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                                                                                                  Abstract 
 

Estimation of portfolio expected credit loss is required for IFRS9 regulatory purposes. It starts with the estimation of scenario loss at loan level, and then 

aggregated and summed up by scenario probability weights to obtain portfolio expected loss. This estimated loss can vary significantly, depending on the 
levels of loss severity generated by the IFSR9 models, and the probability weights chosen. There is a need for a quantitative approach for determining the 

weights for scenario losses. In this paper, we propose a model to estimate the expected portfolio losses brought by recession risk, and a quantitative 

approach for determining the scenario weights. The model and approach are validated by an empirical example, where we stress portfolio expected loss 
by recession risk, and calculate the scenario weights accordingly.  
 

Keywords: Scenario weight, stressed expected credit loss, loss severity, recession probability, Vasicek distribution, probit mixed model 

 
1. Introduction  
 

Estimation of portfolio expected credit loss is required for IFRS9 regulatory purposes ([2], [3]). It starts with the 

estimation of scenario loss at loan level, and then aggregated and summed over by scenario weights to obtain 

portfolio expected loss. In general, there are three scenarios under consideration: pessimistic, base, and 

optimistic.   
 

Let 𝑝1, 𝑝2, and 𝑝3 denote respectively the occurring probabilities for these three scenarios, and 𝑦1, 𝑦2, and 𝑦3 the 

corresponding portfolio losses. In practice, the expected credit loss is estimated as: 

 

𝐸𝐿 = 𝑤1
0𝑦1 +  𝑤2

0 𝑦2 + 𝑤3
0𝑦3,                                                                      (1.1) 

 

where 𝑤1
0, 𝑤2

0, and 𝑤3
0 are relative weights derived from 𝑝1, 𝑝2, and 𝑝3 as: 

 

𝑤𝑖
0 =

𝑝𝑖

𝑝1+𝑝2+𝑝3
, 1 ≤ 𝑖 ≤ 3.                                                                           (1.2) 

 

Result for EL by (1.1) can vary significantly, depending on the values of 𝑝1, 𝑝2, and 𝑝3 chosen, and the portfolio 

scenario losses 𝑦1, 𝑦2, and 𝑦3 generated by IFRS9 models. In practice, this number is compared with historical 

portfolio losses to position its severity (in relative to the historical portfolio loss distribution). An issue arises, 

when the number calculated by (1.1) is nonintuitive, in which case, practitioners will manually search for 

weights 𝑤1
0, 𝑤2

0, and 𝑤3
0 to come up with an acceptable number for EL. Weights obtained in this way lack 

quantitative justification, and are somehow arbitrary.  
 

We focus on portfolio loss rate and assume that the exposure for the portfolio is one dollar. We will use 

interchangeably the words “loss” and “loss rate”.  
 

When assuming that the portfolio loss rate 𝑦 is driven by a latent dynamic 𝑠, the expected portfolio loss is equal 

to the integral  ʃ𝐴 𝑦(𝑠)𝑝(𝑠)𝑑𝑠 for the function 𝑦(𝑠)𝑝(𝑠) over the range A where 𝑠 varies, where 𝑝(𝑠) denotes 

the probability density of 𝑠. Therefore, the portfolio expected loss is not necessarily equal to weighted sum 

[𝑝(𝑠1)𝑦(𝑠1) + 𝑝(𝑠2)𝑦(𝑠2) + 𝑝(𝑠3)𝑦(𝑠3)]/[𝑝(𝑠1) + 𝑝(𝑠2) + 𝑝(𝑠3)], even when 𝑝(𝑠1), 𝑝(𝑠2), and 𝑝(𝑠3) 

correspond to the given occurring probabilities.  
 

In this paper, we propose a quantitative approach (see Algorithm 3.4) to finding the weights  𝑤1, 𝑤2, and 𝑤3 

(not necessarily the same as 𝑤1
0, 𝑤2

0, and 𝑤3
0 as described above) satisfying equation (1.3) below: 

 

  

𝐸𝐿 = 𝑤1𝑦1 +  𝑤2𝑦2 + 𝑤3𝑦3,                                                                   (1.3) 
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given portfolio expected loss EL, the scenario losses 𝑦1, 𝑦2, and 𝑦3, and the corresponding occurring 

probabilities 𝑝1, 𝑝2, and 𝑝3, respectively for pessimistic, base, and optimistic scenarios. 

 

Forward looking consideration is generally required for expected portfolio loss. Under this setting, portfolio 

expected loss needs to be assessed under a stressed condition. Scenario weights for the corresponding stressed 

portfolio loss are required. For this purpose, we propose a model (see model (3.11)) to stress the portfolio 

expected loss conditional on recession risk. Scenario weights are determined, given the recession probability, 

occurring probabilities 𝑝1, 𝑝2, 𝑝3, and scenario losses 𝑦1, 𝑦2, 𝑦3.   
 

The paper is organized as follows. In section 2, we demonstrate an equivalent parameterization for Vasicek 

distribution. An one-factor probit mixed model is defined for each Vasicek distribution. In section 3, we 

propose a probit-type mixed model for portfolio expected loss conditional on recession risk. A generic 

algorithm to find scenario weights is proposed in this section. The proposed model and approach are validated 

in section 4 by an empirical example, where we stress portfolio expected loss by recession risk, and calculate 

scenario weights accordingly. 

 
 

2.  Preliminaries: Vasicek Distribution and One-Factor Probit Mixed Models     

 

Vasicek distribution ([12], [13]) is skewed and leptokurtic ([13]). It is widely used for modeling of portfolio  

loss distributions ([4], [5], [6], [7], [11]).  

 

In this section, we demonstrate an alternative formulation for Vasicek distribution by using the mean and 

standard deviation of the probit form of the variable. An one-factor, probit-type, mixed model is defined by this 

parameterization. The parameter estimation by maximum likelihood approach for a probit-type mixed model 

becomes simpler when likelihood is formulated by this parameterization (see Proposition 3.1).  
 

For a variable 𝑦 (0 < 𝑦 < 1) that follows a Vasicek distribution, its density is given by ([13]): 
 

𝑔(𝑦, 𝑝, 𝜌) = √
1−𝜌

𝜌
 exp {−

1

2𝜌
[√1 − 𝜌Φ−1(𝑦) − Φ

−1
(𝑝)]

2

+
1

2
 [Φ−1(𝑦)]2},         (2.1) 

 

where 𝑝 denotes the mean value of  𝑦, and 𝜌 is the asset correlation, which is related to the Asymptotic Single 

Risk factor model ([1], [5], [8], [13]).   
 

Let Φ  denote the cumulative distribution function (CDF) for a standard normal variable and ϕ its density. A 

random variable  𝑦 , 0 < 𝑦 < 1,  is said to follow a Vasicek distribution if its probit form  Φ−1(𝑦) is normally 

distributed ([9]). Let  𝑎 and 𝑏 denote respectively the mean and standard deviation of  Φ−1(𝑦). Then 𝑦 can be 

formulated as an one-factor probit-type model: 
  

                  𝑦 = Φ(𝑎 + 𝑏𝑆), 𝑆~𝑁(0,1).                                                                                (2.2) 
 

The probability density function is given by proposition below.  
 

Proposition 2.1 ([15]). The density of the variable 𝑦 in (2.2) is given by 
 

              𝑓(𝑦, 𝑎, 𝑏) = 𝑈1/(𝑏𝑈2),                                                                                        (2.3) 
  

where 
 

              𝑈1 = ϕ{[Φ−1(𝑦) − 𝑎]/𝑏},  𝑈2 = ϕ[Φ−1(𝑦)].                                                    (2.4) 

□  
 
 

Proposition 2.2. Densities (2.3) and (2.1) are equivalent under the relationships: 
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𝑎 =
𝛷−1(𝑝)

√1−𝜌
 𝑎𝑛𝑑  𝑏 = √

𝜌

1−𝜌
 .                                                                                   (2.5) 

 

Proof. By (2.1), we have: 
 

𝑔(𝑦, 𝑝, 𝜌) = √
1−𝜌

𝜌
 exp {−

1−𝜌

2𝜌
[Φ−1(𝑦) − Φ

−1
(𝑝)/√1 − 𝜌]

2
+

1

2
 [Φ−1(𝑦)]2}  

                 =
1

𝑏
exp {−

1

2
[

𝛷−1(𝑦)−𝑎

𝑏
 ]

2

} exp {
1

2
 [Φ−1(𝑦)]2}    

 

                  = 𝑈1/(𝑏𝑈2) = 𝑓(𝑦, 𝑎, 𝑏). □ 

 

By (2.5), we have the following relationships: 
 

𝜌 =
𝑏2

1+𝑏2 ,                                                                                                             (2.6) 
1

√(1−𝜌)
= √1+𝑏2,                                                                                                 (2.7) 

 

𝑎 = 𝛷−1(𝑝)√1 + 𝑏2.                                                                                           (2.8) 
 

Denote by 𝐸𝑒[Φ(𝑎 + 𝑏𝑒)] the expectation of Φ(𝑎 + 𝑏𝑒) with respect to a random variable 𝑒. The following 

lemma is useful. 
 

Lemma 2.3. ([10]) 𝐸𝑒[Φ(𝑎 + 𝑏𝑒)] = Φ(𝑎/√1 + 𝑏2 ), where  𝑒~𝑁(0,1). □ 
 

The next proposition summaries the properties for Vasicek distribution under (2.2). 
 
 

Proposition 2.4. The following statements hold; 
 

(a) 𝐸𝑠[Φ(𝑎 + 𝑏𝑠)] = Φ(𝑎/√1 + 𝑏2 ) = 𝑝.  

(b) Density 𝑓(𝑦, 𝑎, 𝑏) is unimodal if  0 < 𝑏 < 1 with mode given by Φ (
𝑎

1−𝑏2), and is U-shaped if 𝑏 > 1.  

(c) Assume 𝑏 = 1. If  𝑎 = 0 then 𝑓(𝑦, 𝑎, 𝑏)  is uniformly distributed over the interval (0,1); it is increasing 

if  𝑎 > 0 and decreasing if  𝑎 < 0.  
 

Proof. By applying Lemma 2.3 to (2.2) and using (2.8), we have: 
 

𝐸𝑠[Φ(𝑎 + 𝑏𝑠)] = Φ(𝑎/√1 + 𝑏2 ) = 𝑝.  
 

This proves (a).  Let  𝑧 = Φ−1(𝑦). By (2.3), we have: 
 

log (
𝑈1

𝑈2
) =

−𝑧2+2𝑎𝑧−𝑎2+𝑏2𝑧2

2𝑏2                                                                                 (2.9) 

                                =
−(1−𝑏2)(𝑧−

𝑎

1−𝑏2)
2

+
𝑏2

1−𝑏2𝑎2

2𝑏2 .                                                                    (2.10) 
 

For statement (c), it follows from the fact that the coefficient of term  𝑧2 in (2.9) is zero. For (b), we have 

−(1 − 𝑏2) > 0 when 𝑏 > 1, therefore 𝑈1/𝑈2 is U-shaped by (2.10). When  0 < 𝑏 < 1, we have −(1 − 𝑏2) <

0, therefore  log (
𝑈1

𝑈2
) reaches its unique maximum at  𝑧 =

𝑎

1−𝑏2 by (2.10), resulting in a value for the mode at 

Φ (
𝑎

1−𝑏2).  □ 

 

Remark 2.5. Results in Proposition 2.4 are consistent with results given in [13] where the density distribution is 

parameterized as (2.1). For most cases, this follows from the fact that  𝜌 <
1

2
  if and only if 𝑏 < 1.  Here we 

show only the consistency for distribution mode. The mode in [13] is given as  Φ (
√1−𝜌

1−2𝜌
Φ−1(𝑝)), while it is 
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given as Φ (
𝑎

1−𝑏2) in Proposition 2.4. First, by (2.6), we have 1 − 2𝜌 =
1−𝑏2

1+𝑏2. Therefore, by (2.7) and (2.8), we 

have  
 

√1−𝜌

1−2𝜌
Φ−1(𝑝) =

√1+𝑏2

1−𝑏2 Φ−1(𝑝) =
𝑎

1−𝑏2   

⟹ Φ (
√1−𝜌

1−2𝜌
Φ−1(𝑝)) = Φ (

𝑎

1−𝑏2).  

 

This proves the consistency for distribution mode between the two formulations.  
 

 
 

3. Estimating Portfolio Loss Rate and Weighting Portfolio Scenario Losses 

 

3.1. The Proposed Loss Rate Model  

 

We assume that there exists a latent risk factor 𝑆 that drives up the portfolio loss, and the loss rate 𝑦 follows a 

Vasicek distribution. Thus, by (2.2), portfolio loss rate is given by a probit-type mixed model of the form 

below: 
 

𝑦 = Φ(𝑎 + 𝑏𝑆), 𝑏 > 0, 𝑆~𝑁(0,1).                                                                                  (3.1) 
 

Parameters 𝑎 and 𝑏 can be estimated as described in the next proposition below. This is the loss rate model for 

the portfolio. 
 

Proposition 3.1 ([15]). Given a time series sample {𝑦𝑡}, where 𝑦𝑡 denotes the loss rate for a portfolio observed 

at time 𝑡, the maximum likelihood estimates for 𝑎 and 𝑏 under model (3.1) are the mean and standard deviation 

for the sample {zt} given by the probit form values of  {𝑦𝑡}, i.e. 𝑧t = Φ−1(𝑦𝑡). □ 
 

 

 

3.2.  Levels of Loss Severity 
 
 

Given  0 < 𝛼 < 1, the 𝛼-quantile value for a loss rate variable 𝑦 is the loss rate 𝑦𝛼 satisfying 𝑃(𝑦 ≤ 𝑦𝛼) = 𝛼. 
In this case, we say that 𝛼 is the severity level for the loss rate 𝑦𝛼 . The level of severity measures the relative 

position for the loss rate in its overall loss distribution. 
 

Proposition 3.2. Given a loss rate 𝑦0 under model (3.1), the severity level of 𝑦0  is Φ{[Φ−1(𝑦0 ) − 𝑎]/𝑏}. 
Given 0 < 𝛼 < 1, the 𝛼-quantile value is given by  𝑦𝛼 = Φ[𝑎 + 𝑏𝑆𝛼], where  𝑆𝛼 = Φ−1(α) is the 𝛼-quantile 

value for  𝑆~𝑁(0,1). 
 

Proof. By model (3.1), 𝑦 = Φ(𝑎 + 𝑏𝑆), 𝑆~𝑁(0,1). The first statement follows as: 
 

      𝑃(𝑦 ≤ 𝑦0) = 𝑃 {𝑆 ≤
Φ−1(𝑦0)−𝑎 

𝑏
} = Φ(

Φ−1(𝑦0)−𝑎 

𝑏
). 

  
For the second statement, 𝛼-quantile value yα satisfies the equation below: 
 

𝛼 = 𝑃(𝑦 ≤ 𝑦𝛼) = 𝑃[𝑎 + 𝑏𝑆 ≤ Φ−1(𝑦𝛼)] 
    ⟹ 𝑃{𝑆 ≤ [Φ−1(𝑦𝛼) − 𝑎]/𝑏} = 𝛼 

    ⟹ 𝑆𝛼 = [Φ−1(𝑦𝛼) − 𝑎]/𝑏 

     ⟹ yα = Φ[𝑎 + 𝑏𝑆𝛼]. □ 
 

 

Remark 3.3. Given an occurring probability 𝛼 for a scenario for the base or the optimistic scenario, we assume 

that this occurring probability is given as 𝑃(𝑆 < 𝑆𝛼) = 𝛼, under model (3.1). Therefore, it corresponds to a loss 

at severity level 𝛼 by Proposition 3.2. While for the pessimistic scenario, the occurring probability 𝛼 is given as 

𝑃(𝑆 > 𝑆𝛼) = 𝛼, thus it corresponds to a loss at severity level (1 − 𝛼). For example, if  𝑝1, 𝑝2, and 𝑝3 are 
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respectively the scenario occurring probabilities for the pessimistic, the base, and the optimistic scenarios, and 

their values are  respectively 10%, 60%, and 30%, then their corresponding loss severity levels are assumed to 

be 90%, 60%, and 30%.  
 

 

 

3.3. Weighting Scenario Losses Given the Noncyclic Expected Loss  
 

By Proposition 2.4 (a), the noncyclic expected loss under model (3.1) is:  
 

𝐸𝐿 = Φ(𝑎/√1 + 𝑏2 ).                                                                              (3.2) 
 

Given the noncyclic expected loss 𝐸𝐿, and scenario losses 𝑦1, 𝑦2, 𝑦3, as well as the corresponding occurring 

probabilities 𝑝1, 𝑝2, and 𝑝3, respectively for pessimistic, base, and optimistic scenarios, we need an algorithm to 

find weights 𝑤1, 𝑤2, and 𝑤3 satisfying the equation below: 
 

             𝐸𝐿 = 𝑤1𝑦1 + 𝑤2𝑦2 + 𝑤3𝑦3.                                                                                   (3.3) 

 
3.4. The Proposed Generic Algorithm for Finding Scenario Weights Given Portfolio Expected Loss  

 

We introduce a parameter 𝜆 to denote the ratio 
𝑤2

1−𝑤1
,  i.e., 𝜆 =

𝑤2

1−𝑤1
. Then 0 ≤ 𝜆 ≤ 1, this is because 1 − 𝑤1 =

𝑤2 + 𝑤3. Thus 
𝑤3

1−𝑤1
= 1 − 𝜆,  and we have: 

 

   𝑤2 = (1 − 𝑤1)𝜆,     𝑤3 = (1 − 𝑤1)(1 − 𝜆).                                              (3.4) 
 

Algorithm 3.4 (generic scenario weight algorithm). Suppose the following are given: 
 

(a) The value of noncyclic expected loss 𝐸𝐿. 

(b) Scenario losses 𝑦1, 𝑦2, 𝑦3, respectively for pessimistic, base, and optimistic scenarios. 

(c) The corresponding occurring probabilities 𝑝1, 𝑝2, and 𝑝3.  
 

Follow the steps below to find weights 𝑤1, 𝑤2, and 𝑤3 satisfying (3.3)1: 
 

1a. Formulate 𝑤1, 𝑤2, and 𝑤3 as a function of 𝜆. First, solve equation (3.3) for 𝑤1: 
 

      𝐸𝐿 = 𝑤1𝑦1 + 𝑤2𝑦2 + 𝑤3𝑦3                                                                                      
       ⟹ 𝐸𝐿 = 𝑤1𝑦1 + (𝜆 − 𝜆𝑤1)𝑦2 + [(1 − 𝜆) − (1 − 𝜆)𝑤1]𝑦3                         

       ⟹ 𝑤1 = [𝐸𝐿 − 𝜆𝑦2 − (1 − 𝜆)𝑦3]/[𝑦1 − 𝜆𝑦2 − (1 − 𝜆)𝑦3].               (3.5)      
 

     Next calculate  𝑤2 and 𝑤3 as: 
 

          𝑤2 = (1 − 𝑤1)𝜆,   𝑤3 = (1 − 𝑤1)(1 − 𝜆).                                        (3.6)       
 

 Note that weights 𝑤1, 𝑤2, and 𝑤3 satisfy (3.3) for each given 𝜆, where 0 ≤ 𝜆 ≤ 1, as long as:  
 

             𝐸𝐿 ≤ 𝑦1 and 𝑦1 − 𝜆𝑦2 − (1 − 𝜆)𝑦3 > 0.                                        (3.7) 
 

 

       1b. By (3.7), there exist many values of 𝜆 that satisfy (3.3). Calculate 𝑤1
0, 𝑤2

0, and 𝑤3
0 by (1.2), and search 

by an optimization for a value 𝜆  such that the corresponding weights 𝑤1, 𝑤2, and 𝑤3 given by (3.5) 

and (3.6) are as close as possible in Euclidian distance to the preferable weights 𝑤1
0, 𝑤2

0, and 𝑤3
0. 

 
 

Remark 3.5. Given components (a), (b) and (c), scenario weights 𝑤1, 𝑤2, and 𝑤3 can be found directly. No 

model is involved in steps 1a and 1b. Hence, one can obtain the scenario weights for a given stressed portfolio 

expected loss, by replacing portfolio expected loss EL in (a) with the stressed portfolio expected loss. 

                                                 
1 Step 1a is proposed by Carlos Lopez 
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3.5. The Proposed Model for Recession Risk 
 

 

Assume that there exists a latent risk factor 𝑆𝑅 that drives up the recession risk for an economy. Let 𝑝(𝑆𝑅) 

denote the recession probability conditional on 𝑆𝑅. We assume 𝑝(𝑆𝑅) is given by a probit-type mixed model of 

the form below for parameters 𝑐 and 𝑑: 
 

𝑝(𝑆𝑅) = Φ(𝑐 + 𝑑𝑆𝑅), 𝑆𝑅~𝑁(0,1).                                                                        (3.8) 

     

Given a time series sample {𝑅𝑡}, where 𝑅𝑡 is an indicator variable with value 1 if a recession occurs at time 𝑡 or 

0 otherwise, the likelihood for observing 𝑅𝑡 at time 𝑡 is: 
 

(𝑝(𝑆𝑅))
𝑅𝑡

 (1 − 𝑝(𝑆𝑅))
1−𝑅𝑡

= [Φ(𝑐 + 𝑑𝑆𝑅)]𝑅𝑡[1 − Φ(𝑐 + 𝑑𝑆𝑅)]1−𝑅𝑡 .                (3.9) 
 

Here we assume that 𝑅𝑡 follows a Bernoulli distribution with probability 𝑝(𝑆𝑅). Parameters 𝑐 and 𝑑 can be 

estimated by maximizing the total sample log-likelihood by using, for example, the SAS procedure PROC 

NLMIXED ([14]).  

 
3.6.  Correlation between Risk Factors 𝑆𝑅 and 𝑺 
 

Under probit model (3.1), loss rate is driven by the latent risk factor 𝑆~𝑁(0,1), while for recession probability, 

it is driven by the latent risk factor 𝑆𝑅~𝑁(0,1) under model (3.8). We assume that the pair (𝑆𝑅 , 𝑆) is bivariate 

normal. Let 𝜌𝑆 denote the correlation between factors 𝑆𝑅 and 𝑆. Then the latent factor 𝑆 for loss rate splits into 

two parts: 
 

             𝑆 = 𝜌𝑠 𝑆𝑅 + √1 − 𝜌𝑠
2 𝜀, 𝜀~𝑁(0, 1),                                                                             

 

where 𝜀 is independent of 𝑆𝑅 . Thus by model (3.1), the loss rate 𝑦, stressed by recession risk, can be rewritten 

and transformed to: 
 

𝑦𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = Φ (𝑎 + 𝑏(𝜌𝑠𝑆𝑅 + √1 − 𝜌𝑠
2 𝜀)),  𝜀~𝑁(0,1).                                     (3.10) 

 

 

3.7.  The Proposed Model for Stressed Expected Loss Rate Given Recession Risk 𝑺𝑹  
 

By applying Lemma 2.3 to (3.10), we have the stressed expected loss rate, conditional on 𝑆𝑅 , as: 
 

𝐸𝐿(𝑆𝑅)𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = 𝐸𝜖[𝑦(𝑆 |𝑆𝑅)] = Φ ([𝑎 + 𝑏𝜌𝑠𝑆𝑅]/√1 + 𝑏2(1 − 𝜌𝑠
2 )).          (3.11) 

 

Note that this 𝐸𝐿(𝑆𝑅)𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 differs from the noncyclic expected loss 𝐸𝐿. It is the expectation of 𝑦 given 𝑆𝑅 .  
Given models (3.8) and (3.11), one can stress the expected loss based on a given level of forward looking 

recession probability as follows:  Find the value for 𝑆𝑅 corresponding to the given probability 𝛽  by model (3.8), 

then use (3.11) to obtain the stressed expected loss. 

 

3.8. The Proposed Methods for Estimating Correlation 𝜌𝑠  
 

Given model (3.1) and (3.8) the remaining parameter in (3.11) to be estimated is the correlation parameter 𝜌𝑠. 

By (3.10), the mean and standard deviation of Φ−1(𝑦),  conditional on 𝑆𝑅 , are respectively 𝑎 + 𝑏𝜌𝑠𝑆𝑅 and 

𝑏√1 − 𝜌𝑠
2. Thus, by Proposition 2.1, the likelihood conditional on 𝑆𝑅 for observing loss rate 𝑦𝑡 at a time 𝑡 is 

𝑈1

𝑏√1−𝜌𝑠
2 𝑈2

,  where: 
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             𝑈1 = ϕ[
Φ−1(𝑦𝑡)−(𝑎+𝑏𝜌𝑠 𝑆𝑅)

𝑏√1−𝜌𝑠
2

 ],                                                                                                       (3.12)                                                                                                                            

𝑈2 = ϕ[Φ−1(𝑦
𝑡
)].                                                                                                                        (3.13)                                                                               

 

Assume that, for the pair of outcome (𝑅𝑡, 𝑦𝑡), 𝑅𝑡 is independent of 𝑦𝑡 , conditional on 𝑆𝑅 . Then the joint 

likelihood for observing the pair of outcome (𝑅𝑡 , 𝑦𝑡) at time 𝑡 is: 
 

                𝐿𝐾𝑡 = [𝑝(𝑆𝑅)]𝑅𝑡[1 − 𝑝(𝑆𝑅)]1−𝑅𝑡[
𝑈1

𝑏√1−𝜌𝑠
2𝑈2

].                                                   (3.14)                             

Use (3.12) and (3.13) for 𝑈1 and 𝑈2, and use model (3.8) for 𝑝(𝑆𝑅). Given parameters 𝑎, 𝑏, 𝑐, and 𝑑, one can 

estimate 𝜌𝑠 by maximizing the total sample likelihood by using, for example, the SAS procedure PROC 

NLMIXED.  

 
3.9. The Proposed Methods for Determining Scenario Loss Weights for Stressed Expected Loss 
 

Given the stressed expected loss 𝐸𝐿(𝑆𝑅)𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑, and scenario losses 𝑦1, 𝑦2, 𝑦3, and  the corresponding 

occurring probabilities 𝑝1, 𝑝2, 𝑝3, one can find weights 𝑤1, 𝑤2, and 𝑤3 by Algorithm 3.4, by replacing 𝐸𝐿 with 

𝐸𝐿(𝑆𝑅)𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑, as indicated in Remark 3.5. 
 

 
 

4.  Empirical Results and Discussions  
 

IFRS9 expected loss evaluation consists of two stages: (a) Stage-one for portfolio expected loss in 12 months, 

(b) Stage-two for expected lifetime loss for impairment loans after 12 months. We focus only on scenario 

weights for stage-one loss. For impairment loan losses after 12 months, one could use the scenario weights for 

12-month loss and assume that the relative scenario weights keep the same.  
    

 

4.1. The Loss Rate Model  
  

The loss sample contains the historical loss for a portfolio at each quarter in period 2003Q4-2017Q1. For each 

quarter, the loss rate is cumulated over four quarters from the beginning of the quarter to get a time series of 

annual loss rate at quarterly basis. We use this annual loss rate to model 12-month loss rate for IFRS9 stage-one 

loss. By model (3.1), we assume that the loss rate is of the form: 
 

 

𝑦 = Φ(𝑎 + 𝑏𝑆), 𝑆~𝑁(0,1).                                                                                     (4.1)                        
 

The average loss rate for this sample is 0.34%. This is the noncyclic (unstressed) EL. The estimated values for 𝑎 

and 𝑏 are respectively -2.7243 and 0.1279, estimated respectively as the mean and standard deviation of the 

probit form of the observed annual loss rates, under Proposition 3.1.   
 

 

4.2. Results of Generic Algorithm for Noncyclic Expected Loss 

 

Given occurring probabilities 𝑝1, 𝑝2, and 𝑝3, and scenario loss rates 𝑦1, 𝑦2, and 𝑦3, for pessimistic, the base, and 

the optimistic scenarios, follow the steps below to find 𝑤1, 𝑤2, and 𝑤3:       

  

    2a. Calculate the noncyclic expected loss EL by (3.2), and set the corresponding relative weights  

         𝑤1
0, 𝑤2

0, and 𝑤3
0 by (1.2);  

    2b. Run steps 1a-1b in Algorithm 3.4 to find 𝑤1, 𝑤2, and 𝑤3 satisfying: 
 

             𝐸𝐿 = 𝑤1𝑦1 + 𝑤2𝑦2 + 𝑤3𝑦3.                                                                                     (4.2)      
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The table below shows the scenario weights, with values for  𝑝1, 𝑝2, and 𝑝3 being set at 10%, 60%, and 30%. 

The corresponding loss severity levels are set at 1 − 𝑝1, 𝑝2, and 𝑝3 accordingly by Remark 3.3.    
  
 

                 Table 1. Scenario loss weights for noncyclic EL 2 
 

      
 

The column EL under “Loss Severity Level” in the table shows that the severity level for EL (0.34%) is 57%, 

higher than 50%. We observe that, in these cases, the weights found differ but are close to the occurring 

probabilities 𝑝1, 𝑝2, and 𝑝3,  
 

4.3. The Model for Expected Loss Given Recession Risk 

 

The historical recession sample contains a recession indicator at each quarter between 1984Q1-2018Q1. To 

align with the annual loss rate sample, an annual recession indicator is set for the year starting from the 

beginning of the quarter. For simplicity, the indicator is set to 1 if the number of quarters in recession in the 

year is above 2, otherwise it is set to 0. There are other ways to set up this recession indicator (see Remark 4.1 

below). This gives rise to a time series sample with an annual recession indicator at quarterly basis, which can 

be joined by the time key to the annual loss rate time series sample, to form a training sample for model (3.11). 

The average recession rate for this sample is 9.735%.  
 

By model (3.8), we assume that the recession probability is:   
 

𝑝(𝑆𝑅) = Φ(𝑐 + 𝑑𝑆𝑅), 𝑆𝑅~𝑁(0,1),                                                                             (4.3)                    
 

driven by a latent factor 𝑆𝑅~𝑁(0,1).  The values for 𝑐 and 𝑑 are respectively -4.1793 and 3.0636, estimated by 

maximizing the total sample log-likelihood summed up from the logarithm of (3.9), using SAS procedure 

PROC NLMIXED.   
 

The remaining parameter in (3.11) to be estimated is the correlation parameter 𝜌𝑠 between the risk factor 𝑆𝑅 for 

recession probability and factor 𝑆 for loss rate. By using the overlapped period 2003Q4-2017Q1 between the 

loss rate sample and the recession indicator sample, we estimate 𝜌𝑠 by maximizing the total sample log-

likelihood summed up from the logarithm of (3.14). The estimate for 𝜌𝑠 is 0.5797. 
 

 

4.4. Results of Generic Algorithm for Stressed Periods 

 

Given the occurring probabilities 𝑝1, 𝑝2, and 𝑝3, and scenario loss rates 𝑦1, 𝑦2, and 𝑦3, for pessimistic, the base, 

and the optimistic scenarios, we follow the steps below to find the scenario loss weights for a given recession 

probability 𝛽: 
 

    3a. Set up the reference weights 𝑤1
0, 𝑤2

0, and 𝑤3
0 by (1.2). 

    3b. For the recession probability 𝛽, find the corresponding 𝑆𝑅 by setting 𝑆𝑅 =  [Φ−1(𝛽) − 𝑐]/𝑑. 

    3c. Calculate the stressed expected loss 𝐸𝐿(𝑆𝑅)𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑  by (3.11). Run 1a-1b in Algorithm 3.4 by replacing  

          𝐸𝐿 with 𝐸𝐿(𝑆𝑅)𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 to get weights 𝑤1, 𝑤2, and 𝑤3.  
 

                                                 
2 Source: the authors (2018) 

      Scenario Loss Weight       Scenario Occuring Probability                  Loss Severity Level          Scenario Loss Rate

EL Pestimistic Base Optimistic Pestimistic Base Optimistic EL Pestimistic Base Optimistic Pestimistic Base Optimistic

0.34% 4% 61% 35% 5% 65% 30% 57% 95% 65% 30% 0.60% 0.37% 0.26%

0.34% 10% 60% 30% 10% 60% 30% 57% 90% 60% 30% 0.52% 0.36% 0.26%

0.34% 17% 59% 24% 15% 55% 30% 57% 85% 55% 30% 0.48% 0.34% 0.26%
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The table below shows the results for a series of given recession probabilities. The occurring probabilities, when 

recession probability is below 99%, are kept as 10%, 60%, and 30%, respectively for pessimistic, base, and 

optimistic scenarios, and are reset to 5%, 65%, and 30% when recession probability exceeds or equals to 99%. 

Loss severity levels for three scenarios under “Loss Severity Level” are set by Remark 3.3 at 1 − 𝑝1, 𝑝2, and 𝑝3. 

The change of occurring probability for pessimistic scenario is shown in the column under “Loss Severity 

Level” for pessimistic scenario (highlighted cells). 

 

As expected, the resulting scenario weights differ significantly from the weights given by occurring 

probabilities, and the weight for pessimistic scenario keeps on increasing when recession probability increases. 
 

 

                 Table 2. Scenario loss weights for expected loss stressed by recession probability 3 
        

          
 

 

Note that, in both tables 1 and 2, scenario loss rates 𝑦1, 𝑦2, and 𝑦3 are set by the occurring probabilities 𝑝1, 𝑝2, 
and 𝑝3 at several levels at 1 − 𝑝1, 𝑝2, and 𝑝3 using loss rate model (4.1) (i.e. model (3.1))). In practice, loss rates 

𝑦1, 𝑦2, and 𝑦3 are generated by IFRS9 models for PD, LGD, and EAD, the corresponding loss severity levels 

may not match up to the severity levels at 1 − 𝑝1, 𝑝2, and 𝑝3.  
 

In this case, we propose a lookup table for scenario weights, as described below: 
 

Follow steps 3a-3c to generate a lookup table that contains scenario weights 𝑤1, 𝑤2, and 𝑤3 for each 

given 𝐸𝐿(𝑆𝑅) and each loss rate triple (𝑦1, 𝑦2, 𝑦3), where 𝑦𝑖 and 𝐸𝐿(𝑆𝑅) vary within an appropriate 

range, for example, the severity level of 𝑦1 (pessimistic) from 70% to 99%, 𝑦2 (base) from 40% to 

60%, and 𝑦3 (optimistic) from 1% to 20%.  
 

When scenario loss rates are generated by IRFS9 models, lookup to the table for a desired level of 

𝐸𝐿(𝑆𝑅)𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 , and the closest triple (𝑦1, 𝑦2, 𝑦3) in the table (compared to losses generated by IFRS9 models). 

The corresponding values for 𝑤1, 𝑤2, and 𝑤3 are then the scenario weights required. 

 

Remark 4.1. The annual recession indicator for a year can also be set in the following way:  it has weight 
𝑖

4
 for 

value 1 and weight (1 −
𝑖

4
) for value 0, where 𝑖 is the number of quarters in recession in the year. This is 

equivalent to four Bernoulli trials in a year, with 𝑖 being the number of times that a trial has value 1. Therefore, 

a sample for an annual recession indicator can be generated to have four observations at each year, where 𝑖 
number of observations (among four) have the value 1 for the indicator.  
 

 

                                                 
3 Source: the authors (2018) 

Recession Stressed       Scenario Loss Weight          Scenario Loss Rate                  Loss Severity Level

No. Probability EL Pestimistic Base Optimistic Pestimistic Base Optimistic Stressed EL Pestimistic Base Optimistic

1 10.00% 0.41% 38.88% 54.96% 6.16% 0.52% 0.36% 0.26% 74.53% 90% 60% 30%

2 20.00% 0.43% 44.84% 52.41% 2.76% 0.52% 0.36% 0.26% 77.11% 90% 60% 30%

3 30.00% 0.44% 50.47% 47.05% 2.48% 0.52% 0.36% 0.26% 78.88% 90% 60% 30%

4 40.00% 0.45% 55.38% 42.39% 2.23% 0.52% 0.36% 0.26% 80.33% 90% 60% 30%

5 50.00% 0.45% 60.04% 37.96% 2.00% 0.52% 0.36% 0.26% 81.62% 90% 60% 30%

6 60.00% 0.46% 64.77% 33.47% 1.76% 0.52% 0.36% 0.26% 82.86% 90% 60% 30%

7 70.00% 0.47% 69.92% 28.57% 1.50% 0.52% 0.36% 0.26% 84.13% 90% 60% 30%

8 80.00% 0.48% 76.06% 22.74% 1.20% 0.52% 0.36% 0.26% 85.53% 90% 60% 30%

9 90.00% 0.50% 84.78% 14.46% 0.76% 0.52% 0.36% 0.26% 87.33% 90% 60% 30%

10 95.00% 0.51% 92.16% 7.45% 0.39% 0.52% 0.36% 0.26% 88.70% 90% 60% 30%

11 99.00% 0.53% 72.45% 26.17% 1.38% 0.60% 0.37% 0.26% 90.97% 95% 65% 30%

12 99.90% 0.56% 85.05% 14.20% 0.75% 0.60% 0.37% 0.26% 93.09% 95% 65% 30%

13 99.99% 0.59% 95.88% 3.92% 0.21% 0.60% 0.37% 0.26% 94.53% 95% 65% 30%
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Conclusions. For IFRS9 portfolio expected loss estimation, loan losses generated by IFRS9 models at scenario 

level are summed up by using the occurring probability weights for the scenarios. Portfolio expected loss 

estimated in this way can vary significantly, depending on the scenario losses the IFRS9 models generate and 

the occurring probability weights chosen. The models and approaches proposed in this paper provide a 

quantitative method for stressing portfolio loss based on recession risk, and a tool for finding the weights for 

noncyclic portfolio expected loss, and the expected loss under a stressed setting.  

 

Future researches. Models proposed in this paper are limited to probit-type. For future researches, the 

following questions would be interesting: 
 

(a) How do we perform a similar research, when logit-type mixed models are used (fatter tails than probit 

form)? In general, the latent recession factor 𝑆𝑅 can be non-normal. How do we perform a similar 

analysis when 𝑆𝑅  follows a distribution like log-logistic, Cauchy, or Burr is assumed? 

(b) Could a single latent factor be enough to capture the low-probability, high-impact experienced at the 

recession periods? Would a mixed model with multiple latent risk factors work better? 
 

 

Acknowledgements: The authors are very grateful to Carlos Lopez for initializing this research and proposing 

the step 1a in Algorithm 3.4. His insights and consistent supports will always be highly appreciated. Special 

thanks also go to Clovis Sukam for his critical reading for this manuscript.      

  

The authors thank the reviewers for all their valuable comments. Special thanks go to the first reviewer for the 

suggestions of the titles for the paper and sections, and the fat-tail considerations. Future research direction 

above is suggested by the first reviewer.    

 

Conflict of Interests. The views expressed in this article are not necessarily those of Royal Bank of Canada or 

any of its affiliates. Please direct any comments to Bill Huajian Yang at h_y02@yahoo.ca  

 

 

 

 
REFERENCES 
 

[1] Basel Committee on Banking Supervision (2005). An Explanatory Note on the Basel II IRB 

      Risk Weight Functions," July 2005. 

[2] Basel Committee on Banking Supervision (2015). Guidance on credit risk and accounting for 

      expected credit loss," December 2015. 

[3] Board of Governors of the Federal Reserve System (2016). Comprehensive Capital Analysis and Review 2016   

       Summary and Instructions, January 2016.  

[4] Chatterjee, S. (2015). Modelling credit risk. Handbooks, Bank of England.  
[5] Gordy, M. B. (2003). A risk-factor model foundation for ratings-based bank capital rules. Journal of Financial 

      Intermediation12, pp.199-232.  

      DOI:10.1016/S1042-9573(03)00040-8  

[6] Gordy, M. (2004). Granularity, New Risk Measures for Investment and Regulation, G. Szego, Wiley. 
[7]  Huang, X., Oosterlee, C. W., Mesters, M. (2007). Computation of VaR and VaR contribution in the Vasicek  

      portfolio credit loss model: a comparative study. Journal of Credit Risk, Vol 3 (3), September 2007 

      DOI: 10.21314.JCR.2007.048 

[8] Merton, R. (1974). On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance,  

      Volume 29 (2), 449-470  

       DOI: 10.1111/j.1540-6261.1974.tb03058.x  

[9] Meyer, C. (2009). Estimation of intra-sector asset correlations. The Journal of Risk Model 

      Validation, Volume 3 (3), Fall 2009 
[10] Rosen, D., Saunders, D. (2009). Analytical methods for hedging systematic credit risk with  

       linear factor portfolios.  Journal of Economic Dynamics & Control, 33 (2009), pp. 37-52 



11 

 

[11] Rutkowski, M. and Tarca, S. (2014). Regulatory Capital Modelling for Credit Risk, International Journal of 

       Theoretical and Applied Finance 18(5) · December 2014  

       DOI: 10.1142/S021902491550034X 

[12] Vasicek, O. (1991). Limiting Loan Loss Probability Distribution," KMV Corporation. 

[13] Vasicek, O. (2002). Loan portfolio value. Risk, December 2002, pp. 160 - 162. 

[14] Wolfinger, R. (2008). Fitting Nonlinear Mixed Models with the New NLMIXED Procedure. 

  SAS Institute Inc. 

[15] Yang, B. H. (2013) Estimating Long-Run PD, Asset Correlation, and Portfolio Level PD by Vasicek Models, Journal 

of Risk Model Validation, Volume 7 (4), pp. 3-19 

 

 

 

Appendix 
 

Proof of Proposition 2.1. The cumulative distribution for 𝑦 given by 
 

 𝐹(𝑦, 𝑎, 𝑏) = 𝑃[Φ(𝑎 + 𝑏𝑠) ≤ 𝑦] 
                  = 𝑃{𝑠 ≤ [Φ−1(𝑦) − 𝑎]/𝑏} 

                  = Φ{[Φ−1(𝑦) − 𝑎]/𝑏}. 
 

 

Since  Φ[Φ−1(𝑦)] = 𝑦 ,  the derivative for Φ−1(𝑦) with respect to 𝑦 is: 
 

𝑑Φ−1(𝑦)

𝑑𝑦
=

1

ϕ[Φ−1(𝑦)]
. 

 

By taking the derivative of  𝐹(𝑦, 𝑎, 𝑏) with respect to 𝑦, we have  𝑓(𝑦, 𝑎, 𝑏) = 𝑈1/(𝑏𝑈2), where 𝑈1and 𝑈2 

are given as (2.4). □  

 

Proof of Proposition 3.1.  By (2.3), the log-likelihood at time 𝑡 is given by log(𝑈1) − log(𝑏) − log (𝑈2). By 

(2.4), we can drop off the term  log (𝑈2), since its partial derivatives are zero with respect to 𝑎 and 𝑏.  The total 

sample log-likelihood at all times reduces to 
 

          𝐿𝐿 = ∑  [𝑙𝑜𝑔(𝑈1) − 𝑙𝑜𝑔(𝑏)]1≤𝑡≤𝑇  

  = ∑  [−
(𝑧𝑡−𝑎)2

2𝑏2 − 𝑙𝑜𝑔(𝑏)]1≤𝑡≤𝑇 .  
 

Setting the partial derivatives (with respectively to 𝑎 and 𝑏) of 𝐿𝐿 to zero, we have 
 

             0 =
𝜕𝐿𝐿

𝜕𝑎
= ∑  

2(𝑧𝑡−𝑎)

2𝑏21≤𝑡≤𝑇   

⟹ 𝑎 =
1

𝑇
∑  𝑧𝑡1≤𝑡≤𝑇  .                                                                                                     

 

0 =
𝜕𝐿𝐿

𝜕𝑏
= ∑ [ 

2(𝑧𝑡−𝑎)2

2𝑏31≤𝑡≤𝑇 −
1

𝑏
]  

 

⟹ 𝑏2 =
1

𝑇
∑  (𝑧𝑡 − 𝑎)2

1≤𝑡≤𝑇 .   □ 


