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Legendrian circular helix links
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Abstract

Examples are given of legendrian links in the manifold of cooriented contact

elements of the plane, or equivalently, in the 1-jet space of the circle which are not

equivalent via an isotopy of contact diffeomorphisms. These examples have

generalizations to linked legendrian spheres in contact manifolds diffeomorphic to

2n¬Sn−". These links are distinguished by applying the theory of generating

functions to contact manifolds.

1. Introduction

A contact 3-manifold is a smooth manifold with a field of tangent 2-planes

satisfying a non-degeneracy condition. This non-degeneracy implies the field of

hyperplanes has no intregral surfaces. However, there are many integral curves,

known as legendrian curves. A basic problem in contact topology is to classify

legendrian curves up to contact isotopies of the ambient manifold. Legendrian knots

are legendrian submanifolds diffeomorphic to S" and a legendrian link is a collection

of disjoint legendrian knots. Background on legendrian knots can be found, for

example, in [B], [E], [A].

Motivated by [A], this paper focuses on examples of standard links in the

manifold of cooriented contact elements, a contact manifold diffeomorphic to 2#¬S".

The components of the links will consist of the following legendrian knots in

2#¬S",S"B2}2π: :

G(1)B ²(cos θ, sin θ, θ) : θ `S"´,

G(2)B ²(2 cos θ, 2 sin θ, θ) : θ `S"´,

R(2)B ²(2 cos θ, 2 sin θ, θ­π) : θ `S"´.

It is often convenient to visualize these knots as quotients of right-handed helices in

2$ of radii 1, 2, respectively. R(2) and G(2) differ only by a translation in the S"

coordinate. The links

G(1)1G(2), G(1)1R(2)

are topologically the same: there exists an isotopy of 2#¬S" that takes G(2) to R(2)

and at the same time returns G(1) to G(1). The legendrian knots G(2) and R(2) are

equivalent via an isotopy of contact transformations. However,

† This research has been partially supported by an NSF Mathematical Sciences Postdoctoral
Research Fellowship.
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T. The legendrian links G(1)1G(2), G(1)1R(2) are not equivalent via an

isotopy of contact diffeomorphisms of the manifold of cooriented contact elements.

This result has a slightly more general formulation in the contact manifold *"(S"),

the 1-jet space of real-valued functions on a circle, with its standard contact

structure. The 1-jet of a smooth function f : S"U2,

Λ
f
B (0q, df

dq
(q), f(q)1*Z* "(S"),

is a legendrian knot. Links are naturally formed by considering tuples of functions.

T«. Consider f, g, h : S"U2 where f(q)! g(q)! h(q), for all q `S". Then the

legendrian links
Λ

g
1Λ

h
, Λ

g
1Λ

f

are topologically equivalent but not equivalent via an isotopy of contact transformations

of * "(S").

The theorems above are proved in Section 5 as an application of generating

functions in contact topology. The proof that the above links are different is

reminiscent of Viterbo’s proof of the symplectic camel theorem, [V].

In a more ‘twisted’ version of the manifold of cooriented contact elements, 2#¬S"

with an alternate contact structure, there exist non-equivalent legendrian links

whose knot components complete more turns of either a right-handed or left-handed

helix before closing; see Section 7. The above results also have generalizations to

higher dimensions. There exist legendrian links in a contact manifold diffeomorphic

to 2n¬Sn−" which are topologically equivalent but not equivalent via an isotopy

consisting of contact transformations. Here, each component of the link is

diffeomorphic to Sn−" ; see Section 8. Limitations of this technique to the study of

other links are discussed in Section 9.

2. Background

A contact structure on a (2n­1)-manifold M is a completely non-integrable

tangent hyperplane field, ξ. The complete non-integrability of ξ can be expressed by

the inequality αg (dα)n1 0 where ξ is locally described by ξ¯kerα. For simplicity,

throughout this section, it will be assumed that ξ is transversally orientable so that it

can be described as the kernel of some 1-form α. A diffeomorphism κ : (M
!
, ξ

!
)U (M

"
, ξ

"
)

is a contactomorphism or contact diffeomorphism if κk(ξ
!
)¯ ξ

"
. A contact isotopy is

a smooth 1-parameter family of contactomorphisms, κ
t
: (M, ξ )U (M, ξ ), t ` [0, 1], such

that κ
!
¯ id. An n-dimensional submanifold , in (M#n+", ξ ) is legendrian if it is

tangent to ξ : T,Z ξ. For more background on contact geometry, see [A-G], [E],

[M-S].

For a fixed contact 3-manifold (M, ξ ), let ,%(S") denote the space of embeddings

of S" into M with legendrian images. Then consider

1
k

"

,%(S")B ²(}
"
,…, }

k
) : }

i
`,%(S"), Im }

i
f Im }

j
¯ !, i1 j´.

A legendrian knot, +, is the image of } `,%(S"). A legendrian link, (+
"
1…1+

k
), is
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the image of Φ `1k

"
,%(S"). Two lengendrian links, (+

"
1…1+

k
), (,

"
1…1,

k
),

are equivalent if there exists a contact isotopy κ
t
: MUM, t ` [0, 1], such that

κ
"
(+

i
)¯,

i
, i¯ 1,… , k. The notation (+

"
1…1+

k
)D (,

"
1…1,

k
) will be

used to denote equivalent legendrian links.

The following three central results in contact topology hold for contact manifolds

of all dimensions. The first is the contact analogue of the symplectic ‘Moser

stability’. Proofs can be found in [A-G], [M-S].

(2±1) G . Let M be a manifold without boundary. Suppose ξ
t
, t ` [0, 1], is a

smooth family of contact structures such that (d}dt) ξ
t
¯ 0 on a closed submanifold Q and

on the complement of C where C is a compact set. Then there exists an isotopy κ
t
of M such

that (κ
t
)k ξ

t
¯ ξ

!
and κ

t
¯ id on Q and on the complement of C, for all t ` [0, 1].

One consequence of Gray stability is the legendrian neighbourhood theorem which

implies that legendrian links do not have any local invariants. For details, see [A-G].

(2±2) L . If ,
!
ZM

!
and ,

"
ZM

"
are diffeomorphic,

closed, legendrian submanifolds then there exist neighbourhoods U
!
,U

"
of ,

!
,,

"
and a

contact diffeomorphism κ : (U
"
,,

"
)U (U

!
,,

!
).

The next result implies that the equivalence of legendrian knots or links can be

reduced to the study of paths in 1k

"
,%(S"). For the reader’s convenience, a proof is

included.

(2±3) L   . Let L be a closed lengendrian

submanifold of (M, ξ ) and let j
t
: LUM, t ` [0, 1], be an isotopy ( j

!
¯ id) such that j

t
(L)

is legendrian. Then there exists a contact isotopy κ
t
: (M, ξ )U (M, ξ ) such that κ

t
r
L
¯ j

t
.

Proof. First it will be useful to review the concepts of a Reeb vector field and a

contact hamiltonian. Suppose ξ¯kerα. Given the contact form α, there exists a

unique vector field R¯Rα : MUTM such that

α(R)¯ 1, i
R

dα¯ 0. (2±3±1)

The vector field is called the Reeb vector field determined by α. Given any function

h : MU2, there exists a unique vector field X¯X
h
: MU2 which satisfies

α(X)¯ h, i
X

dα¯ dh(R)α®dh. (2±3±2)

To see this, suppose h is given. Since dαrξ is non-degenerate, there exists a unique

vector field Z : MUTM such that Z ` ξ and i
Z
dαrξ ¯ dhrξ. The vector field X

h
BZ­hR

is as required. Note that if X is integrable, the characterizations of X imply

,
X

α¯ d(i
X

α)­i
X

dα¯ dh­(dh(R)α®dh)¯ dh(R)α

and thus X integrates to a contact isotopy.

Now suppose j
t
: LUM is a legendrian isotopy. Consider the vector field X

t
defined

along j
t
(L) by

X
t
{ j

t
¯

d

dt
j
t
.

Then consider h
t
¯α(X

t
) : j

t
(L)U2. The idea is to extend h

t
to a compactly supported

function hW
t
: MU2 so that for all p ` j

t
(L),

α(X
t
)¯ hW

t
, i

Xt

dα¯ dhW
t
(R)α®dhW

t
.
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Then the vector field XW
t
uniquely defined by hW

t
as in (2±3±2) will be integrable and

extend X
t
. First suppose hW

t
is chosen so that for all p ` j

t
(L), hW

t
(p)¯ h

t
(p). This

guarantees that on j
t
(L), α(X

t
)¯ hW

t
. This also implies that for v `T( j

t
(L)),

dα(X
t
, v)¯X

t
α(v)®vα(X

t
)®α([X

t
, v])¯®vα(X

t
)¯®dh

t
(v)¯®dhW

t
(v).

If more generally, it is required that hW
t
is chosen so that dhW

t
(p) (v)¯®dα(p) (X

t
, v) for

all v ` ξ
p
, p ` j

t
(L), then it is easy to check that i

Xt

dα(v)¯ dhW
t
(R)α(v)®dhW

t
(v) for all

v `T
p
M, p ` j

t
(L) and thus XW

t
will extend X

t
as desired. I

3. Standard links in a solid torus

There are two standard contact manifolds which are diffeomorphic to the open,

solid 3-torus. First consider the manifold of cooriented contact elements of the plane,

ST*2". A point in this manifold consists of a point p `2# and a line in the tangent

space at this point, FZT
p
(2#), together with a choice of one of the two half-planes

into which F divides the tangent plane. Standard coordinates on this manifold consist

of the cartesian coordinates (x, y) of a point in the plane and the angular coordinate

θ `2}2π: of the coorienting normal vector to F. With respect to these coordinates,

the standard contact structure, ξ
"
, is globally defined by

ξ
"
¯ker (cos θ dx­sin θ dy). (3±1)

A second standard contact manifold diffeomorphic to 2#¬S" is the 1-jet space of real-

valued functions on the circle, * "(S")¯²(q,p, z) : q `2}2π:´, with its standard contact

structure,
η¯ker (dz®pdq). (3±2)

In fact, ST*2# and * "(S") are contactly equivalent via the hodograph trans-

formation. This contactomorphism τ : (ST*2#, ξ
"
)U (* "(S"), η) is given by

τ(x, y, θ)¯ (θ,®sin θx­cos θy, cos θx­sin θy). (3±3)

Thus results about the contact topology of (ST*2#, ξ
"
) can be translated into results

about the contact topology of (* "(S"), η) and vice versa. In this paper, it is often

easier to visualize legendrians in ST*2# but to calculate in * "(S").

For these standard contact manifolds, it is convenient to describe lengendrian

curves from their wave fronts. In general, if a contact manifold M is a legendrian

fibration over a manifold X,π : MUX, then the wave front of a legendrian

submanifold ,ZM is π(, )ZX. For example, the projection π : ST*2#U2# and the

projection π : * "(S")US"¬2 onto the (q, z)-coordinates are both legendrian

fibrations. Generic wave fronts of legendrians in ST*2# will be cooriented immersed

curves with semi-cubic cusp singularities. The cooriented wave front in 2# uniquely

defines the legendrian in ST*2#. For more details, see [A]. Wave fronts of legendrian

knots in * "(S") will include immersed graphs of multi-valued functions with non-

vertical tangents and semi-cubic cusp singularities. Again, the wave front in S"¬2

uniquely defines the legendrian in * "(S"). The links studied in this paper have easily

described wave fronts.

Definition 3±4. For r& 0,C³(r)ZST*2# are legendrian knots:

C+(r)B ²(r cos θ, r sin θ, θ) : θ `2}2π:´,

C−(r)B ²(r cos θ, r sin θ, θ­π) : θ `2}2π:´.
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The wave front of C+(r) is the circle of radius r with outward pointing normals

while the wave front of C−(r) is the circle with inward pointing normals. The ³ sign

of these legendrians will be referred to as the charge of the legendrian.

Definition 3±5. The graph of any smooth function f : S"U2 has a lift to the

legendrian submanifold

Λ
f
B ((q,p, z) : p¯

df

dq
(q), z¯ f(q)* .

Remark 3±6. Under the hodograph transformation, τ(C³(r))¯Λ³r
where Λ³r

are

the legendrians associated to the constant functions of value ³r,

Λ
r
¯²(q, 0, r) : q `S"´, r `2. V

In fact, any two legendrians knots in * "(S") which have graph wave fronts are

equivalent.

L 3±7. For any smooth functions f, g : S"U2, the legendrians Λ
f
,Λ

g
Z* "(S")

are equivalent.

Proof. The contact isotopy κ
t
: * "(S")U* "(S"),

κ
t
(q,p, z)¯ (q,p­t(g«®f «) (q), z­t(g®f ) (q)), t ` [0, 1],

satisfies κ
"
(Λ

f
)¯Λ

g
. I

C 3±8. For r& 0, C+(1)DC+(r)DC−(r).

Proof. Because of Remark 3±6, this statement is an immediate corollary of Lemma

3±7. However, for later purposes, it will be helpful to keep in mind the following

isotopy of ST*2#. Consider the path in ,%(S"), F
t
: C+(r)UST*2#, t ` [®1, 1],

F
t
(x, y, θ)¯ (tx, ty, θ). Since Im F

"
¯C+(r) and Im F

−"
¯C−(r), Lemma 2±3 implies

C−(r)DC+(r). I

Consider links which are pairs of these lengendrian knots. For example, consider

the four legendrian links

C³(1)1C³(2), C³(1)1Cy(2). (3±9)

Each of the four links C³(1)1C³(2), C³(1)1Cy(2) differ by translations in the θ

coordinate and thus are pairwise topologically equivalent. The radii 1, 2 were chosen

for convenience and some of these legendrian links are clearly equivalent.

P 3±10. For 0% r
"
! r

#
,

(i) (C+(1)1C+(2)DC+(r
"
)1C+(r

#
) ;

C−(1)1C−(2)DC−(r
"
)1C−(r

#
).

(ii) (C+(1)1C+(2)DC−(1)1C+(2) ;

C+(1)1C−(2)DC−(1)1C−(2).

(iii) C+(1)1C−(2)DC+(2)1C−(1)DC+(2)1C+(1).

Proof. Slight modifications of the proof of Corollary 3±8 prove all statements. I

However, not all of the legendrian links in (3±9) are equivalent. Notice that in



306 L T

Proposition 3±10(iii), to change the charge on the outermost wavefront, the strands

of the link were interchanged. The main result of this paper is that it is impossible

to make this charge change on the outer wave front without swapping the strands.

T 3±11. C+(1)1C−(2)KC+(1)1C+(2).

This theorem will be proved in Section 5. Assuming Theorem 3±11, there are a

number of other links that can be immediately distinguished.

C 3±12.

(i) C−(1)1C−(2)KC−(1)1C+(2) ;

(ii) C+(1)1C+(2)KC+(2)1C+(1) ;

(iii) C−(1)1C+(1)KC+(1)1C−(1).

Proof. Statement (i) follows from Theorem 3±11 since by Proposition 3±10,

C−(1)1C−(2)DC+(1)1C−(2), C−(1)1C+(2)DC+(1)1C+(2).

To prove (ii), note that by Proposition 3±10,

C+(1)1C+(2)DC−(1)1C+(2)DC−(2)1C+(1)

which by Theorem 3±11 is not equivalent to C+(2)1C+(1). Statement (iii) follows

from Theorem 3±11 since C+(1)1C−(1)DC+(1)1C−(2) and, by Proposition 3±10,

C−(1)1C+(1)DC−(1)1C+(2)DC+(1)1C+(2).

Theorem 3±11 can be generalized to the following result about * "(S").

T 3±13. Let f
"
, g

"
, f

#
, g

#
: S"U2 be functions satisfying

f
"
(q)! g

"
(q), f

#
(q)! g

#
(q), cq `S".

If Λ
fi
,Λ

gi
Z* "(S") denote the associated legendrian knots then

Λ
f"
1Λ

g"
DΛ

f#
1Λ

g#
and Λ

f"
1Λ

g"
KΛ

g#
1Λ

f#
.

The pointwise ordering on the functions guarantees the knot components of the

link are disjoint. Theorem 3±13 will be proved in Section 5 after the machinery of

generating functions is developed in Section 4. A more ‘twisted’ version of Theorem

3±11 is described in Section 7 and higher dimensional generalizations of Theorems

3±11 and 3±13 are discussed in Section 8.

4. Legendrian generating functions

Consider the 1-jet space * "(Z) of a closed n-manifold Z with its standard contact

structure η¯kerα where αB dz®pdq. The 1-jet of a smooth function, f : ZU2, is a

closed, legendrian submanifold. More generally, if F : Z¬2kU2 has fibre derivatives

¦F}¦x transverse to 0 then Λ, described in local coordinates as

ΛB (0 q,
¦F

¦q
(q, x), F(q, x)1 : ¦F

¦x
(q, x)¯ 0* ,

is an immersed legendrian submanifold of * "(Z) and F is called a generating function

for Λ. A function F : Z¬2kU2 is said to be quadratic at infinity if outside a compact
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set, F(q, x)3Q(x)­C where Q is a non-degenerate quadratic function and C is a

constant. Critical points of a generating function correspond to points where Λ

intersects the set ²p¯ 0´.
The following existence theorem is proved by Chaperon in [C]. An alternate proof

which uses a symplectization procedure is given in the appendix to this paper.

(4±1) Let Z be a closed manifold and let Λ
!
Z* "(Z) denote the 1-jet of the zero function.

If κ
t
, t ` [0, 1], is a contact isotopy of * "(Z) then there exists a smooth 1-parameter family

of quadratic at infinity generating functions F
t
: Z¬2kU2 for Λ

t
B κ

t
(Λ

!
).

Following ideas of Viterbo, [V], there are two natural invariants associated to these

quadratic at infinity functions. First, for a non-critical value b of F : Z¬2kU2,

consider
FbB ²(q, x) :F(q, x)% b´.

If F is quadratic at infinity then for 0' b! c,Fb is a deformation retract of Fc and

F−c is a deformation retract of F−b. If F³¢ denotes F³c for c( 0, a direct calculation

shows that the relative homology groups are isomorphic to the homology groups

of Z :

τ :Hk(Z)U
D

Hk
+ι(F+¢,F−¢),

where ι is the index of the quadratic Q,F3Q­C outside a compact set. Also notice

that for all b, there is a homomorphism ik :Hk(Fb,F−¢)UHk(F+¢,F−¢) induced by

inclusion. Given a quadratic at infinity function F, define

c
+
(F)¯ inf ²b : τ(µ

n
) ` ik(H

n+ι(Fb,F−¢))´

c
−
(F)¯ inf ²b : τ(µ

!
) ` ik(Hι(Fb,F−¢))´,

5

6

7

8

(4±2)

where µ
n
,µ

!
are generators of H

n
(Z), H

!
(Z), dimZ¯n, respectively. The following

proposition is proved by Viterbo in [V]. A proof is given for the reader’s convenience.

(4±3) If F
t
is a smooth family of quadratic at infinity functions, F

t
: Z¬2kU2, then

c³ : [0, 1]U2 defined by c³(t)¯ c³(F
t
) are continuous, piecewise smooth functions.

Proof. Fix t
!
` [0, 1]. Given ε" 0, suppose b is a non-critical value of F

t!
with

rc³(t)®br& ε" 0. Choose ε
b
so that [b®ε

b
, b­ε

b
] contains no critical values of F

t!
. By

applying fiber-preserving diffeomorphisms, it can be assumed d}dtF
t
¯ 0 outside a

compact set. Thus there exists δ" 0 such that sF
t
®F

t!
s! ε

b
for all t ` (t

!
®δ, t

!
­δ)f

[0, 1]. By choosing δ
b
, 0! δ

b
! δ, it can be assumed that [b®ε

b
, b­ε

b
] contains

no critical values of F
t

for all t ` (t
!
®δ

b
, t

!
­δ

b
)f [0, 1] and thus the inclusions

Fb−ε
b

t
ZFb

t!
ZFb+ε

b
t

induce an isomorphism Hk(Fb
t!
,F−¢

t!
)DHk(Fb

t
,F−¢

t
). The result

then follows from the definition of c³(F
t
). I

In general it may be difficult to calculate c³(F). However, for 1-jets of constant

functions, Λ
r
BΛ

f
where f3 r, these numbers can be easily calculated.

L 4±4. If F is a quadratic at infinity generating function for Λ
r
, c³(F)¯ r.

Proof. If F : Z¬2kU2 is a quadratic at infinity generating function for Λ
r
, then

Λ
r
¯²(q, 0, r)´¯ (0 q,

¦F

¦q
(q, x),F(q, x)1 : ¦F

¦x
(q, x)¯ 0*

and it follows that r is the only critical value of F. I
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5. Proof of Theorems 3±11 and 3±13

By Remark 3±6, Theorem 3±11 is an immediate corollary of Theorem 3±13. Let f
"
,

g
"
, f

#
, g

#
: S"U2 be functions satisfying f

"
(q)! g

"
(q), f

#
(q)! g

#
(q), for all q `S". A slight

modification of the proof of Lemma 3±7 proves that Λ
f"
1Λ

g"
DΛ

f#
1Λ

g#
. Thus, to

complete the proof of Theorem 3±13, it suffices to prove that

Λ
!
1Λ

"
KΛ

!
1Λ

−"
,

where Λ
r
is the 1-jet of the constant function f3 r.

Suppose there exists a contact isotopy κ
t
, t ` [0, 1], of * "(S") such that κ

"
(Λ

!
)¯Λ

!
,

κ
"
(Λ

"
)¯Λ

−"
. Let Λ

!
(t)B κ

t
(Λ

!
), Λ

"
(t)B κ

t
(Λ

"
). By (4±1), for all t, Λ

!
(t), Λ

"
(t) have

quadratic at infinity generating functions,

Ft

!
:S"¬2NU2, Ft

"
:S"¬2MU2.

Consider Dt :S"¬2M¬2NU2,

Dt(q, η
"
, η

!
)BFt

"
(q, η

"
)®Ft

!
(q, η

!
).

Dt is a quadratic at infinity generating function for the (immersed) legendrian

∆(t)B ²(q,p
"
®p

!
, z

"
®z

!
) : (q,p

"
, z

"
) `Λ

"
(t), (q,p

!
, z

!
) `Λ

!
(t)´.

By (4±3), the function c
+
: [0, 1]U2, c

+
(t)¯ c

+
(Dt) is continuous. Since D! is a

generating function for Λ
"
and D" is a generating function for Λ

−"
, Lemma 4±4 implies

c
+
(0)¯ 1 and c

+
(1)¯®1. By the continuity of c

+
, there exists t« such that c

+
(t«)¯ 0.

Then since c
+
(t«)¯ 0 is a critical value of Dt«, there exists q« `S" so that (q«, 0, 0) `∆(t«)

and thus, by the above description of ∆(t«), there exists (q«,p!

"
, z!

"
)¯ (q«,p!

!
, z!

!
) `Λ

"
(t«)f

Λ
!
(t«), a contradiction. I

6. Non-concentric wave fronts

The links in ST*2# studied above have concentric, non-intersecting wave fronts.

To study links with intersecting wave fronts, let τ
z
: ST*2#UST*2# denote the

translation

τ
z
(x, y, θ)¯ (x­z, y, θ).

Notice that τ
z
(C³(r)) has a wave front centred at (x, y)¯ (z, 0) and thus when

0! z% r, the wave fronts of τ
−z

(C+(r)) and τ
z
(C−(r)) will intersect. In fact, a link

whose wave front consists of intersecting circles of opposite charge is equivalent to

one of the links already studied.

P 6±1. For 0! z! r, 0% z
"
! r

"
,

τ
−z

(C+(r))1 τ
z
(C−(r))D τ

−z
(C+(r))1 τ

z"
(C−(r

"
))DC+(1)1C−(2),

τ
−z

(C−(r))1 τ
z
(C+(r))D τ

z
(C−(r))1 τ

−z
(C+(r))DC−(1)1C+(2).

Proof. 0% z
"
! r

"
implies that the wave fronts of both τ

−z
(C+(r)) and τ

z"
(C−(r

"
))

intersect the line ²x¯ 0´. A proof similar to the proof of Corollary 3±8 proves that

τ
−z

(C+(r))1 τ
z
(C−(r))D τ

−z
(C+(r))1 τ

z"
(C−(r

"
)). When r' r

"
, z

"
¯ 0, the wave front of
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τ
−z

(C+(r)) will be completely contained in the bounded component of the complement

of τ
z"
(C−(r

"
))’s wavefront and thus τ

−z
(C+(r))1 τ

z
(C−(r))DC+(1)1C−(2). A similar

argument proves the second statement. I

C 6±2. For r" 0, τ
−r

(C+(2r))1 τ
r
(C−(2r))K τ

−r
(C−(2r))1 τ

r
(C+(2r)).

7. Higher twisting

As a more ‘twisted’ version of ST*2#, consider the open solid torus, 2#¬S", with

the alternative contact structure ξ
n
,

ξ
n
¯ker (cos (nθ) dx­sin (nθ) dy), n `:c²0´ (7±1)

Notice that when n¯ 1, this is precisely ST*2#. In (2#¬S", ξ
n
), rnr" 1, it is possible

to construct legendrian knots which complete more turns of the helix before closing.

When n! 0, these knots will be portions of a circular, left-handed helix. More

precisely, for r& 0,

C+
n
(r)B ²(r cos (nθ), r sin (nθ), θ) : θ `2}2π:´

C−
n
(r)B ²(r cos (nθ), r sin (nθ), θ­π}n) : θ `2}2π:´

5

6

7

8

(7±2)

are legendrian knots in (2#¬S", ξ
n
). (Notice that

²(r cos (nθ), r sin (nθ), θ­2π}n) : θ `2}2π:´

is a different parameterization of C+
n
(r).)

The circles above and in previous sections had length 2π. More generally, for

λ" 0, let S"(λ) denote the circle of length λ :

S"(λ)B2}λ:, λ" 0. (7±3)

The 1-jet spaces of S"(λ), * "(S"(λ)), can be considered as a contact manifold with the

contact structure, η, again defined by

η¯ker (dz®pdq). (7±4)

For λ! 0, * "(S"(λ)) will denote the 1-jet space of S"(®λ) with the contact structure

η¯ker (dz­pdq). (7±5)

Then for each n `:c²0´, (2#¬S", ξ
n
) is contactly equivalent to the 1-jet space of a

circle of appropriate ‘size and orientation’ :

τ
n
: (2#¬S", ξ

n
)U (* "(S"(2nπ)), η),

τ
n
(x, y, θ)¯

1

2

3

4

(nθ,®sin (nθ) x­cos (nθ) y, cos (nθ) x­sin (nθ) y),

(®nθ,®sin (nθ) x­cos (nθ) y, cos (nθ) x­sin (nθ) y),

n" 0

n! 0.

5

6

7

8

(7±6)

Under these contact diffeomorphisms, C³
n
(r) correspond to Λ³r

, the 1-jets of the

constant functions f3³r.

L 7±7. For λ, µ `2c²0´, * "(S"(λ)) is contactly equivalent to * "(S"(µ)). For
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n,m `:c²0´, (2#¬S", ξ
n
) and (2#¬S", ξ

m
) are equivalent contact manifolds. Moreover,

for all n,m `:c²0´ there exists a contact diffeomorphism

w : (2#¬S", ξ
n
)U (2#¬S", ξ

m
) such that

w(C³
n
(r))¯

1

2

3

4

C³
m 0mr

n 1 , nm" 0

Cy
m 0®mr

n 1 , nm! 0.

Proof. For λ,µ `2+, consider the contact diffeomorphisms

sλ,µ
:* "(S"(λ))U* "(S"(µ)), sλ,µ

(q,p, z)¯ 0µλ q,p,
µ

λ
z1 ,

ρ :* "(S"(λ))U* "(S"(®λ)), ρ(q,p, z)¯ (q,®p,®z).

A combination of these diffeomorphisms shows the equivalence of * "(S"(λ)) and

* "(S"(µ)), for all λ,µ `2c²0´. Together with the contactomorphisms τ
n
, τ

m
, these

diffeomophisms imply (2#¬S", ξ
n
) and (2#¬S", ξ

m
) are contactomorphic when

n,m `:c²0´. If wB τ−"
m

{ s
n,m

{ τ
n
, then it is a contactomorphism with the specified

property. I

C 7±8. For any n `:c²0´, C+
n
(1)1C−

n
(1) and C−

n
(1)1C+

n
(1) are non-

equivalent legendrian links in (2#¬S", ξ
n
).

8. Higher dimensions

The links studied above have natural generalizations to ‘ links’ in ST*2n and

* "(Sn−"). Each of these contact manifolds are diffeomorphic to 2n¬Sn−" and the

hodograph transformation again proves that these contact manifolds are equivalent,

[A]. Natural legendrian knots in these contact manifolds consist of legendrian

embeddings of Sn−" : the (n®1)-sphere of radius r in 2n with outward (inward)

normals defines the legendrian C³(r) `ST*2n and functions f : Sn−"U2 define

legendrians Λ
f
Z* "(Sn−"). Under the hodograph transformation, C³(r) correspond

to Λ³r
. It is easy to see that the links Λ

!
1Λ

"
and Λ

!
1Λ

−"
are topologically

equivalent. However, the generating function argument from Section 5 again proves

that these legendrian links are not contactly equivalent.

9. Others links

There are a number of obstacles when attempting to apply the theory of

generating functions to other links in ST*2# or * "(S"). First, many legendrian knots

in * "(S") do not admit quadratic at infinity generating functions. For example,

consider the transversal knot 4B ²p¯ 1, z¯ 0´Z* "(S"). There exists a C!-

perturbation τ so that ,B τ(4 ) is legendrian, [E]. It can be assumed that , does

not intersect ²p¯ 0´. However, if , admits a quadratic at infinity generating

function F, by the arguments in Section 5, the existence of c³(F) implies that , must

intersect ²p¯ 0´. As another example, consider the (topologically trivial) legendrian

knot L+ZST*2#(L−ZST*2#) whose wave front is the ‘eye’ with two cusps
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with ‘upward’ (‘downward’) normals. Under the hodograph transformation, L+(L−)

is mapped to a legendrian in * "(S") that does not project onto S". It is easy to check

that such a legendrian cannot have a quadratic at infinity generating function as

defined in Section 4. The following is an open question about legendrian versions of

the Hopf link. It is interesting to compare this with Corollary 6±2.

Question 9±1. Assume τ
−
, τ

+
are translations as in Section 6 so that the wave fronts

π(τ
−
(L+))fπ(τ

+
(L+))1 !.

It is easy to check that τ
−
(L+)1 τ

+
(L+)D τ

+
(L−)1 τ

−
(L−). Is it true that

τ
−
(L+)1 τ

+
(L+)K τ

−
(L−)1 τ

+
(L−)?

Appendix: legendrian generating functions

Versions of Theorem A±1 are proved by Chaperon in [Ca] and in the thesis of David

The! ret, [Th]. The purpose of this appendix is to give an alternate proof, described to

me by Ya. Eliashberg, which uses a symplectization procedure and Yuri Chekanov’s

‘ formula’ (cf. ²Ce]). Background on symplectic geometry can be found in [A-G],

[M-S].

Throughout this appendix, Λ
!
Z* "(Z), Λm

!
Z* "(2m) will denote the 1-jets of the

zero function.

T A±1. Let Z be a closed manifold. If κ
t
, t ` [0, 1], is a compactly supported

contact isotopy of * "(Z) then there exists a smooth 1-parameter family of quadratic at

infinity generating functions F
t
:Z¬2kU2 for Λ

t
B κ

t
(Λ

!
). This means that in local

coordinates

Λ
t
¯ (0 q,

¦F
t

¦q
(q, x),F

t
(q, x)1 : ¦F

t

¦x
(q, x)¯ 0* .

By the following proposition, it suffices to prove the analogue of (A±1) for the

situation where Z¯2m and κ
t
, t ` [0, 1], is an isotopy of compactly supported

contactomorphisms of * "(2m).

P A±2. Let Z be a closed manifold. Given a contact isotopy κ
t
, t ` [0, 1], of

* "(Z) there exists an embedding e : * "(Z)U* "(2m) satisfying e(Λ
!
)ZΛm

!
and a

compactly supported contact isotopy κm
t

of * "(2m), t ` [0, 1], such that κm
t

{ e (Λ
!
)¯

e { κ
t
(Λ

!
). If κm

t
(Λm

!
) has a quadratic at infinity generating function, κ

t
(Λ

!
) has a

quadratic at infinity generating function.

Proof. There exists an embedding j : ZU2m, for some m. This induces an

embedding e : * "(Z)U* "(2m) so that e (Λ
!
)ZΛm

!
, e* (αm)¯α, where α,αm are the

standard contact forms on * "(Z),* "(2m). Since the focus is on κ
t
(Λ

!
), t ` [0, 1], by

applying an argument using Gray stability, it can be assumed that κ
t
is compactly

supported. Let X
t
be the contact vector field on * "(Z) whose flow is κ

t
. If h

t
Bα(X

t
) :

*"(:)U2, then h
t
is compactly supported and if R denotes the Reeb vector field of

α (see proof of (2±3)) then

,
Xt

α¯ dh
t
­i

Xt

dα¯ dh
t
(R)α.

Consider a function hm
t

:* "(2m)U2 such that hm
t

¯ (e−")* h
t
on points of Im e and the

derivatives of hm
t

vanish in directions normal to Im e. If Rm denotes the Reeb vector
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field of αm, then on points of Im e, dhm
t
(Rm)¯ dh

t
(R) { e−" : Im eU2. Thus the vector

field Xm
t

uniquely defined by the conditions

αm(Xm
t
)¯ hm

t
, dhm

t
­i

X
m
t

dαm¯ dhm
t
(Rm)αm,

(see proof of (2±3)) will satisfy Xm
t

¯ ek(X
t
) on Im e. Thus if Xm

t
is integrable, it will

integrate to a contact isotopy κm
t

such that κm
t

{ e¯ e { κ
t
. By choosing the function

hm
t

to be zero outside a compact set of * "(2m),Xm
t

will be integrable and κm
t

will be

compactly supported. If Fm :2m¬2kU2 is a quadratic at infinity generating

function for κm
t
(Λm

!
), then FB ( j¬id)* (Fm) : Z¬2kU2 will be a quadratic at infinity

generating function for κ
t
(Λ

!
). I

The 2m version of (A±1) follows from a slight modification of the proof of the

symplectic, 2m version of (A±1): if ,ZT*(2m) is a lagrangian with quadratic at

infinity generating function and ψ
t
, t ` [0, 1], is a compactly supported symplectic

isotopy of T*(2m), then ψ
t
(,) has a quadratic at infinity generating function. In

fact, the idea is to transform all relevant contact objects in * "(2m) into ‘symmetric’

symplectic objects in T*(2m¬2+).

Given the contact manifold (* "(2m), η), η¯kerα, αB dz®pdq, let 2+B (0,¢)

and consider the symplectic manifolds

(* "(2m)¬2+, d(tα)), (T*(2m¬2+), ωB dqg dp­dtg dz).

These symplectic manifolds are equivalent:

σ :* "(2m)¬2+UT*(2m¬2+), σ(q,p, z, t)¯ (q, t, tp, z).

For a legendrian submanifold ΛZ* "(2m), consider the lagrangian submanifolds

Λ# Z (* "(2m)¬2+), ,Λ ZT*(2m¬2+)

Λ# B ²(q,p, z, t) : (q,p, z) `Λ´, ,Λ Bσ(Λ# ). (A±3)

For a contact difeomorphism κ isotopic to id, κ*α¯ fα where f is a positive function.

If κ is written κ(q,p, z)¯ (κ
q
(q,p, z), κ

z
(q,p, z)), consider the symplectic diffeo-

morphism κ# of * "(2m)¬2+ defined by

κ# (q,p, z, t)B 0κq
(q,p, z), κ

p
(q,p, z), κ

z
(q,p, z),

t

f(q,p, z)1 , κ*α¯ fα.

ψκ will denote the corresponding symplectic diffeomorphism of T*(2m¬2+) :

ψκ Bσ { κ# {σ−".

Γψκ
B ²(x,ψκ(x))´ZT*(2m¬2+)¬T*(2m¬2+) is then a lagrangian submanifold. Let

τ denote the symplectic diffeomorphism

τ :T*(2m¬2+)¬T*(2m¬2+)UT*(2#m+"¬2+)

(q, t,p, z,Q,T,P,Z)* (p, z,Q,T, q®Q, t®T,P®p,Z®z),
and define

Γ4 ψκ
B τ(Γψκ

). (A±4)

The symplectic, 2m version of (A±1) follows by iterated applications of the following

proposition which says that generating functions for ,Λ ZT*(2m¬2+) and Γ4 ψκ
Z

T*(2#m+"¬2+) can be ‘composed’ to get a generating function for ψκ(,Λ)Z
T*(2m¬2+). For more details or a proof of Proposition A±5, see [Tr, §4].
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P A±5. Suppose ,Λ is a lagrangian in T*(2m¬2+) that has a quadratic

at infinity generating function G
"
: 2m¬2+¬2kU2, i.e.

,Λ ¯ (0 q, t,
¦G

"

¦q
(q, t, η),

¦G
"

¦t
(q, t, η)1 : ¦G

"

¦η
(q, t, η)¯ 0* ,

and ψκ is sufficiently C"-close to the identity so that Γ4 ψκ
ZT*(2#m+"¬2) is the graph of

an exact 1-form, i.e. there exists G
#
: 2#m+"¬2+U2 such that Γ4 ψκ

¯Γ
dG#

. Then

G
$
: 2m¬2+¬(2m¬2+¬2m¬2¬2k)U2, defined by

G
$
(x

#
, s ; q, t, x

"
, y, η)¯G

"
(q, t ; η)­G

#
(x

"
, y, x

#
, s)­x

"
(x

#
®q)­y(s®t),

is an asymptotically quadratic at infinity generating function for ψκ(,Λ)¯,κ(Λ)
which

can be made quadratic at infinity by a fibre preserving difeomorphism.

Thus for all t ` [0, 1], the lagrangian ψκ
t

(,Λ
!

)¯,κ
t(

Λ
!)
ZT*(2m¬2+) has a

quadratic at infinity generating function equal to zero on points corresponding to

the points of ψκ
t

(,Λ
!

) outside a compact set. The existence of generating functions

for the legendrians κ
t
(Λ

!
)Z* "(2m) will be a consequence of the 2+-symmetry

present in the lagrangian formed by the symplectization procedure. To describe this

symmetry, consider

b : 2+¬T*(2m¬2+)UT*(2m¬2+), b(µ, q, t,p, z)¯ (q,µt,µp, z).

This is a conformal symplectic action : if for µ `2+, bµ is defined by

bµ :T*(2m¬2+)UT*(2m¬2+), bµ(v)¯ b(µ, v),

then b$µ ω¯µω and bµ
#
µ
"

¯ bµ
#

bµ
"

. ,ZT*(2m¬2+) is 2+-equivariant if b(2+¬,)¯
,.

P A±6. For any legendrian ΛZ* "(2m), ,Λ is an 2+-equivariant

lagrangian. If ,Λ has a quadratic at infinity generating function G then

F(q ; x)BG(q, 1 ; x)

is a quadratic at infinity generating function for the legendrian ΛZ* "(2m).

Proof. To see that ,Λ is an 2+-equivariant lagrangian, consider the conformal

symplectic action

a :2+¬(* "(2m)¬2+)U* "(2m)¬2+, a(µ, q,p, z, t)¯ (q,p, z,µt).

It is clear that Λ# is invariant with respect to this action. Since bµ ¯σ { aµ {σ−", ,Λ

is 2+-equivariant. Suppose ,Λ has a quadratic at infinity generating function. Since

,Λ f²t¯ 1´¯ ²(q, 1,p, z) : (q,p, z) `Λ´, it follows that if π : * "(2m)UT*(2m) denotes

the projection, the lagrangian π(Λ) is generated by F and thus for some constant C,

F­C generates Λ. By construction, Λ coincides with Λ
!

outside a compact set and

thus it can be concluded that C¯ 0.
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