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Particle Swarm Optimization-Based Multispectral Image 

Fusion for Minimizing Spectral Loss 
 

Abhishek Patel, Rajesh Anand 

Bhagwant University, Faculty of Engineering & Technology 
 

 Abstract – A novel multispectral image fusion technique is 

proposed which minimizes the spectral loss of fused product using 

a proper objective function. It is found that the Relative Average 

Square Error (RASE) is a good choice to be considered as the 

objective function. A linear combination of multispectral bands is 

calculated in which the weights are optimized using particle 

swarm optimization algorithm. Several experimental studies have 

been conducted on three public domain datasets to show the 

effectiveness of the proposed approach in comparison with state-

of-the-art methods. The objective and visual assessments of the 

proposed method support the claims provided in this paper. 
 

 Index Terms – Pansharpening, particle swarm optimization, 

optimal weights, image fusion, panchromatic, multispectral. 

 

I.  INTRODUCTION 

 Remote sensing data analysis is a field of study which focus 

on earth0moitoring application like land cover classification 

[1], target detection [2], and hyperspectral data segmentation 

[3]. To do these task better, one of the baseline steps is 

pansharpening. Pansharpening aims at fusing the spectral and 

spatial attributes of remote sensing data into one single image. 

Specifically, earth observation satellites can capture two types 

of data at the same time to keep the Signal-to-Noise Ratio 

(SNR) at a specific level: (1) PANchromatic (PAN) data which 

has the highest spatial information of the earth surface and has 

no color information, and (2) MultiSpectral (MS) data which is 

the reference of spectral information of the same scene. 

As explained in a wide range of previous works and a 

review study which was conducted by Ghassemian [4], 

pansharpening methods mainly categorize into three main 

groups [5]: (1) Component Substitution (CS) methods, e.g. [6], 

[7], (2) Multi-Resolution Analysis (MRA) techniques, e.g. [8], 

[9], and (3) Model-Based (MB) approaches [10]. In the first 

group of image fusion methods, generally a linear combination 

of Low Resolution MS (LRMS) bands are computed first to 

estimate the low frequency content of PAN image and then a 

high frequency detail map is obtained by subtracting from the 

PAN image. Then, the calculated primitive detail maps are 

injected into the LRMS bands by considering proper injection 

gains. A number of improvements have been developed in order 

to get better fusion performance. For example, Azarang et al. 

[11] considered optimal injection gains when combining LRMS 

and PAN edge detectors applied on primitive detail map. In the 

second category of image fusion approaches, the detail maps of 

spectral bands are directly computed from the PAN image by 

applying different transformations into the PAN image to 

achieve the low frequency information. It has to be mentioned 

that the CS-based methods are not well performing in spectral 

domain and MRA-based techniques suffer from spatial 

distortion. The third group of pansharpening methods, namely 

MB-based approaches, try to model the pansharpening problem 

as an optimization problem in which the model is normally 

considered to be Bayesian.  

The idea of deep learning was first introduced by Hinton et 

al. [12]. Recent improvements in deep learning and machine 

learning areas have witnessed an indicative improvement in 

remote sensing applications [13-16]. In particular, for image 

fusion problem, Huang et al. [17] proposed a new image fusion 

algorithm using deep neural network. They trained a denoising 

autoencoder to model the nonlinear relationship between 

LRMS and High Resolution MS (HRMS) patches. Recently, 

Liu et al. [18] published a survey on prospective pixel-level 

image fusion using deep learning architecture.  

One of the main shortcomings in the image fusion 

techniques is employing a proper metric to evaluate the fusion 

results. Several efforts have been made to model the human 

perceptual system in terms of objective metrics. Due to 

unavailability of High Resolution MS (HRMS) image, two 

general protocols are introduced to solve this issue. In the first 

protocol [19], the fusion framework is performed in the down-

scaled versions of the input data and the original MS data is 

considered as the reference image. On another hand, in the 

second protocol, the fusion process is performed in the full-

scale scenario and in order to evaluate the fusion results, the no 

reference quality metrics are employed [20-23]. 

In this paper, a new framework for pansharpening problem 

is proposed which is assigned to CS-based category. The idea 

behind this method is to find a proper objection function to 

properly estimate the optimal weights of spectral bands of 

LRMS image when used in the CS-based framework. For this 

purpose, we select the Relative Average Spectral Error (RASE) 

metric which can better model the nonlinear relationship 

between the detail map of CS-based approaches. The extensive 

experimental studies were conducted to verify the effectiveness 

of the proposed method in comparison to state-of-the-art 

method. 

The rest of the paper is organized as follows: in section II 

the mathematical background of the CS-based methods is 

explained briefly. The framework of the proposed method is 

also denoted in section II. The datasets as well as the 

experimental studies have been conducted in section III. The 

discussion on the fusion outcomes are also drawn in section III. 

Finally, we conclude the main points of the paper in section IV.  

II.  MATHEMATICAL BACKGROUND 

The general framework of CS-based methods as mentioned 

in many previous works is as follows:  

 

MSk̂ = MSk̃ + gk(P − I) (1) 



 

in which MSk̂  and MSk̃  are the HRMS and LRMS, respectively, 

gk the injection gain corresponds to k-th spectral band, P the 

PAN image and I is defined as follows:  

 

I =∑wiMS̃i

N

i=1

 (2) 

 

where N  denotes the number of spectral bands covering the 

spectral signature of PAN image and wi s are the optimal 

weights of the MS bands which can be calculated using AIHS 

method [21].  

 In this paper, we propose to optimize the weights of Eq. (2) 

by minimizing the following equation 

 

RASE =
100

M
√
1

N
∑RMSE2(Di)

N

i=1

 (3) 

 

in which M denotes the mean radiance of each spectral band, Di 
the detail map of each spectral band. The optimal weights, 

namely wi
∗, are then used to calculate the final fusion product. 

The developed multispectral image fusion in this paper is 

summarized in Fig. 1.  
 

 
 

Fig. 1. The proposed fusion framework developed in this paper. 

 

It has to mentioned that the Particle Swarm Optimization 

(PSO) algorithm is used to compute the optimal weights which 

is described in [11] in detail. This technique is taken from [23-

30] It should be noted that the proposed method has been used 

in other science such as [30-35] as well. The authors of [35-

40] used the same in the field of oceanography and geo-

science. More applications of the proposed technique can be 

found in [40-51]. 

III.  DATASETS AND EXPERIMENTAL RESULTS 

A. Datasets Used 

In this section, first the details of the datasets employed in 

this paper are described. Three publicly available datasets from 

the QuickBird, GeoEye-1 and Pleiades-1A sensors are used to 

evaluate the proposed method. 4-bands of spectral data, i.e. 

Blue (B), Green (G), Red (R), and Near Infra-Red (NIR) are 

available for these datasets. For the QuickBird satellite, the 

PAN and MS images have the 0.6 (m) and 2.4 (m) resolutions, 

respectively. In case of GeoEye-1 sensor data, the PAN and MS 

resolutions are 0.46 (m) and 1.84 (m), respectively. And finally 

for the Pleiades-1A images, the PAN and MS resolutions are 

0.5 (m) and 2 (m), respectively. For the all datasets used PAN 

and MS images are of size 1024×1024 and 256×256 pixels, 

respectively. 

 

 
Fig. 2. The fusion results of the QuickBird dataset. 

 

 

B. Experimental Results 

In this section, the experiments are conducted on the 

datasets introduced in previous part. The proposed method is 

compared with the state-of-the-art methods such as PCA, IHS, 

and GS methods. In order to assess the fusion outcomes, the 

Wald protocol is employed [19]. The objective evaluations are 

conducted using six widely accepted objective metrics namely 

Erreur Relative Globale Adimensionnelle de Synthese 

(ERGAS) [4], Spectral Angle Mapper (SAM) [5], Relative 

Average Spectral Error (RASE) [6], Root Mean Square Error 

(RMSE) [4], Universal Image Quality Index (UIQI) [23] and 

Correlation Coefficient (CC) [23].  



The ideal value for ERGAS, SAM, RASE, RMSE is zero 

and the reference value for UIQI and CC is 1. It has to be 

mentioned that the RASE and ERGAS measure the overall 

distortion in the fusion product spatially and spectrally. The 

SAM, RASE, RMSE and CC reports the spectral distortion in 

the final outcome and UIQI corresponds to the spatial 

distortion.  

In Table I, the optimal weights for each dataset are 

calculated. It has to be mentioned that for calculating the 

optimal weights of LRMS bands in Eq. (2), the histogram 

matching of P and I components was considered. This step is 

critical since it causes less spectral distortion in the fusion 

product [45-49].  

 

 
TABLE I 

OPTIMAL WEIGHTS FOR EACH DATASET USED IN THIS PAPER 

 w1
∗ w2

∗ w3
∗ w4

∗ 

QuickBird 0.2978 0.0883 0.0033 0.7616 

GeoEye-1 0.0001 0.3775 0.0023 0.4126 

Pleiades-1A 0.0001 0.3746 0.3960 0.2533 

 

 
TABLE II 

OBJECTIVE EVALUATION METRICS FOR THE QUICKBIRD DATASET 

 ERGAS SAM RASE RMSE UIQI CC 

PCA 12.894     18.872     48.205     53.716     0.6064     0.5351 

IHS 9.1065     9.7916     34.671     38.635      0.7964     0.7842 

GS 10.668     14.067     39.954     44.523     0.7110     0.6664 

Proposed 5.8188     7.0821     22.499     25.072     0.9168     0.9216 

Ideal 0 0 0 0 1 1 

 
 

TABLE III 
OBJECTIVE EVALUATION METRICS FOR THE GEOEYE-1 DATASET 

 ERGAS SAM RASE RMSE UIQI CC 

PCA 5.959     7.8724     21.407     18.484     0.8834     0.8237 

IHS 4.541     4.7732     16.801     14.508     0.9282     0.9068 

GS 5.050     6.6311     18.249     15.758     0.9135     0.8761 

Proposed 2.508     3.3845     9.622     8.309      0.976     0.9760 

Ideal 0 0 0 0 1 1 

 
 

TABLE IV 

OBJECTIVE EVALUATION METRICS FOR THE PLEIADES-1A DATASET 

 ERGAS SAM RASE RMSE UIQI CC 

PCA 5.9514     6.1518     24.377     14.315     0.9572     0.9560 

IHS 6.1613     5.8765     23.334     13.703     0.9608     0.9524 

GS 6.057     5.8088     23.159       13.6     0.9614     0.9547 

Proposed 5.5792     4.1949     22.158     13.012     0.9657     0.9649 

Ideal 0 0 0 0 1 1 

 
Fig. 3. The fusion results of the GeoEye-1 dataset. 

 

The objective evaluation results of the proposed method as 

well as the state-of-the-art methods are depicted in Table II 

through Table IV. As can be seen from these tables, the 

proposed method performs better especially in ERGAS metric 

which stands for less overall distortion in the fused product. Not 

only ERGAS but also other objective metrics can perform better 

than other techniques which verifies the strength of the 

proposed approach. 

The fusion outcomes for each dataset is reported in Fig. 2 

through Fig. 4. As can be understood from these figures, not 

only the proposed method can perform better in terms of 

spectral information but also it preserves the high frequency 

contents of PAN image much better. For example, in Fig. 2, the 

color of the grass area is better preserved in the proposed 

approach. As another example, the edges of the white zone in 

the middle part of the Fig. 4 can be seen more obvious than 

other fusion methods. These examples provide another 

demonstration for the generalization capability of the proposed 

approach against different datasets. 

IV.  CONCLUSION 

 A new CS-based image fusion method is proposed in order 

to enhance the spatial and spectral contents of fusion products. 

The main idea of the paper is the utilization of proper objection 

function to calculate the optimal weights of spectral bands. In 

order to estimate the detail maps properly, the weights of the  



 
Fig. 4. The fusion results of the Pleiades-1A dataset. 

 

spectral bands are computed using RASE metric. Several 

experiments on three public domain datasets promoted the 

claims proposed in this paper. 
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