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Abstract

This article studies an inter-temporal optimization problem using a criterion

which is a combination between Ramsey and Rawls criteria. A detailed de-

scription of the saving behaviour through time is provided. The optimization

problem under α−maximin criterion is also considered with optimal solution
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1. Introduction

In the classical work "Theory of justice", Rawls [22] poses the following question:

what would be the choice for the outcome of the society if one is cached behind a

veil of ignorance? In the total lack of information about the condition under which

he1 will be born, the economic agent should choose the maximization of the least

favoured person (or generation). For example, given a inter-temporal consumption

streams, his evaluation criterion of inter-temporal utilities streams should be

U (c0, c1, c2, . . . ) = inf
t≥0
u(ct ),

where u(ct ) is the utility of the t th generation.

Naturally, numerous attempts, for example Arrow [2] or Calvo [6] have been done

to study the evolution of the economy if this criterion is used to evaluate inter-

temporal welfare. Arrow [2] assumes constant produ­ivity. Calvo [6] studies the

maximin problem with uncertain technology. The result is pessimistic: if the initial

accumulation of capital is low, the economy remains in this low capital accumula-

tion situation forever.

The first part of this article studies the same question but with the di�erence that

we allow the possibility for a growth to infinity, by allowing for the case where the

produ­ivity of every level of capital accumulation is su�ciently high. We consider

a generalisation the set up of Arrow [2] by imposing only the concavity to the

produ­ion fun­ion. The result is the same: for any initial capital accumulation,

the best choice to maximize the least favoured generation is stay the initial state

forever. Equality is maximized at the cost of e�ciency2.

What happens then if we combine the famous Ramsey criterion, which evaluates

the inter-temporal utilities streams using a constant discount rate β ∈ (0,1), and

1We use male pronouns as a convenient default.
2See Fleurbaye & Tungodden [12] for an analysis about the dilemma where "one is forced to accept

principle and give full priority to the worst-o� even when a tiny gain to imposes a substantial sacri�ce on
arbitrarily many well-o� ".
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the Rawls criterion? Precisely, we can consider the evaluation criterion as follows:

U (c0, c1, c2, . . . ) =
∞∑
t=0

β tu(ct ) + a inf
t≥0
u(ct ),

with some positive parameter a, representing the importance of equality in the

choice of the economic agent3.

There are always sacrificed generations with the Ramsey criterion. If the level of

produ­ivity is high, the utility of the present generations will be lowered for a

rapid accumulation of capital, and on the contrary, the generations in the distant

future will be subje­ to the same decision. And if we combine Ramsey and Rawls

criteria, by considering not only e�ciency but also equality?

This is not the only motivation which urges us to study the Ramsey-Rawls combi-

nation problem.

The link between the results in decision theory and the time discounting literature

is strong. The reason for this tight link is clear: by normalizing the time discounting

system in order to obtain a probability and consider the set of time as the set of

states, the inter-temporal choice is equivalent to an a­ in the world of Savage [23].

For example while the theorem of Savage [23] poses an axiomatic base for mean

expe­ed utility, the works of Koopmans in [16] and [17] provide the conditions for

the inter-temporal representation in the later.

In recent decades, there is a vast literature which expands the world of Savage, by

extending the theory in order to encompass the behaviours which do not satisfy

Savage’s famous sure-thing principle. The classical work of Gilboa & Schmeidler

[14] formulates the notion of ambiguity aversion, representing the behaviour of an

economic agent as always maximizing the worst scenario among the set of di�erent

possible probabilities.

In an parallel line of thinking, the same consideration can also be made in the time

3A similar combination ( between a Ramsey part and an infinite part following the non-di­atorial
criterion) is studied by Asheim & Ekeland [4].
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discounting domain. Let ∆ be the set of time discounting systems possibles:

∆ =

{
π = (π0, π1, . . . ) such that πs > 0,∀s and

∞∑
s=0

πs = 1

}
.

The inter-temporal evaluation of the economic agent, while having only a vague

idea about the appropriate time discounting system to choose, but knowing that

the appropriate time discount system must belong to D , a subset of ∆, can be

represented as follows, in the same spirit of Gilboa & Schmeidler [14]:

U (c0, c1, c2, . . . ) = inf
π∈D

[
∞∑
t=0

πtu(ct )

]
.

Recently, Chambers & Echenique [8] established the axiomatic bases for the max-

imin criterion inter-temporal evaluation, with di�erent discount rates. The corre-

sponding set ∆ in the set up of Chamber & Echenique [8] is a convex hull of a set

of time discounting systems which are geometrical sequences4.

Imagine a situation where the ambiguity is total, for example our agent is cached

behind a veil of ignorance. Without any possible information to predi­ the future,

the set of all possible time discounting systems should be ∆ and the inter-temporal

evaluation becomes

U (c0, c1, c2, . . . ) = inf
π∈∆

[
∞∑
t=0

πtu(ct )

]
= inf
t≥0
u(ct ).

We can push further the question about the criterion with multiple possible time

discounting systems. Suppose the agent is not completely ignorant but always has

doubts about his choice of a time discounting system. Our agent has "opinion"

that the good constant discount rate to choose is β ∈ (0,1) and the corresponding

discount rates system is π∗t = (1 − β )β
t , for all t ≥ 05.

The word "opinion" is used in the same spirit as Kopylov [18], to define a state of

4Drugeon & al [10] prove that the solution of optimization problem under this criterion is mono-
tonic and time consistent.

5The term 1 − β is just a normalizing term, to ensures that
∑∞
t=0 π

∗
t = 1.
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mind that is less rigid than "belief". The economic agent thinks that π∗ is a good

choice, but there are reasons suggesting him that this conclusion could be hasty.

He should also take into account all other time discounting systems. Precisely, he

should consider the set D = (1 − λ)π∗ + λ∆, with some 0 ≤ λ ≤ 1.

This formulation is very similar to the λ−contamination literature, with the ax-

iomatic foundation established in Alon [1], and Kopylov [18]. The parameter λ

represents the lack of confidence in the choice π∗ of the agent. If λ = 1, the ambi-

guity is total. In contrast to this, if λ = 0, he believes without doubt that π∗ is the

good one.

Under the λ−contamination criterion, the inter-temporal evaluation becomes

U (c0, c1, c2, . . . ) = inf
π∈D

[
∞∑
t=0

πtu(ct )

]
= (1 − λ)

∞∑
t=0

(1 − β )β tu(ct ) + λ inf
π∈∆

[
∞∑
t=0

πtu(ct )

]
= (1 − λ)

∞∑
t=0

(1 − β )β tu(ct ) + λ inf
t≥0
u(ct ).

Taking a = λ
(1−λ)(1−β ) , this is equivalent to the criterion being represented as

U (c0, c1, c2, . . . ) =
∞∑
t=0

β tu(ct ) + a inf
t≥0
u(ct ).

One more time, we find the Ramsey-Rawls combination. The second part of this

work is devoted to the study of this problem.

We consider the following modi�ed optimization problem: if we accept to lower the

value of the Rawls part to ε , what is the best we can make for the Ramsey part?

By lowering the former, we have more room to approve the later. And what is

the optimal acceptable level ε? This modification allows us to study the classical

optimization problems with an additional constraint. We can hence apply the

usual techniques well-known in dynamic programming literature to circumvent the

di�culties being posed by the time-inconsistency of the criterion. The optimal ε

can be considered as the e�ciency-equality trade-o� cost.
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If the level of produ­ivity is high, the utility of the early dates (or generations) are

reduced as much as possible, for the sake of a rapid accumulation of capital. It

is worth to sacrifice even a litter bit the value of the equality criterion, in order to

have a better accumulation level of capital.

Once the capital accumulation level is su�ciently high, the economy follows a

Ramsey path which does not violate the equality constraints, and converges to a

steady state, or infinity, if such steady state does not exist. Thanks to the constraints

imposed by the equality criteria of Rawls, the di�erence of utility between early and

later dates is not too high.

In the case of low produ­ivity, the economy converges to a higher steady state than

the one of the Ramsey problem. The di�erence between the lowest weighted dates

(in distant future) and the highest weighted dates (in present) is diminished. The

optimal choice in the long run behaves as that at a steady state of some Ramsey

problem with a higher discount rate.

Moreover, if the pondering weight of the equality part is high, the optimal sequence

coincides with the solution of Rawls problem. For a high importance of the equality

part, the Ramsey part has no e�e­.

The Rawls criterion may be considered too severe, since it cares only about the

worst generation. This can be considered as a special case of the α−maximin

formulation in Arrow & Hurwicz [3], Ghirardato & al [13], or Chateauneuf & al [9],

balancing pessimism and optimism, which considers not only the worst case but

also the best case6. Their generalization consists the criterion which is a convex

combination of the worst and the best scenarios. Applying to the context of this

article, the criterion becomes as follows

U (c0, c1, . . . ) = α sup
t≥0

u(ct ) + (1 − α) inf
t≥0
u(ct ),

for some 0 ≤ α ≤ 1. The Rawls criterion is equivalent to the case α = 0. The

parameter α can be considered as the optimism degree of the economic agent.

6Bossert & al [5] also take into account the worst and the best cases, but their formulation is
much more di�erent with the ones treated in our article. In this article we do not have ambition
to make an exhaustive review of the ambiguity literature, which is very large. For a general review
about formulation under uncertainty, see Etner, Jeleva and Tallon [11].
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For small initial value, the economy has an infinite number of solutions. Every

optimal path flu­uates between two di�erent values determined by the fundamen-

tal parameters of the problem. For initial value high enough, there exists unique

solution and this path takes constant value from the date t = 1.

The article is organized as follows. Se­ion 2 considers the optimization under

Rawls criterion, with a general produ­ion fun­ion and utility fun­ion. Se­ion 3

analyses the Ramsey-Rawls problem. Using results of Se­ion 3, Se­ion 5 studies

the problem with linear produ­ion fun­ion and logarithmic utility fun­ion. The

proofs are given in Appendix.

2. Optimal solution under Rawlsian criterion

We consider the following optimization problem under the Rawls criterion:

max
[
inf
t≥0
u(ct )

]
,

under the constraint ct + kt+1 ≤ f (kt ) for all t , with k0 > 0 given.

Let Π(k0) be the set of feasible paths {kt }∞t=0: 0 ≤ kt+1 ≤ f (kt ) for any t . This set is

compa­ in the produ­ topology. For each feasible sequence k = (k0,k1,k2, . . . ) in

Π(k0), define

ν(k) = inf
t≥0
u
(
f (kt ) − kt+1

)
.

The upper semi-continuity of the Rawls criterion with respe­ to this topology re-

quires only the continuity of the utility fun­ion and the produ­ion fun­ion.

Lemma 2.1. Assume that the utlity fun­ion u and the produ­ion fun­ion f are contin-

uous:

i) The fun­ion ν is upper semi-continuous for the produ­ topology.
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ii) There exists k∗ ∈ Π(k0) such that

ν
(
k∗

)
= max
k∈Π(k0)

ν
(
k
)
.

For the description of the solution of Rawls problem, we add the concavity of

produ­ion fun­ion f , and the existence of a non-trivial feasible sequence.

Assumption A1. The utility fun­ion u is stri­ly concave, increasing and satisfies

Inada condition. The produ­ion fun­ion f is concave, stri­ly increasing and

satisfies f ′(0) > 17.

Denote by k the solution to f ′(k ) = 1, which maximizes f (k ) − k . In the case

f ′(k ) > 1 for any k ≥ 0, let k = +∞.

Under the continuity of utility fun­ion and the concavity of produ­ion fun­ion,

we can prove that for k0 smaller than k , the optimal choice for is to remain in the

status quo. For k0 bigger than k , there exists an infinite number of optimal paths,

and the optimal value is u
(
f (k ) − k

)
.

Proposition 2.1. i) Consider the case 0 ≤ k0 ≤ k . The problem has a unique solution

k∗ = (k0,k0, . . .) and

max
k∈Π(k0)

ν(k) = u
(
f (k0) − k0

)
.

ii) Consider the case k is �nite and k0 ≥ k . The problem has an in�nite number of

solutions and

max
k∈Π(k0)

ν(k) = u
(
f (k ) − k

)
.

From now on, for the sake of simplicity, let ν̂(k0) be the best value possible for the

Rawls criteria with initial state k0:

ν̂(k0) = max
k∈Π(k0)

ν
(
k
)
.

7Otherwise every feasible sequence converges to zero, and the problem becomes trivial.
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3. The dynamics under Ramsey-Rawls criterion

3.1 Ramsey-Rawls problem

We consider in this se­ion the criterion which a a convex combination of the well-

known criteria Ramsey and Rawls:

U (c0, c1, . . . ) =
∞∑
t=0

β tu(ct ) + a inf
t≥0
u(ct ),

where a is a positive constant. We will use the term "Ramsey part" to denote the

sum
∑∞
t=0 β

tu(ct ) and "Rawls part" to denote inft≥0 u(ct ).

Consider the following optimization problem (P ):

V (k0) = sup

[
∞∑
t=0

β tu(ct ) + a inf
t≥0
u(ct )

]
s.c ct + kt+1 ≤ f (kt ) for any t ≥ 0,

k0 ≥ 0 is given.

From now on, for the sake of simplicity, we let ct = f (kt ) − kt+1, for any t and

feasible set {kt }∞t=0.

In Se­ion 2, we know that the Rawls part, ν(k) = inft≥0 u
(
f (kt ) − kt+1

)
is upper

semi-continuous in respe­ to the produ­ topology. It is well-known in the liter-

ature that under suitable conditions, the Ramsey part
∑∞
t=0 β

tu(ct ) is also upper

semi-continuous. In order to simplify the exposition, we assume this upper semi-

continuity property. Curious readers can refer to the work of Le Van & Morhaim

[15] for the details of the conditions ensuring this property, with the most important

one being the tail-insensitivity condition.

Assumption A2. Assume that for any feasible sequence {kt }∞t=0, the fun­ion∑∞
t=0 β

tu(ct ) is determined and satisfies upper semi-continuity with respe­ to the

produ­ topology.

Under this assumption, the Ramsey part is also upper semi-continuous, and hence

10



the same property is satisfied for the fun­ion U . Furthermore the problem (P )

always has optimal solution and we can write:

V (k0) = max
k∈Π(k0)

[
∞∑
t=0

β tu(ct ) + a inf
t≥0
u(ct )

]
.

The stri­ly concavity of utility fun­ion u ensures the uniqueness of the optimal

solution.

3.2 Ramsey problem

In this subse­ion, we evoke some well-known results in the literature of the Ramsey

model. Under Assumption A2, the Ramsey problem always has a solution. The

stri­ concavity of the utility fun­ion u implies the uniqueness. Denote by v the

value fun­ion and {k̂t }∞t=0 the optimal solution of the Ramsey problem:

v (k0) = max
∞∑
t=0

β tu(ct )

s.c ct + kt+1 ≤ f (kt ) for any t ≥ 0,

k0 is given.

By the uniqueness of optimal solution, and the well-known result that v is solution

to an fun­ional Bellman equation, there exists an optimal policy fun­ion σ which

is stri­ly increasing such that k̂t+1 = σ(k̂t ), for any t .

We recall here an important feature of the Ramsey problem. When the produ­ivity

is high (f ′(k0) > 1
β ), the economic agent prefers to sacrifice the welfare of the early

dates (or early generations) for a rapid accumulation of capital. The economy

saves. The consumption sequence is increasing in this case.

In contrast to this, when the produ­ivity is low (f ′(k0) < 1
β ), the economy chooses

to dissaving. The impatience imposed by the discount rate implies the welfare sac-

rifices of dates (ou generations) in a distant future. In this set up, the consumption

sequence is decreasing.
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Let k s be a solution to

f ′(k ) =
1
β
.

If the solution is not unique, we can take any one in the set of solutions. If f ′(x) > 1
β

for all x ≥ 0, let k s = ∞, and if f ′(x) ≤ 1
β for all x ≥ 0, let k s = 0.

Lemma 3.1. i) If k0 ≤ k s , then the consumption sequence {ĉt }∞t=0 and capital accumu-

lation {k̂t }∞t=0 sequence are increasing, and converge respe­ively to c
s = f (k s ) − k s

and k s . As a consequence of this,

ν
(
k̂
)
= u(ĉ0).

ii) If k0 ≥ k s , the consumption sequence {ĉt }∞t=0 and capital accumulation {k̂t }
∞
t=0 se-

quence are decreasing, and converge respe­ively to c s = f (k s ) − k s and k s . As a

consequence of this,

ν
(
k̂
)
= u

(
f (k s ) − k s

)
.

3.3 Ramsey-modified problem

For ε ≥ 0, we first consider the following intermediary problem (P ε ):

max
∞∑
t=0

β tu(ct )

s.c ct + kt+1 ≤ f (kt ),∀ t ≥ 0,

u(ct ) ≥ ν̂(k0) − ε,∀ t ≥ 0,

k0 is given.

The intuition for studying this problem runs as follows. We already know that

the maximum value possible for the Rawls part is ν̂(k0). Naturally, the following

question rises: if we accept a lower value of the Rawls part up to ε , what is the

best improvement we can obtain for the Ramsey part? And which is the optimal

acceptable sacrifice level ε? This optimal value represents the cost of the trade-o�

12



between e�ciency and equality.

In order to respond to these questions, we study the problem (P ε ). The Proposition

3.1 states that the optimal solution of (P ) is also the optimal solution of (P ε ), for

some optimal value ε .

Proposition 3.1. For any k0 ≥ 0,

V (k0) = max
ε≥0

[
W (ε ) + a (ν̂(k0) − ε )

]
.

By the Proposition 3.1, in order to understand the behavior of the optimal solution

of initial problem (P ), we study the behavior of the optimal solution of problems

(P ε ), with ε ≥ 0.

For the sake of simplicity, from now on, we will use the term "equality constraint"

to denote the constraint u(ct ) ≥ ν̂(k0)−ε . LetW (ε ) be the value of the problem (P ε )

and {c εt ,k
ε
t+1}

∞
t=0 be its optimal solution. By the stri­ concavity of u, this sequence

is unique.

It is obvious that, if ε is su�ciently big, the solution of Ramsey problem satisfied

also the equality constraints, and solving problem (P ε ) becomes trivial task. Let ε̃

be the critical value for this property: if we accept to lower the Rawls part to ε̃ , the

solution of Ramsey problem satisfies also the constraint of the Ramsey-modified

problem, and becomes solution of the later one.

Define

ε̃ =


u
(
f (k0) − k0

)
− u

(
f (k0) − σ(k0)

)
if 0 ≤ k0 ≤ k s ,

u
(
f (k0) − k0

)
− u

(
f (k s ) − k s

)
if k s ≤ k0 ≤ k

u
(
f (k ) − k

)
− u

(
f (k s ) − k s

)
if k0 ≥ k .

The proof of Lemma 3.2 is easy, based on the fa­ that the solution of Ramsey

problem satisfies the constraints of Ramsey-modified one for su�ciently high ε .

Lemma 3.2. Assume that ε ≥ ε̃ .

i) The optimal solution of problem (P ε ) coincides with the solution of Ramsey problem.

13



ii) W (ε ) =W (ε̃ ) = v (k0).

If ε = 0, by Proposition 2.1, the optimal solution is (k0,k0, . . . ). We consider now

the interesting case, where 0 < ε ≤ ε̃ .

If 0 ≤ k0 ≤ k s , the equality constraints are binding in the early dates and the

optimal solution behaves as a solution of Ramsey problem when the accumulation

of capital reaches a su�ciently high level.

If k0 ≥ k s , the equality constraints are binding from some date T su�ciently big

and in the long run, every date (or generation) has the same utility level, which is

equal exa­ly the lowest level acceptable.

Proposition 3.2. i) Consider the case 0 < k0 < k s . If 0 < ε ≤ ε̃ , there exists T such

that:

a) For 0 ≤ t ≤ T , u(c εt ) = ν̂(k0) − ε .

b) For t ≥ T + 1, u(c εt ) > ν̂(k0) − ε .

c) The sequence {k εt }
∞
t=T +1 is the solution of Ramsey problem with initial state k

ε
T +1.

ii) Consider the case k0 > k s . If 0 < ε ≤ ε̃ , there exists T such that

a) For 0 ≤ t ≤ T , u(c εt ) > ν̂(k0) − ε .

b) For t ≥ T + 1, u(c εt ) = ν̂(k0) − ε .

For the case k0 ≥ k s , define k̃ as the solution to

u
(
f (k̃ ) − k̃

)
= ν̂(k0) − ε .

It is easy to verify that the k εt = k̃ for T su�ciently high. Let β̃ be the discount

rate satisfying

f ′(k̃ ) =
1
β̃
.

By Proposition 2.1 and the choice of ε̃ , we have k s < k̃ < k . Hence β̃ > β . In

the long run, the optimal solution for the case k0 ≥ k s behaves as a solution of a

Ramsey problem with discount rate β̃ , greater than β .
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Lemma 3.3 is dire­ consequence of Proposition 3.2. The fun­ion W is stri­ly

concave in respe­ to ε belonging to [0, ε̃ ]. This concavity implies the existence of

the right derivative ofW at 0 and the left derivative ofW at ε̃ . In Se­ion 3.4, these

two values will play the role of critical thresholds for the equality parameter a. The

behavior of the optimal solution depends strongly in the relative position of a and

W ′(0),W ′
−(ε̃ ). The details will be presented in subse­ion 3.4.

For instance, we give some results aboutW ′(0) andW ′
−(ε̃ ).

Lemma 3.3. i) For any k0, the fun­ionW is stri­ly concave on [0, ε̃ ].

ii) If 0 ≤ k0 < k s , thenW ′(0) = +∞ andW ′(ε̃ ) = 0.

iii) If k0 > k s , thenW ′(0) < +∞.

3.4 Optimal solution of Ramsey-Rawls problem

Denote by ε∗ the optimal level in Proposition 3.1:

ε∗ = argmax
ε≥0

[W (ε ) + a (ν̂(k0) − ε )] .

Let {k ∗t }
∞
t=0 be the corresponding optimal solution of the Ramsey-modi�ed problem.

By Proposition 3.1, the sequence {k ∗t }
∞
t=0 is also the solution of Ramsey-Rawls prob-

lem.

In the case the produ­ivity is high (f ′(k0) > 1
β ), the utility of the early dates (or

generations) are lowered as much as possible, for the sake of a rapid accumulation

of capital. It is worth to sacrifice even a litter bit the value of the equality part, in

order to have a better accumulation level of capital.

Once the capital accumulation level is su�ciently high, the economy follows a

Ramsey path which does not violate the equality constraints, and converges to the

steady state k s . Thanks to the constraints imposed by the equality criterion of

Rawls, the di�erence in utility between early dates and the later dates in distant

future is not too high. This di�erence depends negatively on the equality parameter

a, which imposes a trade-o� between equality and the speed of convergence to the

steady state.
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Proposition 3.3. Consider the case 0 < k0 ≤ k s . For any a > 0, we have 0 < ε∗ < ε̃

and there exists T such that

i) For 0 ≤ t ≤ T , u(c ∗t ) = u
(
f (k0) − k0

)
− ε∗.

ii) For t ≥ T + 1, u(c ∗t ) > u
(
f (k0) − k0

)
− ε∗.

iii) The sequence {k ∗t }
∞
t=T +1 is the solution of Ramsey problem with initial state k

∗
T +1.

In the case of low produ­ivity (f ′(k0) < 1
β ), the equality part (if su�ciently high)

causes the economy to converge to a higher steady state than the one of Ramsey

problem. The di�erence between the lowest dates (in distant future) and the highest

dates (in present) is diminished. The optimal choice in long term behaves as at a

steady state of some Ramsey problem with a value of discount rate β̃ higher than

β .

Moreover, there exists a threshold for equality parameter a. Beyond this threshold,

the optimal sequence remains the same and every date (or generations) enjoys the

same utility level.

If the equality parameter a is too low, there is no change in the behavior of the

economy, comparing with the Ramsey problem.

Proposition 3.4. Consider the case k0 ≥ k s .

i) ForW ′(ε̃ ) < a <W ′(0), we have 0 < ε∗ < ε̃ and there exists T such that:

a) For 0 ≤ t ≤ T , u(c ∗t ) > ν̂(k0) − ε∗.

b) For t ≥ T + 1, u(c ∗t ) = ν̂(k0) − ε
∗.

ii) For a ≥W ′(0), ε∗ = 0 and for any t , k ∗t = k0.

iii) For 0 ≤ a ≤W ′(ε̃ ), we have ε∗ = ε̃ and the optimal solution of problem (P ) coincides

with the solution of the Ramsey problem with initial state k0.
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4. Optimisation under α−maximin criterion

4.1 The α−maximin problem and the sup -modified problem

Consider the following problem,

V(k0) = sup
[
α sup
t≥0

u(ct ) + (1 − α) inf
t≥0
u(ct )

]
,

s.c. ct + kt+1 ≤ f (kt ) for all t ≥ 0,

k0 is given.

Observe that the supremum part is not upper semi-continuous with respe­ to the

produ­ion topology 8.

The idea is similar to the one the previous se­ion. In order to determine the

supremum value of the optimisation problem, consider the following sup-modified

problem: For ε > 0, define

W(ε ) = max
[
sup
t≥0

u(ct )
]
,

s.c ct + kt+1 ≤ f (kt ), for all t ≥ 0,

ct ≥ ν̂(k0) − ε, for all t ≥ 0.

Let Πε (k0) be the set of feasible paths of this problem.

If we accept to reduce the value of the in�mum part to ε , we have more room to

optimize the other part, and what is the best we can do? The resolution of the

Denote by Πε (k0) be the set of feasible paths of the sup-modified problem. problem

will help us the response for the initial one, as stated in the Lemma 4.1.

8For example, consider a set of feasible sequence {knt }
∞
t=0 such that for any 0 ≤ t ≤ n, cnt =

f (knt ) − k
n
t+1 = 0, and for t ≥ n + 1, cnt = f (k

n
t ) − k

n
t+1 = c

∗ > 0. While in the produ­ topology, the
sequence cn = {cnt }

∞
t=0 converges to (0,0, . . . ), the limit of u(cnt ) is

lim
n→∞

sup
t ≥0

u(cnt ) = u(c
∗) > u(0).
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Lemma 4.1. We have

V(k0) = max
ε≥0
[αW(ε ) + (1 − α) (ν̂(k0) − ε )] .

4.2 Solution of the sup -modified problem

With Lemma 4.1, we solve the modified problem, with some ε > 0. Let x ε be the

solution in [0,k0] to the equation

u
(
f (x) − x

)
= u

(
f (k0) − k0

)
− ε .

If ε is big such that u
(
f (x) − x

)
≥ u

(
f (k0) − k0

)
− ε for any 0 ≤ x ≤ k0, let x ε = 0.

Similarly, let x ε be the solution in [k0,+∞) solution to the same equation. If

u
(
f (x) − x

)
≥ u

(
f (k0) − k0

)
− ε for any x ≥ k0, let x

ε = +∞.

For the case 0 ≤ k0 ≤ k , there exist an infinite number of optimal paths, and every

optimal path flu­uates between x ε and x ε .

Proposition 4.1. Consider the case 0 ≤ k0 ≤ k .

i) For any ε ≥ 0,

W(ε ) = u
(
f (x ε ) − x ε

)
.

ii) For any optimal path {kt }∞t=0, we have

x ε < kt < x
ε .

Moreover,

lim inf
t→∞

kt = x ε,

lim sup
t→∞

kt = x
ε .

The case k is finite and k0 ≥ k deserves a slightly change in the treatment. The

optimal value does not depend on k0 and we have ν̂(k0) = u
(
f (k ) − k

)
for any
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k0 ≥ k .

If for any 0 ≤ x ≤ k , u
(
f (x) − x

)
≥ u

(
f (k ) − k

)
− ε , let x˜ε = 0. Otherwise, let x˜ε

be the unique solution in [0,k ] to

u
(
f (x) − x

)
= u

(
f (k ) − k

)
− ε .

Since k is finite, we have f ′(∞) < 1, and there is unique x̃ ε in [k,+∞) solution to

u
(
f (x) − x

)
= u

(
f (k ) − k

)
− ε .

Note that contrary to the case k0 ≤ k , in this case the values x˜ε and x̃ ε are inde-

pendent with k0. If k0 ≤ x̃ ε , then there exists an infinite number of solutions, and

every optimal path flu­uates between x˜ε and x̃ ε .
Only for the case k0 is su�ciently big, there exists unique solution and this solution

is constant from the date t = 1.

Proposition 4.2. Consier the case k0 ≥ k .

i) If k ≤ k0 ≤ x̃ ε , then

W(ε ) = u
(
f (x̃ ε ) − x˜ε ) .

Moreover, there is an in�nite number of solutions. Every optimal paths {kt }∞t=0 satis�es

x˜ε < kt < x̃ ε ,
and

lim inf
t→∞

kt = x˜ε,
lim sup
t→∞

kt = x̃ ε .

ii) If k0 ≥ x̃ ε , then

W(ε ) = u
(
f (k0) − x˜ε ) .
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4.3 Optimal solution for the α−maximin problem

With Lemma 4.1, Propositions 4.1 and 4.2, we can solve the α−maximin problem.

For low value of k0, there exists an infinite number of solutions and the every

optimal path flu­uates between two di�erent level. For high value of k0, there

exists unique solution, and this solution is constant from the date t = 1.

Proposition 4.3. For any k0 ≥ 0, there exists ε∗ ≥ 0 such that

V(k0) = αW (ε
∗) + (1 − α) (ν̂(k0) − ε∗) .

Moreover, there exists k0 ≤ k0 such that

i) For 0 ≤ k0 ≤ k0, every optimal path {kt }
∞
t=0 �u­uates between two di�erent values

and never converges:

lim inf
t→∞

kt < lim sup
t→∞

kt .

ii) For k0 ≥ k0, there exists unique solution and this solution is constant from the date

t = 1.

5. Constant productivity and logarithmic

utility function

In this se­ion, we provide some computations for the case the produ­ivity is

constant (f (k ) = Ak ) and the utility fun­ion is logarithmic u(c ) = ln c . The optimal

policy fun­ion is9

σ(k ) = βAk .

Assume that A > 1. Hence k = ∞.

9See Stokey & Lucas, with Prescott [21].

20



By indu­ion, one has

k̂t = (βA)
t k0,

ĉt = A(1 − β ) (βA)t k0.

The value fun­ion is defined as

v (k0) =
∞∑
t=0

β t ln ct

=
lnA + ln(1 − β ) + ln k0

1 − β
+ (ln β + lnA)

∞∑
t=0

t β t .

1. Consider the case A > 1
β . For this case, k

s = ∞. Hence for any k0 we have

0 < k0 < k s . By Lemma 3.3,W ′(0) = ∞ andW ′(ε̃ ) = 0. For any a there is

an optimal sacrifice level ε∗ satisfyingW ′(ε∗) = a. There is T such that for

0 ≤ t ≤ T ,

u
(
f (k ∗t ) − k

∗
t+1

)
= u

(
f (k0) − k0

)
− ε,

which is equivalent to

ln
(
Ak ∗t − k

∗
t+1

)
= ln(A − 1) + ln k0 − ε .

For 0 ≤ t ≤ T ,

k ∗t+1 = Ak
∗
t −
(A − 1)k0

e ε
.

The value T is the smallest positive integer such that

u
(
f (k ∗T +1) − σ(k

∗
T +1)

)
≥ u

(
f (k0) − k0

)
− ε,

which is equivalent to

ln
(
Ak ∗T +1 − βAk

∗
T +1

)
≥ ln (Ak0 − k0) − ε .

21



This is equivalent to

lnA + ln(1 − β ) + ln k ∗T +1 ≥ ln(A − 1) + ln k0 − ε .

The value T is the first integer number satisfying

k ∗T +1 ≥
A − 1
A(1 − β )

×
k0
e ε
.

The sequence {k ∗T +t }
∞
t=0 is the solution of Ramsey problem with initial state

k ∗T +1.

2. Consider the case A < 1
β . In this case, k s = 0 and every solution of Ramsey

problem converges to zero. The critical value ε̃ is then

ε̃ = u
(
f (k0) − k0

)
− u(0)

= ∞.

We will then determineW ′(0). For ε close to zero, the critical time T from

which u(c εt ) = u
(
f (k0) − k0

)
− ε is T = 1.

The capital level k ε1 is solution to

u
(
f (k1) − k1

)
= u

(
f (k0) − k0

)
− ε .

This implies

ln
(
Ak ε1 − k

ε
1

)
= ln(A − 1) + ln k0 − ε .

Hence

k ε1 =
k0
e ε
.

We have

W (ε ) = u
(
f (k0) − k

ε
1

)
+

β

1 − β
(
u

(
f (k0) − k0

)
− ε

)
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= ln
(
Ak0 −

k0
e ε

)
+

β

1 − β
(ln (Ak0 − k0) − ε )

= ln
(
A −

1
e ε

)
+

β

1 − β
(ln(A − 1) + ln k0 − ε ) .

Hence for ε close to zero,

W ′(ε ) =
e−ε

A − e−ε
−

β

1 − β
.

Let ε converges to zero, we get

W ′(0) =
1 − βA

(A − 1)(1 − β )
.

We then have the following Proposition. The equality parameter has strong

e�e­ if it is su�ciently high. Otherwise, there is no di�erence between the

behaviour following Ramsey-Rawls criterion and the one following Rawls cri-

terion.

Proposition 5.1. i) For a ≤ 1−βA
(A−1)(1−β ) , we have ε

∗ ≥ 0, and there existsT such

that:

a) For 0 ≤ t ≤ T , u(c ∗t ) > ln(A − 1) + ln k0 − ε∗.

b) For t ≥ T + 1, u(c ∗t ) = ln(A − 1) + ln k0 − ε∗.

ii) For a ≥ 1−βA
(A−1)(1−β ) , ε

∗ = 0. The optimal path is constant: k ∗t = k0 for any

t ≥ 0.

6. Conclusion

In this article we establish the solution of saving problems under Ramsey-Rawls and

maximin criteria. The optimisation of the inf part leads to a status-quo situation. In

order to circumvent the di�culties created by the inf part, we study the modified

problems, by considering what is the best choice to do if we accept to lower the

value of the inf part to some ε . Lowering this part gives us rooms to improve the

value of the Ramsey part or the sup part.
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We must do attention that though the modified problems have time-consistant solu-

tions (for each given ε), it is not the same for the original problems. The reason is

that the optimal value of ε depends on the initial state k0. Moreover, the Ramsey-

Rawls and maximin criteria are not consistent in time. Without no commitment

between dates, or generations, it is possible that the in the future the economic

agent desires to revise the past decision.

As a response to this time-inconsistency challenge, in our opinion, an approach

by considering the markovian rules, as presented in the seminar work of Phelps

& Pollack [20] may be a good idea. Phelps & Pollack [20] consider the existence

and properties of linear stationary markov equilibria in the context of quasi-hyperbolic

discounting. For general equilibria, this question becomes di�cult and complicated,

even in the case of constant produ­ivity, as pointed out in the work of Krusell &

Smith [19]. For a review of this literature, and an excellent analysis about saving

and dissaving under quasi-hyperbolic discounting criterion, see Cao & Werming [7].

A. Proof of Lemma 2.1

(i ) Consider the sequence of feasible paths kn which converges to k in the the

produ­ topology.

Fix any ε > 0. By the definition of ν(k), there existsT such that u(cT ) < inft≥0 u(ct )+

ε .

By the convergence of the sequence {kn}∞n=0 in produ­ topology, we get limn→∞ cnT =

cT .

Hence for n su�cient large, it is true that u(cnT ) < u(cT ) + ε . This implies

inf
t≥0
u(cnt ) ≤ u(c

n
T )

< u(cT ) + ε

< inf
t≥0
u(ct ) + 2ε .
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Thus

lim sup
n→∞

ν(kn) < ν(k) + 2ε .

Let ε converges to zero, we get the upper semi-continuity of ν.

(ii ) The part (i ) is a consequence of the upper semi-continuity of ν and the com-

pa­ness of Π(k0) in respe­ to produ­ topology.

B. Proof of Proposition 2.1

(i ) Denote k∗ as a solution to the problem. For any t ≥ 0,

u
(
f (k ∗t ) − f (k

∗
t+1)

)
≥ ν(k∗)

≥ ν(k0,k0, . . . )

= u
(
f (k0) − k0

)
.

We then have f (k0) − k ∗1 ≥ f (k0) − k0, which is equivalent to k ∗1 ≤ k0.

Suppose that k ∗t ≤ k0 for some t . Then

k0 − k
∗
t+1 ≥ f (k0) − f (k

∗
t )

≥ f ′(k0)(k0 − k
∗
t )

≥ k0 − k
∗
t ,

which implies k ∗t+ ≤ k
∗
t . By indu­ion, k0 ≥ k ∗t for all t . Furthermore, the sequence

(k ∗t ) is decreasing and then converges to k̂ ≤ k0.

From the continuity of f , we have that f (k̂ ) − k̂ ≥ f (k0) − k0. But the fun­ion

f (x) − x is increasing in [0,k ], thus, f (k̂ ) − k̂ ≤ f (k0) − k0, then k̂ = k0, and k ∗t = k0

for all t , because k0 ≥ k ∗t and the sequence {k ∗t }
∞
t=0 is decreasing to k0.

(ii ) First, consider the sequence k = (k0,x,x, . . .) which is feasible. We have

max
k∈Π(k0)

ν (k) ≥ f (k ) − k .
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Let ks be an optimal solution. Since for all t ≥ 0, f (k ∗t ) − k
∗
t+1 ≥ f (k ) − k ,

k − k ∗t+1 ≥ f (k ) − f (k
∗
t )

≥ f ′(k )(k − k ∗t )

= k − k ∗t .

This implies k ∗t+1 ≤ k
∗
t for any t . The sequence ks is decreasing and converges to

some k̂ . By the continuity of f , f (k̂ ) − k̂ ≥ f (k ) − k . Since k maximizes f (x) − x ,

this implies k̂ = k . Hence

ν̂(k0) = f (k ) − k .

Since k0 > x , by indu­ion, we can constru­ a sequence k which satisfies: for all t ,

k < kt+1 < f (kt )− f (x)+k . With this sequence, we have f (kt )−kt+1 > f (k )−k , and

kt+1 < kt , since f (kt ) − kt < f (k ) − k . So the sequence {kt }∞t=0 converges to k and

ν̂(k0) = f (k ) − k . We have an infinity number of sequences satisfying this property.

The problem has an infinite number of solutions.

C. Proof of Proposition 3.1

Recall that for 0 ≤ k0 ≤ k , for any feasible sequence {kt }∞t=0,

inf
t≥0
u
(
f (kt ) − kt+1

)
≤ ν̂(k0).

Let {k ∗t }
∞
t=0 be the optimal solution of problem (P ). Define

ε∗ = ν̂(k0) − inf
t≥0
u(c ∗t ).

We have

V (k0) =
∞∑
t=0

β tu(c ∗t ) + a inf
t≥0
u(c ∗t )
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=

∞∑
t=0

β tu(c ∗t ) + a (ν̂(k0) − ε
∗)

≤W (ε∗) + a (ν̂(k0) − ε
∗) .

Conversely, for any ε ≥ 0,

W (ε ) + a (ν̂(k0) − ε ) =
∞∑
t=0

β tu
(
c εt

)
+ a (ν̂(k0) − ε )

≤

∞∑
t=0

β tu
(
c εt

)
+ a inf

t≥0
u

(
c εt

)
≤ V (k0).

The proof is completed.

D. Proof of Proposition 3.2

ObviouslyW is increasing. The concavity ofW comes from the concavity of utility

fun­ion u and produ­ion fun­ion f .

We consider first the case 0 ≤ k0 ≤ k . For each ε > 0, let x∗(ε ) be the smallest

x ≥ k0 such that

u
(
f (x) − x

)
≥ u

(
f (k0) − k0

)
− ε .

If the stri­ inequality is satisfied for any x ≥ k0, let x∗(ε ) = ∞.

(i ) We consider the case

f ′(k0) >
1
β
.

First, observe that k s > 0 and k0 < k s .

Since the fun­ion x − σ(x) is stri­ly increasing in (k0,k s ), either x∗(ε ) = ∞, either

x∗ is finite and 0 < x∗(ε ) < k s . Indeed, it is obvious that k s = ∞ implies x∗ = ∞.

Suppose that k s is finite. Then k s = σ(k s ) and hence u
(
f (k s ) − σ(k s )

)
< u

(
f (k0) −

k0
)
− ε . This implies x∗ is finite and k0 < x∗ < k s .
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We will prove the following claim: for any t , k εt < k s . This is true if for any t ,

k εt < x
∗(ε ). Consider the case there exists T satisfying: k εt < x

∗(ε ) ≤ k εt+1.

We have

u
(
f (k εt ) − k

ε
t+1

)
≥ u

(
f (k0) − k0

)
− ε

> u
(
f (k s ) − k s

)
.

Then k εt+1 < k
s .

Let {ǩt }∞t=T +1 be the solution of Ramsey problem with initial state k εt+1. Since

k εt+1 < k
s , ǩt < k s for any t ≥ T + 1 and

inf
t≥T +1

u(čt ) = u
(
f (k εt+1) − σ(k

ε
t+1)

)
≥ u

(
f (x∗(ε )) − σ(x∗(ε ))

)
= u

(
f (k0) − k0

)
− ε .

Hence the sequence {k0,k ε1, . . . ,k
ε
t ,k

ε
t+1, ǩT +2, ǩT +2, . . . } is the optimal solution for

the problem (P ε ), or ǩt = k εt for any t ≥ T + 1. The prove that k εt < k
s for any t is

completed.

Consider the Lagrangian:

L=

∞∑
t=0

β tu(ct ) −
∞∑
t=0

β tλt
[
ct + kt+1 − f (kt )

]
−

∞∑
t=0

β t µt
[
u
(
f (k0) − k0

)
− ε − u(ct )

]
.

By the Inada condition of u, at optimal the consumption and capital level are

stri­ly positive. The Lagrangian parameters for these constraints are hence zero.

For any t :

(1 + µt )u′(c εt ) = λt ,

λt = βλt+1 f
′(k εt+1).
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This implies for any t :

(1 + µt )u′(c εt ) = β (1 + µt+1)u
′(c εt+1)f

′(k εt+1)

≥ β f ′(k εt+1)u
′(c εt+1).

Suppose that u
(
c εT

)
> u

(
f (k0) − k0

)
− ε . The constraint does not bind and hence

µT = 0.

Since f ′(k εT +1) ≥
1
β , then u

′(c εT ) ≥ u
′(c εT +1), and hence c εt+1 ≥ c

ε
T . The (T + 1)th

constraint also does not bind: u
(
c εT +1

)
> u

(
f (k0) − k0

)
− ε .

By indu­ion, for any t ≥ T +1, u
(
c εt

)
> u

(
f (k0)−k0

)
− ε and µt = 0. The sequence

{(c εt ,k
ε
t+1)}

∞
t=T is increasing and satisfies Euler equations. Hence {k εt }

∞
t=T is the

solution for Ramsey problem with initial state k εT . We also have limt→∞ k εt = k
s .

(ii ) Consider the case

1 < f ′(k0) <
1
β
.

Necessary condition for this is 0 ≤ k s < ∞. Recall that we are working in the case

k0 ≤ k . We first prove that k εt > k
s for any t ≥ 0. Assume that there exists T such

that k εT ≤ k
s . We have

u
(
f (k εT ) − k

ε
T +1

)
≥ ν̂(k0) − ε

= u
(
f (k0) − k0

)
− ε

> u
(
f (k0) − k0

)
− ε̃

= u
(
f (k s ) − k s

)
,

which implies k εT +1 < k εT < k s , since f (x) − x is stri­ly increasing in (0,k s ). By

indu­ion, the sequence {k εT +t }
∞
t=0 is decreasing and converges to k < k s . Taking

the limit, we get

u
(
f (k s ) − k s

)
> u

(
f (k ) − σ(k )

)
≥ ν̂(k0) − ε
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≥ u
(
f (k0) − k0

)
− ε

> u
(
f (k s ) − k s

)
,

a contradi­ion.

Once the property that k εt > k s for any t ≥ 0 established, we re-utilise the La-

grangian:

L=

∞∑
t=0

β tu(ct ) −
∞∑
t=0

β tλt
[
ct + kt+1 − f (kt )

]
−

∞∑
t=0

β t µt
[
u
(
f (k0) − k0

)
− ε − u(ct )

]
.

For any t :

(1 + µt )u′(c εt ) = λt ,

λt = βλ t+1 f
′(k εt+1).

This implies for any t :

u′(c εt ) ≤ (1 + µt )u
′(c εt )

= β (1 + µt+1)u′(c εt+1)f
′(k εt+1).

If u
(
c εT

)
> u

(
f (k0) − k0

)
− ε , then the constraint does not bind, and µT = 0. Since

f (k εT ) <
1
β , we get u′(c εT −1) < u′(c εT ), which implies c εT −1 > c εT , with the dire­

consequence

u
(
c εT −1

)
> u

(
f (k0) − k0

)
− ε .

By indu­ion, we get for any 0 ≤ t ≤ T ,

u
(
c εt

)
> u

(
f (k0) − k0

)
− ε .

If this property is ensured for any t ≥ 0, the the sequence {k εt }
∞
t=0 satisfies Euler

equations and transversality condition, hence it is the optimal solution for Ramsey
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problem and converges to k s : a contradi­ion, since

u
(
f (k s ) − k s

)
< u

(
f (k0) − k0

)
− ε .

Hence there exists T such that for any t ≥ T ,

u
(
c εT

)
= u

(
f (k0) − k0

)
− ε .

Obviously, for any t ≥ 0, we have

u
(
c εT +t

)
= u

(
f (k0) − k0

)
− ε,

otherwise using the same arguments in the indu­ion, we get u
(
c εT

)
> u

(
f (k0) −

k0
)
− ε , a contradi­ion.

For the lase case f ′(k0) ≤ 1, or k0 ≥ k , we use the same arguments as for the case

1 ≤ f ′(k0) ≤ 1
β , with the observation that the value of ν̂(k0) is u

(
f (k ) − k

)
and

f (k ) − k ≥ f (k s ) − k s .

E. Proof of Lemma 3.3

(i ) We prove thatW ′(0) = +∞. Consider T (ε ) in the proof of Proposition 3.2.

For any 0 ≤ t ≤ T (ε ):

ε = u
(
f (k0) − k0

)
− u

(
f (k εt ) − k

ε
t+1

)
≥ u′

(
f (k0) − k0

) (
f (k0) − k0 − f (k

ε
t ) + k

ε
t+1

)
≥ u′

(
f (k0) − σ(k0)

) (
f ′(k0)(k0 − k

ε
t ) + k

ε
t+1 − k0

)
.

This implies

k εt+1 − k0 ≤
ε

u′
(
f (k0) − k0

) + f ′(k0)(k εt − k0).
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By indu­ion, we get for any t ≥ 0,

k εt+1 − k0 ≤

[
f ′(k0)

] t+1
− 1

f ′(k0) − 1
×

ε

u′
(
f (x∗) − x∗

) .
Hence

x∗(ε ) − k0 ≤ kT (ε )+1 − k0

≤

[
f ′(k0)

]T (ε )+1
− 1

f ′(k0) − 1
×

ε

u′
(
f (k0) − k0

) .

W (ε ) =
T (ε )∑
t=0

β tu
(
c εt

)
+

∞∑
t=T (ε )+1

β tu
(
c εt

)
=

(
u
(
f (k0 − k0

)
− ε

) T (ε )∑
t=0

β t + βT (ε )+1v (k εT (ε )).

Hence

W (ε ) −W (0) = −ε
T (ε )∑
t=0

β t + βT (ε )+1
(
v

(
k εT (ε )

)
−
u
(
f (k0) − k0

)
1 − β

)
= −ε

1 − βT (ε )+1

1 − β
+ βT (ε )+1

(
v

(
k εT (ε )

)
−
u
(
f (k0) − k0

)
1 − β

)
.

Now we prove that

lim
ε→0

βT (ε )

ε
= +∞.

Indeed, recall that[
f ′(k0)

]T (ε )+1
− 1

f ′(k0) − 1
×

ε

u′
(
f (k0) − k0

) ∼ x∗(ε ) − k0.
This implies

(
f ′(k0)

)T (ε )
ε ∼ O (1).
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Hence

T (ε ) ln
(
f ′(k0)

)
∼ − ln(ε ),

which is equivalent to

T (ε ) ∼ −
ln(ε )

ln
(
f ′(k0)

) .
We have

βT (ε ) ∼
(
e ln β

)− ln(ε )

ln
(
f ′(k0)

)
∼ ε
−

ln β

ln
(
f ′(k0)

)
∼ ε

ln
(
1
β

)
ln
(
f ′(k0)

)
.

Since f ′(k0) > 1
β , we have

lim
ε→0

βT (ε )

ε
= lim

ε→0
ε

ln
(
1
β

)
ln
(
f ′(k0)

) −1
= ∞,

which impliesW ′(0) = +∞.

(ii ) First assume that k s < k0 ≤ k . Now we prove thatW ′(0) < +∞. For ε small:

W (ε ) −W (0) =
∞∑
t=0

β t
[
u
(
f (k εt ) − k

ε
t+1

)
− u

(
f (k0) − k0

) ]
≤ u′

(
f (k0) − k0

) ∞∑
t=0

β t
[
f (k εt ) − f (k0) − k

ε
t+1 + k0

]
≤ u′

(
f (k0) − k0

) ∞∑
t=0

β t
[
f ′(k0)(k

ε
t − k0) − k

ε
t+1 + k0

]
≤ u′

(
f (k0) − k0

) ∞∑
t=0

β t
[
f ′(k0)(k

ε
t − k0)

]
≤ u′

(
f (k0) − k0

)
f ′(k0)

∞∑
t=0

β t
[
k εt − k0

]
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≤ u′
(
f (k0) − k0

)
f ′(k0)

∞∑
t=0

β t
[
f ′(k0)

] t+1
− 1

f ′(k0) − 1
×

ε

u′
(
f (k0) − k0

)
= f ′(k0)

∞∑
t=0

β t
[
f ′(k0)

] t+1
− 1

f ′(k0) − 1
× ε

= O (ε ),

since β f ′(k0) < 1.

This impliesW (ε ) −W (0) = O (ε ), orW ′(0) < +∞.

Now assume that k is finite and k0 ≥ k . We use exa­ly the same arguments in

the proof of part (ii ), by changing the constrains u(ct ) ≥ u
(
f (k0) − k0

)
− ε by

u(ct ) ≥ u
(
f (k ) − k

)
.

Now we prove thatW ′(ε̃ ) = 0. For ε close enough to ε̃ , the critical time T (ε ) from

which the optimal path behaves as a solution of Ramsey problem with initial state

k εT (ε ) is T (ε ) = 1. We then have

u
(
f (k0) − k

ε
1

)
= u

(
f (k0) − k0

)
− ε,

and the sequence {k ε1+t }
∞
t=0 is the solution of Ramsey problem with initial state k ε1 .

This implies

W (ε ) = u
(
f (k0) − k0

)
− ε + βv (k ε1 ),

and

W ′(ε ) = −1 + βv ′(k ε1 ) ×
dk ′1
dε

.

By the implicite fun­ion theorem, we have

dk ε1
dε
=

1

u′
(
f (k0) − k ε1

) .
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Observe that by letting ε converges to ε̃ we have

lim
ε→ε̃

k ε1 = σ(k0).

This implies

W ′
−(ε̃ ) = −1 + βv

′ (σ(k0)) ×
1

u′
(
f (k0) − σ(k0)

) .
Recall that it is well-known in dynamic programming literature that

v (k0) = max
0≤k1≤ f (k0)

[
u

(
f (k0) − k1

)
+ βv (k1)

]
= u

(
f (k0 − σ(k0)

)
+ βv (σ(k0)) .

Combining with Inada condition, this implies

−u′
(
f (k0) − σ(k0)

)
+ βv ′ (σ(k0)) = 0,

which is equivalent to

W ′(ε̃ ) = 0.

(iii ) Since for any 0 ≤ ε ≤ ε̃ , there exists T such that the equality constraint

corresponding to T bind. Hence the solutions corresponding to di�erence values

of ε are di�erent. Combining this with the stri­ concavity of u, we getW is stri­ly

concave in [0, ε̃ ].

F. Proof of Proposition 3.3

For any 0 ≤ ε ≤ ε̃ , the optimal solution satisfies the following property: there

exists t such that u
(
c εt

)
= u

(
f (k0) − k0

)
. Hence the solutions corresponding to

di�erence values of ε are also di�erent. Combining with the stri­ly concavity of u,

the fun­ionW is stri­ly concave in [0, ε̃ ]. This implies the existence of an unique

left derivative ofW .
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Since for any a > 0, we have W ′
−(ε̃ ) = 0 < a < W ′(0) = ∞, there exists unique

0 < ε < ε̃ such thatW ′(ε∗) = a. The statement of the Lemma is a consequence of

Propositions 3.1 and 3.2.

G. Proof of Lemma 4.1

Consider any feasible sequence {kt }∞0 ∈ Π(k0), with ct = f (kt ) − kt+1, define

ε̂ = ν̂(k0) − inf
t≥0
u (ct ) .

Obviously,

(1 − α) sup
t≥0

u(ct ) + α inf
t≥0
u(ct ) = α sup

t≥0
u(ct ) + (1 − α) (ν(k0) − ε̂ )

≤ αW(ε̂ ) + (1 − α) (ν(k0) − ε̂ )

≤ sup
ε≥0
[(1 − α)W(ε ) + α (ν(k0) − ε )] .

Now consider any feasible sequence {kt }∞0 ∈ Π(k0) satisfying the constraints of the

modified problem.

α sup
t≥0

u(ct ) + (1 − α) (ν(k0) − ε ) ≤ α sup
t≥0

u(ct ) + (1 − α) inf
t≥0
u(ct )

≤ V(k0).

Taking the supremum in the left hand side, the proof of Lemma is completed.

H. Proof of Proposition 4.1

i) We prove that for any feasible sequence {kt }∞t=0 of the modified problem, we

have for any t ≥ 0,

x ε ≤ kt < x
ε .
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Assume the contrary of the first inequality, that for some T , kT < x ε . Since

the fun­ion f (x) − x is stri­ly increasing in [0,k0], se have

u
(
f (kT ) − kT

)
< u

(
f (x ε ) − x ε

)
= u

(
f (k0) − k0

)
− ε

≤ u
(
f (kT ) − kT +1

)
.

This implies that kT +1 ≤ kT < x ε . By indu­ion, the sequence {kT +t }∞t=0 is

decreasing and converge to some 0 ≤ k ∗ < x ε . Hence

u
(
f (k ∗) − k ∗)

)
< u

(
f (x ε ) − x ε

)
= u

(
f (k0) − k0

)
− ε,

a contradi­ion.

Consider the sequence {k t }∞t=0 determined as

k0 = k0,

u
(
f (k t ) − k t+1

)
= u

(
f (k0) − k0

)
− ε .

It is easy to verify that the sequence {k t }∞t=0 is increasing and converges to x ε ,

whether this value is finite ou infinite.

Fix any feasible sequence {kt }∞t=0 of the modified problem. Assume that for

some T , kT ≤ kT . As a consequence,

u
(
f (k t ) − k t+1

)
= u

(
f (k0) − k0

)
− ε

≤ u
(
f (kT ) − kT +1

)
≤ u

(
f (kT ) − kT +1

)
,

which implies kT +1 ≤ kT . By indu­ion, for any t ≥ 0,

kT +t ≤ kT +t < x
ε .
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For any t , x ε ≤ kt < x
ε , hence for any feasible sequence:

sup
t≥0

u
(
f (kt ) − kt+1

)
≤ u

(
f (x ε ) − x ε

)
.

Now we prove that there exists feasible path {kt }∞t=0 such that

supt≥0 u
(
f (kt ) − kt+1

)
= u

(
f (x ε ) − x ε

)
. Fix any two sequences {xn}

∞
n=0

and {xn}∞n=0 such that the former one is stri­ly decreasing and converges to

x ε and the later one is stri­ly increasing and converges to x ε .

x0 > x1 > · · · > xn > · · · → x ε ,

x0 < x1 < · · · < xn < · · · → x ε .

We constru­ the sequence T0 < T1 < · · · < Tn and the sequence {kt }∞t=0 as

follows. For 0 ≤ t ≤ T0,

u
(
f (kt ) − kt+1

)
= u

(
f (k0) − k0

)
− ε .

If we continue to use this equation to define kt+1 from kt to infinity, the se-

quence will converges to x ε . Hence the exists index T0 which is the smallest

index t satisfying kT0 > x0. Let kT0+1 = x0. We have

u
(
f (kT0) − kT0+1

)
= u

(
f (x0) − x0

)
.

For T0 + 1 ≤ T1, define the sequence as

u
(
f (kt ) − kt+1

)
= u

(
f (k0) − k0

)
− ε .

Using the same argument for the definition of T0, there exists T1 the smallest

index satisfying kt > x1. Let kT1+1 = x1. We have

u
(
f (kT1) − kT1+1

)
= u

(
f (x1) − x1

)
.

And we define in the same way, by indu­ion Tn+1 in fun­ion of Tn . For any
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n ≥ 0 we have

u
(
f (kTn ) − kTn+1

)
= u

(
f (xn) − xn

)
.

Let n converges to infinity,

lim
n→∞

u
(
f (kTn ) − kTn+1

)
= u

(
f (x ε ) − x ε

)
.

Hence

sup
t≥0

u
(
f (kt ) − kt+1

)
= u

(
f (x ε ) − x ε

)
.

Since the two sequence two sequences {xn}
∞
n=0 and {xn}∞n=0 can be defined

arbitrarily, there exist an infinite number of optimal solution.

Consider any optimal path {kt }∞t=0. It is easy to verify that if kT = x ε , by the

constraint, kT +t = x ε for any t ≥ 0, which implies supt≥0 u
(
f (kt ) − kt+1

)
<

u
(
f (x ε ) − x ε

)
, a contradi­ion. Hence for any t , x ε < kt < x

ε . Moreover, there

exist an infinite number T0 < T1 < · · · < Tn < . . . such that

lim
n→∞

u
(
f (kTnt ) − kTn+1

)
= u

(
f (x ε ) − x ε

)
.

Hence we have

lim
n→∞

kTn = x
ε,

lim
n→∞

kTn+1 = x
ε .

ii) This part is dire­ consequence of the proof of the first part.

iii) This is consequence of the first part and Lemma 4.1.
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I. Proof of Proposition 4.2

i) First, we prove that for any k ≤ k0 ≤ x̃ ε , any feasible path {kt }∞t=0 ∈ Π
ε (k0), we

have

x˜ε ≤ kt ≤ x̃ ε .
Assume that there is some T such that kT < x˜ε . Then

u
(
f (kT ) − kT

)
< u

(
f (x˜) − x˜)

= u
(
f (k ) − k

)
− ε

≤ u
(
f (kT ) − kT +1

)
,

which implies kT +1 ≤ kT < x˜ε . By indu­ion, the sequence {kT +t }∞t=0 is decreas-
ing and converges to some k ∗ < x˜ε , and

u
(
f (k ∗) − k ∗

)
< u

(
f (x˜) − x˜)

= u
(
f (k ) − k

)
− ε,

a contradi­ion.

Assume that x˜ε ≤ kT ≤ x̃ ε . Since
u

(
f (x̃ ε ) − x̃ ε

)
≤ u

(
f (kT ) − kT +1

)
≤ u

(
f (x̃ ε ) − kT +1

)
,

we have kT +1 ≤ x̃ ε . This property is satisfied by k0, by indu­ion, kt ≤ x̃ ε for

all t ≥ 0.

Since for any t , x˜ε ≤ kt ≤ x̃ ε ,
sup
t≥0

u
(
f (kt ) − kt+1

)
≤ u

(
f (x̃ ε ) − x˜ε ) .

In order to prove that the left hand side is equal to the right hand side in
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the above inequality, and there exists an infinite number of solution for the

modified problem, we prove that for any x˜ε ≤ k0 ≤ x̃ ε , the sequence {k̃t }∞t=0
defined as below is increasing and converges to x̃ ε :

k̃0 = k0,

u
(
f (k̃t ) − k̃t+1

)
= u

(
f (k ) − k

)
− ε, for all t ≥ 0.

Indeed, using the same arguments above, we have for any t , x˜ε ≤ k̃t ≤ x̃ ε .
Then

u
(
f (k̃t ) − k̃t+1

)
= u

(
f (x̃ ε ) − x̃ ε

)
= u

(
f (k ) − k

)
≤ u

(
f (k̃t ) − k̃t

)
.

This implies k̃t ≤ k̃t+1 and the sequence {k̃t }∞t=0 is increasing and converges to

the solution of u
(
f (x) − x

)
= u

(
f (k ) − k

)
, or

lim
t→∞

k̃t = x̃ ε .

Now fix two sequences {x˜n}∞n=0 which is stri­ly decreasing and converges to

x˜ε , and {x̃n}∞n=0 which is stri­ly increasing and converges to x̃ ε .

Using the same arguments as in the Proof of Proposition 4.1, we can constru­

a feasible sequence {kt }∞t=0 ∈ Π
ε (k0) and a sequence of index T0 < T1 < · · · <

Tn < . . . such that for any n,

u
(
f (kTn ) − kTn+1

)
= u

(
f (x̃n) − x˜n) .

And we have

sup
t≥0

u
(
f (kt ) − kt+1

)
= lim
n→∞

u
(
f (x̃n) − x˜n)

= u
(
f (x̃ ε ) − x̃ ε

)
.
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The two sequences {x˜n}∞n=0 and {x̃n}∞n=0 being chosen arbitrarily, there exists

an infinite number of optimal paths.

Consider any optimal path {kt }∞t=0. It is easy to verify that if kT = x˜ε , by the

constraint, kT +t = x˜ε for any t ≥ 0, which implies supt≥0 u
(
f (kt ) − kt+1

)
<

u
(
f (x̃ ε ) − x˜ε ), a contradi­ion. Hence for any t , x˜ε < kt < x̃ ε . Moreover, there

exist an infinite number T0 < T1 < · · · < Tn < . . . such that

lim
n→∞

u
(
f (kTnt ) − kTn+1

)
= u

(
f (x̃ ε ) − x˜ε ) .

Hence we have

lim
n→∞

kTn = x̃
ε,

lim
n→∞

kTn+1 = x˜ε .

ii) Consider now the case k0 ≥ x̃ ε . Take any feasible sequence {kt }∞t=0 ∈ Π
ε (k0).

We claim that for any t ≥ 0,

x˜ε ≤ kt ≤ k0.
Using the same arguments as in the proof of the part (i ), we have kt ≥ x˜ε for
any t ≥ 0. Now we prove by indu­ion that kt ≤ k0 for any t . Indeed, this is

true for t = 0. Assume that kt ≤ k0 for any 0 ≤ t ≤ T . If kT ≥ x̃ ε , then

u
(
f (kT ) − kT

)
≤ u

(
f (x̃ ε ) − x̃ ε

)
= u

(
f (k ) − k

)
− ε

= u
(
f (kT ) − kT +1

)
,

which implies kT +1 ≤ kT ≤ k0. The claim is proved, hence for any t ,

sup
t≥0

u
(
f (kt ) − kt+1

)
≤ u

(
f (k0) − x˜ε ) .
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It is easy to verify that the sequence {k ∗t }
∞
t=0 = (k0,x˜ε ,x˜ε ,x˜ε, . . . ) is feasible and

sup
t≥0

u
(
f (k ∗t ) − k

∗
t+1

)
= u

(
f (k0) − x˜ε ) .

To prove that this sequence is unique solution, take any feasible sequence

{kt }∞t=0. Assume that k1 > x˜ε . Hence

u
(
f (k0) − k1

)
< u

(
f (k0) − x˜ε ) .

If k1 ≥ x̃ ε , then

sup
t≥1

u
(
f (kt ) − kt+1

)
≤ u

(
f (k1) − x˜ε )

< u
(
f (k0) − x˜ε ) .

If k1 ≤ x̃ ε , then

sup
t≥1

u
(
f (kt ) − kt+1

)
≤ u

(
f (x̃ ε ) − x˜ε )

< u
(
f (k0) − x˜ε ) .

Combining these inequalities, we get

sup
t≥0

u
(
f (kt ) − kt+1

)
= max

{
u

(
f (k0) − k1

)
, sup
t≥1

u
(
f (kt ) − kt+1

)}
< u

(
f (k0) − x˜ε ) .

For the case k1 = x˜ε , in order to keep the path being feasible, we must have

kt = x˜ε for any t ≥ 1. The uniqueness of the optimal solution is proved.

J. Proof of Proposition 4.1

The first statement of the proposition is obvious, by Lemma 4.1. It is the same for

the statement (i ), by Proposition 4.1.
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For the part (i ), observe that the optimal value ε∗ must satisfy

ε∗ ≤ ν̂(k0)

≤ u
(
f (k ) − k

)
.

Hence there exists an upper bounde for x̃ ε . Let k0 be this upper bound. For any

k0 ≥ k0, we have k0 ≥ x̃ ε
∗

, and applying Proposition 4.2, the proof is completed.
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