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Abstract

We consider land rental problems where there are several communi-

ties that can act as lessors and a single tenant who does not necessary

need all the available land. A rule should determine which commu-

nities become lessors, how much land they rent and at which price.

We present a complete characterization of the family of rules that sat-

isfy reassignment-proofness by merging and spliting, apart from land

monotonicity. We also define two parametric subfamilies. The first

one is characterized by adding a property of weighted standard for

two-person. The second one is characterized by adding consistency

and continuity.

Keywords— land rental, non-manipulability, reassignment-proofness,

land monotonicity, consistency.

∗Alfredo Valencia-Toledo thanks the Ministry of Education of Peru for its financial sup-

port through the “Beca Presidente de la República” grant of the “Programa Nacional de

Becas y Crédito Educativo (PRONABEC)”. Juan Vidal-Puga acknowledges financial sup-

port from the Spanish Ministerio de Economı́a y Competitividad through grant ECO2014-

52616-R., Ministerio de Economı́a, Industria y Competitividad through grant ECO2017-

82241-R, and Xunta de Galicia (GRC 2015/014).
†Research Group in Economic Analysis (RGEA). Universidade de Vigo, Spain. E-mail:

alfredo.valencia@uvigo.es.
‡Departamento de Estad́ıstica e IO. Universidade de Vigo, Spain. E-mail: vi-

dalpuga@uvigo.es.

1



1 Introduction

The management of land and natural resources is one of the most critical

challenges facing developing countries (Kaye and Yahya, 2012; van der Ploeg

and Rohner, 2012). In particular, natural resource exploitation is an indus-

trial activity that has recently been generating conflicts between firms and

indigenous communities in many countries in Latin America, Africa and Asia.

Examples include Mexico (Tetreault, 2015), Peru (Arellano-Yanguas, 2011;

Fraser, 2018), Sierra Leone (Akiwumi, 2014), India (Sarkar, 2015, 2017), Viet-

nam (Nguyen et al., 2018) and Indonesia (Welker, 2009). Another examples

appear in Sosa (2011) and Walter and Urkidi (2015). Another two examples,

both in Colombia, arise from a restitution problem where two agents have

rights over the land (Jaramillo et al., 2014) and from land aggregating for

housing and infrastructure (Kominers and Weyl, 2012), respectively.

In these land conflicts, there exist rights over the land for each side. For

the case of mining activities, Article 10 of the United Nations Declaration

on the Rights of Indigenous People defined Free Prior and Informed Consent

(FPIC) as the principle that indigenous communities have the right to give

or withhold its consent to proposed projects that may affect the land they

customarily own, occupy or otherwise use (UN, 2007). On the other hand,

the mining firm has an investment and a concession over those lands, or,

even if a concession has not been granted yet, the firm may have a profit

opportunity high enough to make it possible to compensate the land owners

in a fair way (Helwege, 2015). In order to solve these land conflicts, it is

fundamental for the planner (e.g. the government) to have all the relevant

information about both sides.

In many situations, land identification and demarcation may be not clear,

as in the case of customary land (Gildenhuys, 2005; Azima et al., 2015). This

situation can lead to manipulation by merging or splitting of the communi-

ties, due to the fact that they may have incentives to strategically misrepre-

sent their identity in order to influence the final outcome to their own advan-

tage. The study of this kind of manipulation is common in the strategy-
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proofness literature in the context of cost sharing (Moulin and Shenker,

2001; Sprumont, 2005; Gómez-Rúa and Vidal-Puga, 2011; Ju, 2013; Massó

et al., 2015), resource allocation (Erlanson and Flores-Szwagrzak, 2015), job

scheduling (Moulin, 2007, 2008), indivisible object allocation (Sun and Yang,

2003; Svensson, 2009; Morimoto and Serizawa, 2015), assigning problems

(Kojima and Manea, 2010), and taxation problems (Ju and Moreno-Ternero,

2011), among others. Splitting and merging proofness have also been deeply

studied in bankruptcy problems where an estate E > 0 should be divided

among a set of claimants N with claims given by c ∈ RN . Several authors

(O’Neill, 1982; Moulin, 1987; Chun, 1988; de Frutos, 1999; Ju, 2003; Moreno-

Ternero, 2006, 2007; Ju et al., 2007) have showed that merging and splitting

proofness in bankruptcy problems leads to a proportional share of the estate.

See for example Thomson (2003, 2015a).

In this article, we assume that the government or planner seeks to assign

a price and amount of land fairly and efficiently, and at the same time, to

guarantee non-manipulability by reassignment-proofness. In particular, our

work can be seen as part of the theory of mechanism design applied to land

rental (see Sen (2007) for an overview and Sarkar (2017) for a more recent

contribution). We assume there is a single tenant who can be a mining firm,

and several lessors who can be a group of communities. Each community has

some available amount of land ci with a reservation price r per unit, that

for simplicity we consider equal for all of them. The mining firm needs to

rent an optimal amount of adjacent land E, which is a completely divisible

object1.

A rule determines, for each land rental problem, a quantity of adjacent

land to be rented by each community and a price that the mining firm must

pay as a way of compensation.

In order to study rules that guarantee non-manipulability, we propose a

version of strategy-proofness such that communities should not find it prof-

itable to re-assign the land among them. For instance, asumme we have two

1We use the terms c and E because of their resemblance to bankruptcy problems.
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lessors, and the first of them may decide to act as two lessors by spliting her

land. A rule which considers a fix price per unit of land and an equalitar-

ian land share will not satisfy reassigment-proofness, because the first lessor

finds it profitable to split her land.

Also, we propose a version of land monotonicity that assures fairness, in

the sense that an increase in the quantity of available land affects positively

the final profits to both sides.

Our first result is a complete characterization of the family of rules that

satisfy these properties. A rule belongs to this family of rules if the price

does not depend on the available land and each amount of rented land is

proportional. By adding a property inspired by “standard for two-person”

in Hart and Mas-Colell (1989), we characterize a parametric subfamily. A

rule belongs to this parametric subfamily of rules if, aditionally, the price

depends on a parameter. Another property is consistency, that states that

the rule should behave in a similar way independently of the number of agents

involved. This is a classical property in cooperative games (see van den Brink

et al. (2013) and Huettner (2015) for two recent applications), and it has

also been studied in bankruptcy problems (see Thomson (2008, 2015b) and

references herein) and cost sharing problems (see for example Albizuri and

Zarzuelo (2007) and Koster (2012)). By adding consistency and continuity we

characterize another parametric subfamily of rules. The intersection of both

parametric subfamilies singles out two particular rules: one of them optimal

for the tenant, where the price coincides with to the tenant’s reservation

price, and the other optimal for the lessors, where the price coincides with

the maximun feasible value.

We organize the paper as follows: In Section 2, we present the model.

In Section 3, we study and characterize the family of rules that satisfy land

reassignment-proofness and land monotonicity. In Section 4, we characterize

the family of rules that also satisfy a weighted version of “standard for two-

person”. Finally, in Section 5, we characterize the subfamily of rules that

satisfy reassignment-proofness, land monotonicity, consistency and continu-
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ity.

2 The model

Let N+ = {1, 2, . . . } be the set of potential lessors. Let N = {1, 2, . . . , n}
be an arbitrary set of lessors, and let S be an arbitrary subset of N . Given

y ∈ RS, we write y(S) =
∑

i∈S yi. Given x, y ∈ RS, we write x ≤ y when

xi ≤ yi for all i ∈ S. Moreover 0S denotes the vector (0, . . . , 0) ∈ RS. We

denote the set of nonnegative real numbers as R+, and the set of positive

real numbers as R++. We denote the set of rational numbers as Q.

Let V N = {{i, j} : i, j ∈ N} be the set of all unordered pairs {i, j} over

N . The elements of V N are called edges. A network G over N is a subset

of V N . We say that G is a connected network when, for all i, j ∈ N , there

exists a sequence of different edges {{is−1, is}}es=1 that satisfy {is−1, is} ∈ G
for all s ∈ {1, 2, . . . , e}, i = i0 and j = ie. We denote the set of all connected

networks over N as GN . Given G ∈ GN and S ⊂ N , we denote the restriction

of G to S as GS, i.e. GS = {{i, j} ∈ G : i, j ∈ S}.
A land rental problem is a tuple (N0, µ, c, r, G) where N0 = {0} ∪ N is

the set of agents with 0 the unique tenant and N the set of lessors, µ :

R+ → R is a function that assign to each amount of adjacent land the

tenant’s revenue when that amount is rented, c ∈ RN
++ is the vector whose

coordinates represent the amount of available land for each lessor, r ∈ R+

is the reservation price per unit of land for lessors, G ∈ GN identifies the

lessors whose land is adjacent. Hence, the aggregate welfare when the tenant

rents l units of adjacent land is µ(l) + (c(N) − l)r. We normalise µ(0) = 0,

and assume that G is a connected network and that there exists a unique

E ∈]0, c(N)] such that µ(E) + (c(N) − E)r is maximum2 on [0, c(N)].3 We

then denote K = µ(E) as the optimal welfare that the agents can obtain.

This implies that K > rE, i.e. there exists benefit of cooperation.

2Since rc(N) is constant, this condition is equivalent to µ(E)− rE be maximum.
3This condition holds, for example, when µ is increasing and strictly concave.
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Under these conditions, an efficient allocation implies that the amount of

rented adjacent land is E and the welfare of the tenant is K. Thus, the only

relevant parameters of µ are E and K. Furthermore, for convenience we use

N instead of N0. Henceforth, we would be interested in the “efficient land

rental problem”, denoted by (N,K,E, c, r, G). Let L be the set of all land

rental problems.

A feasible agreement is a pair (x, p) ∈ RN
+ × R+ satisfying x ≤ c and

{i ∈ N : xi > 0} a connected component in G, where xi is the land rented

by lessor i ∈ N , and p is the price per unit of land. The set of feasible

agreements on a land rental problem L is denoted as AL. Let A =
⋃
L∈LA

L

be the set of all potential feasible agreements.

Given (x, p) ∈ AL, the utility for tenant and each lessor i ∈ N are

u0(x, p) = µ(x(N))− px(N) and ui(x, p) = (p− r)xi, respectively.

We define a rule as a function ψ : L −→ A that assigns to each prob-

lem L = (N,K,E, c, r, G) ∈ L a feasible agreement (x, p) = ψ(L) ∈ AL,

satisfying:

(i) x(N) = E;

(ii) for all α, β > 0, p(N,αK, βE, βc, α
β
r,G) = α

β
p(N,K,E, c, r, G) and

x(N,αK, βE, βc, α
β
r,G) = βx(N,K,E, c, r, G);

(iii) r ≤ p ≤ K
E

.

The first condition (efficiency) says that the amount of land rented is opti-

mal. The second condition (scale invariance) says that the final price and

the amount of land rented are independent of changes of scale. The third

condition (individual rationality) says that the lessors get at least zero (this

is implied by r ≤ p), and under efficiency, the tenant also gets at least zero

(this is implied by p ≤ K
E

). Under efficiency, the utility of the tenant can be

rewritten as u0(x, p) = K − pE.

There exist two special classes of rules: On the one hand, a rule is tenant-

optimal when the price is given by p = r. In that case, xi is irrelevant for

each i ∈ N , because their payoffs are zero, and so the final payoff allocation is

6



unique. On the other hand, a rule is lessors-optimal when the price is given

by p = K
E

. In the latter case, there are many possible payoff allocations when

E < c(N), all of them giving zero to the tenant.

3 Land reassignment and monotonicity

Since there may be no official registration and demarcation of the customary

land, the lessors can reach an agreement of reallocating it in order to share

extra benefits so created under a rule.

Formally, assume N = (N \ S) ∪ S, where N \ S is connected in G and

represents the set of lessors that rearrange their land, while S is the set of

lessors that do not. Hence, a new land problem arises, with N ′ = (N ′\S)∪S
as the new set of lessors, so that S = N ∩N ′. Moreover, the new connected

network G′ that determines the adjacent lands should be compatible with G

in the sense that GS = G′S and, for all i ∈ S,

∃j ∈ N \ S : {i, j} ∈ G⇔ ∃j′ ∈ N ′ \ S : {i, j′} ∈ G′.

In this case, we say that G and G′ are S-compatible.

For the planner it is not possible to see this customary land situation,

and it may be hard to get the outcome that the rule is supposed to attain.

In our context manipulation implies that the lessors will benefit by merging

or splitting under reallocating their land. Our aim is to fully identify rules

that are free from this concern. We formalise this property as follows.

Reassignment-proofness (RP) Given (N,K,E, c, r, G), (N ′, K,E, c′, r, G′) ∈
L such that ci = c′i for all i ∈ S = N ∩N ′, c(N \ S) = c′(N ′ \ S), and

G and G′ are S-compatible, a rule ψ is reassignment-proof if∑
i∈N\S

ui(ψ(N,K,E, c, r, G)) =
∑

i∈N ′\S

ui(ψ(N ′, K,E, c′, r, G′)).

If the right-hand side of expression is larger than the left-hand side and

the problem is (N,K,E, c, r, G), then lessors in N \S can gain by reallocating
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their land so that the problem becomes (N ′, K,E, c′, r, G′). Analogously, if

the left-hand side of expression is larger than the right-hand side and the

problem is (N ′, K,E, c′, r, G′), then lessors in N ′ \S can gain by reallocating

their land so that the problem becomes (N,K,E, c, r, G). S is the set of

lessors that remain unchanged (S = ∅ is also possible). This property pre-

vents lessors from having incentives for merging or splitting by reallocating

their land.

The following property says that an increase of the available land, leaving

K and E unaffected, is (weakly) beneficial for everyone involved.

Land Monotonicity (LM) Given (N,K,E, c, r, G), (N,K,E, c′, r, G′) ∈ L
with c ≤ c′ and G ⊆ G′, a rule ψ is land monotonic if

(i) u0(ψ(N,K,E, c, r, G)) ≤ u0(ψ(N,K,E, c′, r, G′)), and

(ii) for each i ∈ N , cj = c′j for all j 6= i implies ui(ψ(N,K,E, c, r, G)) ≤
ui(ψ(N,K,E, c′, r, G′)).

Under this property, the tenant will be weakly better off when there are

more available land. Furthermore, when only one lessor has more available

land and the rest of lessors remain unchanged, this lessor will be weakly

better off.

Let F be the set of functions f : [0, 1] → [0, 1] with f(t) ≥ t for all

t ∈ [0, 1]. Now, we consider the family of rules defined by p = K
E
f( rE

K
) for

some f ∈ F and xi = ciE
c(N)

for all i ∈ N . So, we obtain different rules with

different functions f ∈ F . These functions determine the price, whereas

the amount of land is always divided proportionally, in line with the known

results on invariance under reassignment in cost and surplus sharing (cf.

Theorem 1.1 in Moulin (2002)). Figure 1 represents six examples of these

functions.

Theorem 3.1 A rule ψ satisfies RP and LM if and only if there exists f ∈ F
such that the price is given by p = K

E
f
(
rE
K

)
and, when p 6= r, the assigned

amount of land is given by xi = ciE
c(N)

for all i ∈ N .
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1

1
f(t) = t

(a)

1

1
f(t) = 1

(b)

1

1

f(t)

(c)

1

1
f(t) = 1

f(t) = 1.4t

(d)

1

1

f(t) = t+1
2

(e)

1

1
f(t) = 1

f(t) = 2t

(f)

Figure 1: Examples of functions in F that determine six different rules,

including an optimal rule for the tenant (a) and an optimal rule for the

lessors (b).

Proof. (⇐) Let ψ be a rule given by p = K
E
f
(
rE
K

)
for some f ∈ F and,

when p 6= r, xi = ciE
c(N)

for all i ∈ N . We will prove that ψ satisfies RP and

LM. In order to prove that ψ satisfies RP, let L = (N,K,E, c, r, G) ∈ L,

L′ = (N ′, K,E, c′, r, G′) ∈ L and S = N ∩ N ′ given as the definition of

RP. Let t = rE
K
∈ [0, 1[. On the one hand, we have

∑
i∈N\S ui(ψ(L)) =∑

i∈N\S
(
K
E
f (t)− r

)
ciE
c(N)

= K (f (t)− t)
(

1− c(S)
c(N)

)
. Analogously, on the

other hand, we have
∑

i∈N ′\S ui(ψ(L′)) = K (f (t)− t)
(

1− c′(S)
c′(N ′)

)
. Since

c(N \S) = c′(N ′ \S) and ci = c′i for all i ∈ S, we have that c(S) = c′(S) and

c(N) = c′(N ′). Hence the last two expressions coincide. We now prove that ψ

satisfies LM. Let L and L′ = (N,K,E, c′, r, G′) ∈ L given as in the definition

of LM. If c ≤ c′, then, by efficiency, u0(ψ(L)) = K− K
E
f
(
rE
K

)
E = u0(ψ(L′)),

hence condition (i) holds. If ci ≤ c′i and c(N \ {i}) > 0, and cj = c′j for all

j ∈ N \ {i} then ui (ψ(L)) =
(
K
E
f
(
rE
K

)
− r
)
ciE
c(N)
≤
(
K
E
f
(
rE
K

)
− r
) c′iE

c′(N)
=

ui (ψ (L′)) for all i ∈ N , hence condition (ii) also holds.

(⇒) Let ψ be a rule that satisfies RP and LM. For simplicity, we write

(x, p) instead of ψ(N,K,E, c, r, G), (x′, p′) instead of ψ(N ′, K,E, c′, r, G′) and
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so on. Furthermore, we write ui instead of ui(x, p), u
′
i instead of ui(x

′, p′)

and so on. We proceed by series of claims.

Claim 3.1 If K = E = 1 and N = {1}, then the price p does not depend

on c.

Proof. By LM, if c1 ≤ c′1, then u0 ≤ u′0. By efficiency, u0 ≤ u′0 can be

rewritten as 1 − p ≤ 1 − p′, hence p ≥ p′ (the higher c1, the higher p).

Analogously, c1 ≤ c′1 implies u1 ≤ u′1 and p ≤ p′ (the higher c1, the lower p).

Therefore, p = p′. �

We define f(t) = p({1}, 1, 1, (1), t, ∅) for all t ∈ [0, 1]. By individual

rationality, t ≤ p({1}, 1, 1, (1), t, ∅) ≤ 1 for all t ∈ [0, 1], so f ∈ F .

Claim 3.2 If K = E = 1, then p = f(r).

Proof. Assume first 1 /∈ N . By RP, u(N) = u1 (ψ({1}, 1, 1, (c(N)), r, ∅)).
Under Claim 3.1 and efficiency, this is equal to p({1}, 1, 1, (1), r, ∅)−r, hence

u(N) = f(r)− r. Furthermore, by efficiency, u(N) =
∑

i∈N(p− r)xi = p− r.
Therefore, we have p = f(r). Assume now 1 ∈ N . Let i ∈ N+\N . Under RP,

ui (ψ({i}, 1, 1, (c(N)), r, ∅)) = u1 (ψ({1}, 1, 1, (c(N)), r, ∅)) and we proceed as

before. �

Claim 3.3 p = K
E
f
(
rE
K

)
.

Proof. By scale invariance, p = K
E
p
(
N, 1, 1,

(
c
E

)
, rE
K
, G
)
, and under Claim

3.2 we have that p = K
E
f
(
rE
K

)
. �

Therefore, the price is determined by Claim 3.3. Now we focus on the

amount of land x.

Claim 3.4 If p 6= r and there exist i, j ∈ N such that ci = cj, then xi = xj.

Proof. Fix α ∈ N+ \N . We define (N iα, K,E, ciα, r, Giα) ∈ L, where N iα =

{i, α}, ciαi = ci, c
iα
α = c(N \ {i}), and Giα = {{i, α}}. Since N ∩N iα = {i},

then by RP, u(N \ {i}) = uiα(N iα \ {i}). Under Claim 3.3 and p 6= r, we

obtain x(N \ {i}) = xiαα . Furthermore, by efficiency x(N \ {i}) + xi = E and
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xiαi + xiαα = E. From these last three equalities we obtain that xi = xiαi . We

define (N jα, K,E, cjα, r, Gjα) ∈ L, where N jα = {j, α}, cjαj = ciαi = ci = cj,

cjαα = ciαα , and Gjα = {{j, α}}. Since N iα ∩N jα = {α} and ciαi = cjαj , by RP,

ui(x
iα, piα) = uj(x

jα, pjα). Under Claim 3.3 and p 6= r, we obtain xiαi = xjαj .

Since N jα∩N = {j} and cjαα = c(N \{j}), by RP, uα(xjα, pjα) = u(N \{j}),
and under Claim 3.3 and p 6= r, we obtain xjαα = x(N \ {j}). Furthermore,

by efficiency we have xjαj +xjαα = E and xj +x(N \{j}) = E. So, from these

last three equalities we obtain xjαj = xj. Then, from xi = xiαi , xiαi = xjαj and

xjαj = xj we get that xi = xj. �

Claim 3.5 If N = {i, j}, p 6= r and ci, cj ∈ Q, then xi = ciE
ci+cj

and xj =
cjE

ci+cj
.

Proof. Assume ci = ai
bi

and cj =
aj
bj

where a and b are non-negative integers.

LetN i, N j ⊂ N+\N withN i∩N j = ∅, |N i| = aibj and |N j| = ajbi. We define

(N∗i, K,E, c∗i, r, G∗i) ∈ L with N∗i = N i ∪ {j} and c∗ik = 1
bibj

for all k ∈ N i,

c∗ij = cj, and G∗i = {{k, j} : k ∈ N i}. Since N ∩N∗i = {j} and c∗i(N∗i \j) =

ci, by RP, ui = u∗i(N∗i \ {j}). Under Claim 3.3, this is equivalent to write

(p − r)xi = (p − r)x∗i(N∗i \ {j}). Since p 6= r, xi = x∗i(N∗i \ {j}). We

now define (N∗ij, K,E, c∗ij, r, G∗ij) ∈ L with N∗ij = N i ∪N j, c∗ijk = 1
bibj

for

all k ∈ N∗ij, and G∗ij = {{k, k′} : k ∈ N i, k′ ∈ N j}. Since c∗i(N∗i \ {j}) =

c∗ij(N∗ij \N j), N∗i∩N∗ij = N i and c∗ij(N∗ij \N i) =
∑ajbi

l=1
1
bibj

= cj = c∗ij , by

RP, u∗ij = u∗ij(N∗ij \N i). Under Claim 3.3, this is equivalent to write (p −
r)x∗ij = (p− r)x∗ij(N∗ij \N i). Since p 6= r, x∗ij = x∗ij(N∗ij \N i) = x∗ij(N j).

On the one hand, by efficiency, xi+xj = E and x∗i(N∗i\{j})+x∗ij = E. Since

xi = x∗i(N∗i\{j}) and x∗ij = x∗ij(N j), we obtain xj = x∗ij(N j). On the other

hand, by efficiency, x∗i(N∗i \ {j}) + x∗ij = E and x∗ij(N i) + x∗ij(N j) = E.

Since xi = x∗i(N∗i \ {j}) and x∗ij = x∗ij(N j), we obtain xi = x∗ij(N i).

We have (N∗ij, K,E, c∗ij, r, G∗ij) with N∗ij ∩ N = ∅ and c∗ij(N∗ij) = c(N).

By RP, u∗ij(N∗ij) = u(N). By p 6= r and Claim 3.3, this is equivalent to

write x∗ij(N∗ij) = x(N). Under Claim 3.4 and efficiency, we obtain that

x∗ijk = E
|N∗ij | = E

aibj+ajbi
for all k ∈ N∗ij. By efficiency and xj = x∗ij(N j), we
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have that xi = E − x∗ij(N j). Under Claim 3.4, this is equivalent to write

xi = E− ajbix∗ijk for each k ∈ N∗ij. Since x∗ijk = E
aibj+ajbi

for all k ∈ N∗ij, we

have xi = E − ajbiE

aibj+ajbi
= ciE

ci+cj
. Analogously, xj =

cjE

ci+cj
. �

Claim 3.6 If N = {i, j}, p 6= r and cj ∈ Q, then xi = ciE
ci+cj

and xj =
cjE

ci+cj
.

Proof. Assume first ci+cj = E. Then, ciE
ci+cj

= ci and
cjE

ci+cj
= cj. By efficiency,

xi = ci and xj = cj. Therefore, xi = ciE
ci+cj

and xj =
cjE

ci+cj
. Assume now

ci + cj > E. Let {csi}∞s=1 be a decreasing sequence of rational numbers that

converges to ci. For each s, we take (N,K,E, cs, r, G) ∈ L with cs = (csi , cj).

Under Claim 3.5, we have xs =
( csiE

csi+cj
,
cjE

csi+cj

)
. By LM, ui(x, p) ≤ ui(x

s, ps).

Under Claim 3.3, this is equivalent to write (p − r)xi ≤ (p − r)xsi . Since

p 6= r, this is equivalent to xi ≤ xsi . Under Claim 3.5, xs =
( csiE

csi+cj
,
cjE

csi+cj

)
,

which is equivalent to write xi ≤ csiE

csi+cj
. Hence, xi ≤ ciE

ci+cj
. Let {ĉsi}∞s=1 be

an increasing sequence of positive rational numbers that converges to ci and

such that L̂s = (N,K,E, ĉs, r, G) ∈ L, where ĉs = (ĉsi , cj). We can find

such a sequence because ci > 0 and ci + cj > E. Under Claim 3.5, we have

x̂s =
( ĉsiE

ĉsi+cj
,
cjE

ĉsi+cj

)
. By LM, ûsi ≤ ui. Under Claim 3.3, this is equivalent

to write (p − r)x̂si ≤ (p − r)xi. Since p 6= r, this is equivalent to x̂si ≤ xi.

Under Claim 3.5, x̂s =
(

ĉsiE

ĉsi+cj
,
cjE

ĉsi+cj

)
, which is equivalent to write

ĉsiE

ĉsi+cj
≤ xi.

Hence, ciE
ci+cj

≤ xi. Since xi ≤ ciE
ci+cj

and ciE
ci+cj

≤ xi, we obtain xi = ciE
ci+cj

. By

efficiency, xj = E − xi. Since xi = ciE
ci+cj

, we deduce xj = E − ciE
ci+cj

=
cjE

ci+cj
.

�

Claim 3.7 If N = {i, j} and p 6= r, then xi = ciE
ci+cj

and xj =
cjE

ci+cj
.

Proof. Assume first ci + cj = E. Then, ciE
ci+cj

= ci and
cjE

ci+cj
= cj. By

efficiency, xi = ci and xj = cj. Therefore, xi = ciE
ci+cj

and xj =
cjE

ci+cj
. Assume

now ci + cj > E. Let {csj}∞s=1 a decreasing sequence of rational numbers that

converges to cj. For each s, we take (N,K,E, cs, r, G) ∈ L with cs = (ci, c
s
j).

Under Claim 3.6, we have xs =
(
xi,

csjE

ci+csj

)
. By LM, uj(x, p) ≤ uj(x

s, ps).

Under Claim 3.3, this is equivalent to write (p − r)xj ≤ (p − r)xsj . Since

p 6= r, this is equivalent to xj ≤ xsj =
csjE

ci+csj
. Hence, xj ≤ cjE

ci+cj
. Let {ĉsj}∞s=1
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be an increasing sequence of rational numbers that converges to cj and such

that L̂s = (N,K,E, ĉs, r, G) ∈ L, where ĉs = (ci, ĉ
s
j). We can find such

a sequence because ci > 0 and ci + cj > E. Under Claim 3.6, we have

x̂s =
(
xi,

ĉsjE

ci+ĉsj

)
. By LM, ûsj ≤ uj. Under Claim 3.3, this is equivalent to

write (p − r)x̂sj ≤ (p − r)xj. Since p 6= r, this is equivalent to x̂sj ≤ xj,

or
ĉsjE

ci+ĉsj
≤ xj. Hence,

cjE

ci+cj
≤ xj. Since xj ≤ cjE

ci+cj
and

cjE

ci+cj
≤ xj, we

obtain xj =
cjE

ci+cj
. By efficiency, xi = E − xj. Since xj =

cjE

ci+cj
, we deduce

xi = E − cjE

ci+cj
= ciE

ci+cj
. �

Claim 3.8 If p 6= r, then xi = ciE
c(N)

for all i ∈ N .

Proof. Let i ∈ N , j ∈ N+ \ N and (N ij, K,E, cij, r, Gij) ∈ L with N ij =

{i, j}, ciji = ci, c
ij
j = c(N \ {i}), and Gij = {{i, j}}. By efficiency, xi =

E − x(N \ {i}). By RP and p 6= r, we have x(N \ {i}) = xijj , so that

xi = E − xijj . Under Claim 3.7, xijj =
cijj E

ciji +cijj
. Hence, xi = E − cijj E

ciji +cijj
=

E − c(N\{i})E
ci+c(N\{i}) = ciE

c(N)
. �

Therefore, the amount of land is determined by Claim 3.8. �

We denote ψf as the rule corresponding to f ∈ F that is given by p =
K
E
f
(
rE
K

)
, and xi = ciE

c(N)
for all i ∈ N .

4 Weighted standard for two-person

We study a property that is inspired on the so called standard for two-person

property by Hart and Mas-Colell (1989). This property follows a “divide the

surplus equally” idea for two-person situations. In our context, the two-

person case arises when |N | = 1, i.e. the only agents are the tenant and

a single lessor. Standard for two-person says that both the tenant and the

lessor obtain equal benefit. We formalize this property as follows. Let L2 be

the set of land rental problems with a unique lessor.

Standard for 2-person (S2) Given L = ({1}, K,E, c, r, ∅) ∈ L2,

u0 (ψ(L)) = u1 (ψ(L)) .
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Next theorem characterizes the unique rule that satisfies RP, LM and S2.

The function that determines this rule is represented in Figure 1(e).

Theorem 4.1 A rule ψ satisfies RP, LM and S2 if and only if the price is

given by p = K+rE
2E

and the amount of land is given by xi = ciE
c(N)

for all i ∈ N .

Proof. (⇐) Let ψ be a rule given by p = K+rE
2E

and xi = ciE
c(N)

for all i ∈ N .

It is straightforward to check that ψ = ψf with f(t) = 1+t
2

for all t and

p = K+rE
2E

. By Theorem 3.1, ψ satisfies RP and LM. So, we just need to

prove that u0(ψ({1}, K,E, c, r, ∅)) = u1(ψ({1}, K,E, c, r, ∅)). The left side

of the equality is equal to K − K+rE
2E

E = K−rE
2

. Analogously, the right side

of the equality is equal to
(
K+rE
2E
− r
)
x1. By efficiency, x1 = E, and hence

we obtain u1(ψ({1}, K,E, c, r, ∅)) = K−rE
2

. Therefore, the equality holds.

(⇒) Let ψ be a rule that satisfies RP, LM and S2. By Theorem 3.1

there exists f ∈ F such that p = K
E
f
(
rE
K

)
and, when, p 6= r, xi = ciE

c(N)

for all i ∈ N . We need to prove that K
E
f
(
rE
K

)
= K+rE

2E
or equivalently

f(t) = 1+t
2

for t = rE
K
∈ [0, 1]. By S2, we have u0 (ψ({1}, 1, 1, (1), t, ∅)) =

u1 (ψ({1}, 1, 1, (1), t, ∅)). This is equivalent to 1− f(t)x1 = (f(t)− t)x1. By

efficiency, x1 = 1, which is equivalent to write 1 − f(t) = f(t) − t. Hence,

f(t) = 1+t
2

. Finally, since K > rE and c1 = c(N), we deduce p 6= r so

x1 = c1E
c(N)

= E. �

Next, we generalize the standard for two-person concept in a nonsymmet-

ric way. Notice that S2 determines the final payoffs for two-person problems,

forcing both the tenant and the unique lessor to receive the same value. Since

tenant and lessor are not symmetric, we can reasonably allow one side of the

market to extract a higher value than the other. In our context, since the

rules satisfy efficiency, it is enough to fix the relative payoff between both

agents. In particular, a rule satisfies the next property when the payoffs are

in the same proportion for every single-lessor problem.

Weighted Standard for 2-person (WS2) There exists ω ∈ [0, 1] such

that

(1− ω)u0 (ψ(L)) = ωu1 (ψ(L))
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for all L = ({1}, K,E, c, r, ∅) ∈ L2.

Next theorem characterizes the parametric subfamily of rules that satisfy

RP, LM and WS2. We can see three examples of functions that determine

these rules in Figure 1 (a), (b) and (e), respectively.

Theorem 4.2 A rule ψ satisfies RP, LM and WS2 if and only if there exists

ω ∈ [0, 1] such that the price is given by p = K−(K−rE)ω
E

and, when ω < 1,

the quantity of land is given by xi = ciE
c(N)

for all i ∈ N .

Proof. (⇐) Fix ω ∈ [0, 1]. Let ψ be a rule given by p = K−(K−rE)ω
E

and, if ω <

1, then xi = ciE
c(N)

for all i ∈ N . By Theorem 3.1, ψ satisfies RP and LM for

f(t) = 1− (1− t)ω and p = K−(K−rE)ω
E

. Fix L = ({1}, K,E, c, r, ∅). We just

need to prove that (1−ω)u0(ψ(L)) = ωu1(ψ(L)). The left side of the equality

is equal to (1 − ω)
(
K − K−(K−rE)ω

E
E
)

= (1 − ω)ω(K − rE). Analogously,

the right side of the equality is equal to ω(K−(K−rE)ω
E

− r)x1. By efficiency,

x1 = E, and hence the right hand side of the equality is ω(1− ω)(K − rE).

Therefore, equality holds.

(⇒) Let ψ be a rule that satisfies RP, LM and WS2. Let ω ∈ [0, 1]. By

Theorem 3.1, there exists f ∈ F such that p = K
E
f
(
rE
K

)
and, when p 6= r,

xi = ciE
c(N)

for all i ∈ N . This implies x(N) = E. It is clear that ω < 1 implies

p 6= r. To see why, notice that p = r implies u1 = 0, whereas u0 + u1 =

K − rE > 0, so u0 > 0, and by WS2, (1−ω)u0 = ωu1 = 0, so (1−ω)u0 = 0,

which implies ω = 1. We still need to prove that K
E
f
(
rE
K

)
= K−(K−rE)ω

E
or,

equivalently, f(t) = 1− (1− t)ω for all t ∈ [0, 1]. Let t = rE
K
∈ [0, 1]. By WS2

we have (1 − ω)u0 (ψ({1}, 1, 1, (1), t, ∅)) = ωu1 (ψ({1}, 1, 1, (1), t, ∅)). This

is equivalent to (1 − ω)(1 − f(t)x1) = ω(f(t) − t)x1, which by efficiency is

equivalent to write (1 − ω)(1 − f(t)) = (f(t) − t)ω. Rearranging terms, we

deduce f(t) = 1− (1− t)ω. �

Notice that, when ω = 1, we obtain an optimal rule for the tenant, and

when ω = 0, we obtain an optimal rule for the lessors. Given ω ∈ [0, 1], we

denote ψω as the rule corresponding to the function ψf with f(t) = 1−(1−t)ω
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for all t and xi = ciE
c(N)

for all i ∈ N . In particular, ψ
1
2 is the rule given in

Theorem 4.1.

5 Consistency

Consistency is a well-known principle. Assume that there exists an agreement

on what the right price and land share are, and that some lessors take this

price and leave. The tenant and the rest of lessors can proceed in two ways:

On the one hand, they can keep the previous price and land share. On the

other hand, they can recompute the right price and land share following the

same principle as before in the new reduced land renting problem. This new

reduced land rental problem is defined as L′ = (N ′, K ′, E ′, c′, r, G′) ∈ L given

by N ′ = N \S where S ⊂ N is the set of lessors that leave, K ′ = K−px(S) is

the new maximal profit of the tenant, E−x(S) is the amount of land that the

tenant still needs in the new reduced land rental problem, c′ = cN\S ∈ RN\S
++

is the vector whose coordinates represent the amount of available land, r is

the reservation price, which is equal as in the original land rental problem,

and G′ identifies the lessors in N ′ whose land is adjacent, directly or through

lessors in S. If this procedure always gives the same result for agents in N0\S
as before, we say that ψ is consistent.

Consistency For all (N,K,E, c, r, G) ∈ L and S ⊂ N such that GS is a

connected network and x(S) < E, a rule ψ is consistent if

ui (ψ (N ′, K ′, E ′, c′, r, G′)) = ui(ψ(N,K,E, c, r, G))

for all i ∈ N ′0, where N ′ = N \ S, K ′ = K − px(S), E ′ = E − x(S),

c′i = ci for all i ∈ N ′, and

G′ = GN ′ ∪
{
{i, j} ∈ V N ′ : ∃k, k′ ∈ S s.t. {i, k}, {j, k′} ∈ G

}
.

Next proposition characterizes the second parametric subfamily of rules

that satisfy RP, LM and consistency. We can see some examples of functions

that determine these rules in Figure 1 (a), (b), (d) and (f), respectively.
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Proposition 5.1 A rule ψ satisfies RP, LM and consistency if and only if

there exist α, β ∈ [0, 1] with α ≤ β such that:

a) The price is given as follows:

a.1) If r = 0, then either p = 0 or p = K
E

.

a.2) If r > 0 and rE < αK, then p = β
α
r.

a.3) If r > 0 and rE = αK, then p = β
α
r or p = K

E
.

a.4) If r > 0 and rE > αK, then p = K
E

.

b) The amount of land when p 6= r is given by xi = ciE
c(N)

for all i ∈ N.

Proof. (⇐) Let α, β ∈ [0, 1] with α ≤ β so that the price and the amount

of land are given by a) and b), respectively. Let f ∈ F defined as follows:

f(0) ∈ {0, 1}, f(t) = β
α
t if 0 < t < α, f(α) ∈ {β, 1} if α > 0, and f(t) =

1 if t > α. Then, the price can be written as p = K
E
f( rE

K
). Hence, by

Theorem 3.1, ψ satisfies RP and LM. Let L = (N,K,E, c, r, G) and L′ =

(N ′, K ′, E ′, c′, r, G′) given as in the definition of consistency. We will prove

that ui(x, p) = ui(x
′, p′) for all i ∈ N0 \ S, where (x, p) = ψ(L) and (x′, p′) =

ψ(L′). Firstly, we prove that p′ = p. We distinguish the following cases:

Case 1: r = 0 and p = 0. In this case, f(0) = 0. Hence, p′ = 0 and p = 0.

Case 2: r = 0 and p = K
E

. In this case, f(0) = 1. Hence, p′ = K′

E′
. Therefore,

p′ = K′

E′
=

K−K
E
x(S)

E−x(S) = K
E

= p.

Case 3: r > 0, rE < αK and p = β
α
r. Under a.2), we know that p′ = β

α
r

when r > 0 and rE ′ < αK ′. Since r > 0, it is enough to check

that rE ′ < αK ′. Equivalently, r (E − x(S)) < α
(
K − β

α
rx(S)

)
. Since

rE < αK, it is enough to check that rx(S) ≥ βrx(S). This is trivially

true when rx(S) = 0. Otherwise, it is equivalent to check that β ≤ 1,

which is true by definition.
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Case 4: r > 0, rE = αK and p = β
α
r. In this case, p = K

E
β, so f

(
rE
K

)
=

β. Since rE′

K′
= r(E−x(S))

K−K
E
βx(S)

= rE(E−x(S))
K(E−βx(S)) and β ≤ 1, we have that

rE′

K′
≤ rE(E−x(S))

K(E−x(S)) = rE
K

= α. Hence, rE ′ ≤ αK ′. We will show that

f
(
rE′

K′

)
= β

α
rE′

K′
. We have two sub-cases: First, if rE ′ < αK ′, then it

holds by a.2) and the fact that p′ = K′

E′
f
(
rE′

K′

)
. Second, if rE ′ = αK ′,

then f
(
rE′

K′

)
= f(α)

(rE=αK)
= f

(
rE
K

)
= β. Since rE ′ = αK ′, we obtain

that f
(
rE′

K′

)
= β

α
rE′

K′
. Hence, p′ = K′

E′
f
(
rE′

K′

)
= K′

E′
β
α
rE′

K′
= β

α
r= p

Case 5: r > 0, rE = αK, and p = K
E

. Since p = K
E
f
(
rE
K

)
and p = K

E
, we

deduce f
(
rE
K

)
= 1. Moreover, rE′

K′
= r(E−x(S))

K−K
E
x(S)

= rE(E−x(S))
K(E−x(S)) = rE

K
= α.

Hence, f
(
rE′

K′

)
= f(α). Since rE = αK and f

(
rE
K

)
= 1, we deduce

f
(
rE′

K′

)
= 1. Hence, p′ = K′

E′
f
(
rE′

K′

)
= K′

E′
=

K−K
E
x(S)

E−x(S) = K
E

= p.

Case 6: rE > αK. In this case, p = K
E

. Under a.4), we know that p′ = K′

E′

when rE ′ > αK ′. Since K′

E′
=

K−K
E
x(S)

E−x(S) = K
E

, it is enough to check

that rE ′ > αK ′. This is equivalent to check that r(E − x(S)) >

α
(
K − K

E
x(S)

)
. Equivalently, r (E − x(S)) > αK

(
E−x(S)

E

)
. Since

E−x(S) > 0, this is equivalent to rE > αK, which is true in this case.

We check now that ui(ψ(L′)) = ui(ψ(L)) for all i ∈ N0 \ S. Assume first

i ∈ N \ S. We need to prove that (p − r)x′i = (p − r)xi. This is trivially

true when p = r. Hence, assume p 6= r. We need to prove x′i = xi. Since

c(N) = c(N \ S) + c(S), then x′i = ci
c(N\S)(E − x(S)) = ci

c(N\S)

(
E − c(S)E

c(N)

)
=

ci
c(N\S)

(
c(N)−c(S)

c(N)

)
E = ci

c(N\S)

(
c(N\S)
c(N)

)
E = ci

c(N)
E = xi. Assume now i = 0.

We check that u0(ψ(L′)) = u0(ψ(L)), or K ′ − pE ′ = K − pE. By definition,

K ′ − pE ′ = (K − px(S))− p(E − x(S)) = K − pE.

(⇒) Let ψ be a rule that satisfies RP, LM and consistency. Under RP

and LM, by Theorem 3.1 there exists f ∈ F such that p = K
E
f
(
rE
K

)
and,

when p 6= r, xi = ci
c(N)

E for all i ∈ N .

Denote L = (N,K,E, c, r, G) and let S ⊂ N with E > x(S) and L′ =

(N ′, K ′, E ′, c′, r, G′) be defined as in the definition of consistency. Hence,

we have ui(x, p) = ui(x
′, p′) for all i ∈ N0 \ S, where (x, p) = ψ(L) and
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(x′, p′) = ψ(L′). In particular, u0(x, p) = u0(x
′, p′). By definition, this is

equivalent to K ′ − p′E ′ = K − pE, or K − px(S)− p′(E − x(S)) = K − pE.

Since E 6= x(S), we deduce p′ = p.

We will prove the existence of α and β with α ≤ β, such that the price is

given as in a). Or, equivalently,

f(0) ∈ {0, 1},

f(t) =
β

α
t if t ∈]0, α[,

f(α) ∈ {β, 1} when α > 0, and

f(t) = 1 if t > α.

(1)

If f(t) = 1 for all t ∈ [0, 1], then α = 0 and β = 1 satisfy (1). Hence, we

can assume that there exists t̂ such that f
(
t̂
)
< 1. Let α = Sup{t : f(t) < 1}

and β = Sup{f(t) : f(t) < 1}. Then, f(t) ≥ t for all t implies α, β ∈ [0, 1]

and α ≤ β.

For each r ∈ [0, 1] and γ ∈]0, 1[, assume L = ({1, 2}, 1, 1, (γ, 1− γ), r, G)

and S = {2}. So, K ′ = K − px2 = 1 − f(r)(1 − γ) and E ′ = E − x2 = γ.

Hence, we have L′ = ({1}, 1− f(r)(1− γ), γ, (γ), r, ∅).
So, p = K

E
f
(
rE
K

)
= f (r) and p′ = K′

E′
f
(
rE′

K′

)
= 1−f(r)(1−γ)

γ
f
(

rγ
1−f(r)(1−γ)

)
.

Since p′ = p, from the last two expressions, we have

f

(
rγ

1− f(r)(1− γ)

)
=

f(r)γ

1− f(r)(1− γ)
for all r ∈ [0, 1] and γ ∈]0, 1[. (2)

In particular, for r = 0, we have f(0) = f(0)γ
1−f(0)(1−γ) for all γ. If f(0) 6= 0,

then γ = 1− f(0)(1− γ) for all γ, or equivalently, (1− f(0))γ = 1− f(0) for

all γ, which implies that f(0) = 1. Hence f(0) ∈ {0, 1}. This is the first line

of (1).

For t > α, we have f(t) = 1. This is the fourth line of (1).

For each r ∈]0, 1[, we define F r(δ) = rδ
1−f(r)(1−δ) ∈ [0, r] for all δ ∈]0, 1].

If f(r) < 1, then F r is a strictly increasing and continuous function, and its

inverse is given by Gr(t) = (1−f(r))t
r−f(r)t ∈]0, 1[ for all t ∈]0, r]. Given t ∈]0, r] and

r ∈]0, 1[ such that f(r) < 1,

19



f(t) = f (F r (Gr(t))) = f

(
rGr(t)

1− f(r)(1−Gr(t))

)
(2)
=

f(r)Gr(t)

1− f(r)(1−Gr(t))

=
f(r) (1−f(r))t

r−f(r)t

1− f(r)
(

1− (1−f(r))t
r−f(r)t

) =
f(r)

r
t.

Assume α > 0. Then we can fix r ∈]0, 1[ such that f(r) < 1. Hence,
f(t)
t

= f(r)
r

for all t ∈]0, r]. We will prove that f(t) = θt for all t ∈]0, α[,

where θ = f(r)
r

. For all t ∈]0, α[, there exists r′ > t such that f(r′) < 1 and
f(t)
t

= f(r′)
r′

. If t < r, we can take r′ = r, thus f(t)
t

= θ. If t ≥ r, then r′ > r,

thus f(r)
r

= f(r′)
r′

= θ. Hence, f(t) = θt for all t ∈]0, α[. We will prove that

θ = β
α

, or equivalently rβ = αf(r). We have two cases:

Case I. If f(α) = 1, then β = Sup{f(t) : t ∈]0, α[} = Sup{θt : t ∈]0, α[} =

θα. Hence, θ = β
α

.

Case II. If f(α) < 1, then f(α)
α

= θ, so that f(t) = θt for all t ∈]0, α] and

β = Sup{f(t) : t ∈]0, α]} = Sup{θt : t ∈]0, α]} = θα. Hence, θ = β
α

.

Then, the second line of (1) is satisfied.

From Case I and Case II we can deduce f(α) ∈ {β, 1}. This is the third

line of (1). �

Given α, β ∈ [0, 1] with α ≤ β, we define ψα,β as the rule corresponding

to the function given in Proposition 5.1 with f(0) = 0, f(α) = β and such

that the amount of land is given by xi = ciE
c(N)

for all i ∈ N .

Next property says that small changes in the land rental problem should

not cause large changes in the chosen allocation.

Continuity The price p and the amount of land x are continuous functions

on L.

The rules that satisfy RP, LM, consistency and continuity constitute a

particular subfamily of rules from the one determined in Proposition 5.1
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and it is characterized in the next theorem. We can see some examples of

functions that determine these rules in Figure 1 (a), (b) and (f), respectively.

Theorem 5.1 A rule ψ satisfies RP, LM, consistency and continuity if and

only if there exists α ∈ [0, 1] such that:

a)

p =

 r
α

if rE < αK

K
E

if rE ≥ αK

and

b)

xi =
ciE

c(N)
for all i ∈ N.

Proof. (⇐) Let α ∈ [0, 1] such that the price and amount of land are given

by a) and b) respectively. Part a) can be written as p = K
E
f( rE

K
) with

f ∈ F given as f(t) = t
α

if t < α and f(t) = 1 if t ≥ α. Hence, by

Proposition 5.1, ψ satisfies RP, LM and consistency. To prove it that satisfies

continuity we still need to check that p is continuous at the points where

rE = αK. Equivalently, limrE→αK+
r
α

= K
E

, which holds trivially. Moreover,

xi = ciE
c(N)

for all i ∈ N also determines a continuous function.

(⇒) Under RP, LM and consistency, by Proposition 5.1 there exist α, β ∈
[0, 1] with α ≤ β such that the price is given as in part a) of Proposition

5.1, and the amount of land when p 6= r, is given by xi = ciE
c(N)

for all i ∈ N .

By adding continuity, we will prove that p = r
α

if rE ≤ αK and p = K
E

if

rE ≥ αK. Moreover, xi = ciE
c(N)

for all i ∈ N . In this sense, we have that p

is a continuous functions in ]0, α[∪]α, 1]. We still need to prove the following

cases:

i) If r = 0, by continuity, p = limt→0
β
α
t = 0 = t

α
.

ii) If rE = αK, by continuity, β
α
r = K

E
. Then, β = Kα

rE
= 1.
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We need to prove that xi = ciE
c(N)

for all i ∈ N when p = r. Let Lt =

(N,K,E, c, rt, G) ∈ L with limt→∞r
t = 0 and rt > 0 for all t. Therefore,

xti = ciE
c(N)

for all t ∈ [0, 1]. Then, under continuity of the land function,

xi = limr→0
ciE
c(N)

= ciE
c(N)

. �

Notice that the functions provided in Theorem 5.1 are those ψα,β with

β = 1. In particular, ψ0,1 = ψ0 (rule ψω when ω = 0) is a rule optimal for

the tenant and ψ1 (rule ψω when ω = 1) is a rule optimal for the lessors.

These two rules are the only ones that belong to both parametric sub-

families defined at Theorem 4.2 and Theorem 5.1, respectively. Both rules

are characterized in the next proposition. We can see the functions that

determine these rules in Figure 1 (a) and (b), respectively.

Proposition 5.2 ψ0 and ψ1 are the only rules that satisfy RP, LM, WS2,

consistency and continuity.

Proof. It is straightforward to check that both ψ0 and ψ1 satisfy these prop-

erties. Let ψ be a rule that satisfies these properties. We will prove that ψ

is either ψ0 or ψ1. On the one hand, by Theorem 5.1, there exists α ∈ [0, 1]

such that p = K
E

when rE = αK. On the other hand, by Theorem 4.2, there

exists ω ∈ [0, 1] such that p = K−(K−rE)ω
E

for all r. Hence, given r = αK
E

,

we have K
E

= K−(K−rE)ω
E

, or (K − rE)ω = 0. There are two possibilities:

On the one hand, ω = 0 which gives ψ = ψ0. On the other hand, K = rE

and rE = αK imply K = αK. Since K > 0, we deduce α = 1 which gives

ψ = ψ1,1 = ψ1. �

A summary of the results is presented in Table 1.
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Property ψf ψω ψα,1 ψ
1
2 ψ0 ψ1

Reassignment-proofness Yes* Yes* Yes* Yes* Yes Yes

Land Monotonicity Yes* Yes* Yes* Yes* Yes Yes

Standard for 2-person - - No Yes* No No

Weighted Standard for 2-person - Yes* - Yes Yes Yes

Consistency - - Yes* No Yes Yes

Continuity - Yes Yes* Yes Yes Yes

Table 1: Summary of the results. Symbol * means that this property, to-

gether with others in the same column, characterizes the family/rule.
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