3/2 states. The final transition to
Rydberg levels is from the 6P3/2 state with laser light nearλ = 1016 nm.

The 5S→5P→5D two-photon transition has been extensively studied. Since the resonsant
frequencies of the two transitions are nearly equal, the Doppler shifts for each nearly cancel
when counterpropagating beams are used [30]. Two-photon excitation is possible for a large
range of detunings from the intermediate 5P level, as seen in [31]. Additionally, the linewidth is
mainly determined by the width of the final 5D5/2 state which is quite narrow (0.66 MHz). It has
been shown that trapped atoms can be excited to the 5D5/2 state with more than 80% efficiency
by the use of a counter-intuitive pulse sequence [32]. Furthermore, atoms in the 5D5/2 state can
undergo superfluorescence through the 6P3/2 state [33]. Recently the lifetimes of the 5D3/2 and
5D5/2 states were measured to be 246.3(1.6) ns and 238.5(2.3) ns respectively [34], and the
measured lifetime of the 6P manifold was found to be 120.7(1.2) ns [35].

A schematic of our laser setup is shown in Fig. 2. For the experiments presented in this
work the trapping and cooling lasers are always on, and drive the first step (5S1/2→5P3/2) in
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Fig. 3. (a) Saturated absorptions signal used to lock the 780 nm ECDL. (b) Nearly Doppler-
freeabsorption spectrum of the 5P3/2 → 5D5/2 used for locking the 776 nm ECDL.

the excitation scheme. The second transition is driven by an ECDL operating atλ = 776 nm,
and a portion of this beam is used to stabilize its frequency. This is done by overlapping the
776 nm beam with a counterpropagating 780 nm beam in a rubidium cell. The Doppler-free
electromagnetically-induced-transparency (EIT) [36] signal seen by monitoring the transmis-
sion of the 780 nm beam provides a useful locking signal for the 776 nm light. As discussed by
Thoumany,et al. [27], the long lifetime of the 5D5/2 state results in quantum amplification of
the absorption signal. The 780 nm beam is stabilized using conventional saturated absorption
spectroscopy as shown in Fig. 3(a). The EIT signal used to lock the 776 nm laser is shown in
Fig. 3(b).

In our arrangement, theλ = 776 nm beam is sent into the MOT from a single direction. The
additional momentum provided by photons from this beam is sufficient to push atoms out of the
MOT if it is not turned off periodically. To avoid this, we focus theλ = 776 nm beam through an
acousto-optic modulator which allows for switching, but also shifts its frequency by 110 MHz.
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Fig. 4. Frequency scans of the (a) 32D doublet and (b) 34S state in the absence of an applied
electricfield. The larger peaks are due to excitation from the 6P3/2(F = 4) hyperfine level,
while the smaller peaks are due to excitation from the 6P3/2(F = 3) hyperfine level. (c) A
scan of the Fabry-Perot interferometer with a free-spectral range of 1.5 GHz.

To compensate for the 110 MHz frequency shift of theλ = 776 nm light before it enters the
MOT, theλ = 780 nm diode laser is red detuned by the same amount and locked to the side
of the F = 2,4 crossover peak. Thus our observed 5D5/2 spectrum includes hyperfine peaks
for F = 1−5, whose individual separations (<10 MHz) are not fully resolved. Ideally, if the
λ = 776 nm laser is tuned to theF = 5 hyperfine level, fluorescence to the 6P3/2 state should
only populate theF ′ = 4 hyperfine level, thus ensuring a well-defined pathway. In practice,
since the hyperfine levels of the 5D5/2 state are closely spaced, a limited fraction of atoms are
excited to theF = 4 hyperfine level, which can fluoresce to either theF ′ = 3 orF ′ = 4 levels of
the 6P3/2 state. This appears in our observed Rydberg spectra as a small feature spaced to higher
energy by an amount equal to theF ′ = 3,4 energy separation (∼42 MHz) [37]. Excitation to
Rydberg states is done with an Axcel Photonics 1016 nm laser diode mounted in a home-
built external cavity. Grating feedback allows for the operation of this laser over the range
λ = 1011− 1030 nm, as well as continuous single-mode tuning over a 2.5 GHz range. This
allows access to Rydberg states betweenn = 25 andn = 125. A portion of the beam is measured
with a Hewlett Packard 86120B Multi-Wavelength Meter to verify that it is tuned to the correct
state, and the remainder (typically∼70 mW) is combined with theλ = 776 nm beam before
being sent into the MOT. After stabilization and modulation, the peak power of theλ = 776 nm
beam entering the MOT is typically∼5 mW.

Following excitation, Rydberg atoms are detected by field ionization. A high voltage pulse is
applied to the trap∼2 µs after theλ = 776 nm beam is turned off, and the resulting electrons
are accelerated toward a chevron microchannel plate assembly where they are detected. For
each shot we integrate the total detected atom signal. Repeated scans of theλ = 1016 nm laser
frequency are made, and the resulting scans are averaged. In Fig. 4(a) we show the results of
averaging 50 scans over the 34S state. The doublet that appears is due to excitation from two
different hyperfine states of 6P3/2, F = 3 and 4, as mentioned earlier. In fact, close inspection
of this signal reveals a very small additional peak consistent with excitation from the 6P3/2
F = 2 state. In Fig. 4(b) our laser is tuned to excite the 32D doublet. The spacing between
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Fig. 5. Stark map for (a) the 32D and (b) the 50D states in85Rb. Shown in red is the
calculated energy level splitting.

the two largest features is∼380.3 MHz, in good agreement with the calculatedj = 5
2, 3

2 fine
structuresplitting. Once again, we see pairs of states due to the excitation for the the two
different hyperfine states of 6P3/2. To provide a calibration of our frequency scans, a portion
of the λ = 1016 nm beam is sent into a ThorLabs confocal Fabry-Perot interferometer with
a free-spectral range of 1.5 GHz as shown in Fig. 4(c). The narrowest measured linewidth is
roughly 8 MHz (FWHM).

We also observed the Stark effect energy level splitting by performing frequency scans for
a range of applied dc electric fields [38]. Experimentally obtained spectra overlayed with the
calculated Stark maps for the 32D and 50D states are shown in Figs. 5(a) and (b), respectively.
In both cases, the|m j| degeneracy breaking is clearly resolved and the observed spectra match
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Fig. 6. Stark map for the 33P3/2 statein 85Rb. Shown in red is the calculated energy level
splitting.

the calculated splitting. Stark maps are calculated using the quantum defects measured by Liet
al. [39].

Additionally, we used the mixing of states due to the Stark effect to observe atoms whose
energy levels are adiabatically connected to the zero-field 33P state. Figure 6 shows the Stark
splitting of the 33P3/2 state in a dc electric field. As the electric field is brought to zero, the
number of detected 33P atoms diminish, until a signal is no longer observable below about
1 V/cm. The 33P1/2 state is not shown because thej = 3

2, 1
2 splitting for the 33P state is larger

than the single-mode tuning range of our laser.
Finally, we investigated the degree to which excitation is affected by the use of pulsed light

for the final step. Theλ = 1016 nm beam was pulsed by tightly focusing it through an AOM,
and its first-order output was collimated and combined with theλ = 776 nm beam before being
sent to the MOT. With theλ = 1016 nm laser tuned and locked to the 32D5/2 state with a stable
confocal Fabry-Perot cavity, its pulse length was scanned from 30 ns to 17.94µs and the total
integrated signal of all ionized atoms was recorded. The length of theλ = 776 nm pulse was
extended to 30µs so that at a minimum it turned on 12µs before theλ = 1016 nm pulse, and
the end of both pulses were made to coincide. The results in Fig. 7 show fraction of trapped
atoms that are excited as a function of pulse width, revealing a rapid rise as the pulse width
increases to∼ 1 µs followed by saturation at about 10% excitation and then a second increase
to around 20% excitation. Both the 776 nm and 1016 nm laser beams were weakly focused so
that their size was larger than that of the trapped ball of atoms. The fraction of excited atoms
could then be accurately quantified by measuring the loss of atoms from the trap after excitation
and field ionization. This was done by collecting the fluorescence from the trapped atoms with
a large numerical aperture lens on an avalanche photodiode and measuring the fluorescence
signal just before and just after excitation. Since field ionization completely removes the atoms
from the trap we ran our excitation sequence at a rate of 0.33 Hz so that the trap had adequate
time to refill after each excitation.

Using the matrix elements and lifetimes quoted in [40] we have calculated the expected
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Fig. 7. Integrated signal for 32D5/2 Rydberg state excitation for 1016 nm pulse durations
ranging from 50 ns to 5.14µs in 20 ns increments.

saturation level for thenD Rydberg state to be 4%, well below the observed level. The reason
for the excess excitation is revealed in the time resolved electron signal from our field ionized
atoms shown in Fig. 8. We field ionize the Rydberg atoms with a slowly rising (∼1 µs) electric
field pulse. With this pulse, more tightly bound atoms will ionize at a larger field and thus
later in time than weakly bound atoms. For a short 1016 nm excitation pulse we see a narrow
feature (with some ringing) arriving at the detector at a time that we correlate with atoms that
were in the 32D Rydberg state. For a 0.82µs pulse the field ionization signal broadens and we
see several peaks arriving earlier in time, indicating that additional states are being populated.
These states are not populated directly by the 1016 nm laser, whose wavelength remains fixed,
but rather through energy exchange due to the strong long-range interactions among atoms [41].
For longer excitation pulses the population continues to spread among a range of Rydberg
states. At a pulse duration of 8.42µs a new feature appears, a narrow spike that arrives at a time
coincident with the beginning of our field ionization pulse. This is the signature of an ultracold
plasma [14, 42]. In this case the strong dipole-dipole interaction between atoms has caused
some to collide and ionize. The initially ionized electrons exit the trapping region leaving the
positive ions behind. Eventually the potential well formed by these cold ions is large enough
to trap the collisionally ionized electrons forming an ultracold plasma. A weak electric field
is sufficient to extract the electrons from the plasma producing the prompt peak in our field
ionization signal. At 17.24µs the system has completely evolved into an ultracold plasma. Our
simple rate equation model, which predicts a steady state excitation of 4%, does not account for
any redistribution of Rydberg states. In effect this redistribution is an open channel that allows
atoms to be removed from the excitation cycle thus increasing the total fraction of atom lost
from the trap.

In conclusion, we have demonstrated a diode laser system capable of exciting85Rb to nS
andnD Rydberg states, as well asnP states with the application of a modest electric field. It
was shown that for the 32D, 50D, and 33P3/2 states both the fine structure splitting and Stark
splitting in a dc electric field can be completely resolved. Excitation pulses as short as 30 ns
were also feasible with this system due to the power available by the last step in the excitation
process.

This system nicely complements other systems that have recently been developed by provid-
ing access to Rydberg states using near infrared lasers without the need for second harmonic
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Fig. 8. Time resolved electron signals from the field ionized Rydberg atoms for several
1016nm excitation pulse durations. Each panel is labeled with the duration of the excitation
pulse used, which is also marked with a red cross in Fig. 7.
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generation. This is acheived in our system through a three-step excitation scheme, whereas two-
steppathways involving blue light often require frequency doubling an infrared laser diode,
thereby significantly complicating the laser system. The other three-step system that has been
used to excite Rydberg states of85Rb couples tonP andnF states in zero electric field, whereas
our system couples tonS andnD states. States of other angular momenta could be excited by
Stark mixing in a modest electric field. One limitation of our system is the necessary radia-
tive step, which eliminates the possibility of coherent pulsed excitation schemes and limits the
linewidth of the observed transitions. In spite of these limitations we expect this laser system
will be a useful tool for the study of ultracold Rydberg atoms. We note that decoupling the
trapping lasers from our excitation scheme would provide more control over the excitation of
the intermediate 5D state.
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