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ON LITTLEWOOD-PALEY FUNCTIONS

LESLIE C. CHENG

(Communicated by Michael T. Lacey)

ABSTRACT. We prove that, for a compactly supported LY function ¢ with
vanishing integral on R", the corresponding square function operator Sg is
bounded on L? for |1/p — 1/2| < min{(¢ — 1)/2,1/2}.

1. INTRODUCTION

Let n > 1 and R™ denote the n-dimensional Euclidean space. For a function
® € L*(R™) which satisfies

(1.1) /né(x)dxzo,

we define the square function operator Se by

o 1/2
(12) so )@ = ([ e s@P )

where ®©,(x) = t7"®(x/t). The operator Ss is often called a square function or a
Littlewood-Paley function. Such operators have long played important roles in har-
monic analysis. The main problem under investigation concerns the boundedness
of these operators on various L spaces.

It has been well known that, if the function ® is sufficiently nice (in terms of
decaying and smoothness properties), the corresponding operator Sg is bounded
on LP(R™) for 1 < p < oo. The following result is due to Benedek, Calderén and
Panzone ([2]):

Theorem A. Suppose that © satisfies (1.1) and for some positive «,

(1.3) |®(z)| < C(1+ |2)7"77, / |[®(z = y) — B(x)|de < Clyl|*.

n

Then Sg is bounded on LP(R™) for 1 < p < oo.

Examples of functions satisfying (1.3) include the Schwartz functions, as well as
the following which arise from the Poisson kernel on R™:

0 t
Bolz) = ﬁ(w T t2><n+1)/2> L_l
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and 5
1
20 = g, (o)
When & is given by

(L4) ®(z) = ||~ Q@) x o,y (l2)),

where  is homogencous of degree 0 and has mean valuc zero on S”~ !, then Sg
becomes the Marcinkiewicz integral operator ([13]). See also [1], [14], [16] and the
extensive list of references given in the survey [6].

In [12] S. Sato proved that, among other things, the conclusion of Theorem A
is still true if the smoothness condition (1.3) is eliminated (for L? this had been
known earlier; see [5], [10]).

In this paper we shall study the L? boundedness of S without imposing con-
ditions (1.2) or (1.3) on ®, or the assumption that ® be given as in (1.4). The
following is a known result:

Theorem B. Suppose that © satisfies (1.1) and is compactly supported.

(i) If ® € LY(R™) for some q > 2, then Sy is a bounded operator on LP(R™, w)
forp>q andw € Ay, .
(i) If ® € L2(R"™), then Sp is a bounded operator on LP(R™) for 1 < p < <.

In the above statement, LP(R"™, w) represents the weighted LP space with weight
w (the definition of the weight class A, can be found in [11], [4] or [14]). When
w =1 we write LP(R™, w) as LP(R"™).

Part (i) of Theorem B is due to S. Sato (Theorem 3 in [12]). Part (ii) follows
from (i) by using duality and interpolation (with w = 1).

Theorem B (ii) covers the cases ® € LI(R™), ¢ > 2 as well because of the
compact support assumption. However, the approach used in [12] does not appear
to work when ¢ < 2 (see also [9], page 241). The main purpose of the present paper
is to establish the following theorem dealing with the case where ® € LY(R"™) for
q<2.

Theorem C. Suppose that ® is a compactly supported function satisfying (1.1).
If ® € LIYR"™) for some q € (1,2], then S is a bounded operator on LP(R"™) for
[1/p—1/2[ < (¢—1)/2.

Remarks 1. (i) The range of p given by |1/p — 1/2| < (¢ — 1)/2 is the same as
2/q <p<2/(2—q), which becomes (1, 00) when ¢ = 2.

(ii) A result relevant to the theorems mentioned above is Theorem 1 in [7]. While
in general an LY function ® does not satisfy the pointwise decay condition imposed
on its Fourier transform in Theorem 1 of [7], a modification of the proof given in
[7] can yield the LP boundedness of Sg for |1/p — 1/2| < (¢ — 1)/(2¢) under the
conditions in Theorem C. Since g > 1, the range of p given by |1/p—1/2| < (¢—1)/2
in our theorem is considerably better.

(iii) While the inequality |1/p —1/2] < (¢ — 1)/2 gives the full range 1 < p < oo
when ¢ = 2, it would be an interesting problem to determine whether it also
represents the best possible range for p when ¢ < 2.

The proof of Theorem C will be given in Section 2. Section 3 contains a result
on the boundedness of S when the compact support condition is replaced by some
other conditions.
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2. PROOF OF THEOREM C

Lemma 2.1. Let ¥ be a compactly supported function in LI(R™) for some q €
(1,2]. Then, for every p satisfying |1/p —1/2| < (¢ —1)/2, there exists a Cp > 0

such that
([ 1w rerd) ™ ([ rerd)”

holds for every measurable function F*(x) = F(t,z) on (0,00) x R™.

<,
Lr(R™)

(2.1) ‘

Lr(R™)

Proof. By duality and interpolation we may assume that p > 2. We shall also
assume that supp(¥) is contained in B(0,1), where B(xo,t) = {x € R" : |x — x| <
t}. Let T be the operator acting on functions defined on (0,00) x R™ given by

(2:2) T(F)(t,x) = (T¢ * F')(2),

where F(y) = F(t,y) for (t,y) € (0,00) x R™. For 1 < p,q < oo we shall use the
following notation:

0 dt\ P/ 1/p
(2.3) I Fl e (Lag-1dt),dz) = (/ </ |F(t, x)lq?> dx) .
Jr» \Jo

Thus we have
IT(F) L2 (21 (6= 1ae),de) :/ (/ I(‘I't*Ft)(x)|t1dt>da:
JRn 0
o0
:/ 1y % FY| g2 eyt
0

= ||‘I’||L1<Rn>/ [F | L2 momyt
0

(2.4) = ¥llr@my I F N o1 -1at),da) -
It follows from 1/2 —1/p < (¢ — 1)/2 that
p'q/2 > 1.

Let r = (p'q/2)’. By p > 2 we have r > ¢/. Thus, for any F' that satisfies
ITCE Lo (1=1at) aa) < 00
there exists a function k € L("/¢)"(R™) such that
Il oy gy =1

and

25)  ATENY L ratyam) = /R ) ( /O (T, * Ft)(x)|wt—1dt>h(x)dx.

By Holder’s inequality,
/ ¥ (x ; y>F(t7 y)dy

(2.6) < 10 o 1B [ P01 b0 (@~ v)ds

R”

’
q

W, % Fi(2)]? = ¢
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Let M denote the Hardy-Littlewood maximal operator on R™. Then by (2.5) and
(2.6),

TN sy < 1y [ ([ I ) i

’
q

o9)
<1 ([ IR0 ) Il s
0 L(r/a)(R™)

(27) = CT,(I”\IJ”qu(RW ”F”qw Lq (t=1dt),dx)"
Since

1 0 1-6

L0, 00

2 q 1

1 0 1-46

1_0,0-0

p r 1

hold with 8 = ¢/2, by interpolating between (2.4) and (2.7) (see, for example, [3])
we obtain

1T (E) e L2 e-1a0),d0) < CpllFllLe(L2(t-1dt),da)s
which proves (2.1) for |1/p—1/2] < (¢ —1)/2.
For s > 0 we let s7% = min{s®, s~}. ]

Lemma 2.2. Let ¥ € S(R™) and ® € LY(R™) for some q € (1,2]. Suppose that P
is compactly supported and supp(¥) C {1/2 < |§| < 2}. Then for every p satisfying
[1/p—1/2| < (¢ —1)/2, there exist Cp, y, > 0 such that

1/2
(2.8) H( |@*mt*f|ﬁ)

forall f € LP(R™) and s > 0.

< Cp(s=7) |1 f1 Lo (rr)
Lr(R™)

Proof. Let
00 1/2
rg@ = ([T eewae s@rd)

Then, by Lemma 2.1 and Theorem A, for each p satisfying |1/p—1/2| < (¢—1)/2,

| Ts fllLr@ny < CpllSw fllLe@mn)
(2.9) < Gl flewny-
On the other hand, by Plancherel’s Theorem,

Hﬂﬂ@mnyié / By 5 U,y + f() Pt

(2.10) = [ ior( [T Beop@eepe o

It follows from Lemmas 2, 3 of [12] and (1.1) that

2
(2.11) / B(ee)2dt < CleF1/C).
1/2
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Let & = |€]71€ for € # 0. By (2.10) and (2.11) we have

- 2 , d
TS ey < [ VOP( [ G e)PG as

t
(2.12) < C(sTCO)| 1172 @y
By (2.9), (2.12) and interpolation we conclude that (2.8) holds for |1/p — 1/2| <
(¢—1)/2. O

Proof of Theorem C. It suffices to establish

158 fllrmr) < Cpll fllLemm)

for fe S(R™) and |1/p—1/2| < (¢ —1)/2.
Let n € C*°(R) such that supp(n) C (1/4,4) and

(2.13) / L

s
Define the Schwartz function ¥ on R"” by
v(E) =n(leP)
for £ € R™. Then by (2.13) we have

RPN ds

=2.

and
o ds
0

for all f € S(R™) and ¢ > 0. By Minkowski’s inequality we have

0 0 1/2
sefn< [ ([ s@pd) L

t s
By Lemma 2.2, for every p satisfying |1/p—1/2| < (¢ —1)/2,

> ds
150 lle ) < Coll o / st 35

S
(2.15) = 205 ' G, fll o (-

The proof of Theorem C is now complete. O

3. FURTHER RESULTS

For ®’s which are not necessarily compactly supported, one can easily deduce
the following result from Theorem 2 of [12] by using duality and interpolation:

Theorem 3.1. Let ® € L*(R™) and satisfy (1.1). Suppose that
(i) / |®(z)| T dw —|—/ |®(z)||z|°dx < oo for some e > 0;
lz]<1 |z|>1
(i) ()] < h(jz)Q"), where
oo
(#i.a) h is non-negative, non-increasing and satisfies / h(r)r™ tdr < oo;
0

(ii.b) Q € LI(S™ 1) for some q > 2.
Then Sg is bounded on LP(R™) for 1 < p < oo.
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Using the above theorem one can see that the condition (1.4) in Theorem A is
redundant, as observed in [12].

Below we shall show that the requirement “g > 2” in (ii.b) of the above theorem
can be lowered to ¢ > 1 without affecting the validity of the claim.

Theorem 3.2. If the condition (ii.b) in Theorem 3.1 is replaced by the weaker
condition (ii.b)': Q € LI(S™1) for some q > 1, while all other conditions in
Theorem 3.1 remain unchanged, then Sg is bounded on LP(R™) for 1 < p < cc.

Proof. By Lemmas 1-3 in [12], we see that (2.11) still holds (note that ¢ > 1 is
needed when applying Lemma 2 of [12]). Thus, it suffices to show that (2.1) holds
for all p € (1, 00).

For each ¥/ € S*~! and 2 € R™, let

My f@) =sup (3 [ 11— sias).

s>0 \'S
For ¢t > 0 and x € R™,

e sl [ 1000 [ 1= m e ar oty
< [0l 3 20 ey s Jdst)

j=—c0

s = [Taewtar) [ 10w, s@de0),

By (3.1) and the uniform boundedness of the operators M,, on LP(R™) for 1 < p <
oo, we have

(32) IFsup [P0 % flllemry < Cpll QU fll Lo mr)

for 1 < p < oco. It follows from (3.2) and the proof of the lemma on p. 544 of [§]

(after some trivial modifications) that (2.1) holds for 1 < p < oo. d
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