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Abstract

This study provides a growth-theoretic analysis on the effects of intellectual prop-
erty rights on the endogenous takeoff of an economy. We incorporate patent protection
into a Schumpeterian growth model in which takeoff occurs when the population size
crosses an endogenous threshold. We find that strengthening patent protection has
contrasting effects on economic growth at different stages of the economy. Specifically,
it leads to an earlier takeoff (i.e., an earlier industrial revolution) but also reduces
economic growth in the long run.
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"England [...] by 1700 [...] had developed an effi cient set of property rights
embedded in the common law [and...] begun to protect private property in knowl-
edge with its patent law. The stage was now set for the industrial revolution."
North and Thomas (1973, p. 156)

1 Introduction

Figure 1 plots the real GDP per capita in the UK.1 It shows that in the 18th century, income
in the UK grew very slowly. Specifically, the average annual growth rate of income in the
UK from 1701 to 1800 was 0.4%. Then, the average growth rate from 1801 to 1900 increased
to 1.0%. From the 20th century onwards, the average growth rate stabilized at about 1.7%.

Figure 1: Real GDP per capita in the UK from 1700 to 2016

This study explores the effects of intellectual property rights (IPR) on the endogenous
takeoff of an economy. We incorporate patent protection into the Schumpeterian growth
model of endogenous takeoff in Peretto (2015). In this model, the economy first experiences
stagnation with zero growth in output per capita when the market size (determined by the
population size) is small. As the market size becomes suffi ciently large due to population
growth, innovation takes place and the economy gradually experiences growth. In the long
run, the economy converges to a balanced growth path (BGP) with steady-state growth.
Within this growth-theoretic framework that is consistent with the growth pattern in Figure
1, we obtain the following results.
Strengthening patent protection leads to an earlier takeoff. Incentives for innovation to

take place depend on the market value of inventions, which in turn depends on the level of
patent protection and the market size. Therefore, when stronger patent protection increases
the market value of patents, it also reduces the market size required for innovation to take

1Data source: Maddison Project Database.
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place. As a result, the economy starts to experience innovation and growth at an earlier time
(i.e., an earlier industrial revolution). Our finding that stronger IPR protection leads to an
earlier (but not necessarily immediate) takeoff is consistent with historical evidence on the
effects of IPR on the industrial revolution.2 However, stronger patent protection eventually
reduces innovation and growth as recent studies tend to find.3 Intuitively, although stronger
patent protection increases the number of products in the economy, this larger number of
products reduces the market size of each product and the incentives for quality-improving
innovation, which determine long-run growth.4

This study relates to the literature on innovation and economic growth. Romer (1990)
develops the seminal variety-expanding growth model in which innovation is driven by new
products, whereas Aghion and Howitt (1992) develop the Schumpeterian quality-ladder
growth model in which innovation is driven by higher-quality products. Peretto (1998,
1999) and Smulders and van de Klundert (1995) combine the two dimensions of innovation
and develop a Schumpeterian growth model with endogenous market structure. This study
explores the effects of IPR in this vintage of the Schumpeterian growth model.
In the literature on IPR and innovation, other studies also explore the effects of IPR in

the innovation-driven growth model.5 These studies mostly focus on either variety expansion
or quality improvement. Only a few studies, such as Chu, Cozzi and Galli (2012) and Chu,
Furukawa and Ji (2016), explore the effects of IPR in the Schumpeterian growth model with
both dimensions of innovation. However, none of these studies consider how IPR affects the
endogenous takeoff of an economy. The novel contributions of this study are to explore the
effects of IPR in a Schumpeterian growth model of endogenous takeoff and to highlight the
contrasting effects of IPR on economic growth at different stages of the economy.
This study also relates to the literature on endogenous takeoff and economic growth.

Early studies include Galor and Weil (2000), Jones (2001) and Hansen and Prescott (2002).
Peretto (2015) develops a Schumpeterian growth model of endogenous takeoff. The Peretto
model features both quality improvement and variety expansion, under which endogenous
growth in the number of products provides a dilution effect that removes the scale effect
of population size on long-run growth. Therefore, although the population size affects the
timing of the takeoff, it does not affect the steady-state growth rate. We incorporate patent
protection into the Peretto model to explore its effects on endogenous takeoff.
The rest of the paper is organized as follows. Section 2 presents the model. Section 3

explores the effects of patent policy at different stages of the economy. Section 4 concludes.

2 The model

The theoretical framework is based on the Schumpeterian growth model with both variety-
expanding innovation and quality-improving innovation in Peretto (2015). In this model,

2See e.g., North and Thomas (1973), North (1981), Dutton (1984) and Khan (2005).
3See Jaffe and Lerner (2004), Bessen and Meurer (2008) and Boldrin and Levine (2008) for evidence.
4See Peretto and Connolly (2007) for a theoretical explanation on quality-improving innovation being the

only plausible engine of long-run growth.
5See e.g., Li (2001), Goh and Olivier (2002), O’Donoghue and Zweimuller (2004), Furukawa (2007), Chu

(2009), Iwaisako and Futagami (2013), Cozzi and Galli (2014), Huang et al. (2017) and Yang (2018).
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labor is used as a factor input for the production of final good. Final good is used for
consumption and as a factor input for entry, in-house R&D, the production and operation of
intermediate goods. We incorporate a patent policy parameter into the model and analyze
its effects on the takeoff, transitional dynamics and the BGP of the economy.

2.1 Household

The representative household has a utility function given by

U =

∫ ∞
0

e−(ρ−λ) ln ctdt, (1)

where ct ≡ Ct/Lt denotes per capita consumption of final good (numeraire) at time t, and
ρ > 0 is the subjective discount rate. Population grows at an exogenous rate λ ∈ (0, ρ) with
initial population normalized to unity (i.e., Lt = eλt). The household maximizes (1) subject
to

ȧt = (rt − λ) at + wt − ct, (2)

where at ≡ At/Lt is the real value of assets owned by each member of the household, and
rt is the real interest rate. Each member supplies one unit of labor to earn wt. Standard
dynamic optimization yields

ċt
ct

= rt − ρ. (3)

2.2 Final good

Final output Yt is produced by competitive firms using the following production function:

Yt =

∫ Nt

0

Xθ
t (i)

[
Zα
t (i)Z1−αt Lt/N

1−σ
t

]1−θ
di, (4)

where {θ, α, σ} ∈ (0, 1). Xt (i) is the quantity of non-durable intermediate goods i ∈ [0, Nt].
The productivity of Xt (i) depends on its quality Zt (i) and the average quality of all inter-
mediate goods Zt ≡

∫ Nt
0
Zt (j) dj/Nt capturing technology spillovers. The private return to

quality is determined by α, and the degree of technology spillovers is determined by 1− α.
The parameter 1− σ captures a congestion effect of variety, and hence, the social return to
variety is measured by σ.
Profit maximization yields the following conditional demand functions for Lt and Xt (i):

Lt = (1− θ)Yt/wt, (5)

Xt (i) =

(
θ

pt (i)

)1/(1−θ)
Zα
t (i)Z1−αt Lt/N

1−σ
t , (6)

where pt (i) is the price ofXt (i). Perfect competition implies that firms pay θYt =
∫ Nt
0
pt (i)Xt (i) di

for intermediate goods.
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2.3 Intermediate goods and in-house R&D

Monopolistic firms produce differentiated intermediate goods with a linear technology that
requires Xt (i) units of final good to produce Xt (i) units of intermediate good i ∈ [0, Nt].
The firm in industry i incurs φZα

t (i)Z1−αt units of final good as a fixed operating cost. To
improve the quality of its products, the firm devotes It (i) units of final good to in-house
R&D. The innovation process is

Żt (i) = It (i) , (7)

and the firm’s (before-R&D) profit flow at time t is

Πt (i) = [pt (i)− 1]Xt (i)− φZα
t (i)Z1−αt . (8)

The value of the monopolistic firm in industry i is

Vt (i) =

∫ ∞
t

exp

(
−
∫ s

t

rudu

)
[Πs (i)− Is (i)] ds. (9)

The monopolistic firm maximizes (9) subject to (7) and (8). We solve this dynamic opti-
mization problem in the proof of Lemma 1 and find that the unconstrained profit-maximizing
markup ratio is 1/θ. To analyze the effects of patent breadth, we introduce a policy para-
meter µ > 1, which determines the unit cost for imitative firms to produce Xt (i). A larger
patent breadth µ allows the monopolistic producer of Xt (i), who owns the patent, to charge
a higher markup without losing her market share to potential imitators;6 see also Li (2001),
Goh and Olivier (2002) and Iwaisako and Futagami (2013). The equilibrium price becomes

pt (i) = min {µ, 1/θ} . (10)

We assume that µ < 1/θ. In this case, increasing patent breadth raises the markup.
We follow previous studies to consider a symmetric equilibrium in which Zt (i) = Zt

for i ∈ [0, Nt] and the size of each intermediate-good firm is identical across all industries
Xt (i) = Xt.7 From (6) and pt (i) = µ, the quality-adjusted firm size is

Xt

Zt
=

(
θ

µ

)1/(1−θ)
Lt

N1−σ
t

. (11)

We define the following transformed variable:

xt ≡ µ1/(1−θ)
Xt

Zt
= θ1/(1−θ)

Lt

N1−σ
t

, (12)

which is a state variable and not directly affected by µ (but indirectly via Nt). In Lemma 1,
we derive the rate of return on quality-improving R&D, which is increasing in xt and µ.

6This setup is consistent with Gilbert and Shapiro’s (1990) insight on patent “breadth as the ability of
the patentee to raise price”and originates from the patent-design literature; e.g., Gallini (1992) also assumes
that a larger patent breadth increases the imitation cost of imitators.

7Symmetry also implies Πt (i) = Πt, It (i) = It and Vt (i) = Vt.
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Lemma 1 The rate of return on quality-improving in-house R&D is8

rqt = α
Πt

Zt
= α

[
µ− 1

µ1/(1−θ)
xt − φ

]
. (13)

Proof. See the Appendix.

2.4 Entrants

Following previous studies, we assume that entrants have access to aggregate technology Zt
to ensure symmetric equilibrium at any time t. A new firm pays βXt units of final good to
enter the market with a new variety of intermediate goods and set up its operation. β > 0
is an entry-cost parameter. The asset-pricing equation implies that the return on assets is

rt =
Πt − It
Vt

+
V̇t
Vt
. (14)

When entry is positive, free entry implies

Vt = βXt. (15)

Substituting (7), (8), (12), (15) and pt = µ into (14) yields the return on entry as

ret =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ+ zt

xt

]
+
ẋt
xt

+ zt, (16)

where zt ≡ Żt/Zt is the growth rate of aggregate quality.

2.5 Equilibrium

The equilibrium is a time path of allocations {At, Yt, Ct, Xt, It} and prices {rt, wt, pt, Vt} such
that

• the household maximizes utility taking {rt, wt} as given;

• competitive firms produce Yt and maximize profits taking {wt, pt} as given;

• incumbents for intermediate goods choose {pt, It} to maximize Vt taking rt as given;

• entrants make entry decisions taking Vt as given;

• the value of all existing monopolistic firms adds up to the value of the household’s
assets such that At = NtVt; and

• the following market-clearing condition of final good holds:

Yt = Ct +Nt (Xt + φZt + It) + ṄtβXt. (17)

8Note that (µ− 1)/µ1/(1−θ) is increasing in µ for µ < 1/θ.
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2.6 Aggregation

Substituting (6) and pt = µ into (4) and imposing symmetry yield aggregate output as

Yt = (θ/µ)θ/(1−θ)Nσ
t ZtLt. (18)

The growth rate of output per capita is

gt ≡
ẏt
yt

= σnt + zt, (19)

where yt ≡ Yt/Lt denotes output per capita. Its growth rate gt is determined by both the
variety growth rate nt ≡ Ṅt/Nt and the quality growth rate zt.

3 Dynamics of the economy

The dynamics of the economy is determined by the dynamics of xt = θ1/(1−θ)Lt/N
1−σ
t . Its

initial value is x0 = θ1/(1−θ)/N1−σ
0 . In the first stage of the economy, there is neither variety

expansion nor quality improvement. At this stage, xt increases solely due to population
growth. When xt becomes suffi ciently large, innovation begins to happen. The following
inequality ensures the realistic case in which the creation of products (i.e., variety-expanding
innovation) happens before the improvement of products (i.e., quality-improving innovation).

α <
µ− 1− (ρ− λ) β

(ρ− λ) βφ

[
ρ− λ+

(θ/µ) (µ− 1− (ρ− λ) β)

1− (θ/µ) (µ− (ρ− λ) β)
λ

]
. (20)

Variety-expanding innovation happens when xt crosses the first threshold xN defined as

xN ≡
µ1/(1−θ)φ

µ− 1− (ρ− λ) β
. (21)

Then, quality-improving innovation also happens when xt crosses the second threshold xZ
defined as

xZ ≡ arg
x

solve

{[
µ− 1

µ1/(1−θ)
x− φ

] [
α− µ1/(1−θ)σ

βx

]
= ρ− σ (ρ− λ)

}
. (22)

The inequality in (20) implies xN < xZ . In the long run, xt converges to its steady-state value
x∗. The following inequalities ensure that when the economy is on the BGP, the variables
{x∗, z∗, g∗} are positive:

βφ >
1

α

[
µ− 1− β

(
ρ+

σ

1− σλ
)]

> µ− 1. (23)

The following proposition adapted from Peretto (2015) summarizes the dynamics of xt.
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Proposition 1 When the initial condition of the economy satisfies9

µ1/(1−θ)φ/ (µ− 1) < x0 < xN , (24)

the dynamics of xt is given by10

ẋt =


λxt > 0 x0 ≤ xt ≤ xN
v̄ (x̄∗ − xt) > 0 xN < xt ≤ xZ
v (x∗ − xt) ≥ 0 xt > xZ

, (25)

where

v̄ ≡ 1− σ
β

[
µ− 1− β

(
ρ+

λσ

1− σ

)]
,

x̄∗ ≡ µ1/(1−θ)φ

µ− 1− β [ρ+ λσ/ (1− σ)]
,

v ≡ 1− σ
β

[
(1− α) (µ− 1)− β

(
ρ+

λσ

1− σ

)]
,

x∗ ≡ µ1/(1−θ)
(1− α)φ− [ρ+ λσ/ (1− σ)]

(1− α) (µ− 1)− β [ρ+ λσ/ (1− σ)]
.

Proof. See the Appendix.

3.1 Stage 1: Stagnation

When the market size is not large enough (i.e., xt ≤ xN), there are insuffi cient incentives
for firms to develop new products nor improve the quality of existing products. In this case,
output per capita is

yt = (θ/µ)θ/(1−θ)Nσ
0 Z0, (26)

and the growth rate of yt is gt = 0. In this regime, strengthening patent protection µ de-
creases yt due to monopolistic distortion that reduces intermediate production Xt. However,
stronger patent protection also leads to an earlier (but not necessarily immediate) takeoff
by decreasing xN in (21). Intuitively, stronger patent protection increases the profitability
of firms and provides more incentives for firms to develop new products. As a result, the
economy starts to experience innovation at an earlier time.

Proposition 2 When xt ≤ xN , stronger patent protection reduces the level of output per
capita but leads to an earlier takeoff.

Proof. Use (21) and (26) to show that xN and yt are decreasing in µ. Given that xt increases
at the exogenous rate λ when xt ≤ xN , a smaller xN implies an earlier takeoff.

9The inequality x0 > µ1/(1−θ)φ/ (µ− 1) implies that Π0 > 0.
10Note that (23) ensures xZ < x̄∗.
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3.2 Stage 2: Variety expansion

When the market size is suffi ciently large (i.e., xt > xN), firms have incentives to develop
new products. In this case, output per capita is

yt = (θ/µ)θ/(1−θ)Nσ
t Z0, (27)

and the growth rate of yt is gt = σnt. In the Appendix, we show that whenever nt > 0,
ct/yt always jumps to a steady state. Therefore, we can substitute ret in (16) into the Euler
equation rt = ρ+ gt = ρ+ σnt in (3) and also use (12) to derive the variety growth rate as11

nt =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ

xt

]
− ρ+ λ. (28)

For a given level of xt, the equilibrium growth rate gt = σnt is increasing in patent breadth
µ as in previous studies, such as Li (2001) and O’Donoghue and Zweimuller (2004).

Proposition 3 For a given xt ∈ (xN , xZ), stronger patent protection increases the equilib-
rium growth rate.

Proof. Use (28) to show that gt = σnt is increasing in µ for a given xt.

3.3 Stage 3: Quality improvement and variety expansion

When the market size becomes even larger (i.e., xt > xZ), firms have incentives to improve
the quality of products in addition to inventing new products. Then, output per capita is

yt = (θ/µ)θ/(1−θ)Nσ
t Zt, (29)

and the growth rate of yt is gt = σnt + zt. We can then substitute r
q
t in (13) into the Euler

equation rt = ρ+ gt = ρ+ σnt + zt in (3) to derive the quality growth rate as12

zt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ− σnt. (30)

For a given level of xt, the equilibrium growth rate gt = σnt + zt continues to be increasing
in patent breadth µ that raises the return to quality-improving innovation.

Proposition 4 For a given xt ∈ (xZ , x
∗), stronger patent protection increases the equilib-

rium growth rate.

Proof. Use (30) to show that gt = σnt + zt is increasing in µ for a given xt.

11Note from (21) and (28) that nt > 0 if and only if xt > xN .
12It can be shown that zt > 0 if and only if xt > xZ .
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3.4 Stage 4: Balanced growth path

In the long run, xt converges to x∗. Then, the steady-state quality growth rate is

z∗ = α

[
µ− 1

µ1/(1−θ)
x∗ − φ

]
− ρ− σn∗, (31)

where n∗ = λ/(1− σ) > 0 and

x∗ = µ1/(1−θ)
(1− α)φ− [ρ+ λσ/ (1− σ)]

(1− α) (µ− 1)− β [ρ+ λσ/ (1− σ)]
, (32)

which is decreasing in µ. Intuitively, stronger patent protection increases the number of
products, which leads to a smaller market size for each product. This smaller firm size x∗ in
turn reduces the incentives for quality-improving innovation and the steady-state equilibrium
growth rate g∗ = σn∗+ z∗. This result generalizes the one in Chu et al. (2016), who assume
zero social return to variety (i.e., σ = 0).

Proposition 5 On the BGP (i.e., xt = x∗), stronger patent protection decreases the steady-
state equilibrium growth rate.

Proof. Use (31) and (32) to show that g∗ = σn∗ + z∗ is decreasing in µ.

Finally, we conclude this section with Figure 2.13 It summarizes the entire transition
path of the equilibrium growth rate gt and shows that strengthening patent protection leads
to an earlier takeoff but lower long-run growth.

Figure 2: Transition path of the growth rate

13TN (TZ) is the time when variety-expanding (quality-improving) innovation is activated.
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4 Conclusion

In this study, we analyze the effects of IPR in a Schumpeterian growth model with endogenous
takeoff and find that strengthening patent protection causes an earlier takeoff by increasing
the profitability of firms and providing more incentives for firms to innovate. However,
stronger patent protection eventually slows down economic growth by reducing the market
size of each product and the incentives for quality-improving innovation. These contrasting
effects of IPR at different stages of the economy are consistent with historical evidence on
the industrial revolution and recent evidence on the effects of the patent system.
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Appendix

Proof of Lemma 1. The current-value Hamiltonian for monopolistic firm i is

Ht (i) = Πt (i)− It (i) + ηt (i) Żt (i) + ωt (i) [µ− pt (i)] , (A1)

where ωt (i) is the multiplier on pt (i) ≤ µ. Substituting (6)-(8) into (A1), we can derive

∂Ht (i)

∂pt (i)
= 0⇒ ∂Πt (i)

∂pt (i)
= ωt (i) , (A2)

∂Ht (i)

∂It (i)
= 0⇒ ηt (i) = 1, (A3)

Ht (i)

∂Zt (i)
= α

{
[pt (i)− 1]

[
θ

pt (i)

]1/(1−θ)
Lt

N1−σ
t

− φ
}
Zα−1
t (i)Z1−αt = rtηt (i)− η̇t (i) . (A4)

If pt (i) < µ, then ωt (i) = 0. In this case, ∂Πt (i) /∂pt (i) = 0 yields pt (i) = 1/θ. If the
constraint on pt (i) is binding, then ωt (i) > 0. In this case, we have pt (i) = µ. Therefore,

pt (i) = min {µ, 1/θ} . (A5)

Given that we assume µ < 1/θ , the monopolistic firm sets its price at pt (i) = µ. Substituting
(A3), (12) and pt (i) = µ into (A4) and imposing symmetry yield

rqt = α
Πt

Zt
= α

[
µ− 1

µ1/(1−θ)
xt − φ

]
, (A6)

which is the rate of return on quality-improving in-house R&D.

Before we prove Proposition 1, we first derive the dynamics of the consumption-output
ratio Ct/Yt when nt > 0.

Lemma 2 When nt > 0, the consumption-output ratio always jumps to

Ct/Yt = β (θ/µ) (ρ− λ) + 1− θ. (A7)

Proof. The total value of assets owned by the household is

At = NtVt. (A8)

When nt > 0, the no-arbitrage condition for entry in (15) holds. Then, substituting (15)
and µXtNt = θYt into (A8) yields

At = NtβXt = (θ/µ) βYt, (A9)
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which implies that the asset-output ratio At/Yt is constant. Substituting (A9), (2), (3) and
(5) into Ȧt/At = ȧt/at + λ yields

Ẏt
Yt

=
Ȧt
At

= rt +
wtLt
At
− Ct
At

= ρ+
Ċt
Ct
− λ+

(1− θ)µ
βθ

− µ

βθ

Ct
Yt
, (A10)

which can be rearranged as

Ċt
Ct
− Ẏt
Yt

=
µ

βθ

Ct
Yt
− (1− θ)µ

βθ
− (ρ− λ) . (A11)

Therefore, the dynamics of Ct/Yt is characterized by saddle-point stability, such that Ct/Yt
jumps to its steady-state value in (A7).

Proof of Proposition 1. Using (12), we can derive the growth rate of xt as

ẋt
xt

= λ− (1− σ)nt. (A12)

When x0 ≤ xt ≤ xN , we have nt = 0 and zt = 0. In this case, the dynamics of xt is given by

ẋt = λxt. (A13)

When xN < xt ≤ xZ , we have nt > 0 and zt = 0. In this case, Lemma 2 implies that
Ct/Yt is constant and ċt/ct = ẏt/yt. Therefore, we can substitute ret in (16) and (A12) into
rt = ρ+ σnt in (3) to obtain (28). Substituting (28) into (A12) yields the dynamics of xt as

ẋt =
1− σ
β

{
φµ1/(1−θ) −

[
µ− 1− β

(
ρ+

σ

1− σλ
)]

xt

}
. (A14)

Defining v ≡ 1−σ
β

[
µ− 1− β

(
ρ+ σ

1−σλ
)]
and x∗ ≡ φµ1/(1−θ)

µ−1−β(ρ+ σ
1−σλ)

, we can express (A14) as

ẋt = v(x∗ − xt). (A15)

When xt > xZ , we have nt > 0 and zt > 0. In this case, Ct/Yt is also constant, and
ċt/ct = ẏt/yt. Then, substituting ret in (16) and (A12) into rt = ρ+ σnt + zt in (3) yields

nt =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ+ zt

xt

]
− ρ+ λ. (A16)

We substitute (30) into (A16) to derive

nt =
[(1− α) (µ− 1)− (ρ− λ) β]

[
xt/µ

1/(1−θ)]− (1− α)φ+ ρ

(βxt) /µ1/(1−θ) − σ
. (A17)

Substituting (A17) into (A12) yields the dynamics of xt as

ẋt =
1− σ

β − σµ1/(1−θ)/xt

{[
(1− α)φ−

(
ρ+

λσ

1− σ

)]
µ1/(1−θ) −

[
(1− α) (µ− 1)− β

(
ρ+

λσ

1− σ

)]
xt

}
.

(A18)
Using v ≡ 1−σ

β−σµ1/(1−θ)/xt

[
(1− α) (µ− 1)− β

(
ρ+ λσ

1−σ
)]
and x∗ in (32), we express (A18) as

ẋt = v (x∗ − xt) , (A19)

where we approximate σµ1/(1−θ)/xt ∼= 0 for xt > xz, so v ∼= 1−σ
β

[
(1− α) (µ− 1)− β

(
ρ+ λσ

1−σ
)]

becomes a constant.
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