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Abstract: With the existing state of issues related to global climate change, the accuracy of farmers’ 

perceptions of climate is critically important if they plan to implement appropriate adaptation measures in 

their farming. This article evaluated if farmers perceive the trends of local climate variability accurately, and 

was verified by the historical meteorological data analysis. Ordered probit perception models were applied in 

this study to determine the factors influencing the accuracy of farmer perception. It was observed that farmers’ 

perceptions of the rainfall amount during the early, mid, and late monsoon periods were highly accurate, and 

they also accurately perceived summer temperature change, but less accuracy of perception was observed of 

the temperate changes of the winter and monsoon seasons. Access to weekly weather information, 

participation in agricultural trainings, farming experience, and education level of the farmer were the major 

factors determining the accuracy of perception in this study. Based on the empirical results, this study 

suggested policy implications for (a) the locally specified weather information distribution, and (b) integration 

of weather information into agricultural training programs, which are available to the farming community to 

enhance the government implantation of the Myanmar Climate Smart Agriculture Strategy and Myanmar 

Climate Change Master Plan 2018–2030. 
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1. Introduction 

Climate change poses a serious threat to livelihood security, as well as enhancing risk in climate sensitive 

sectors such as agriculture and forestry. Due to the increased frequency and intensity of extreme weather events 

and climate variability, declining crop yields and associated economic losses create vulnerability within the 

farming community. To reduce climate vulnerability and adapt to the world of changing climate, awareness and 

understanding of current climate trends is one of the indispensable capacities of an agricultural farming 

community. 

As per the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), the 

observed climate trends, variability, and extreme events in South-East Asian (SEA) countries are specified as 

0.1 to 0.3 °C temperature increase per decade between 1951 to 2000, a decreasing trend of precipitation and 

number of rainy days between 1961 and 1998, and droughts normally associated with El Niño Southern 

Oscillation (ENSO) years occurring in Myanmar, Laos, the Philippines, Indonesia, and Vietnam. Moreover, the 

frequency of monsoon depressions and cyclone formation in the Bay of Bengal has declined since 1970, but the 

intensity is increasing and causing severe floods in terms of damage to life and property [1]. 

Based on the last six decades (1951–2015), the rainfall in Myanmar has increased on average by 29 mm 

per decade. Changes in rainfall have also influenced the duration of the monsoon season. The southwest 

monsoon onset has become later in the year, and withdrawal occurs earlier in the year [2]. According to the 

climate projections for 2021–2050 by the Regional Integrated Multi-Hazard Early Warning System (RIME) 

and Department of Meteorology and Hydrology of Myanmar, the temperature scenario shows warming (1.2–

1.8 °C) during June to November, across the whole country. It remains warm, with the same magnitude, in other 

months in lower Myanmar, the deltaic region, and the southern part of the country, but not in the rest. Warming 

increases by 2.5–3.0 °C from December to May elsewhere in the country. The scenario of precipitation shows 

most of the country will receive about a 10% increase during March to November. In the northern, the eastern, 



 

and the central regions, there will be deficient rain by up to 80% during the cool months of December to 

February [3]. 

The key features of probable climate trends at the country level for Myanmar are (i) a general increase in 

temperature, with more extremely hot days and more extreme rainfall, resulting in more droughts and floods,  

(ii) an increased risk of flooding as a result of higher average rainfall intensity in monsoon events, and  (iii) 

more variable rainfall in the rainy season, with an increase across the country from March to November and a 

decrease between December and February [4]. 

With the changing climate conditions, Myanmar farmers have to adjust their farming activities through 

adaptation strategies to those changes. Faced with climate change, adaptation and mitigation strategies are vital 

in agriculture. Adaptation strategies are difficult to implement, however, without an accurate perception of 

climate change. Theoretically, a higher perception of climate change enhances the use of proper adaptation 

strategies, and builds more adaptive capacity. However, the ways that individuals perceive climate change are 

highly personal, place-based, and influenced by several factors. Therefore, the precision of perception has 

become an issue to be examined academically. 

While the accuracy of farmers’ perceptions is critically important if farmers plan to implement appropriate 

adaptation measures, to our knowledge there are very few research studies examining the extent to which 

farmers’ perception of climate change tracks with observed changes, and no previous study of this kind has 

been done in Myanmar. For this reason, “do farmers perceive the trends of local climate variability accurately?” 

becomes the primary research question in this study. Based on the research question, there are two main research 

objectives; (i) to evaluate the accuracy of farmers’ perceptions of climate variability and (ii) to assess the factors 

influencing farmers’ perceptions of climate change. To evaluate the accuracy of farmers’ perceptions, this study 

also explored the pattern and trend of climate variability in the study area, using historical meteorological data 

analysis.  

As per the recent literature, Abid, Scheffran [5] explored farmers’ understanding of climate change and 

the role of the accuracy of perceptions in the use of adaptation process, through two important hypotheses: (1) 

more accurate perceptions lead to stronger adaptation intentions, and (2) underestimated perceptions lead to 

weaker adaptation. Their study found that most of the perceptions of an increase in summer and winter 

temperatures correspond with historical climatic trends for both summer and winter temperatures, and 

confirmed that farmers accurately perceive mean temperature changes. However, they also reported there was 

a discrepancy between farmer perceptions of rainfall changes and local climate records in their study; the 

accuracy of the response rate was below 30%. 

Niles and Mueller [6] also measured the accuracy of farmers’ perceptions of climate change by comparing 

farmers’ perceptions with the historical trends of temperature and precipitation. Their study pointed out that 

farmers’ perceptions were influenced by a variety of personal and environmental factors, including 

infrastructure and local knowledge. A total of 45% of farmer perceived a decreased summer temperature trend 

over time, and 42% thought the temperature had stayed the same, even though there was a positive summer 

temperature trend. Only 13% believed the summer temperature had increased. Similarly, while historical data 

showed a positive trend of winter temperatures, 42% of farmers perceived that winter temperatures had stayed 

the same, and 19% felt they had decreased. In the case of the negative trend of annual precipitation, 51% of 

farmers perceived annual rainfall had increased, 42% felt it had stayed the same, and 7% felt it had decreased. 

Consequently, the accuracy of their perceptions was questionable, as they were inconsistent. 

The studies of Brulle, Carmichael [7] and Hamilton and Stampone [8] revealed that people’s concern or 

perceptions relating to climate change may not always reflect reality, and climatic events or trends may be 

misinterpreted or wrongly remembered for a variety of reasons. However, Aymone Gbetibouo [9] compared 

farmers’ perceptions of temperature and precipitation with the actual trends of meteorological data, and 

observed that the majority of farmers’ perceptions were in line with the actual climate data trends. Likewise, in 

other studies [10–13], farmers’ perceptions of the changes in temperature and precipitation were also verified 

by the historical meteorological data. In terms of the level of accuracy of farmers’ perceptions, Ayanlade and 

Radeny [10] revealed that 67% of the sampled farmers had the correct perception of changes in climate, and 

those farmers’ perceptions of climate change were exactly the same as the results of meteorological analysis. A 

recent study by Patrick, Edilegnaw [12] also proved that 68% of the interviewed farmers recognized the actual 

changes in local climatic patterns. 

As per study of Menapace, Colson and Raffaelli (2014) [14], the farmers’ perceptions to climate change 

were vital to their farm management, especially in risk perception, as they observed that the farmers who 

perceived climate change were aware of the negative impact of climate change and could predict long term 



 

agricultural risk associated with climate change. Moreover, Tun Oo, Van Huylenbroeck and Speelman (2017) 

also mentioned the role of farmers’ perception to climate change in the farming adaptation practices. Their 

study measured the farmers’ perception of climate change by a five-point liker scale and found that 60.8% of 

famers perceived the climate change. Based on the farmers’ perceptions of climate change, the adjustment of 

sowing time and crop diversification were the major adaptation options in the dry zone of Myanmar [15]. 

2. Research Methodology 

2.1. Data Collection 

In this study, both secondary data and primary data were utilized. For the analysis of local climate trends, 

the time series data of precipitation (rainy days, amount of rainfall), and temperature (maximum and minimum 

temperatures during 1987 to 2017, collected from the Department of Hydrology and Meteorology and 

Department of Agriculture in the study area). 

The primary data, including the socioeconomic characteristics of the farming households, farmers’ 

perceptions and awareness of climate change, the climatic stresses experienced by the farming households, and 

their adaptation strategies to existing climatic stress and unfavorable climate changes, were collected by the 

farm household survey. The study was carried out in two townships of the dry zone of Myanmar; ShweBo, and 

KyautSe (Figure 1). Based on the extent of rice growing area, purposive sampling was employed for the 

selection of village tracts from townships, and three village tracts from a rainfed ecosystem and another three 

village tracts from an irrigated ecosystem were selected in each township. In the selection of sample farm 

households, the stratified random sampling method was used. According to the farmer population lists of the 

Department of Agriculture and General Administrative Department, 20% of rice farming households in the 

selected villages were randomly chosen in three farm categories, including small, medium, and large-scale 

farms. Although 300 farm households were selected, only 289 samples were retained for data analysis: 96 farm 

households from ShweBo and 87 farm households from KyautSe represented irrigated agriculture, and 50 farms 

in ShweBo and 56 farms in KyautSe were operated under rainfed conditions. This sample ratio was almost the 

same as the percentage of irrigated and rainfed-farm households in each township. 

 

(a) (b) 

Figure 1. Study area map: (a) ShweBo Township in Sagaing region and (b) KyautSe Township in Mandalay 

region, Myanmar. 

2.2. Theoretical Models and Empirical Tools 

2.2.1. Analysis on the Pattern and Trend of Climate Variability 

With the aim of exploring the local climate trends in the study area, the empirical analysis on the pattern 

and trend of climate variability was undertaken using the anomaly index and cumulative departure index. 



 

Anomaly Index: The anomaly indices were used to study the annual variability of rainfall and temperature 

in the study area from 1987 to 2017. The rainfall and temperature anomaly indices were calculated by the 

following equations: 

𝑅𝐴𝐼 = +2(
𝑅 − 𝑀𝑅

𝑀𝐻10 − 𝑀𝑅

) (1) 

where RAI is the rain anomaly index, R is the actual rainfall (mm/year), MR is the mean rainfall (mm/year), 

and MH10 is the mean of the 10 highest values of rainfall (mm/year).  

𝑇𝐴𝐼 = +2(
𝑇 − 𝑀𝑇

𝑀𝐻10 − 𝑀𝑇

) (2) 

where TAI is the temperature anomaly index, T is the annual average temperature in a specific year (°C), 

MT is the 30-year mean of the annual average temperature (°C), and MH10 is the mean of the 10 highest values 

of annual average temperature (°C). 

Cumulative Departure Index (CDI): The cumulative departure index was used to assess the trend of 

rainfall during the early growing season (EGS) and late growing season (LGS), showing within-season 

variability of rainfall [10]. The cumulative departure index for seasonal rainfall variability was calculated using 

the following equation: 

𝐶𝐷𝐼 =  
𝑅𝑎 − 𝑅𝑚

𝑆𝐷
 (3) 

where CDI is the cumulative departure index, Ra is the actual rainfall for the growing season months 

(developed from the daily rainfall data, mm/season), Rm is the mean rainfall (mm/season), and SD is the standard 

deviation of the total length of the period of study. 

This method was also applied in the analysis of temperature change (average day and night temperatures 

within the season in degrees Celsius). 

𝐶𝐷𝐼 =  
𝑇𝑎 − 𝑇𝑚

𝑆𝐷
 (4) 

where T = the temperature. 

2.2.2. Farmer Perception Score and Level 

In examining farmers’ perceptions of specific climate variability, five options were given to each 

respondent (Increase Trend, Unchanged, Decrease Trend, Irregular Trend, or No response, within the time 

frame of the last five years). There were nine questions about local climate variability; rainfall amount changes 

in the early-monsoon/mid-monsoon/late-monsoon, changes in rainy days in early-monsoon/mid-monsoon/late-

monsoon, and temperature changes in summer/monsoon/winter, resulting in nine responses for each farmer’s 

perception of climate change. 

Precipitation in the early days of monsoon season is very important for the farmer to decide the planning 

time. Based on their perception, the farmer can manage effective and timely land preparation. Precipitation in 

mid-monsoon make the farmers to decide where additional water is needed or not to their plantation. 

Precipitation in late monsoon season is a challenge to farmers if there is heavy rain in the harvest period. Based 

on their perception of monsoon precipitation, the planting time should be adjusted to avoid heavy rain in harvest 

time, or the farmer should have a strategy to address such an event. For the perception to temperature, variation 

within a season is not much different in the study area as it is in tropical zone, however, it is different between 

the three seasons (summer, winter and monsoon). Concerned with technical aspects, high temperatures during 

a growing season, (i.e., monsoon temperature for the rainfed rice growing season or summer temperature for 

the irrigated rice growing season) are very important for the productivity and crop failure that occurred in some 

years due to the high temperatures and drought. If the farmer is aware of high temperature trends in a rice 

growing season, they may change the stress tolerant rice varieties or may change some other crops rather than 

rice. Thus, the farmers’ perceptions to rainfall amount and rainy days, and perception of temperature trends in 

the summer, monsoon and winter seasons, were examined in this study. 

Following the concepts of farmers’ perceptions and meteorological comparison [9–13], the accuracy of 

farmers’ perceptions was justified by the actual local climate trends from meteorology data records. If the 

perception was the same as the actual trend of rainfall changes in the early-monsoon, the score was 1, and 0 



 

otherwise. In Table 1, PRAi captures farmers’ perceptions of changes in rainfall amount. PRDi captures farmers’ 

perceptions of changes in rainfall duration, and PTi captures farmers’ perceptions of changes in temperature.  

Table 1. Scoring method on farmer’s perception. 

Perception Indicators 
Perception Period 

Early Monsoon Mid-Monsoon Late Monsoon 

Rainfall Amount PRAEM (0/1) PRAMM (0/1) PRALM (0/1) 

Rainy Day PRDEM (0/1) PRDMM (0/1) PRDLM (0/1) 

 Summer Monsoon Winter 

Temperature PTS (0/1) PTM (0/1) PTW (0/1) 

Note: EM, MM, and LM are abbreviations for Early Monsoon, Mid-Monsoon and Late Monsoon, respectively. 

Also, S, M, and W are abbreviations for Summer, Monsoon and Winter, respectively. 

As there were nine indicators for perception of climate variability, the total score a farmer obtained to 

indicate accuracy of perception of climate variability consistent with the meteorological data record was 

between 0–9.  As these “0–9” scores were derived from the comparison of farmers’ perception to specific 

climate variable with the respective trends of meteorological data recorded, it was noted as the consistency of 

farmer perception to the climate trends of meteorological data. Then, these scores were categorized into three 

levels: low consistency of famers’ perception, medium consistency of famers’ perception, and high consistency 

of famers’ perception to the recorded climate trends. 

2.2.3. Ordered Probit Perception Model 

The ordered probit model is widely used as an approach to estimate models of ordered types. The 

ordered probit model is built around a latent regression in the same manner as the binomial probit mode 

Yij=αXij + Ɛij, in which Yij is the latent unobservable variable and normally distributed with a zero mean, Xij 

is the vector of farmer i's socioeconomic characteristics, α is the unknown parameter to be estimated, and Ɛij 

is the random term of the latent regression [16]. 

In this study, three levels of farmer’s perception consistency (0= low consistency of farmers’ perception, 

1= medium consistency of farmers’ perception, and 2= high consistency of farmers’ perception) were ordinal 

in nature and discrete variables, then it was specified as: 

Y = {

0 , if 0 < Yij  < μ1

1, if μ1 <  Yij < μ1

2, if μ1 <  Yij < μ2

 (5) 

where μ1, μ2 and μ3 are the classifying threshold values. Like the models for binary data, the probabilities 

for each of the observed ordinal perceptions were given as: 

𝑃𝑟𝑜𝑏(𝑌 = 1|𝑋) = 𝐹(𝜇1 − 𝛼𝑋1) −  𝐹(−𝛼𝑋1)  

𝑃𝑟𝑜𝑏(𝑌 = 2|𝑋) = 𝐹(𝜇2 − 𝛼𝑋1) −   𝐹(𝜇1 − 𝛼𝑋1) 

𝑃𝑟𝑜𝑏(𝑌 = 3|𝑋) = 𝐹(𝜇3 − 𝛼𝑋1) −  𝐹(𝜇2 − 𝛼𝑋1)  

(6) 

where F(.) is the cumulative standard normal distribution function, X is the vector of independent variables 

that affects the farmer’s perception level, and α is the unknown parameter to be estimated. The ordered probit 

model is a non-linear regression, and its coefficients cannot represent the marginal changes in the dependent 

variable as the independent variables change. In that case, the marginal effects were computed as follows: 



 

𝜕𝑃(𝑌 = 1|𝑋)

𝜕𝑋𝑗

=  𝑓(𝜇1 − 𝛼𝑋𝑗)𝛼𝑗 

𝜕𝑃(𝑌 = 2|𝑋)

𝜕𝑋𝑗

=  𝑓(𝜇1 − 𝛼𝑋𝑗)𝛼𝑗 −   𝑓(𝜇2 − 𝛼𝑋𝑗)𝛼𝑗 

𝜕𝑃(𝑌 = 3|𝑋)

𝜕𝑋𝑗

=  𝑓(𝜇2 − 𝛼𝑋𝑗)𝛼𝑗 −   𝑓(𝜇3 − 𝛼𝑋𝑗)𝛼𝑗 

(7) 

The hypothesized model for the determinants of local farmers’ perceptions of climate variability is shown 

in Equation (8), and the definition of variables is provided in Table 2. 

FPL=α0+α1FEX+α2EDL+α3GEN+α4POF+α5MCF+α6RAW+α7AAE+α8ALO+α9ISL+α10FIS+α11ATP+α12ED

S+α13EUR+α14EFE+α15HAF+α16LDA+ε (8) 

Table 2. Definition of variables of farmer perception model. 

Variables Description 

FPL Farmer’s perception levels (low, medium, high) 

FEX Farming experience (years) 

EDL Education level of farmer (schooling years) 

GEN Gender of farmer (0= female, 1= male) 

POF Primary occupation (1=farming, 0=other) of farmer 

MCF Major crop of farm (0= non-cash crop, 1=cash crop) 

RAW Regular access of weather information weekly (0=no, 1=yes) 

AAE Previous agricultural extension contacts (frequency within last season) 

ALO Agricultural land operated (ha) 

ISL Irrigation status of agricultural land (% of total farm land under irrigation schedule) 

FIS Farm-income share (% of total income) 

ATP Agricultural training participation (frequency) 

EDS Experience on dry-spell period in a growing season (frequency within last five year) 

EUR Experience on unexpected rain in critical crop growth (frequency within last five year) 

EFE Experience on flood event in growing season (frequency within last five year) 

HAF 
Holistic affect: How the farmer feels about CC ((1=Climate change impact is better for 

farming, 2= no effect on farming and 3= worse in farming) 

LDA Location Dummy (0=KyautSe, 1=ShweBo) 

3. Results and Discussion 

In this section, the findings are reported in three main parts, including: (1) Climate variability and its trend; 

(2) farmers’ perceptions of climate variability; and (3) factors influencing farmers’ perceptions on climate.  

3.1. Climate Variability and its Trend 

In this subsection, we report on the variability and trends of precipitation, temperature, and local climate 

stress. 

3.1.1. Precipitation Variability and its Trend 

The distribution and density of precipitation were analyzed by the rainfall anomaly index (RAI) and 

cumulative departure index (CDI). Figure 2 shows the rainfall anomaly index (RAI) with five year moving 

averages for annual precipitation density (annual rainfall amount) in the ShweBo and KyautSe townships.  



 

 

Figure 2. Rainfall anomaly index (RAI) and five-year moving average for ShweBo and KyautSe from 1987 and 

2017. 

In accordance with the rainfall anomaly index, there were noticeable variabilities of annual precipitation 

in both ShweBo and KyautSe. The positive variabilities were observed in the year 1988, 2006, 2010, and 2017 

in ShweBo, and 1992, 2006, and 2011 in KyautSe. Moreover, it was observed that those years were recorded 

as flood years in the study area. The five-point moving average of annual rainfall showed that approximately 

two-thirds of the years from 1987 to 2017 were below the 30-year average annual precipitation, in both cases. 

Specifically, the annual rainfalls before 2006 were lower than the 30-year average, then after 2006 it fluctuated, 

but with increasing trends. 

Figure 3 explains the pattern and distribution of rainfall in the ShweBo and KyautSe areas. The rainfall 

distributions of these areas were observed as a bimodal pattern, indicating two important durations for 

agriculture: early monsoon (April, May, June) and late monsoon (August, September, October). The dry spell 

or drought normally occurred in July in the study area and is called the “July Drought” by the local people. 

However, during the years 2013 to 2017, drought was observed earlier than July in both the ShweBo and 

KyautSe areas. In terms of the duration of rain during the most recent five-year period of 2013–2017, it is 

observed that there were less rainy days in the early monsoon and more rainy days in the late monsoon season 

than the 30 year average (1987–2017). 

 

Figure 3. Distribution and pattern of average monthly rainy days in ShweBo and KyautSe. 

Figure 4 presents the trends of rainfall within a growing season by the cumulative departure index. The 

cumulative departure index of ShweBo revealed that the early growing season rainfalls (EGS CDI) were above 

the normal in the earlier period of 1987 to 1999, then fluctuated in the late period during 2000 to 2017, and 

overall had a decreasing trend.  
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Figure 4. Growing season fluctuation of rainfall based on cumulative departure index between 1987 and 2017 

(EGS: early growing season, LGS: late growing season). 

There was a decreasing trend of rainfall in the early growing season of ShweBo. However, 

observation of the trend of rainfall in the late growing season (LGS CDI) showed the opposite. Most of 

the seasonal precipitation in earlier years (1989–1999) was below the normal level, fluctuated during 

2000–2010, then was above the normal from the year 2011 to 2017. Generally, it was concluded that there 

was an increasing trend of the late growing season rainfall in ShweBo. In the case of KyautSe, although 

the precipitation in both the early growing season and late growing season fluctuated throughout the study 

period, the negative values of EGS CDI indicated that the rainfall during the early growing season was 

reduced, and the positive values of LGS CD indicated the rainfall in the late growing season was increased. 

It was also observed that there was an increasing trend of late growing season rainfall, and a slightly 

decreasing trend of early growing season rainfall. 

3.1.2. Temperature Variability and its Trend 

Figure 5 shows the temperature anomaly index (TAI) with five year moving averages in the study area. 

The TAI index indicated the noticeable temperature variabilities throughout the 30 year period (1987–2017). 

The five-year moving average line revealed that the temperatures were above normal generally, although 

temperature in some years were below the normal line. It was found that the temperatures within the last five 

years (2013–2017) were obviously above normal. 

 

Figure 5. Temperature anomaly index (TAI) and five-year moving average for ShweBo and KyautSe, from 

1987 and 2017. 

In particular, it was also observed that the seasonal temperatures within the last five years (2013–2017) 

were higher than the 30-year average temperature and five-year average of 2008–2012, as shown in in Figure 

6. It stated that the 2013-2017’s temperatures of summer, monsoon and winter periods of ShweBo and KyautSe 

had an were higher than the previous five years. Figure 7 describes the season temperature fluctuation by the 

cumulative departure index (CDI) during 1987 to 2017. It was observed that the summer temperature trends 

(Summer CDI) of ShweBo and KyautSe were above the normal; the monsoon temperature trends (Monsoon 

CDI) fluctuated throughout the 30-year period; and the winter temperature trends (Winter CDI) were nearly 
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normal in both ShweBo and KyautSe. Generally, the summer and monsoon temperature had visible increasing 

trends, but slightly increasing trend for winter temperature was also observed. 

 

Figure 6. Five-year average seasonal temperature (°C) for 2013-2017 and 2008-2012. 

 

Figure 7. Season temperature fluctuation based on cumulative departure index (CDI) between 1987 and 2017. 

 

3.1.3. Local Climate Stress in Agriculture 

There were three types of climate stress observed in the farming system: (a) dry spell periods during the 

crop growing season, which 91% of the rainfed farming and 27% of the irrigated farming areas reported that 

they suffered within last five years, (b) unexpected rain during critical crop growth stages, happening to 95% 

of rainfed farms and 85% of irrigated farms, and (c) serious flood during crop season, suffering by 86% of 

rainfed farms and 46% of irrigated farms (Figure 8). Specifically, these three climate stresses were detailed by 

the different levels of occurrence within the last five years in the study area.  
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Figure 8. Specific climate stresses by irrigated and rainfed conditions. 

As shown in Figure 8, unexpected rain in a critical crop growth stage was the most serious climate stress 

in the study area, and there were three categories of unexpected rain events. The first was a high frequency of 

unexpected rain, which occurred almost every season. The second was unexpected rain events, which happened 

in three- to four-season intervals. The last was a lower frequency of unexpected rain, which occurred in more 

than five season intervals. In the case of unexpected rain, 27% of rainfed farmers and 47% of irrigated farmers 

reported they suffered unexpected rain in a critical crop growth stage, especially during seeding time and 

harvesting time, in almost every season. Specifically, 41% of KyautSe irrigated farms and 43% of ShweBo 

irrigated farms experienced a high frequency of unexpected rain. 

The study highlighted that irrigated farms had a high frequency of unexpected rain in critical crop growth 

stages because irrigated farming followed the irrigation schedule of the local department of irrigation and did 

not adjust their farming activities in accordance with the monsoon onset and offset periods. To reduce a high 

frequency of unexpected rain in irrigated farms, the irrigation schedule of the department should be adjusted 

with the local monsoon onset conditions. 

The dry spell period was grouped into three levels; (i) longer dry spell, which occurred for more than 45 

days in a growing season, (ii) dry spell periods, which had a duration of between 30 to 45 days, and (iii) short 

dry spells, which lasted for less than 30 days in a season. In the study, dry spell periods were the second major 

climate stress. It was observed that 56% of the rainfed farms encountered a longer dry spell period in a growing 

season, including 60% of the KyautSe rainfed farms and 50% of the ShweBo rainfed farms.  

Unexpected flood was also one of the climate stresses in the study area, and 56% of irrigated farms and 

30% of rainfed farms reported that this occurred in 3- to 4-year intervals, with 71% of KyautSe irrigated farms 

and 41% of ShweBo irrigated farms reporting these events. The study observed that an unexpected flood event 

was more likely to occur in irrigated farming, as there was poor maintenance of irrigation infrastructure and a 

lack of drainage systems on the farms, resulting in serious flash flooding if there was an excessive amount of 

rain water overflow from the canal. 
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3.2. Farmers’ Perceptions of Climate Variability 

To observe farmers’ perceptions of climate variability, this study collected data from sampled farms, 

which were rice-based farming households including irrigated and rainfed farming in two locations, ShweBo 

township and KyautSe township. The socioeconomic characteristics of the irrigated and rainfed farm 

households are listed in Table 3. The descriptive analysis showed that the average age of the farmers was 50.64 

years, ranging from 28 to 74 years, for the total sample. The average age was 50.52 years for the irrigated 

farmers and 50.86 years for the rainfed farmers. The average schooling years of the farmers was nearly the same 

for all categories; 5.82 years for the total sample, 5.89 years for the irrigated farmers, and 5.71 years for the 

rainfed farmers, ranging from 0 to 16 years. The average family size for the whole sample, irrigated farm 

households, and rainfed farm households was about 4.6, the average family labor was 2.3, and the average farm 

size was 7.45 ac for the whole sample, 7.65 ac for the irrigated farms, and 7.10 ac for the rainfed farms. These 

variables were not significantly different in between the irrigated and rainfed farms. However, the rice farming 

experience, non-rice farming experience, and livestock farming experience of both groups were significantly 

different at the 1% level. The average rice farming experience of the irrigated farm households was 27 years, 

higher than that of the rainfed farmers (22 years). The average non-rice farming experience of the irrigated 

farmers was 7 years, lower than that of the rainfed farmers (15 years). For livestock farming, it was observed 

that only rainfed farm households had any livestock farming experience, and there were very few commercial 

livestock farms in the study area. 

Table 3. Descriptive analysis on sample households’ profile. 

 Total Samples (N=289) Irrigated Farms (N=183) 
Rainfed Farms 

(N=106) 
P 

value 
 Mean Range SD Mean Range SD Mean Range SD 

Age of farmer (years) 50.64 
28.00-

74.00 
9.72 50.52 

28.00-

74.00 
10.04 50.86 

31.00-

69.00 
9.17 0.7753 

Schooling years of 

farmer 
5.82 

0.00-

16.00 
2.55 5.89 0.00-16.00 2.62 5.71 

0.00-

14.00 
2.43 0.5689 

Rice farming experience 

(years) 
25.09 

3.00-

56.00 
10.55 26.97 3.00-56.00 10.67 21.83 

3.00-

39.00 
9.55 0.0001 

Non-rice farming 

experience (years) 
10.53 

2.00-

30.00 
7.22 7.49 2.00-29.00 6.42 15.05 

4.00-

30.00 
5.89 0.0000 

Livestock farming 

experience (years) 
2.82 1.00-9.00 1.66 0.00 0.00-0.00 0.00 2.82 

1.00-

9.00 
1.66 0.0000 

Family member (no.) 4.56 2.00-8.00 1.40 4.56 2.00-8.00 1.40 4.58 
2.00-

7.00 
1.42 0.9161 

Family farm labor (no.) 2.28 1.00-5.00 0.76 2.27 1.00-5.00 0.81 2.28 
1.00-

4.00 
0.66 0.9160 

Non-farm employee 

(no.) 
1.30 1.00-2.00 0.46 1.32 1.00-2.00 0.48 1.25 

1.00-

2.00 
0.45 0.6614 

Household dependency 

ratio 
0.43 0.00-0.80 0.20 0.43 0.00-0.75 0.20 0.43 

0.00-

0.80 
0.20 0.9271 

Farm Size (ac) 7.45 
2.00-

32.00 
4.67 7.65 2.00-32.00 5.24 7.10 

2.00-

19.00 
3.37 0.3373 

Lowland irrigated farm 

(ac) 
7.65 

2.00-

32.00 
5.24 7.65 2.00-32.00 5.24 0.00 

0.00-

0.00 
0.00 0.0000 

Lowland rainfed farm 

(ac) 
5.33 

2.00-

12.00 
2.42 0.00 0.00-0.00 0.00 5.33 

2.00-

12.00 
2.42 0.0000 

Upland rainfed farm (ac) 2.89 1.00-7.00 1.71 0.00 0.00-0.00 0.00 2.89 
1.00-

7.00 
1.71 0.0000 

Irrigation Status (% of 

farm size) 
63.38 

0.00-

100.00 
48.28 100 

100.00-

100.00 
0.00 0.00 

0.00-

0.00 
0.00 0.0000 

Considering climate perceptions of farmers, this study revealed that farmers had a wide variation in climate 

perceptions (Table 4.). According to the nine perception indicators, as discussed earlier, the local farmers had 

more accurate perceptions of the changes in rainfall duration within a season. Generally, it was observed that 

85% of the farmers perceived the changing climatic patterns in their environment as either increasing or 

decreasing trends of rainfall and temperature, 10–15% of the farmers reported that they did not know the rainfall 



 

trends, and 15–21% of farmer did not perceive any changes of temperature in the monsoon and winter period. 

In this study, the analysis of farmers’ perception was, more than in the general trends of climate change, 

emphasized the in-seasonal nature of rainfall (early, mid and late-monsoon periods), and the seasonal nature of 

temperature (summer, monsoon, and winter). 

Table 4. Accuracy of farmer’s perception by meteorological data analysis. 

Perception 

Indicators 

Percentage of the farmers who give the response as: Percentage of 

farmers who have 

consistent 

perception with 

recorded data 

trends 

Increase 

trend 

during last 

five years 

Decrease 

trend 

during last 

five years 

Same 

trend 

during 

last five 

years 

Irregular 
No 

response 

Rainfall intensity      

in Early 

Monsoon  
10.73 32.87 20.10 25.61 10.04 

32.87 

(75.47/8.20) 

in Mid 

Monsoon  
16.64 24.91 15.91 30.79 12.07 

15.91 

(28.30/8.74) 

in Late 

Monsoon  

 

27.68 9.34 20.79 26.64 15.88 
27.68 

(50.94/14.20) 

Duration of rainfall      

in Early 

Monsoon  
15.22 48.79 12.11 20.41 3.46 

48.79 

(75.47/33.33) 

in Mid 

Monsoon  
33.56 10.38 30.79 18.68 6.92 

33.56 

(41.51/28.96) 

in Late 

Monsoon  

 

44.64 14.87 10.38 13.15 16.96 
44.64 

(61.31/34.97) 

Temperature        

in Summer 58.13 6.92 11.15 13.14 0.00 
58.13 

(69.81/51.36) 

in Monsoon 3.46 13.84 26.29 41.52 15.22 
3.46 

(0.94/4.91) 

in Winter  

 
6.57 12.80 20.79 38.72 21.45 

6.57 

(3.77/8.19) 

 

Specifically, the study revealed that 49% of the farmers perceived a decreasing trend of rainy days in the 

early-monsoon period, 34% of farmers perceived an increasing trend in the mid-monsoon period, and 45% of 

farmers perceived a decreasing trend of rain duration in the late-monsoon period. These results corresponded 

to the findings of the previous meteorological data analysis, showing the majority of local farmers had an 

accurate perception of the rainy-day changes within a season. 

However, regarding the perception to the change in rainfall intensity within a season, the farmers had an 

accurate perception mainly in the early-monsoon period and late-monsoon period. It was found that 33% of 

farmer perceived a decreasing trend of rainfall intensity in the early-monsoon period, and 28% of farmers 

perceived an increasing trend in the late-monsoon period, as observed in meteorological records. 

In terms of the perception of temperature, most of the farmers had an accurate perception in the summer 

period; 58% of the farmers perceived the increasing trend of temperature in that period, in line with the results 

of historical temperature analysis.  

It was observed that 42% of farmers thought there was an irregular change in the monsoon temperature, 

and 39% of farmers perceived an irregular temperature trend in the winter period. These perceptions, however, 

were inconsistent with the findings of meteorological data analysis. Only a few farmers had the same perception 

as the historical data analysis. 

In these cases, lack of location specified climate information distribution would be the reason for 

inconsistent perception issues. Detailed changes of the climate during specific periods were difficult for the 

farmer to realize themselves, without knowing accurate weather information. Moreover, the weather focused 

news the farmers accessed only covered the regional situation generally, and was not for their specific location. 



 

Overall, the farmers had a more accurate perception of the changes in rainfall, in terms of intensity and 

duration, than the changes in temperature. It can be concluded that the majority of farmers perceived the actual 

trends of rainfall changes in the early, mid, and late-monsoon periods, and also temperature changes in the 

summer period. These results were in line with the findings of Ayanlade, Radeny [10]. They also compared the 

farmers’ perceptions of climate variability with the results of historical trends from meteorological data. Their 

study indicated that most of the farmers perceived the changes in onset of rainfall (40% of farmers) and drought 

and long dry spells (50.6% of the farmers), but fewer perceived the temperature changes (only 35% of the 

farmers). Moreover, the results of this study were in agreement with the McKinley, Catharine [17] report of 

“Climate Change Perceptions and Policies in Myanmar, 2014”. In their report to Climate Change, Agriculture 

and Food Security (CCAFS), rainfall trends, flood events, extreme heat stresses, and temperature trends were 

threatening the agriculture sector and farming community, and most of the farmers perceived more accurately 

the rainfall trends than the temperature trends.  

The findings of (a) the high accuracy of farmers’ perceptions of the precipitation in the early monsoon 

period, mid-monsoon period, and late-monsoon period, and the temperature in summer, and (b) the low 

accuracy of farmers’ perceptions of the temperature in the monsoon and winter periods, were not the same as 

found in other studies in different countries. The study by Abid, Scheffran [5] showed a high accuracy of 

perceptions of temperature changes (75% of farmers had accurate perceptions), and less accuracy of perceptions 

of precipitation (lower than 30%). In the study by Gebrehiwot and van der Veen [11], the farmers’ perceptions 

of the changes in temperature and precipitation were also confirmed by the historical meteorological data 

analysis. Their study showed that 78% of the farmers perceived an increase in the temperature, and 69% of the 

farmers perceived a decrease in rainfall, corresponding accurately to the climate data analysis. Moreover, in the 

study by Aymone Gbetibouo [9], 91% of farmers perceived the increasing temperature trend and 81% perceived 

the decreasing trend of precipitation, and these perceptions were verified by the recorded meteorological data. 

Msafiri Y. and Xinhua [18] also proved that the farmers’ perceptions of temperature and rainfall were in line 

with the meteorological data analysis, with 80% of the farmers perceiving the increasing trend of temperature 

and 60% of the farmers perceiving the decreasing trend of rainfall. In the study by Sahu and Mishra [13], 48% 

of the farmers noticed an erratic pattern of rainfall, and 98% of the farmers perceived an increase in temperature; 

the same result as the recorded data analysis. 

In this study, the percentages of farmers whose perceptions were consistent with the meteorology data 

seemed to be lower than that of other studies, because this study focused on the details of in-season trends and 

seasonal trends, rather than annual trends as in other studies. However, it was clearly observed that there was a 

need to improve the accuracy of farmers’ perceptions of climate variability, and sharing of specific local weather 

information with the community would be one possible way of solving this issue. A daily rainfall and 

temperature recording system of the Department of Agriculture already exists in each township. 

After comparison of the farmers’ perceptions with the historical data analysis, the individual farmer’s 

perceptions were categorized into three levels; (a) low consistency of farmers’ perception, (b) medium 

consistency of farmers’ perception, and (c) high consistency of farmers’ perception, to the recorded climate 

trends, according to the frequency and distribution of their scores. Table 5 shows the farmer perception 

consistency for the total sample, irrigated farm households, and rainfed farm households in the study. It reveals 

that 45% of the total sample, including 60% of irrigated farms and 20% of rainfed farms, were in the group of 

low perception of climate variability level. A total of 25% of total households, together with 14% of irrigated 

farms and 44% of rainfed farms, were in the high perception group. The results indicated that rainfed farmers 

had a higher perception to local climate variability than the irrigated farmers, as rainfed farmers rely on the 

climate conditions more, especially the local precipitation. Then, these three consistency levels of farmers’ 

perceptions were analyzed in the ordered probit model, to assess the factors influencing farmers’ perception. 

 

 

 

 

 

 

 

 

 



 

Table 5. Farmer’s perception level to local climate variability. 

 

Total Sample 

Households 

Irrigated-Farm 

Households 

Rainfed-Farms 

Households 

No. % No. % No. % 

Low consistency of 

perception 
131 45.33 109 59.56 22 20.75 

Medium consistency of 

perception 
85 29.41 48 26.23 37 34.91 

High consistency of 

perception 
73 25.26 26 14.21 47 44.34 

 289 100.00 183 100.00 106 100.00 

3.3. Factors Influencing Farmers’ Perceptions of the Climate  

Table 6 shows the results of the ordered probit model, examining the factors influencing farmers’ 

perceptions. In this study, three ordered probit models were utilized to observe the farmers’ perceptions in the 

full sample, irrigated farm households, and rainfed farm households. All models performed well according to 

the values of Pseudo R2, with 0.5956, 0.6042, and 0.6484 in the models of the full sample, irrigated farm 

households, and rainfed farm households, respectively. For the factors influencing the perception consistency 

level, the study observed the following: 

1. Farming experience, education and gender: It was assumed that more experienced and educated farmers 

would have more accurate perceptions of climate change. The positive significant values of FEX and EDU of 

the total sample and irrigated farm household analysis proved that assumption. Farming experience (FEX) was 

highly significant at the 1% level in the total sample and significant at the 5% level in irrigated farms, meaning 

that experienced farmers of the total sample and irrigated farms were likely to have a high consistent perception 

of climate change. The farmers’ education variable was significant at the 1% level in irrigated farms, and at the 

5% level was significant for the total sample, indicating that educated farmers were likely to have highly 

accurate perceptions. The dummy for gender (GEN) was significant at the 5% level in irrigated farms only. This 

means that male famers were likely to have more accurate perceptions. These three variables, however, were 

not statistically significant in the rainfed farms model. 

2. Primary occupation, major crops grown: Although the study initially expected that higher consistency 

of perception would occur in the farmer group if their primary occupation was in farming activities (POF=1), 

or if their crops grown were cash crops (MCF=1 i.e., if major crop of farm (MCF) was cash crop, highly 

profitable to the farmers, the farmers would pay more attention on the production of such a cash crop and he 

might be more aware on the production reequipment of that crops including farm management and weather 

condition), non-significant values of POF and MCF in all three models did not support this assumption.  

3. Farm-income share and farm size: The positive significant value of FIS in the total sample model 

indicated that the farmers were more likely to have a higher consistent perception of climate change if their 

farm income share was a greater proportion of their family income. Agricultural land operated (ALO) was 

highly significant in the irrigated farms and rainfed farms models. Its negative value in irrigated farms indicated 

that the small-scale irrigated farmers were likely to have more accurate perceptions of climate change. The 

positive value of ALO in rainfed farms suggested the large-scale rainfed farmers were more likely to perceive 

the actual trends of climate change. 

4. Weather information, agricultural extension service, agricultural training participation: The study 

expected that farmers who have access to weather information and agricultural training would have a higher 

consistent perception of climate change as there were regular broadcasting of daily weather news and weekly 

focus by the radio and TV channel for the regional situation, and agricultural training programs offered by the 

Department of Agriculture and some other NGOs in the study area. The empirical results of ordered probit 

analysis verified this initial statement. Regular access to weather information (RAW) was 1 if the famers noticed 

and paid attention to the regular broadcasting of weekly weather focus by the radio and TV channel, and if not, 

0. In this case, RAW was positively significant at the 1% level in the total sample and irrigated farms, and at 

the 5% level in rainfed farms, meaning that  the farmers were likely to have a high consistent perception of 

climate change if they had regular access to weather information. Participation in agricultural training meant 

the farmers were also more likely to have a high consistent perception of climate change, as the PAT values 

were positively significant at the 1% level in all three cases. However, AAE was negatively significant in rainfed 



 

farms, and indicated that the rainfed farmers were more likely to have a high consistency of perception if there 

were fewer farming problems to be given to extension agents.  

5. Irrigation: Farmers’ perceptions were influenced by the infrastructure. Irrigation infrastructure is 

arguably an important management strategy that farmers utilize to cope with climatic constraints. Irrigation can 

provide additional water to crops and overcome sporadic shortfalls in soil moisture for growing crops, 

consequently resulting in low awareness of climate conditions whenever there are irrigation facilities. In the 

study, the negative values of ISL were highly significant at the 1% level, and supported this statement. This 

means that irrigated farmers were likely to have low perception levels compared with rainfed farmers. 

Table 6. Ordered probit model result for all sample households: Dependent variable: Farmers’ perception (1= 

Low consistency of perception, 2= Medium consistency of perception, 3= High consistency of perception). 

Independent 

Variables 

Total Sample Irrigated Farm Rainfed Farm 

Coef. S.E P>|z| Coef. S.E P>|z| Coef. S.E P>|z| 

FEXi 0.0384 0.0096 0.000 0.0272 0.0122 0.026 0.0151 0.0206 0.462 

EDUi 0.1003 0.0454 0.027 0.1736 0.0676 0.010 0.1203 0.0775 0.120 

GENi 0.3956 0.2828 0.162 1.0069 0.4089 0.014 0.1118 0.5942 0.851 

POFi -0.1481 0.3779 0.695 
-

0.0336 
0.3769 0.929 2.7264 1.9656 0.165 

MCFi 0.5000 0.3388 0.140 omitted 0.0379 0.4339 0.930 

FISi 0.0209 0.0099 0.034 0.0139 0.0206 0.497 
-

0.0017 
0.0152 0.913 

ALOi 0.0146 0.0663 0.825 
-

0.3495 
0.0989 0.000 0.9012 0.2756 0.001 

RAWi 1.0505 0.2411 0.000 0.9405 0.3013 0.002 1.5870 0.6525 0.015 

AAEi -0.1093 0.0728 0.133 0.1559 0.1013 0.124 
-

0.5256 
0.1956 0.007 

ATPi 0.8785 0.1579 0.000 1.4575 0.2574 0.000 0.8615 0.2870 0.003 

ISLi -0.0164 0.0034 0.000 omitted omitted 

EDSi -0.0705 0.1387 0.612 0.1241 0.2505 0.620 
-

0.2326 
0.2057 0.258 

EURi 0.3793 0.0883 0.000 0.3405 0.1199 0.005 0.7151 0.2096 0.001 

EFEi 0.2111 0.0677 0.002 0.2218 0.0878 0.012 0.6642 0.1864 0.000 

HAFi -0.6884 0.1393 0.000 
-

0.9341 
0.1886 0.000 

-

0.5338 
0.3512 0.128 

LDAi 0.5455 0.2774 0.049 0.6214 0.4534 0.170 0.8207 0.5844 0.160 

/cut1 2.6671 1.2057  3.3262 2.2914  5.1945 2.6214  

/cut2 4.9736 1.2389  6.0081 2.3667  8.8136 2.8563  

Obs. 289   183   106   

Log likelihood 
-

124.293 
  

-

67.647 
  

-

39.297 
  

Pseudo R2 0.5956   0.6042   0.6484   

 

6. Experience of dry-spell periods, unexpected rain and flood events: It was clearly observed that farmers’ 

experience of unexpected rain in critical crop growth stages, and experience of flood events during a growing 

season, were influencing their perception of climate change. Positive values of EUR and EFE were statistically 

significant in all three cases and indicated that if the farmer had an experience of an unexpected rain or flood 

event during a crop season, they were more likely to perceive the changing climatic conditions. However, 

experience of a dry-spell period was not significant in the analysis, as it was a less visible event to the farmer. 

7. Holistic affect: Farmer perceptions of climate change and their concern over specific climate variability 

were also systematically related to personal beliefs about climate change. The empirical results showed that 

those farmers who believed climate change is occurring and that its impacts are positive for farming, were more 

likely to have a lower perception of climate change, as per the statistically significant values of HLA (–0.6884 

for the total sample and –0.9341 for irrigated farms). 

8. Location: The positive significant value of LDA in the total sample analysis showed that the farmers in 

ShweBo were more likely to perceive the changes of temperature and rainfall in their area. 

From these empirical results, it was revealed that farming experience, education and gender of the farmer, 

their farm size and farm income share, regular access to weather information, agricultural training participation, 



 

experience of unexpected rain and floods, irrigation infrastructure, holistic considerations of climate change, 

and location were the major factors influencing on farmers’ perceptions of climate change. The results were 

consistent with other studies. Gutu, Bezabih [19] also found that a high level of perception was a result of access 

to awareness raising activity, weather information, agricultural extension services, educational level, and age 

of household heads. Furthermore, Aymone Gbetibouo [9] pointed out more specifically that the farming 

experience of the farmer is a more critical factor in the perception of temperature changes, and education level 

is a significant factor to perceive rainfall changes. Patrick, Edilegnaw [12] also observed that age, individual 

experience, and gender of the farmer positively influenced their perception, and educational level has a negative 

effect as more educated farmers relied more on non-farm income. 

3.4. Marginal Effects of Ordered Probit Models 

Table 7 indicates the results of the marginal effects of the ordered probit model for the total sample 

households.  

Table 7. Marginal effects of ordered probit models for all sample households. 

 Low perception Medium perception High perception 

 dy/dx P>│z│ dy/dx P>│z│ dy/dx P>│z│ 

FEXi -0.0136 0.000 0.0106 0.001 0.0029 0.008 

EDUi -0.0355 0.026 0.0277 0.033 0.0077 0.065 

GENi* -0.1479 0.179 0.1244 0.208 0.0235 0.102 

POFi* 0.0507 0.685 -0.0379 0.668 -0.0127 0.727 

MCFi* -0.1591 0.089 0.1065 0.030 0.0526 0.295 

FISi -0.0074 0.039 0.0058 0.052 0.0016 0.060 

ALOi -0.0052 0.825 0.0041 0.825 0.0012 0.825 

RAWi* -0.3748 0.000 0.3009 0.000 0.0738 0.002 

AAEi 0.0386 0.135 -0.0302 0.144 -0.0084 0.116 

ATPi -0.3105 0.000 0.2430 0.000 0.0675 0.005 

ISLi 0.0058 0.000 -0.0045 0.000 -0.0013 0.003 

EDSi 0.0249 0.611 -0.0195 0.611 -0.0054 0.616 

EURi -0.1341 0.000 0.1049 0.000 0.0292 0.005 

EFEi -0.0746 0.002 0.0584 0.005 0.0162 0.016 

HAFi 0.2433 0.000 -0.1904 0.000 -0.0529 0.002 

LDAi* -0.1912 0.050 0.1482 0.060 0.0429 0.078 

(*) dy/dx is for discrete change of dummy variable from 0 to 1. 

In this model, the significant marginal effect of farmers’ experience (FEX) shows that a year’s increase in 

experience decreases the probability of having low level of perception consistency by 0.0136, while increasing 

the probability of having medium and high perception by 0.0106 and 0.0029, respectively. The marginal effects 

of education level of the farmer (EDU) were significant in the model, indicating that a year increase in education 

reduces the probability of having low consistency of perception by 0.0355.  

On the other hand, it increases the probability of having medium perception by 0.0277, and the probability 

of having high consistency of perception by 0.0077. The significant MCF values in the model showed the 

probability of having a low perception will be decreased by 0.1591, and the probability of having medium 

perception will be increased by 0.1065 if the major crop of farming is a cash crop. 

If there is a change in access to weekly weather information (RAW), it decreases the probability of having 

low perception by 0.3748, and increases the probability of having medium and high consistencies of perception 

by 0.3009 and 0.0738, respectively. One time participation in an agricultural training program (ATP) increases 

the probability of having medium consistency of perception by 0.2430, and the probability of having high 

consistency of perception by 0.0675, but decreases the probability of having low perception by 0.3105. A one 

percent increase in irrigation area in the total farm land (ISL) increases the probability of having low consistency 

of perception, and decreases the probability of having medium consistency of perception and high consistency 

of perception by 0.0045 and 0.0013, respectively. 

A year’s increase in the experience of unexpected rain (EUR) decreases the probability of having low 

perception by 0.1341, and increases the probability of having medium perception by 0.1049 and high perception 

by 0.0292. Similarly, a year’s increase in flood experience (EFE) decreases the probability of having low 

consistency of perception by 0.0746, while increasing the probability of having medium and high consistencies 



 

of perception by 0.0584 and 0.0162, respectively. If the farmer’s opinion changes regarding the belief that the 

impacts of climate change are positive (HAF), it will increase the probability of having low perception by 

0.2433, but decrease the probability of having medium perception by 0.1904 and high perception by 0.0529. 

Table 8 describes the marginal effects of ordered probit models for irrigated-farm households. A year’s 

increase in experience (FEX) of irrigated farmers decreases the probability of having low perception by 0.0107, 

but increases the probability of having medium perception by 0.0105. Similarly, a year’s increase in irrigated 

farmers’ education (EDU) decreases the probability of having low perception by 0.0683, but increases the 

probability of having medium perception by 0.0671. 

Table 8. Marginal effects of ordered probit models for irrigated-farm households. 

 Low Perception Medium Perception High Perception 

 dy/dx P>│z│ dy/dx P>│z│ dy/dx P>│z│ 

FEXi -0.0107 0.026 0.0105 0.027 0.0002 0.326 

EDUi -0.0683 0.012 0.0671 0.013 0.0012 0.313 

GENi* -0.3404 0.002 0.3370 0.002 0.0034 0.323 

POFi* 0.0132 0.929 -0.0129 0.929 -0.0002 0.929 

FISi -0.0055 0.490 0.0054 0.498 0.0001 0.567 

ALOi 0.1375 0.000 -0.1351 0.001 -0.0024 0.293 

RAWi* -0.3567 0.001 0.3486 0.001 0.0080 0.264 

AAEi -0.0614 0.124 0.0603 0.127 0.0011 0.362 

ATPi -0.5735 0.000 0.5635 0.000 0.0100 0.274 

EDSi -0.0488 0.620 0.0479 0.620 0.0009 0.649 

EURi -0.1339 0.004 0.1316 0.005 0.0024 0.308 

EFEi -0.0873 0.012 0.0857 0.014 0.0015 0.306 

HAFi 0.3676 0.000 -0.3611 0.000 -0.0065 0.281 

LDAi* -0.2402 0.155 0.2356 0.155 0.0046 0.419 

(*) dy/dx is for discrete change of dummy variable from 0 to 1. 

If a farmer is a male farmer (GEN), there will be a decrease in the probability of having low perception 

by 0.3404, and an increase in the probability of having medium perception by 0.337. A one hectare increases 

in farm size (FSZ) increases the probability of having low consistency of perception by 0.1375, and decreases 

the probability of having medium consistency of perception by 0.1351 for irrigated farm households. If the 

irrigated farmer has more access to the weekly weather information (RAW), this would decrease the probability 

of having low perception by 0.3567, and increase the probability of having medium perception by 0.3486. 

Moreover, one additional participation in agricultural training (ATP) decreases the low perception probability 

by 0.5735, and increases the probability of having medium perception by 0.5635. A year’s increase in the 

experience of unexpected rain (EUR) decreases the probability of having low consistency of perception by 

0.1339, and increases the probability of having medium consistency of perception by 0.1316 for the irrigated 

farm households. In the same way, a year’s increase in flood experience (EFE) decreases the probability of 

having low consistency of perception by 0.0873, while increasing the probability of having medium consistency 

of perception by 0.0857. If the farmer’s opinion changes regarding the impacts of climate change being positive 

(HAF), it will increase the probability of having low perception by 0.3676, but decrease the probability of 

having medium perception by 0.3611.  

Table 9 shows the marginal effects of the ordered probit models for rainfed-farm households. The results 

of this rainfed farms model observed that ALO, RAW, AAE, EUR, and EFE were statistically significant at the 

1% level, and ATP was significant at the 5% level, for the probabilities of medium and high perception levels.  

  



 

Table 9. Marginal effects of ordered probit models for rainfed-farm households. 

 Low Perception Medium Perception High Perception 

 dy/dx P>│z│ dy/dx P>│z│ dy/dx P>│z│ 

FEXi -0.0001 0.592 -0.0041 0.460 0.0042 0.459 

EDUi -0.0010 0.502 -0.0324 0.138 0.0334 0.137 

GENi* -0.0010 0.872 -0.0288 0.843 0.0299 0.844 

POFi* -0.0235 0.500 -0.7342 0.171 0.7578 0.169 

MCFi* -0.0003 0.930 -0.0103 0.931 0.0106 0.931 

FISi 0.0001 0.913 0.0004 0.913 -0.0005 0.913 

ALOi -0.0078 0.464 -0.2427 0.003 0.2505 0.003 

RAWi* -0.0590 0.335 -0.2385 0.002 0.2975 0.000 

AAEi 0.0045 0.461 0.1415 0.006 -0.1461 0.005 

ATPi -0.0074 0.461 -0.2319 0.016 0.2394 0.014 

EDSi 0.0020 0.540 0.0626 0.264 -0.0647 0.264 

EURi -0.0062 0.462 -0.1926 0.002 0.1987 0.002 

EFEi -0.0057 0.460 -0.1789 0.002 0.1846 0.002 

HAFi 0.0046 0.502 0.1437 0.113 -0.1484 0.112 

LDAi* -0.0079 0.500 -0.2225 0.154 0.2305 0.155 

(*) dy/dx is for discrete change of dummy variable from 0 to 1. 

In rainfed farming, if there is a one hectare increase in the rainfed farm size, it will decrease the probability 

of having medium consistency of perception by 0.2427, and increase the probability of having high consistency 

of perception by 0.2505. If the access of the rainfed farmer to weekly weather information changes, there will 

be a decrease in the probability of having medium consistency of perception by 0.2385, and an increase in the 

probability of having high consistency of perception by 0.2975. Moreover, a one-time increase in the 

participation in an agricultural training program decreases the probability of having medium consistency of 

perception by 0.2319 and increases the probability of having high consistency of perception by 0.2394 in the 

rainfed farming community. A year’s increase in the unexpected rain experience decreases the probability of 

having medium consistency of perception by 0.1926, and the probability of having high consistency of 

perception by 0.1987. Similarly, a year’s increase in the flood event experience increases the probability of 

having high consistency of perception by 0.1846, but decreases the probability of having medium consistency 

of perception by 0.1789. In the rainfed farming households, if there is an increase farming issues requiring 

contact with an extension, meaning the farmer could not solve their faming problem, it decreases the probability 

of having high perception by 0.1461, and increases the probability of having medium consistency of perception 

by 0.1415. 

4. Conclusions and Policy Implications 

The essence of this study was to provide insights into how much farmers’ perceptions are precise to the 

local climate trends, and the factors influencing these accurate perceptions of farmers. 

From the historical climate data analysis, it can be concluded that there was a significant variation of 

rainfall through the season, with an increasing trend. Moreover, within monsoon season, lower precipitation 

was observed in the early growing season, and higher precipitation occurred in the late growing season, 

compared to the 30 year average rainfall. Concerning the temperature trend, there was a general increase in 

temperature, resulting in severe drought if there was lack of rain, especially in the July drought period. In 

addition, the occurrence of early drought and a high intensity of rainfall in the late monsoon period highlighted 

the need to adjust the cropping calendar of local farming. 

Focused on the farmers’ perceptions of climate variability, the majority of farmer perceived the changes 

in climatic conditions. However, in terms of the accuracy of perception, 35–50% of farmers had precise 

perceptions of rainfall trends and patterns within the three phases of the monsoon season, and 58% of farmers 

perceived the increasing temperature trends in summer correctly, but had much less accurate perceptions of the 

monsoon and winter temperatures. It can be concluded there was a certain degree of accuracy of farmers’ 

perceptions of climate variability, however, it should be improved by the improved sharing of specific local 

weather information with the respective farming community. 

The empirical results of the ordered probit models and their marginal effects proved that regular access to 

weekly weather information and agricultural training programs were the key factors influencing the consistency 

of farmers’ perceptions, resulting in a greater probability of a high consistency of perception level. Therefore, 



 

it can be concluded that higher accuracy of farmer perceptions of climate change will be achieved by 

encouraging agricultural training and ensuring access to regular weather information for the local farming 

community. 

Concerning the current policy context of climate change, the Myanmar Climate Smart Agricultural 

Strategy (2015) highlights the need to promote the capacity of local agrometeorological stations [20]. Moreover, 

the Myanmar Climate Change Policy (2018) states that promoting access to climatic information, climate 

change knowledge, awareness, and training for all stakeholders, including decision-makers at all levels, is one 

of the national policies to enhance stakeholders’ perceptions of climate change [21]. To strengthen this, the 

Myanmar Climate Change Strategy (2018–2030) has pointed out that the availability and dissemination of 

appropriate and up-to-date information on climate change is essential for promoting public awareness and 

perceptions of climate change, in order to take effective actions to address climate related problems [4]. 

Additionally, in the Myanmar Climate Change Master Plan (2018–2030),  some of the government programs 

related to the accuracy of stakeholder perceptions are mentioned under action area 5: enhancing awareness and 

perception of stakeholders; as (i) establishing a climate change database management system at the Ministry of 

Agriculture, Livestock and Irrigation (MoALI), (2) providing training to the MoALI monitoring unit on 

approaches to improve climate risk analysis and related data monitoring and management, (3) capacity building 

to establish more agrometeorological stations to strengthen weather and climate information, and (4) training 

programs for farmers on using agrometeorological and climate information [22]. 

In line with these national policies, the findings of this study suggest the following two important policy 

implications to promote the accuracy of farmers’ perceptions of climate change. 

1. Locally specified weather information distribution. Local weather information is critically important 

for the accuracy of farmers’ perceptions. Currently, the Department of Agriculture (DOA) in each township 

carries out the daily recording of the rainfall and temperature in each township. These local weather data should 

be used in agricultural extension services, and shared with the respective farming community in the form of 

infographics that the farmer can easily understand. In addition, these daily rainfall and temperature recording 

systems should be transformed into local ago-metrological stations. Moreover, the township level Department 

of Meteorology and Hydrology should provide their meteorological station’s data to the inline departments, 

such as the DOA and local community, via the proper channels.  

2. Integration of weather information applications with agricultural training programs. Agricultural 

training programs enhance the accurate perceptions of farmers. Therefore, the context of agricultural training 

should include local weather information utilization whenever the training program is performed, such as the 

knowledge of local rainfall distribution patterns in the framing of local farmers’ crop calendars. The farmer 

should have knowledge of the application of weather information to their farming activities. 

Most importantly, in the cases of the local weather information distribution and conducting agricultural 

training programs, the targeted farmers should be those with less experience and lower education levels, and 

female farmers in general, as well as small-scale farmers in rainfed farm communities and large-scale farmers 

in irrigated farm households. 
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