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Model and measure the relative efficiency of a four-stage production process. An NDEA multiplier relational 

model under different systems of resource distribution preferences between sub-processes 

 

 

Abstract 

 

 

Measuring the relative efficiency of a production process with the DEA considers the production process as a 

“black box” that uses inputs to transform them into outputs. In reality, many production processes are carried 

out by carrying out several interconnected activities that are usually grouped into phases that are in turn 

interconnected. For this reason, measuring the relative efficiency of a production process within the DEA 

technique requires shaping it as a network system (in others words to consider the production process as 

interconnected sub-process). In the case of network systems, the NDEA approach has developed many 

models to measure their relative efficiency: independent models, connected models and relational models. In 

particular, the relational model allows to measure at the same time both the efficiency of the system and the 

efficiency of the sub-process once the operations between the latter have been considered. In our opinion, 

many real production processes can be modelled as a network of four sub-processes that are differently 

interconnected with each other. In this paper we will model a production process as a network of four sub-

processes with shared variables and fixed preferences about the allocation of system resources between them. 

To measure the relative efficiency of the process and its parts we will develop an input-oriented NDEA 

model in the multiplier version. To solve the model we will use  virtual data under several resources 

allocation preference’s structure. Then we will conclude that 1) a production process with four 

interconnected sub-processes can represent a large number of real production processes, so the NDEA model 

developed here can potentially be used for many applications, 2) the resource allocation preference system 

inter-sub-process influences the measurement of relative efficiency.  

 

Keywords: network DEA, performances management, internal structure, inputs-outputs system. 
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1. Introduction 

 

Inside  Operation Research (O.R.) (Hiller & Lieberman, 2001) and Management Science (M.S.) tradition the 

Data Envelopment Analysis (DEA)[ (Cooper, et al., 2007)] occupies a central place as a non-parametric 

frontier technique to measure the relative efficiency of a production process and is at the same time a 

technique to model it as an input-output system that uses input that transforms into output without 

considering its internal structure. In real situations, production processes are instead sets of operations and 

activities interconnected with each other, we can think for example of the production of cars, or the 

production of jewelry or clothes, wine and so on.  This therefore suggests that a production process should be 

modelled differently from a “black box”. In the applied literature DEA applications cover several sectors [for 

a review of DEA applications see (Seiford, 1996), (Emrouznejad, et al., 2008); (Emrouznejad, et al., 2017); 

(Liu, et al., 2013); (Hollingsworth, 2008)], but in  all these cases the production process are modelled as 

“black box” that uses inputs to transform in outputs. More or less recently several authors proposed inside 

the DEA approach to modelling the production process as a network system [i.e. (Fare & Grosskopf, 2000); 

(Fa¨re, 1996b); (Kao, 2009(a)); (Castelli, et al., 2010); (Castelli, et al., 2001)] where the stages/operations of 

a production process are interconnect among them. The measurement of the relative efficiency of a network 

system within the DEA approach can be conducted with different models for example using independent 

models [i.e. (Wang, et al., 1997); (Seiford & Zhu, 1999); (Sexton & Lewis, 2003)], or  connected models [i.e 

(Fa¨re & & Grosskopf, 1996a) (Fare & Grosskopf, 2000)]. Unlike the independent model, the connected 

model allows the researcher to take into account the interrelationships within the production 

process/organization and thus measure its relative efficiency, but does not allow to derive the relative 

efficiency of the individual stages. Since the works of [ (Kao, 2009(a)); (Kao, 2009(b))] a new class of 

NDEA models are developed to measure the relative efficiency of the whole process as well as the efficiency 

of its parties using the same model. The author labelled his approach relational NDEA  models. The feature 
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of the relational NDEA  model is in that it apply the same weights to the same  variables, comprising the 

relational variables, in a way to consider the operations among its parts and calculate the efficiency of it 

using the decomposition efficiency formula[ (Kao, 2014)]. Kao's work begins by developing a simple two-

stage network model  with sub-processes differently  interconnected among them: in particular Kao consider 

series and parallel models as basic model. A more general classification of network models within the NDEA 

approach  is in [ (Castelli, et al., 2010)]. In general, the characteristic of the NDEA approach is that NDEA 

models
1
 can be adapted to model and measure the relative efficiency of specific network systems. The 

applications of the NDEA models are relatively recent relatively to the applications of the DEA model but is 

increasing [for some example we remember (Chodakowska & Nazarko, 2017); (Kao & Hwang, 2008); 

(Kawaguchi, et al., 2014); (Pinto, 2016); (Prieto & Zofio, 2007); (Sexton & Lewis, 2003); (Wanke & Barros, 

2014); (Wanke, et al., 2017); (Despotis, et al., 2015); (Chilingerian & Sherman, 2004), (Cook, et al., 2010)]. 

In this paper we develop a multiplier  relational NDEA model under CRS assumption for a production 

process of four sub-process. The paper is structured as follow: in the section 2 we show a review of the 

NDEA applications, in section 3 we show a general modelling in the case of a network system of four sub-

process (subsection 3.1) and the relative  multiplier NDEA models to measure its efficiency(subsection 3.2.), 

in the section 4 we offer an application with not real data and finally discussion and conclusions are showed 

in the section 5. 

 

 

2. A review of applied empirical literature 
 

The consideration of the internal structure of a production process/organization inside DEA context is 

relatively recent. A first application can be considered those in (Fa¨re & Whittaker, 1995). In their work the 

authors adopt a connected NDEA model and their network DEA approach can involve more than two stages 

and the operations among them. Their work consider an application of an input oriented two-stage DEA 

model to dairy farms and compare the results obtained with the ones obtained with a standard DEA model. 

Since the work of (Fa¨re & Whittaker, 1995) other works appeared in the applied economic and managerial 

literature. For example (Sexton & Lewis, 2003) apply a two-stages NDEA model to Major League Baseball 

considering both inputs and outputs orientation and each one under constant and variable return to scale 

assumptions. In their paper the authors using the envelopment form demonstrate as it is possible to make 

different assumptions for each sub-process in a context of network system.  (Chilingerian & Sherman, 2004) 

apply the NDEA approach in a two stage process in measuring a physicians care. (Prieto & Zofio, 2007) 

applied network efficiency analysis within an input– output model initiated by (Koopmans, 1951). In their 

work the authors optimized primary input allocations, intermediate products and final demand products by 

way of Network DEA techniques and succeeded in applying their models to input–output database of OECD 

countries. (Kao & Hwang, 2008) introduced for the first time in the context of two-stage network DEA the 

relational approach. They develop an multiplier input-oriented two-stage DEA model and apply it to measure 

the relative efficiency of non-life insurance companies in Taiwan. (Wanke & Barros, 2014) apply the 

network-DEA centralized efficiency model to optimize efficiency in Brazilian banking in both modelled 

stages simultaneously. (Wanke, et al., 2017) apply a network DEA approach to compute the impact of 

contextual variables on several types of efficiency scores of the resulting virtual merged banks: global 

(merger), technical (learning), harmony (scope), and scale (size) efficiencies.  (Kawaguchi, et al., 2014) 

employed a dynamic-network data envelopment analysis model (DN model) to perform the evaluation of the 

policy effect of the current reform of Japan’s municipal hospitals. (Despotis, et al., 2015) apply a network 

DEA approach to deal with efficiency assessments in two-stage processes and apply their  approach to the 

assessment of the academic performance of forty faculty members in a Greek University. (Pinto, 2016) apply 

both  constant  and variable returns to scale Data Envelopment Analysis network model  to estimates the 

relational and sub-process efficiency of the production process of the hospital’s acute care services. 

(Chodakowska & Nazarko, 2017) apply a network DEA models in evaluating courier and messenger 

companies. In their work the authors consider an  hypothetical chains consisting of two types of members, 

i.e. nine leaders of the courier and messenger sector that had the share of nearly 95% of total revenue 

generated from provision of courier services in 2014. The second member was the bigger enterprise in the 

                                                           
1
 As in the DEA we can have a multiplier, envelopment and slacked  NDEA models 



3 

 

electronic shopping sector that does not have stationary shops e.g. Bonprix Sp. z o.o. Their approach 

consider envelopment form. For a review of applications of NDEA see (Kao, 2014)  and (Cook, et al., 2010). 

3. Modelling a production process with four sub-process and the relative NDEA model  

 
3.1 A general four stages production process 

  

In this subsection we are modelling a general production process of four sub-process (see Figure 1). 

 

Figure. 1 A network system of  a production process with four sub-process 

 
 

The production process in Figure 1 consider four sub-process interconnected among them. The outputs of the 

process are five (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) and the inputs of the production process are 5 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5), while the 

intermediate (Fa¨re & Whittaker, 1995) variables are two (𝑧1, 𝑧2). In particular the first sub-process produce 

two outputs (the intermediate variables 𝑧1 𝑎𝑛𝑑 𝑧2) where a proportion of it became the inputs of the second 

sub-process (𝑧12, 𝑧22) and the remaining proportions are the inputs of the third sub-process (𝑧13, 𝑧23). To 

produce his outputs (𝑦5) the fourth sub-process use a proportion of two inputs system (𝑥24, 𝑥44), while the 

second and third sub-process use an exogenous variable for each one (𝑥1𝑎𝑛𝑑 𝑥5 respectively). Summarizing, 

the second sub-process to produce his two outputs (𝑦1, 𝑦2) use an exogenous input variable (𝑥1), two shared 

relational variables (𝑧12, 𝑧22) and two shared inputs system (𝑥32, 𝑥42). The third sub-process to produce his 

two outputs (𝑦3, 𝑦4) use one exogenous variable (𝑥5), two shared relational variables (𝑧13, 𝑧23) and two 

shared inputs variables (𝑥33, 𝑥43), and finally the fourth sub-process to produce its output (𝑦5) use two shared 

inputs variables (𝑥24𝑎𝑛𝑑 𝑥44).  The system have not feedback variables and do not have shared outputs [ 

(Cook, et al., 2010),(Castelli, et al., 2010), (Chen, et al., 2010 b)]. The model is very general and any other 

configurations of inputs, outputs and intermediate variables are possible. So, for example we can add a 

second exogenous variable to the second sub-process, or add a third intermediate variable and so on. In the 

following sub-section we build the relative NDEA model to estimate the relative efficiency of the production 

process in the Figure 1.  

 

3.2 The NDEA model 

 

In this sub-section we build the multiplier input-oriented  relational NDEA model to measure the relational 

efficiency for the production process of four stages as those displayed in Figure 1 above. The input version 

of the model, once adopted the linearization suggested by (Charnes & Cooper, 1962), can be write as follow: 
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𝑚𝑎𝑥 ∑ 𝑢𝑟

𝑝

𝑟=1

𝑌𝑟𝑜 

𝑠. 𝑡.   ∑ 𝑣𝑖𝑋𝑖𝑜 = 1  

𝑞

𝑠=1

,

 

                                                     ∑ 𝑢𝑟
𝑝
𝑟=1 𝑌𝑟𝑘 − ∑ 𝑣𝑖

𝑞
𝑠=1 𝑋𝑖𝑘 ≤ 0,                               (1) 

                                                  ∑ 𝑤𝑟1𝑘
𝑚
𝑅=1 𝑍𝑟1𝑘 − ∑ 𝑣𝑟𝑘

𝑛
𝑠=1 𝑋𝑟1𝑘

𝑆 𝛽𝑗 ≤ 0 ,     

                                                ∑ 𝑢𝑟𝑌𝑟𝑘2
𝑠
𝑟=1 − ∑ 𝛼𝑟𝑤𝑟𝑘2𝑍𝑟2𝑘

𝑆 −𝑡
𝑟=1 ∑ 𝑣𝑖̇𝑋𝑟2

𝑇
𝑟=1 − ∑ 𝛽𝑠𝑣𝑖𝑋𝑟𝑘2

𝑆𝑈
𝑠=1 ≤ 0   

∑ 𝑌𝑟𝑘3𝑢𝑟

𝑧

𝑟=1
− ∑ 𝛽𝑠𝑣𝑖𝑋𝑖𝑘3

𝑆
𝑙

𝑟=1
− ∑ (1 − 𝛼𝑟)𝑤𝑟𝑘3𝑍𝑟𝑘3

𝑆
𝐿

𝑟=1
− ∑ 𝑣𝑖𝑋𝑖𝑘3

𝑀

𝑟=1
≤ 0 

∑ 𝑢𝑟𝑌𝑟𝑘4

𝑜

𝑟=1

− ∑ 𝑣𝑟𝑋𝑟𝑘4
𝑆

𝑂

𝑟=1

≤ 0 

 

𝑢, 𝑤, 𝑣 ≥ 0 

 

 

Where: 

 

𝑌𝑟𝑘= are the outputs of the system with 𝑟 ∈ 𝑅𝑝=5 for p outputs system (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5). 

𝑋𝑖𝑘= are the inputs of the system with 𝑖 ∈ 𝑅𝑞=5 for q inputs system (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) including the 

exogenous variables of the sub-process (in this case the variables 𝑥1, 𝑥5 ). 

𝑍ℎ1𝑘= are the outputs of the first sub-process with ℎ ∈ 𝑅𝑚=2 (𝑧1 𝑎𝑛𝑑 𝑧2). The pedices 1 indicate the first 

sub-process.  

𝑋𝑖1𝑘=are the inputs of the first sub-process (𝑥21, 𝑥31, 𝑥41). In our NDEA model  all these variables are shared 

variables and for this reason we adopt the notation 𝑋𝑟1𝑘
𝑆 .  

𝑌𝑟𝑘2=are the outputs of the second sub-process (=𝑌𝑟𝑘)(𝑦1, 𝑦2). The pedices 2 indicate the second sub-process. 

𝑍𝑝2𝑘
𝑆 = are the relational shared inputs of the second sub-process (𝑧12, 𝑧22) 

𝑋𝑟2𝑘 = are the exogenous variables of the second subprocess (𝑥1). 

𝑋𝑟𝑘2
𝑠 =are the shared inputs variables of the second subprocesss (𝑥32, 𝑥42). 

𝑍𝑟𝑘3
𝑆 = are the relational shared variables of the third subprocess (𝑧13, 𝑧23). 

𝑋𝑟𝑘3
𝑆 = are the shared inputs  variables of the subprocess three (𝑧13, 𝑧23) 

𝑋𝑖𝑘3 = are the inputs of the third subprocess (𝑥33, 𝑥43) 

𝑌𝑟𝑘3 = are the outputs of the third subprocess(𝑦3, 𝑦4) 

𝑌𝑟𝑘4 = are the outputs of the fourty subprocess(𝑦5) 

𝑋𝑖4𝑘 =are the inputs are of the fourth subprocess(𝑥24,𝑥44) 

k= is the number of production units (k=1……N) 

u, v, w ,𝑤̇= are the weight of the model’s variables  

𝜷(𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6)=is the vector of  inputs sharing proportions 

(𝛽1𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠 2, 𝛽2 𝑎𝑛𝑑 𝛽3 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠 3, 𝛽4𝑎𝑛𝑑 𝛽5 𝑓𝑜𝑟  𝑖𝑛𝑝𝑢𝑡𝑠 4 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) 

𝜶(𝛼1, 𝛼2) =is the vector of the intermediate variables sharing  proportions 

(𝛼1𝑓𝑜𝑟 𝑧1, 𝛼2𝑓𝑜𝑟 𝑧2 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

 

The system have p outputs (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) and q inputs (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5). Some of the inputs system (in 

particular 𝑥2, 𝑥3, 𝑥4) are shared among the four subprocess as follow: the first subprocess have n=3 shared 

inputs (𝑥21, 𝑥31, 𝑥41) and m=2 outputs (𝑧1, 𝑧2), the second subprocess have s=2 outputs (𝑦1, 𝑦2), t 

=2intermediate shared variables (𝑧12, 𝑧22),  U=2 shared inputs (𝑥32, 𝑥42) and T=1 exogenous variables (𝑥1), 

the third subprocess have z=2 outputs (𝑦3, 𝑦4), l=1 exogenous variables (𝑥5), L=2 intermediate shared 

variables (𝑧13, 𝑧23) and M=2 shared inputs variables (𝑥33, 𝑥43) (with the first subprocess), the fourth 

subprocess have o=1 outputs (𝑦5) and O=2 shared inputs (𝑥24, 𝑥44) (with the first subprocess). The first 

constraint is the normalization constraint (Charnes & Cooper, 1962). The second constraint is the system 

constraint, the third is the constraint of the first sub-process and finally, the fourth and five constraint are the 
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constraints of the third and fourth stages. To consider the relationship between the stages/sub-process and 

treat the model as a relational NDEA model all variables, comprising the relational variables (Z), have the 

same weigths [ (Kao, 2009(a))], and obviuosly we attach the same weigths a the same shared relational 

variables as well as at the same not relational shared variables (this later solution have an evident 

computational gain for us). The sharing’s proportion is based on the vectors of scalars (𝜷, 𝜶). The output 

version of the NDEA model above is the following: 

 

                                                                              min ∑ 𝑣𝑖𝑋𝑖𝑜
𝑞
𝑠=1  

𝑠. 𝑡. ∑ 𝑢𝑖𝑌𝑖 = 1

𝑝

𝑟=1

 

 

− ∑ 𝑢𝑟

𝑝

𝑟=1

𝑌𝑟𝑘 + ∑ 𝑣𝑖

𝑞

𝑠=1

𝑋𝑖𝑘 ≥ 02, 

 

                                                      − ∑ 𝑤𝑟1𝑘
𝑚
𝑅=1 𝑍𝑟1𝑘 + ∑ 𝑣𝑟𝑘

𝑛
𝑠=1 𝑋𝑟1𝑘𝛽𝑗 ≥ 0 ,    (2) 

 

− ∑ 𝑢𝑟𝑌𝑟𝑘2

𝑠

𝑟=1

+ ∑ 𝛼𝑟𝑤𝑟𝑘2𝑍𝑟2𝑘
𝑆 +

𝑡

𝑟=1

∑ 𝑤𝑗̇𝑋𝑟2 +

𝑇

𝑟=1

∑ 𝛽𝑠𝑣𝑖𝑋𝑟𝑘2
𝑆

𝑈

𝑠=1
≥ 0   

 

-∑ 𝑌𝑟𝑘3𝑢𝑟
𝑧
𝑟=1 + ∑ 𝛽𝑠𝑣𝑖𝑋𝑖𝑘3

𝑆 +𝑙
𝑟=1 ∑ (1 − 𝛼𝑟)𝑤𝑟𝑘3𝑍𝑟𝑘3

𝑆𝐿
𝑟=1 + ∑ 𝑣𝑖𝑋𝑖𝑘3

𝑀
𝑟=1 ≥ 0 

 

− ∑ 𝑢𝑟𝑌𝑟𝑘4

𝑜

𝑟=1

+ ∑ 𝑣𝑟𝑋𝑟𝑘

𝑂

𝑟=1

≥ 0 

 

𝑢, 𝑤, 𝑣, 𝑤̃, 𝑤̇ ≥ 0 
 

 

The multiplier output-oriented NDEA model in (2) give us the measure of how much the output of the 

process can be improved once considered the relationship among the sub-process inside it. As it is possible 

to note (1) and (2) assume constant return to scale for the entire system as well as for each subprocess. Figure 

1a below depicts the CRS efficient frontier for the sub-process 1 (the straight line 𝑂𝐶1 ) in the right side and 

the CRS efficient frontier for the sub-process 2 (straight line 𝑂𝐷2) in the left side. 

 

Figure. 1a CRS efficient forntier of first and second sub process 

 

                                                           
2
 To write:   ∑ 𝑢𝑟

𝑝
𝑟=1 𝑌𝑟𝑘 − ∑ 𝑣𝑖

𝑞
𝑠=1 𝑋𝑖𝑘 ≤ 0 is the same that  to write: − ∑ 𝑢𝑟

𝑝
𝑟=1 𝑌𝑟𝑘 + ∑ 𝑣𝑖

𝑞
𝑠=1 𝑋𝑖𝑘 ≥ 0, 
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In the right side of the Figure 1a sub-process 1 apply an input vector X (𝑥21, 𝑥31, 𝑥41) to produce a vector of 

intermediate product Z (𝑧1,𝑧2), and the left side show a sub-process 2 that applies intermediate product Z 

(𝑧1, 𝑧2) to produce a vector of outputs Y (𝑦1, 𝑦2). The superscripts associated with the DMU indicate the 

subprocess. For example the DMU B is overall inefficient in the first as in the second subprocess. These 

measure are (𝐵1̂ 𝑍𝐵⁄ )/(𝐵1 𝑍𝐵⁄ ) and(𝐵2 𝑍𝐵⁄ )/(𝐵2̂ 𝑍𝐵⁄ ), respectively. 

  

 

4. The data and application 

 

In this section we will proceed with the application of the model to a virtual inputs/outputs vector data 

generated as random number using uniform distribution
3
. Once fixed in R the set.seed=4 we proceed with the 

calculation of the descriptive statistics of it (see Table 1 below)
4
. Our virtual dataset is of 5 inputs (x), 5 

outputs (y) and 2 relational variables (z) 

 

Table 1 The data description 

 
Variables Descriptive statistic 

Inputs mean s.d. 

X1 10,41 2,86 

X2 72,55 36,61 

X3 103,98 60,88 

X4 89,37 51,34 

X5 27,21 15,25 

Outputs   

Y1 58,73 22,01 

Y2 131,41 44,75 

Y3 176,3 90,71 

Y4 385,77 200,1 

Y5 30,53 16,26 

Relational variables   

Z1 87,09 46,71 

Z2 54,67 31,04 

 

  

 

 

Once applied the NDEA model with different systems of preferences by researchers/managers on the 

resources allocation among the sub-process (see Table 2) we obtain the following results (see Table 3,4,5 

and 6). 

 

Table 2 Managerial/researchers preferences on the allocation of the resources among the sub-process 

 
Scalar System of preferences 

 1 2 3 4 

𝛽1 0.5 0.85 0.35 0.85 

𝛽2 0.3 0.5 0.2 0.6 

𝛽3 0.3 0.2 0.5 0.3 

𝛽4 0.3 0.4 0.1 0.6 

𝛽5 0.2 0.2 0.3 0.1 

𝛽6 0.2 0.3 0.1 0.1 

𝛼1 0.5 0.4 0.7 1 

𝛼1 0.5 0.4 0.4 1 

                                                           
3
 The function used in R is runif(). 

4
 We decided to do so because our work at this step is not purely applicative. 
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The first system of preferences allocates through the parameter 𝛼1 the relational variable 𝑧1 in the same 

proportion between the sub-process 2 (𝑧12) and 3 (𝑧13) in the proportion of (50/50), through the parameter 𝛼2 

the relational variable 𝑧2 is allocated between the sub-process 2 (𝑧22) and 3 (𝑧23) in the same proportion 

(50/50). The parameter 𝛽1 allocates the variable 𝑥2 in the same proportions (50/50)  between the sub-process 

1 (𝑥21) and 4 (𝑥24), the parameter 𝛽2 and 𝛽3 allocates the variable 𝑥3 among the sub-process 1(𝑥31), 2(𝑥32) 

and 3(𝑥33) in the following proportions 0.3,0.3 and (1-0.3-0.3)=0.4, respectively, finally the parameters 

𝛽4,𝛽5 𝑎𝑛𝑑 𝛽6 allocates the variable 𝑥4 among the sub-process 1(𝑥41), 2(𝑥42), 3(𝑥43) and 4(𝑥44) in the 

following proportions 0.3, 0.2,0.2 and (1-0.3-0.2-0.2)=0.3, respectively. The second system of preferences 

allocates through the parameter 𝛼1 the relational variable 𝑧1 in the proportions of (40,60) between the sub-

process 2 (𝑧12) and 3 (𝑧13), through the parameter 𝛼2allocates the relational variable 𝑧2 between the sub-

process 2 (𝑧23) and 3 (𝑧33) in the proportions of (40/60). The parameter 𝛽1 allocates the variable in the 

proportions (0.85/0.15)  between the sub-process 1 (𝑥21) and 4 (𝑥24), the parameters 𝛽2 𝑎𝑛𝑑 𝛽3 allocate the 

variable 𝑥3 among the sub-process 1(𝑥31),2(𝑥32) and 3(𝑥33) in the following proportions 0.3,0.3 and (1-0.3-

0.3)=0.4, respectively finally the parameters 𝛽4, 𝛽5 𝑎𝑛𝑑 𝛽6 allocates the variable 𝑥4among the sub-process 

1(𝑥41),2(𝑥42),3(𝑥43) and 4(𝑥44) in the following proportions 0.3, 0.2,0.2 and (1-0.3-0.2-0.2)=0.3, 

respectively. The third system of preferences allocates through the parameter 𝛼1 the relational variable 𝑧1 in 

the proportions of (0.7/0.3) between the sub-process 2 (𝑧12) and 3 (𝑧13), through the parameter 𝛼2allocates 

the relational variable 𝑧2 between the sub-process 2 (𝑧22) and 3 (𝑧23) in the  proportions of (0.4/0.6). The 

parameter 𝛽1 allocates the variable 𝑥2 in the proportions of (0.35/0.65)  between the sub-process 1 (𝑥21) and 

4 (𝑥24), the parameters 𝛽2𝑎𝑛𝑑 𝛽3 allocates the variable 𝑥3 among the sub-process 1(𝑥31),2(𝑥32) and 3(𝑥33) 

in the following proportions 0.2,0.5 and (1-0.2-0.5)=0.2, respectively. Finally the parameters 𝛽4, 𝛽5 𝑎𝑛𝑑 𝛽6 

allocates the variable 𝑥4among the sub-process 1(𝑥41),2(𝑥42),3(𝑥43) and 4(𝑥44) in the following proportions 

0.1, 0.3,0.1 and (1-0.1-0.3-0.1)=0.5, respectively. In the first system of preferences the managers express a 

more equilibrate allocation of the outputs of the first sub-process among the sub-process 3 and 4 than in the 

third system. In others words the managers evaluate with equilibrium the interrelationship among the sub-

process 1,2 and 3, while in the third the managers consider the second sub-process as a sub-process with a 

more high consumption of the relational resources produced by the first sub-process. A moderate 

disequilibrium in the allocations of the relational variables characterize the second system of preferences. 

Instead the second is characterized to the a disequilibrium in the allocation of the variable 2 between the sub-

process 2 and 4, and the third to the a disequilibrium in the allocation of the variable 𝑥4, that privilege the 

sub-process 4 in its allocation. Finally the fourth system of preferences modify radically the role of the 

relational variables, now the outputs of the first sub-process are totally  intermediate variable for  the second 

sub-process, hence lost the characteristic of shared variables with the third sub-process, that now will use 

only a proportion of the system’s inputs (the variables 𝑥3𝑎𝑛𝑑 𝑥4. Following the four system of preferences 

the relative efficiency of the system and of its sub-process will be those reported in the Tables 3, 4 ,5 and 6. 

 

Table 3 Efficiency estimation (Preferences system 1) 

 
  Descriptive statistics 

Efficiency  mean s.d. median I Q(25%) IIIQ(75%) 

 Obs Input oriented measurement 

Relational efficiency 150 0,830525 0,186378 0,884463 0,681019 1 

Calculated relational 

efficiency 

150 0,830525 0,186378 0,884463 0,681019 1 

First sub process efficiency 147 148,6852 230.9413 70,87663 21,81416 194,2922 

Second sub-process 

efficiency 

150 0,333558 0,685407 0,076669 0,026964 0,212165 

Third sub-process efficiency 150 0,160628 0,187252 0,084133 0,038834 0,211517 

Fourth sub-process 

efficiency 

150 0,233376 0,362507 0,123434 0 0,288108 

  Output oriented measurement 

Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 

Calculated relational 150 0,131051 0,083731 0,113904 0,070589 0,172138 
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efficiency 

First sub process efficiency 150 0,078706 0,133399 0,033797 0,017131 0,092712 

Second sub-process 

efficiency 

141 2,596546 6,536574 0,729086 0,457538 1,141824 

Third sub-process efficiency 148 2,104779 5,713056 0,398516 0 1,71706 

Fourth sub-process 

efficiency 

76 0,018975 0,044954 0,003759 0 0,018601 

 

 

Table 4 Efficiency estimation (Preferences system 2) 

 
  Descriptive statistics 

Efficiency Obs mean s.d. median I Q (25%) IIIQ 

(75%) 

  Input oriented measurement 

Relational efficiency 150 0,829052 0,186871 0,884463 0,680454 1 

Calculated relational 

efficiency 

150 0,829052 0,186871 0,884463 0,680454 1 

First sub process efficiency 147 92,799 179,178 34,314 12,0,93 90,659 

Second sub-process 

efficiency 

150 0,36926 0,722343 0,099617 0,034076 4,349306 

Third sub-process efficiency 150 0,161123 0,194164 0,081659 0,039466 0,937963 

Fourth sub-process 

efficiency 

150 0,241008 0,359038 0,13812 0 2 

  Output oriented measurement 

Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 

Calculated relational 

efficiency 

150 0,131051 0,083731 0,113904 0,070589 0,172138 

First sub process efficiency 150 0,078706 0,133399 0,033797 0,017131 0,092712 

Second sub-process 

efficiency 

138 1,05 2,144 0,772125 0,788 1,927 

Third sub-process efficiency 82 0,049982 0,075322 0,021215 0 0,0788 

Fourth sub-process 

efficiency 

76 0,018975 0,044954 0,003759 0 0,0186 

 

 

Table 5 Efficiency estimation (Preferences system 3) 

 
  Descriptive statistics 

Efficiency Obs. mean s.d. median I Q (25%) IIIQ 

(75%) 

  Input oriented measurement 

Relational efficiency 150 0,831071 0,185908 0,884463 0,68126 1 

Calculated relational 

efficiency 

150 
0,831071 0,185908 0,884463 0,68126 1 

First sub process efficiency 147 158,8529 299,333 67,9760 24,092 181,448 

Second sub-process 

efficiency 

150 
0,250094 0,435956 0,084716 0,033912 0,248641 

Third sub-process 

efficiency 

150 
0,148958 0,171433 0,078124 0,043175 0,208608 

Fourth sub-process 

efficiency 

150 
0,242129 0,355655 0,139277 0 0,307079 

  Output oriented measurement 

Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 

Calculated relational 

efficiency 

150 
0,131051 0,083731 0,113904 0,070589 0,172138 

First sub process efficiency 150 0,078706 0,133399 0,033797 0,004885 0,02357 

Second sub-process 

efficiency 

150 0,7608 2,010 0,39914 0,18386 0,69647 
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Third sub-process 

efficiency 

150 0,050295 0,075452 0,02217 0 0,072741 

Fourth sub-process 

efficiency 

150 0,018975 0,044954 0,003759 0 0,018601 

 

Table 6 Efficiency estimation (Preferences system 4) 

 
  Descriptive statistics 

Efficiency  mean s.d. median I Q(25%) IIIQ(75%) 

 Obs. Input oriented measurement 

Relational efficiency 150 0,733114 0,227461 0,721897 0,574061 0,984066 

Calculated relational 

efficiency 

150 0,733114 0,227461 0,721897 0,574061 0,984066 

First sub process efficiency 142 68,876 136.879 21,014 4,985 63,499 

Second sub-process 

efficiency 

150 0,421303 0,945323 0,110512 0,052987 0,313501 

Third sub-process 

efficiency 

150 0,115892 0,184034 0,028536 0,000974 0,154049 

Fourth sub-process 

efficiency 

150 0,270046 0,386234 0,156098 0 0,375528 

  Output oriented measurement 

Relational efficiency 150 0,131051 0,083731 0,113904 0,070589 0,172138 

Calculated relational 

efficiency 

150 0,131051 0,083731 0,113904 0,070589 0,172138 

First sub process efficiency 150 0,078706 0,133399 0,033797 0,017131 0,0927 

Second sub-process 

efficiency 

82 0,256 0,16520 0,2322 0,12992 0,37127 

Third sub-process 

efficiency 

141 0,0943 0,0847 0,07131 0,03457 0,13199 

Fourth sub-process 

efficiency 

150 0,034205 0,056005 0,0161 0,005218 0,0328 

 

 

The cell “Calculated relational efficiency” contain the relative efficiency of the whole process calculated the 

multiplicative formula (Kao, 2009(a)) once solved the model NDEA in (1). While the cell with “Calculated 

…sup-process” contain the result of the application of the decomposition formula for calculating the 

efficiency of each sub-process (Kao, 2009(a)) once solved the NDEA model in (1). The differences in the 

measurements are outlined to the comparison among the empirical cumulative distribution of the efficiency 

scores in the Figures 1,2,3 and 4. The graph refer to the relational efficiency (not calculated) of the whole 

process and  the efficiency of the four sub-process 1,2 under the four system of preferences. 

 

Figure 2 Ecdf of the efficiency scores in the case of CRS-Input orientation 
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Figure 3 Ecdf of the efficiency scores in the case of CRS-Output orientation 

 

 
 

How much the efficiency of each sub-process is correlated with every other can be related to the resource’s 

allocation among them. In the following Tables we report the correlation analysis
5
. 

 

Table 7 CRS- efficiency scores correlations 

 
 Correlation  

Efficiency Relational 

efficiency 

Calculated 

relational 

efficiency 

First sub 

process 

efficiency 

Second 

sub-process 

efficiency 

Third sub-

process 

efficiency 

Fourth 

sub-

process 

efficiency 

 INPUT ORIENTATION  

 I  

Relational efficiency 1 1 -0,02413 0,263478 0,179014 0,321939 

Calculated relational 

efficiency 

1 1 -0,02413 0,263478 0,179014 0,321939 

First sub process efficiency -0,02413 -0,02413 1 -0,08982 -0,06575 -0,05966 

Second sub-process 

efficiency 

0,263478 0,263478 -0,08982 1 0,35512 0,196161 

Third sub-process 

efficiency 

0,179014 0,179014 -0,06575 0,35512 1 0,235418 

Fourth sub-process 

efficiency 

0,321939 0,321939 -0,05966 0,196161 0,235418 1 

 II  

Relational efficiency 1 1 -0,01367 0,268164 0,128934 0,281771 

Calculated relational 

efficiency 

1 1 -0,01367 0,268164 0,128934 0,281771 

First sub process efficiency -0,01367 -0,01367 1 -0,0987 -0,09887 -0,08982 

Second sub-process 

efficiency 

0,268164 0,268164 -0,0987 1 0,145396 0,225273 

Third sub-process 

efficiency 

0,128934 0,128934 -0,09887 0,145396 1 0,177881 

Fourth sub-process 

efficiency 

0,281771 0,281771 -0,08982 0,225273 0,177881 1 

 III 

Relational efficiency 1 1 -0,01367 0,268164 0,128934 0,281771 

Calculated relational 

efficiency 

1 1 -0,01367 0,268164 0,128934 0,281771 

First sub process efficiency -0,01367 -0,01367 1 -0,0987 -0,09887 -0,08982 

                                                           
5
To run the correlation analysis in R we use the function “cor” with the option” use="complete.obs"”, that eliminate all 

missing values in the observations 
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Second sub-process 

efficiency 

0,268164 0,268164 -0,0987 1 0,145396 0,225273 

Third sub-process 

efficiency 

0,128934 0,128934 -0,09887 0,145396 1 0,177881 

Fourth sub-process 

efficiency 

0,281771 0,281771 -0,08982 0,225273 0,177881 1 

 IV 

Relational efficiency 1 1 -0,0094 0,2068 0,170763 0,203507 

Calculated relational 

efficiency 

1 1 -0,0094 0,2068 0,170763 0,203507 

First sub process efficiency -0,0094 -0,0094 1 -0,14678 -0,08184 -0,10184 

Second sub-process 

efficiency 

0,2068 0,2068 -0,14678 1 0,191021 0,047469 

Third sub-process 

efficiency 

0,170763 0,170763 -0,08184 0,191021 1 -0,01198 

Fourth sub-process 

efficiency 

0,203507 0,203507 -0,10184 0,047469 -0,01198 1 

 OUTPUT ORIENTATION 

       

 I  

Relational efficiency 1 1 0,258596 0,092688 0,099812 0,243368 

Calculated relational 

efficiency 

1 1 0,258596 0,092688 0,099812 0,243368 

First sub process efficiency 0,258596 0,258596 1 -0,1991 -0,20888 0,0949 

Second sub-process 

efficiency 

0,092688 0,092688 -0,1991 1 0,608915 -0,20888 

Third sub-process 

efficiency 

0,099812 0,099812 -0,20888 0,608915 1 -0,15114 

Fourth sub-process 

efficiency 

0,243368 0,243368 0,0949 -0,20888 -0,15114 1 

 II  

Relational efficiency 1 1 0,258596 #NUM! 0,701031 0,243368 

Calculated relational 

efficiency 

1 1 0,258596 #NUM! 0,701031 0,243368 

First sub process efficiency 0,258596 0,258596 1 #NUM! 0,407389 0,0949 

Second sub-process 

efficiency 

#NUM! #NUM! #NUM! 1 #NUM! #NUM! 

Third sub-process 

efficiency 

0,701031 0,701031 0,407389 #NUM! 1 0,352086 

Fourth sub-process 

efficiency 

0,243368 0,243368 0,0949 #NUM! 0,352086 1 

 III 

Relational efficiency 1 1 0,307872 #NUM! 0,927164 #NUM! 

Calculated relational 

efficiency 

1 1 0,307872 #NUM! 0,927164 #NUM! 

First sub process efficiency 0,307872 0,307872 1 #NUM! 0,347914 #NUM! 

Second sub-process 

efficiency 

#NUM! #NUM! #NUM! 1 #NUM! #NUM! 

Third sub-process 

efficiency 

0,927164 0,927164 0,347914 #NUM! 1 #NUM! 

Fourth sub-process 

efficiency 

#NUM! #NUM! #NUM! #NUM! #NUM! 1 

 IV 

Relational efficiency 1 1 0,307872 0,118829 0,927164 0,295091 

Calculated relational 

efficiency 

1 1 0,307872 0,118829 0,927164 0,295091 

First sub process efficiency 0,307872 0,307872 1 0,015969 0,347914 0,036728 

Second sub-process 

efficiency 

0,118829 0,118829 0,015969 1 0,116996 0,110918 

Third sub-process 0,927164 0,927164 0,347914 0,116996 1 0,269173 
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efficiency 

Fourth sub-process 

efficiency 

0,295091 0,295091 0,036728 0,110918 0,269173 1 

 

The correlation analysis reported in the Table 7, among other possible observations, outline that the 

efficiency of the first sub-process is, albeit slightly, negatively correlated with the efficiency scores of all 

remaining sub-process under all the system preferences. While the efficiency of the second sub-process is 

positively correlated with the efficiency of the third sub-process although the correlation of it with the third 

sub-process is greater under the first system (0.35) of preferences than in all others system of preferences 

(0.145,0.145 and 0.191 under the second, third and fourth, respectively). This latter is also the higher positive 

correlation that we observe in the Table 7. While the lower positive correlation is ≅0.0475 and occur 

between the fourth and second sub-process under the fourth system of preferences. In the Figure 2 below we 

report the path of the efficiencies. 

 

4.1 Which system of preferences? 

 

The objective of empirical application is to measure the relative efficiency of the whole system and its parts. 

Another objective is to compare the effect of preference systems on the measurement of relative efficiency. 

In principle line, for researchers/managers, a system of preference for the allocation of resources among sub-

process that allows to have a higher relative efficiency of process and sub-process is preferable to any other. 

Here, we will  show the results of the Wilcoxon-Mann-Whitney test
6
 once tested that the data (the vectors of 

our efficiency scores) do not belong to the normal distribution
7
 and that their variance are homogeneous

8
. All 

test results allow to infer that the calculated efficiency scores do not belong to a normal distribution, that 

their variances are homogeneous, that the relational efficiency scores under the system of preference 1, 2 and 

3 come from the same distribution and that the relational efficiency scores under the system of preference 4 

do not belong to the same distributions of systems 1, 2 and 3. The results are  in the Table 7 below. 

 

Table 7 Wilcoxon-Mann-Whitney test  

 

 Comparison between the four preference systems (I ,II, III, IV) 

 INPUT 

 Two side test 

 I vs II I vs III I vs IV II vs III II vs IV III vs IV 

Calculated 

Statistic 

Value 

11412 11454 14302 11316 14196 14161 

p-value 0.8285 0.7858 4.734e-05 0.9292 8.529e-05 0.0001047 

 One side 𝜇𝑖𝑣 > 𝜇𝑖, 𝜇𝑖𝑖 , 𝜇𝑖𝑖 

Calculated 

Statistic 

Value 

  8198.5  8304 8339 

p-value   1  1 0.9999 

 OUTPUT 

 Two side test 

 I vs II I vs III I vs IV II vs III II vs IV III vs IV 

Calculate 

Statistic 

Value 

11250 11250 11250 11250 11250 11250 

p-value 1 1 1 1 1 1 

                                                           
6
 The Wilcoxon-Mann-Whitney assume that the population distribution to which the sample are extract are not normally 

distributed, that the true population’s variance is unknown and that the sample variance are homogeneous. This later 

hypothesis can be tested using the test  F of Fisher. 
7
 At this end we conduct five tests: 1) Jarque-Brera normality test 2) Shapiro-Wilk normality test  3)L illiefors 

(Kolmogorov-Smirnov) normality test  4) Shapiro-Francia normality test  5) Pearson chi-square normality test. 
8
 At this end we conduct the test F di Fisher. 
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As we can see, in the case of input measurement, the preference system IV would be preferred because the 

average of the relational efficiency of the whole process (see Figure 2) is larger than the average of the 

relational efficiency estimates under the remaining preference systems (see the values of the p-values in the 

case of One side test
9
 in Table 7). Instead, in the case of output measurement there are no statistically 

significant differences in the relative efficiency scores of the entire process. Differences appear at level of 

sub-process efficiency (see the plot on ecdf Figures 2 ). Yet, in the case of output orientation measurement 

there are no differences in the distributions (see Figure 3). 

 

 

Figure 4 Barplot of the scalars 

 

 
 

The  plot of the efficiency scores are in  Figure 5 and 6 , while the comparison of the system preferences are 

in Figure 4.  

 

Figure 5  Simple plot input CRS 

 

 
 

Figure 6 Simple plot output CRS 

                                                           
9
 The null hypothesis in this case is: the mean of the relational efficiency under the preference system IV (𝜇𝐼𝑉) is greater 

(>) that the mean of the relational efficiency under all others preference systems. 
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5. Discussion and conclusions 

 

The paper developed a multiplier NDEA model to measure the relative efficiency of a network system of 

four stages. The measurements have been carried out both in the input and output orientation, assuming 

constant return to scale (CRS) for the entire system and for each part of it. The type of interrelationships 

between the sub-processes of the system proposed here have been defined by the researcher at his discretion 

without any reference to real production processes. The solved network model considers the existence of 

relational variables shared between sub-processes 1 and 2 (𝑧12, 𝑧23) and between sub-processes 1 and 3 

(𝑧13, 𝑧23). This configuration can also be modified by acting on the system of resource allocation preference 

between the sub-processes as happen for example in the case of the preferences system IV. In this last system 

of preference (IV) the sub-process 3 does not have shared relational variables but it is sharing two inputs 

with the sub-process 1. When the objective is to increase the outputs of the system the output-NDEA model 

should be solved. All the NDEA models presented here have been solved with the simplex method. The 

application show that when we adopt the same weights for the same variables in the model (in other words 

we estimates a relational NDEA model [(Kao, 2009(a)), (Kao, 2009(b)) (Kao, 2014)]) the relative efficiency 

of the sub-process can be calculated applying the multiplicative decomposition formula proposed by (Kao, 

2009(a)) and the sources of inefficiency can be individuate at sub-process level. The characteristic of our 

model is that the proportion of resources that sub-process are sharing is defined a-priori to the researcher 

or/and manager of the organization where the process is running. This is traducing in the a-priori fixing of 

the vector parameters 𝜶 𝑎𝑛𝑑 𝜷 of our model. This leaves the researcher/manager to define his preferences 

about the proportions of resources to be allocated to each sub-process. In other words, the latter parameters 

are assigned exogenously rather than being calculated endogenously inside the NDEA model. The 

interpretation of the optimal weights is the same as in that given in the standard DEA models, they represent 

the contribution of the resource to the improvement of the relative efficiency of the sub-process such as that 

of the process. The estimation of relative efficiency (see Table 3,4,5 and 6) through our NDEA model is 

strictly dependent on the preferences (see Table 2) on the distribution of resources among the sub-processes 

defined by the researcher. Differently to the literature on the topics the paper develop a four stages system 

process, sharing all the limits and advantages of the relational NDEA approach. However, we believe that the 

model proposed here cover a wide range of real production processes, so the NDEA model developed here 

can be applied for many applications with real data. 
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