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Takashi Kanamura†
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ABSTRACT

This paper studies volumetric risk hedging strategies for solar power under incomplete
market settings with a twofold proposal of temperature-based and solar power generation-
based models for solar power derivatives and discusses the basis risk arising from solar
power volumetric risk hedge with temperature. Based on an indirect modeling of so-
lar power generation using temperature and a direct modeling of solar power generation,
we design two types of call options written on the accumulated non cooling degree days
(ANCDDs) and the accumulated low solar power generation days (ALSPGDs), respec-
tively, which can hedge cool summer volumetric risk more appropriately than those on
well-known accumulated cooling degree days. We offer the pricing formulas of the two
options under the good-deal bounds (GDBs) framework, which can consider incomplete-
ness of solar power derivative markets. To calculate the option prices numerically, we
derive the partial differential equations for the two options using the GDBs. Empirical
studies using Czech solar power generation and Prague temperature estimate the param-
eters of temperature-based and solar power generation-based models, respectively. We
numerically calculate the call option prices on ANCDDs and ALSPGDs, respectively, as
the upper and lower price boundaries using the finite difference method. Results show
that the call option prices based on a solar power generation process are bigger than the
call option prices based on a temperature process. This is consistent with the fact that
the solar power generation approach takes into account more comprehensive risk than the
temperature approach, resulting in the bigger prices for the solar power generation ap-
proach. We finally show that the basis risk premiums, i.e., solar power generation-based
call option prices minus temperature-based call option prices, decrease in line with ini-
tial temperature greater than around 25 ◦C. This may be because the uncertainty in solar
power generation by temperature decreases due to the cancellation between the increase
in solar power generation due to the increase in solar radiation and the decrease in solar
power generation due to the decrease in solar panel efficiency.
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1. Introduction

Renewable energy has recently been promoted in order to achieve decarbonized power gen-

eration all over the world. Since renewable energy is affected by the weather, it is constantly

exposed to weather risk. It is important to conduct risk management of renewable energy for

these promotions of renewables. This paper handles solar power generation in order to think

of renewable energy risk management as one of the most popular renewables. The sources

of renewable energy power generation come from natural phenomena. Since solar power gets

energy from solar radiation, the output from solar power generation is usually calculated using

the amount of solar radiation. Benth and Ibrahim (2017) propose a stochastic model for solar

power production using cyclical solar radiation intensity. That is why it is natural to conduct

volumetric risk management of solar power generators based on solar radiation or solar power

generation. However, risk takers of solar power generators like financials are not familiar with

the behavior of solar radiation or solar power generation, rather familiar with temperature be-

cause they often incorporate temperature-based weather risk products like weather derivatives

in the portfolios. It is known that solar radiation or solar power generation has a positive linear

relation to temperature as in e.g., Ibrahim, Daut, Irwan, Irwanto, Gomesh, and Farhana (2012).

So an indirect temperature-based model of volumetric risk management for solar power will

work well from the perspective of the existence of both the risk takers and the hedgers. In

contrast, when solar power generation is directly modeled for the volumetric risk, the hedging

errors will be smaller than the hedging errors from a temperature-based model. A solar power

generation-based model will also be effective from the perspective of the risk hedgers. In

this way, in considering the risk management of solar power generation, there is a risk due to

mismatch between the hedged item and the hedging instrument, that is, a basis risk. Detailing

the characteristics of basis risk is important in developing hedging instruments for solar power

volumetric risk management.

Weather derivative pricing has a long list of literature. Cao and Wei (2000) calculate the

price of weather derivatives based on the stochastic discount factor (SDF) obtained from the

1



utility function and the optimal consumption of the estimated representative agent. Davis

(2001) conducts the derivative pricing written on accumulated heating degree days using the

SDF of an agent with a log utility function whose optimal consumption is proportional to the

payoff of the derivatives. Platen and West (2004) propose a fair pricing of weather derivatives

where the growth optimal portfolio is used as a benchmark or numeraire. Brockett, Wang,

Yang, and Zou (2006) apply the indifference pricing approach to the valuation of weather

derivatives. Kanamura and Ōhashi (2009) apply the good-deal bounds of Cochrane and Saa-

Requejo (2000) to summer day options as the incomplete market pricing. Lee and Oren (2009)

derive an equilibrium pricing model for weather derivatives in a multi-commodity setting.

These studies are quite interesting in the sense of new development of weather derivative

pricing. Nevertheless, the applications to renewable energy, in particular solar power, are

limited as long as we know.

Regarding solar power risk hedge, Bhattacharya, Gupta, Kar, and Owusu (2016) develop

a framework to construct explicit cross hedging strategies of solar power for mitigation of

the identified weather risk using temperature-based weather derivatives and find that tem-

perature derivatives-based hedges are effective for summer. However, it is unfortunate that

Bhattacharya, Gupta, Kar, and Owusu (2016) do not consider the incompleteness of weather

derivatives, which is one of the most important and tough issues for the derivative pricing.1

This paper studies volumetric risk hedging strategies for solar power under incomplete

market settings with a twofold proposal of temperature-based and solar power generation-

based models for solar power derivatives and discusses the basis risk arising from solar power

volumetric risk hedge with temperature. Based on an indirect modeling of solar power gen-

eration using temperature and a direct modeling of solar power generation, we design two

types of call options written on the accumulated non cooling degree days (ANCDDs) and

the accumulated low solar power generation days (ALSPGDs), respectively, which can hedge

cool summer volumetric risk more appropriately than those on well-known accumulated cool-

1Härdle and Cabrera (2012) show the incompleteness of weather derivative markets by inferring the market
price of risk from traded futures-type weather derivative contracts.
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ing degree days. Then we offer the pricing formulas of the two options under the good-

deal bounds (GDBs) framework, which can take into account incompleteness of solar power

derivative markets. To calculate the option prices numerically, we derive the partial differen-

tial equations for the two options using the GDBs. Empirical studies using Czech solar power

generation and Prague temperature estimate the parameters of temperature-based and solar

power generation-based models, respectively. We numerically calculate the call option prices

on ANCDDs and ALSPGDs, respectively, as the upper and lower price boundaries using the

finite difference method. Results show that the call option prices based on a solar power gen-

eration process are bigger than the call option prices based on a temperature process. This

is consistent with the fact that the solar power generation approach takes into account more

comprehensive risk than the temperature approach, resulting in the bigger call option prices

for the solar power generation approach. We finally show that the basis risk premiums, i.e.,

solar power generation-based call option prices minus temperature-based call option prices,

decrease in line with initial temperature greater than around 25 ◦C. This may be because the

uncertainty in solar power generation by temperature decreases due to the cancellation be-

tween the increase in solar power generation due to the increase in solar radiation and the

decrease in solar power generation due to the decrease in solar panel efficiency.

The remainder of this paper is organized as follows. Section 2 proposes twofold models

to hedge the volumetric risk on solar power generation: temperature-based and solar power

generation-based models and offers the GDBs pricing for the corresponding call options. Sec-

tion 3 conducts empirical studies of ANCDDs and ALSPGDs call option prices for cool sum-

mer risk hedge and discusses the basis risk premiums for temperature hedging. Section 4

concludes.
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2. The Model

2.1. Solar power generation models

As solar power generation models, we use an indirect modeling of a linear relation between

solar power generation and temperature and a direct modeling of solar power generation. We

start with the indirect modeling of solar power generation using temperature. Solar power

generation is affected by the panel temperature. The standard power generation of a solar

power plant is generally designed at 25 ◦C. When panel temperature increases in ambient

temperature, it is known that the efficiency is reduced, i.e., temperature negatively affects

solar power generation. In contrast, recent technological advance of solar power develops

solar power with high efficiency and heat resistance including advanced cadmium telluride

(CdTe) thin film photovoltaic modules. In this case, solar power generation increases in line

with temperature from solar radiation. Considering that the impact of temperature on solar

power generation is characterized by the balance of the two effects, solar power generation Vt

is given by using temperature Tt :

Vt = f (Tt), (1)

Tt = XT
t + T̄t (2)

where f is a temperature impact function on solar power generation. Temperature stems from

two components of yearly cyclical trend T̄t and the deviation from the trend XT
t referring to the

formulation by Cao and Wei (2000). It is historically known that the deviation mean reverts.

Next, we directly model a process of solar power generation Vt on date t using the sum of

the normal level of solar power generation V̄t on date t and the deviations XV
t from the normal

level, i.e.,

Vt = XV
t +V̄t , (3)
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from the analogy to the modeling of temperature.

To estimate the normal levels īt for i = T,V as a sum of a linear trend and a cyclical trend

of temperature and solar power generation, respectively, we formulate the normal levels:

īt = κ
i
1 +κ

i
2t +κ

i
3 sin(ωt)+κ

i
4 cos(ωt) (4)

where κi
1, κi

2, κi
3 and κi

4 for i = T,V are constant and ω≡ 2π

365 .

Since X i
t s for i = T,V represent the deviations from the normal levels, it should exhibit

mean-reverting property; if temperature abnormally rises (or drops), it tends to go back down

(or up, resp.) to the normal level. In many cases including Cao and Wei (2000) as well as

the empirical results later, we can find the presence of such mean-reversion. We also assume

that the temperature modeling is applicable to the solar power generation modeling for the

similarity. Thus, we formulate the deviation X i
t for i = T,V to evolve in the following way:

dX i
i = (mi−λiX i

t )dt +σidvi
t , (5)

dvi
t = ρidwt +

√
1−ρ2

i dzi
t (6)

where mi, λi, σi and ρi are constant, and vi
t is a standard Brownian motion. Note that dzi

t is the

orthogonal part of dvi
t to dwt , implying that dzi

t represents the orthogonal risk associated with

temperature or solar power generation risk to stock market risk dwt .

Note that dit = dīt +dX i
t for i = T,V . Define θi

1 = mi +λiκ
i
1 +κi

2, θi
2 = λiκ

i
2, θi

3 = λiκ
i
3−

ωiκ
i
4, and θi

4 = ωiκ
i
3+λiκ

i
4. The evolutions of temperature and solar power generation satisfy

dit = (µi(t)−λiit)dt +σidvi
t , (7)

µi(t) = θ
i
1 +θ

i
2t +θ

i
3 sin(ωt)+θ

i
4 cos(ωt) for i = T,V . (8)
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The component of the mean part µi(t) is expressed by the sum of annually sinusoidal seasonal

functions θi
3 sin(ωt)+ θi

4 cos(ωt) and a linear long-term trend for time θi
2t. We use the two

formulations of temperature and solar power generation in our analyses.

2.2. Call option designs for solar power generation

We first design accumulated non cooling degree days (ANCDDs) call option for solar power

generation based on temperature modeling. We assume that the solar power generation is

represented by a linear function of temperature for simplicity based on Ibrahim, Daut, Irwan,

Irwanto, Gomesh, and Farhana (2012).

Vt = f (Tt) = p+qTt (9)

Since we consider that temperature positively affects solar power generation like advanced

CdTe type solar power, i.e., q > 0, the generation loss due to the decrease in temperature is

represented by max
[

f (TB)− f (Tt),0
]

where TB is the benchmark temperature. Assuming a

constant selling price of solar power generation as P0 for simplicity, the cash loss IT
t is given

by

IT
t = P0

∫ t

0
max[q(TB−Tτ),0]dτ (10)

where Tτ is the temperature at date τ. Note that IT
t is referred to as “the accumulated non

cooling degree days (ANCDDs)” for solar power from time 0 to t in that IT
t represents the

opposite directional index to ordinary CDDs in the sense of temperature. Accumulated cooling

degree days (ACDDs) may be familiar with weather derivative market participants. However,

ACDDs cannot capture the loss of solar power generation due to the decrease of temperature

appropriately. That is why this paper introduces ANCDDs rather than ACDDs.
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Using the number of ANCDDs IT
t as the index, the payoff g(IT

M) of ANCDD European

call option with the strike K at the maturity M is given by

g(IT
M) = max(IT

M−K,0). (11)

Note that since IT
t represents how much temperature is lower than the benchmark, the call

option price is expected to decrease in line with temperature.

Secondly, we design another call option for solar power based on solar power generation

modeling. Assuming selling price as P0, cash loss IV
t is given by

IV
t = P0

∫ t

0
max[VB−Vτ,0]dτ (12)

where Vτ is the power generation at date τ where VB is the benchmark solar power generation.

Note that IV
t is referred to as “the accumulated low solar power generation days (ALSPGDs)”

for solar power from time 0 to t. Using the number of ALSPGDs IV
t as the index, the payoff

g(IV
M) of ALSPGDs European call option with the strike K at the maturity M is given by

g(IV
M) = max(IV

M−K,0). (13)

Note that since IV
t represents how much solar power generation is lower than the benchmark,

the call option price is expected to decrease in line with solar power generation.

2.3. Good-deal bounds pricing for solar power generation call options

Following Kanamura and Ōhashi (2009), we derive the good-deal bounds pricing formulas

for solar power generation call options. We assume that the complete market asset is a stock

whose price follows a simple lognormal process:

dSt

St
= µsdt +σsdwt (14)
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where both µs and σs are constant and wt is a standard Brownian motion. Note that under this

formulation, the market price of risk φ for wt is given by φ = µs−r
σs

.

The lower boundaries of the ANCDDs option and ALSPGDs option for solar power gen-

eration Ci
t for i = T,V are obtained as

Ci
t = min

{Λs,t≤s≤T}
Et

[∫ T

t

Λs

Λt
xc

sds+
ΛT

Λt
xc

T

]
, (15)

s.t.
dΛt

Λt
=

dΛ∗t
Λ∗t
− vdzi

t , (16)

dΛ∗t
Λ∗t

=−rdt−φdwt , (17)

1
dt

Et

[
dΛ2

t

Λ2
t

]
≤ A2. (18)

Similarly, the upper boundaries of the prices are obtained by replacing the minimization with

the maximization in Eq. (15).

Suppose that the maximum Sharpe ratio after introducing a new derivative is given by A.

Suppose also that stock price St and temperature and solar power generation it for i = T,V are

given by Eqs (14) and (7), respectively. Denote by Ii for i = T,V the temperature and solar

power generation indices that determine the derivative payoffs g(Ii
M) at maturity M. Then, the

GDBs upper and lower price boundaries of European ANCDDs and ALSPGDs for i = T,V

are given by the solutions of the following partial differential equations:

−rCi +
∂Ci

∂t
+

1
2

σ
2
s S2 ∂2Ci

∂S2 +
1
2

σ
2
i

∂2Ci

∂i2
+ρiσsσiS

∂2Ci

∂i∂S
+

dIi

dt
∂Ci

∂Ii

=−rS
∂Ci

∂S
+

(
µs− r

σs
ρiσi−µi(t)+λi + k

√
A2−

(
µs− r

σs

)2

σi

√
1−ρ2

i sgn
(

∂Ci

∂i

))
∂Ci

∂i
(19)

with the terminal payoff

Ci(S, i, I,M) = g(Ii
M) (20)

where k =+1 and −1 generate the upper and lower price boundaries, respectively.
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3. Empirical Studies

3.1. Data

We use the data between ambient temperature in Prague in Czech Republic (◦C) and the solar

power generation volume (MWh) to price solar power generation derivatives numerically.

The data of solar power generation and daily average temperature at Prague Clementinum

observatory are obtained from the website of ČEPS company and Czech meteorology institute.

The data covers from January 1, 2012 to December 31, 2016. We also use daily stock price

index (PX) data in Czech Republic obtained from the website of Prague Sock Exchange.

3.2. Temperature-based model and call option pricing

To obtain the latest relationship between temperature and solar power generation, we use

the year 2016 data of ambient temperature in Prague in Czech Republic and the solar power

generation volume (MWh), whose relation is reported in Figure 1. As we can see, the solar

power generation volume increases in line with temperature from solar radiation. Here we

linearly regress solar power generation on temperature using least squares.

Vt = p+qTt + εt (21)

The estimation results are reported in Table 1. The estimated variables of p and q are statisti-

cally significant from the comparisons with the corresponding standard errors. In particular, q

is positive, implying that recent technological advance of solar power proceeds towards solar

power generation with high efficiency and heat resistance.

As can be seen from Figure 1, the uncertainty in the relationship between the temperature

and the solar power generation increases as the temperature rises. On the other hand, when the

temperature exceeds near 25 ◦C, it can be seen that the uncertainty is decreasing. When the
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air temperature exceeds this level, the increase in solar power generation due to the increase

in solar radiation and the decrease in the solar power generation due to the decrease in solar

panel efficiency are canceled. As a result, the uncertainty of the relationship between the

temperature and the solar photovoltaic power generation is reduced.

[INSERT FIGURE 1 ABOUT HERE]

[INSERT TABLE 1 ABOUT HERE]

We conduct the temperature-based model parameter estimation. The discretized stochastic

process of the stock prices is given by

∆ logSt = (β0−
1
2

σ
2
1)+ ε1t , (22)

and the discretized model of temperature for i = T is given by

∆it = α
i
0 +α

i
2t +α

i
3 sin(ωt)+α

i
4 cos(ωt)−α

i
1it + ε

i
2t . (23)

Note that εi = (ε1t ,ε
i
2t)∼ N(µi

ε,Σ
i
ε), µi

ε = (0,0), and Σi
ε =

 σ2
1 ρi

0σ1σi
2

ρi
0σ1σi

2 (σi
2)

2

 .

We simultaneously estimate the parameters by the maximum likelihood method. The re-

sults are reported in Table 2. According to the standard errors in Table 2, σ1, αT
0 , αT

1 , σT
2 , αT

2 ,

αT
3 , and αT

4 are statistically significant.

[INSERT TABLE 2 ABOUT HERE]

Note that the result captures the mean reversion of the temperature deviation because the

estimate of αT
1 (0.279) is greater than 0 and less than 1. It shows the long-term upward trend of

temperature, which often describes global warming, because the estimate of αT
2 (1.560E-04) is
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positive and statistically significant. It also shows the annually sinusoidal trend of temperature

by the statistically significant αT
3 (-0.530) and αT

4 (-2.719).

The parameters (µs, σs, λT , σT , ρT , θT
1 , θT

2 , θT
3 , and θT

4 ) of the continuous-time models

in Eqs. (14) and (7) for i = T are obtained by integrating Eqs. (14) and (7) from t to t + 1

and comparing the coefficients with the corresponding discrete-time models. We have the

following results for i = T :

µs = β0, σs = σ1,

λi =− ln(1−α
i
1), σi = σ

i
2

√
2ln(1−αi

1)

(1−αi
1)

2−1
, ρi =

σ1σi
2

σsσi

λi

1− e−λi
ρ

i
0,

θ
i
1 =

θi
2

λi
+(λiα

i
0−θ

i
2)

1
1− e−λi

, θ
i
2 =

λi

1− e−λi
α

i
2, θi

3

θi
4

=
1

B2
1i +B2

2i

 λiB1i +ωB2i −(ωB1i−λiB2i)

ωB1i−λiB2i λiB1i +ωB2i

 αi
3

αi
4

 . (24)

Note that B1i = cos(ω)− e−λi and B2i = sin(ω). Table 3 reports the conversion results.

[INSERT TABLE 3 ABOUT HERE]

We numerically calculate ANCDDs call option prices for cool summer risk hedge as the

upper and lower price boundaries using the finite difference method. The benchmark tem-

perature is assumed as 20 oC. We assume that µS = 0.0002 to avoid a negative Sharpe ratio,

selling price for solar power is P0 = 30 EUR/MWh, and risk free rate is 0.00004 (1%/year).

The strike is set as P0 ∗q∗∆Temp∗∆Days which implies cool summer risk exceed ∆Days = 5

Days and ∆Temp = 5 oC from 20 oC based on the five year historical data. The results are

reported in Figures 2 and 3. Note that Figure 2 demonstrates the lower boundary surface of

the option prices using the twice Sharpe ratio and Figure 3 demonstrates the upper and lower

boundaries of the option prices at an initial stock price of 1050. We calculate ANCDDs call

option prices on on August 1, 2017, which covers the period of late summer from August 2,
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2017 to September 13, 2017 as an example. Figures 2 and 3 demonstrate that the call option

prices decrease in line with initial temperature because IT
t represents how much solar power

generation is lower than the benchmark due to cool summer risk.

[INSERT FIGURE 2 ABOUT HERE]

[INSERT FIGURE 3 ABOUT HERE]

3.3. Solar power generation-based model and call option pricing

We conduct the solar power generation-based model parameter estimation. The discretized

stochastic process of the stock prices is given by Eq. (22) and the discretized model of solar

power generation is given by Eq. (23) for i = V . We simultaneously estimate the parameters

by the maximum likelihood method. The results are reported in Table 4. According to the

standard errors in Table 4, σ1, αV
0 , αV

1 , σV
2 , αV

2 , αV
3 , and αV

4 are statistically significant.

[INSERT TABLE 4 ABOUT HERE]

Note that the result captures the mean reversion of the power generation deviation because

the estimate of αV
1 (0.622) is greater than 0 and less than 1. It shows the long-term upward

trend of solar power generation, which may partly describe an indirect global warming effect,

because the estimate of αV
2 (1.114E-01) is positive and statistically almost significant. It also

shows the annually sinusoidal trend of solar power generation by the statistically significant

αV
3 (541.774) and αV

4 (-2531.868).

The parameters (µs, σs, λV , σV , ρV , θV
1 , θV

2 , θV
3 , and θV

4 ) of the continuous-time models in

Eqs. (14) and (7) for i = V are obtained by Eq. (24) for i = V integrating Eqs. (14) and (7)

from t to t + 1 and comparing the coefficients with the corresponding discrete-time models.

The results are reported in Table 5.
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[INSERT TABLE 5 ABOUT HERE]

We numerically calculate the call option prices of ALSPGDs for cool summer risk hedge

as the upper and lower price boundaries using the finite difference method. Here we use the

same conditions to the ANCDDs call option pricing based on temperature. The benchmark

solar power generation is assumed the power generation corresponding to 20 oC using Eq.

(9). We assume that µS = 0.0002 to avoid negative Sharpe ratios, selling price for solar power

is P0 = 30 EUR/MWh, and risk free rate is 0.00004 (1%/year). The strike is set as P0 ∗ q ∗

∆Temp∗∆Days which implies cool summer risk exceed ∆Days = 5 Days and ∆Temp = 5 oC

from 20 oC based on the five year historical data. We calculate ALSPGDs call option prices on

August 1, 2017, which covers the period of late summer from August 2, 2017 to September

13, 2017 as an example. The results are reported in Figures 4 and 5. Note that Figure 4

demonstrates the lower boundary surface of the option prices using the twice Sharpe ratio and

Figure 5 demonstrates the upper and lower boundaries of the option prices at an initial stock

price of 1050. Figures 4 and 5 demonstrate that the call option prices decrease in line with

initial solar power generation because IV
t represents how much solar power generation is lower

than the benchmark.

The call option prices in Figure 5 based on a solar power generation process approach

are bigger than the call option prices in Figure 3 based on a temperature process approach.

This is consistent with the fact that the solar power generation approach takes into account

more comprehensive risk than the temperature approach as shown in Figure 1, resulting in the

bigger call option prices for the solar power generation approach.

[INSERT FIGURE 4 ABOUT HERE]

[INSERT FIGURE 5 ABOUT HERE]
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3.4. Basis risk premium for temperature hedging

Since in general temperature modeling is easier than solar power generation modeling, vol-

umetric risk hedging strategies with temperature as the underlying asset are heavily used in

practice. However, because of the mismatch between the hedged item and the hedging in-

strument, there is a basis risk between temperature and solar power generation hedging. By

focusing on the basis risk, we empirically examine how much the prices of the two call options

based on temperature and solar power generation are different. We define by BRPt the lower

(or upper) boundary of the basis risk premium arising from the mismatch between solar power

generation and temperature hedging as follows:

BRPt =CG−CT (25)

where CG and CT represent the GDBs lower (or upper, resp.) price boundaries of the European

call options on solar power generation and temperature, respectively. Figure 6 reports the basis

risk premiums for temperature hedging for the upper and lower boundaries with the twice

Sharpe ratio.

From Figure 6, when the temperature rises from 0 oC, the basis risk premium is increasing.

This is because the uncertainty in the relationship between the temperature and the solar power

generation increases as the temperature rises in Figure 1. This is considered to be the reason

of a deviation between temperature-based hedging and solar power generation-based hedging.

More importantly, when the temperature exceeds near 25 oC in Figure 6, the basis risk premi-

ums tend to decrease in line with the temperature. When the temperature exceeds this level,

the increase in solar power generation due to the increase in solar radiation and the decrease in

solar power generation due to the decrease in solar panel efficiency are canceled. As the result

of the decrease of the uncertainty in solar power generation by temperature, the divergence

between temperature-based hedging and solar power generation-based hedging diminishes.

[INSERT FIGURE 6 ABOUT HERE]
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4. Conclusions

This paper studied volumetric risk hedging strategies for solar power under incomplete mar-

ket settings with a twofold proposal of temperature-based and solar power generation-based

models for solar power derivatives and discussed the basis risk arising from solar power volu-

metric risk hedge with temperature. Based on an indirect modeling of solar power generation

using temperature and a direct modeling of solar power generation, we designed two types of

call options written on the ANCDDs and the ALSPGDs, respectively, which can hedge cool

summer volumetric risk more appropriately than those on well-known accumulated cooling

degree days. We offered the pricing formulas of the two options under the GDBs framework,

which can take into account incompleteness of solar power derivative markets. To calculate

the option prices numerically, we derived the partial differential equations for the two options

using the GDBs. Empirical studies using Czech solar power generation and Prague tempera-

ture estimated the parameters of temperature-based and solar power generation-based models,

respectively. We numerically calculated the call option prices on ANCDDs and ALSPGDs, re-

spectively, as the upper and lower price boundaries using the finite difference method. Results

showed that the call option prices based on a solar power generation process are bigger than the

call option prices based on a temperature process. This is consistent with the fact that the solar

power generation approach takes into account more comprehensive risk than the temperature

approach, resulting in the bigger call option prices for the solar power generation approach.

We finally showed that the basis risk premiums, i.e., solar power generation-based call option

prices minus temperature-based call option prices, decrease in line with initial temperature

greater than around 25 ◦C. This may be because the uncertainty in solar power generation by

temperature decreases due to the cancellation between the increase in solar power generation

due to the increase in solar radiation and the decrease in solar power generation due to the

decrease in solar panel efficiency.

15



References

Benth, F. E., and N. A. Ibrahim, 2017, Stochastic modeling of photovoltaic power generation and

electricity prices, The Journal of Energy Markets 10, 1–33.

Bhattacharya, S., A. Gupta, K. Kar, and A. Owusu, 2016, Cross hedging strategies for solar energy

production using weather derivatives, Working paper, SSRN.

Brockett, P. L., M. Wang, C. Yang, and H. Zou, 2006, Portfolio effects and valuation of weather deriva-

tives, Financial Review 41, 55–76.

Cao, M., and J. Wei, 2000, Equilibrium valuation of weather derivatives, Working paper, University of

Toronto.

Cochrane, J. H., and J. Saa-Requejo, 2000, Beyond arbitrage: Good-deal asset price bounds in incom-

plete markets, Journal of Political Economy 108, 79–119.

Davis, M., 2001, Pricing weather derivatives by marginal value, Quantitative Finance 1, 1–4.
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Figure 1. Scatter plots between ambient temperature and solar power generation in Czech
solar power plants: We use the year 2016 data of ambient temperature in Prague in Czech
Republic (◦C) and the solar power generation volume (MWh). As we can see, the solar power
generation volume increases in line with temperature from solar radiation.
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Figure 2. ANCDDs Call Option Price Lower Boundaries on August 1, 2017, which covers
the period of late summer from August 2, 2017 to September 13, 2017: It demonstrates the
lower boundary surface of the option using twice Sharpe ratio.
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Figure 3. ANCDDs Call Option Price Boundaries on August 1, 2017, which covers the period
of late summer from August 2, 2017 to September 13, 2017: It demonstrates upper and lower
boundaries at an initial stock price of 1050.
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Figure 4. ALSPGDs Call Option Price Lower Boundaries on August 1, 2017, which covers
the period of late summer from August 2, 2017 to September 13, 2017: It demonstrates the
lower boundary surface of the option using the twice Sharpe ratio.
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Figure 5. ALSPGDs Call Option Price Boundaries on August 1, 2017, which covers the
period of late summer from August 2, 2017 to September 13, 2017: It demonstrates upper and
lower boundaries at an initial stock price of 1050.
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Figure 6. Basis Risk Premium for Temperature Hedging: Note the upper and lower bound-
aries with the twice Sharpe ratio. The basis risk premiums increase in line with initial temper-
ature. When the temperature exceeds near 25 oC, the basis risk premiums tend to decrease in
line with the temperature.

20



Variable p q
Coefficient 1306.090 375.711
Std. Error 233.012 16.415

Table 1. The parameter estimation regressing solar power generation on temperature: The
estimated variables of p and q are statistically significant from the comparisons with the cor-
responding standard errors.

β0 σ1 αT
0 αT

1 σT
2 ρT

0 αT
2 αT

3 αT
4

Estimates 0.0000 0.010 3.154 0.279 2.555 0.048 1.560E-04 -0.530 -2.719
Std Errs 0.0003 0.000 0.072 0.005 0.054 0.029 6.699E-05 0.096 0.104
Loglik 1.07E+03
AIC -2.12E+03
SIC -2.14E+03

Table 2. The model parameter estimation for temperature and stock price index in Czech
Republic: According to the standard errors, σ1, αT

0 , αT
1 , σT

2 , αT
2 , αT

3 , and αT
4 are statistically

significant.

µS σS λT σT ρT θT
1 θT

2 θT
3 θT

4
0.0000 0.0097 0.3274 2.9832 0.0484 3.6979 1.8294E-04 -0.6506 -3.1831

Table 3. The continuos-time model parameters for temperature and stock price index in Czech
Republic: The parameters (µs, σs, λT , σT , ρT , θT

1 , θT
2 , θT

3 , and θT
4 ) of the continuous-time

models in Eqs. (14) and (7) for i = T are obtained by integrating Eqs. (14) and (7) from t to
t +1 and comparing the coefficients with the corresponding discrete-time models.
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β0 σ1 αV
0 αV

1 σV
2 ρV

0 αV
2 αV

3 αV
4

Estimates 0.0000 0.010 3413.418 0.622 2249.196 0.008 1.114E-01 541.774 -2531.868
Std Errs 0.0003 0.000 43.846 0.005 42.578 0.016 4.400E-02 65.276 53.805
Loglik -7.41E+03
AIC 1.48E+04
SIC 1.48E+04

Table 4. The model parameter estimation for solar power generation and stock price index
in Czech Republic: According to the standard errors, σ1, αV

0 , αV
1 , σV

2 , αV
2 , αV

3 , and αV
4 are

statistically significant.

µS σS λV σV ρV θV
1 θV

2 θV
3 θV

4
0.0000 0.0097 0.9732 3389.2200 0.0082 5339.5477 1.7422E-01 807.9376 -3968.9388

Table 5. The continuos-time model parameters for solar power generation and stock price
index in Czech Republic: The parameters (µs, σs, λV , σV , ρV , θV

1 , θV
2 , θV

3 , and θV
4 ) of the

continuous-time models in Eqs. (14) and (7) for i =V are obtained by Eq. (24) for i =V inte-
grating Eqs. (14) and (7) from t to t+1 and comparing the coefficients with the corresponding
discrete-time models.
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