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The Folk Rule for Minimum Cost Spanning Tree Problems

with Multiple Sources∗

Gustavo Bergantiños† Youngsub Chun‡ Eunju Lee§ Leticia Lorenzo¶

December 29, 2017

Abstract

We consider a problem where a group of agents is interested in some goods provided
by a supplier with multiple sources. To be served, each agent should be connected directly
or indirectly to all sources of the supplier for a safety reason. This problem generalizes
the classical minimum cost spanning problem with one source by allowing the possibility
of multiple sources. In this paper, we extend the definitions of the folk rule to be suitable
for minimal cost spanning tree problems with multiple sources and present its axiomatic
characterizations.

Keywords: minimum cost spanning tree problems, multiple sources, folk rule, axiomatic
characterizations.

1 Introduction

A group of agents is interested in a service provided by a supplier with multiple service
stations, also called sources. Agents will be served through costly connections. They do not
care whether they are connected directly or indirectly to the sources, but they want to be
connected to all of them. This may occur for a safety reason. Agents have greater assurances
of the service in the sense that they can still enjoy the service even if one or more sources
cease to provide it. Also, there could be a situation where several suppliers offer different
services by using the same network (Internet, cable TV, etc.) and agents are interested in all
of them. These situations generalize classical minimum cost spanning tree problems with one
source by allowing the possibility of multiple sources.

Given a cost spanning tree problem with multiple sources, the least costly way of connect-
ing all agents to all sources (or minimum cost spanning tree) must be sought. This tree can
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be obtained, in polynomial time, by using the same algorithms as in the classical minimum
cost spanning tree problem, for instance, Prim (1956) algorithm or Kruskal (1957) algorithm.
Nevertheless, some variants of this problem are not so easy from a computational point of
view: the fixed cost spanning forest problem studied in Granot and Granot (1992), where
there are potential sites to construct facilities with fixed construction costs; the multi-source
spanning tree problem studied in Farley et al. (2000), where the objective is to compute
the spanning tree that minimizes the sum of the distances from each source to every other
node; and the hop constrained Steiner trees with multiple root nodes studied in Gouveia et
al. (2014).

Once it is known how to construct the minimum cost spanning tree, another interesting
issue that usually arises is how to allocate that cost to the agents. Our paper studies this issue
in minimum cost spanning tree problems with multiple sources. Even though many papers in
the literature on Operations Research or Economics study how to allocate the minimum cost
to agents in the classical setting with a single source, there are only a few devoted to this issue
in the setting of multiple sources. Rosenthal (1987) introduces the minimum cost spanning
forest game where there are several sources that offer the same service and agents want to
be connected to at least one source. He associates a cooperative game with this problem and
shows that its core is non-empty. Kuipers (1997) studies a problem where there are multiple
sources, each of them offering a different service, and each agent specifies the set of sources
that she wants to be connected to. He associates a cooperative game with this problem and
seeks to determine the conditions under which the core is non-empty.

Our approach is different because we want all agents to be connected to all sources. From
this perspective our problem can be seen as a particular case of Kuipers (1997) where all
agents demand to be connected to all sources. Nevertheless, the cooperative game that we
set up to study this problem is different. In the two papers mentioned above, the cost of a
coalition S is the minimum cost of connecting all members in S to some sources under the
assumption that S is allowed to use nodes outside of S. We follow the standard approach (as
in the classical minimum cost spanning tree problem) and assume that agents in S can not
use the locations of agents outside of S.

In the classical minimum cost spanning tree problem, the most popular rule is the so called
“folk rule”, which is studied in many papers. The folk rule has been proved to satisfy very
appealing properties. It chooses an allocation in the core and is monotonic in the population
and in the cost matrix. It is also additive in the cost matrix, which makes it easy to compute.
Our first aim is to extend the definition of the folk rule to our setting by using the following
four approaches:

1. as the Shapley value of the irreducible game (Bergantiños and Vidal-Puga (2007)),

2. as an obligation rule (Tijs et al. (2006) and Bergantiños and Kar (2010)),

3. as a partition rule (Bergantiños et al. (2010, 2011)),

4. through a cone-wise decomposition (Branzei et al. (2004) and Bergantiños and Vidal-
Puga (2009)).

We show that all four approaches make the same recommendation, the folk rule. We also
provide its axiomatic characterizations.
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The paper is structured as follows. Section 2 introduces minimum cost spanning tree
problems with multiple sources. Section 3 extends the four definitions of the folk rule to
our setting and show that they coincide in our setting. Section 4 presents its axiomatic
characterizations.

2 The model

Let N = {1, . . . , |N |} be a set of agents and M = {s1, ..., s|M |} be a set of sources. We are
interested in a network whose nodes are elements of N ∪M . We denote by |N | and |M | the
cardinalities of N and M, respectively. For each N and M, a cost matrix C = (cij)i,j∈N∪M
represents the cost of a direct link between any pair of nodes. We assume that cij = cji ≥ 0
for each i, j ∈ N ∪M and cii = 0 for each i ∈ N ∪M . Since cij = cji for each i, j ∈ N ∪M,
we will work with undirected arcs {i, j}. We denote the set of all cost matrices over N ∪M
as CN∪M . Given C, C ′ ∈ CN∪M , C ≤ C ′ if cij ≤ c′ij for all i, j ∈ N ∪M . Similarly, given x,

y ∈ RN , x ≤ y if xi ≤ yi for each i ∈ N .
A minimum cost spanning tree problem with multiple sources, or a problem, is characterized

by a triple (N,M,C) where N is the set of agents, M is the set of sources, and C is the cost
matrix in CN∪M . Given a subset S ⊂ N, we denote by (S,M,C) the restriction of the problem
to the subset of agents S. The classical minimum cost spanning tree problem, or the classical
problem for short, corresponds to the case where M has a single element, which is denoted
by 0.

For each network g and each pair of distinct nodes i and j ∈ N ∪M, a path from i to
j in g is a sequence of distinct arcs gij = {{is−1, is}}ps=1 such that {is−1, is} ∈ g for each
s ∈ {1, 2, . . . , p}, i = i0, and j = ip. A cycle is a path from i to i. For each i, j ∈ N ∪M , i
and j are connected in g if there is a path from i to j. A tree is a connected network without
any cycle.

For each network g, S ⊂ N ∪M is a connected component if (1) for each i, j ∈ S, i and j
are connected in g and (2) S is maximal, i.e., for each i ∈ S and each j /∈ S, i and j are not

connected in g. Let P (g) = {Sk(g)}n(g)
k=1 be the partition of N ∪M in connected components

induced by g. For each network g, let S(P (g), i) be the element of P (g) to which i belongs.
Let P (N ∪M) denote the set of all partitions of N ∪M and P = {S1, . . . , S|P |} be a generic
element of P (N ∪M). For each P, P ′ ∈ P (N ∪M), P is finer than P ′ if for each S ∈ P there
is T ∈ P ′ such that S ⊂ T . Given a finite set S, ∆(S) is the simplex over S.

For each problem (N,M,C) and each network g, the cost associated with g is defined
as c(N,M,C, g) =

∑
{i,j}∈g

cij . When there is no ambiguity, we write c(g) or c(C, g) instead

of c(N,M,C, g). Our first objective is to construct a network which minimizes the cost of
connecting all agents to all sources, which can be achieved by a minimal tree. Formally, a tree
t is a minimal tree if c(t) = min{c(g) : g is a tree}. A minimal tree always exists but it does
not necessarily have to be unique. The Kruskal (1956) algorithm enables it to be computed.
The Kruskal algorithm constructs a minimal tree by sequentially adding the cheapest arc
avoiding cycles.

Formally, let A0(C) = {{i, j} : i, j ∈ N ∪M and i 6= j} and g0(C) = ∅.
Step 1: Take an arc {i, j} ∈ A0(C) such that cij = min

{k,`}∈A0(C)
{ck`}. If there are more than

one arcs satisfying this condition, select just one. Let
{
i1(C), j1(C)

}
= {i, j}, A1(C) =
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A0(C) \ {i, j} and g1(C) =
{
i1(C), j1(C)

}
.

Step p+1 (p = 1, . . . , |N |+|M |−2): Take an arc {i, j} ∈ Ap(C) such that cij = min
{k,`}∈Ap(C)

{ck`}.

If there are more than one arcs satisfying this condition, select just one. Two cases are pos-
sible:

1. If gp(C) ∪ {i, j} has a cycle, then go to the beginning of Step p + 1 with new Ap(C)
obtained from Ap(C) by deleting {i, j}, that is, Ap(C) = Ap(C) \ {i, j}, and gp(C) the
same.

2. If gp(C)∪{i, j} has no cycle, then take
{
ip+1(C), jp+1(C)

}
= {i, j}, Ap+1(C) = Ap(C)\

{i, j} , and gp+1(C) = gp(C) ∪
{
ip+1(C), jp+1(C)

}
, and go to Step p+ 2.

This process is completed in |N |+ |M |−1 steps, exactly the minimum number of arcs that are
needed in order to connect all agents with all sources. g|N |+|M |−1(C) is a tree obtained from
the Kruskal algorithm (the algorithm leads to a tree which is not always unique). When there
is no ambiguity, we write Ap, gp, and {ip, jp} instead of Ap(C), gp(C), and {ip(C), jp(C)}
respectively. We denote by m(N,M,C) the cost of a minimal tree in (N,M,C).

Once the minimal tree is obtained, an interesting issue is how to divide its cost among
the agents. A cost allocation rule, or a rule, is a map f that associates with each problem
(N,M,C) a vector of cost shares f(N,M,C) ∈ RN such that

∑
i∈N

fi(N,M,C) = m(N,M,C).

Example 1 Let (N,M,C) be such that N = {1, 2, 3}, M = {a, b}, c1a = 7, c12 = 8, c3b = 9,
c1b = 10, and cij = 20 otherwise. The unique minimal tree is {{1, a}, {1, 2}, {1, b}, {3, b}} and
m(N,M,C) = 34.

3 The folk rule in minimum cost spanning tree problems with
multiple sources

In this section, we extend four definitions of the folk rule to our setting and show that they
make the same recommendation. The first one is defined as the Shapley value of the irreducible
game, the second as an obligation rule, the third as a partition rule, and the fourth through
simple problems.

3.1 The Shapley value of the irreducible game

In the classical problem, Bergantiños and Vidal-Puga (2007) define the folk rule as the Shapley
value of the irreducible game. We now extend this definition to our problem. Let (N,M,C)
be a problem and t a minimal tree in (N,M,C). We define the minimal network (N,M,Ct)
associated with t where ctij = max

{k,`}∈gij
{ck`} and gij denotes the unique path in t from i to j.

It is well known that Ct does not depend on the choice of the minimal tree. Following Bird
(1976), the irreducible problem (N,M,C∗) of (N,M,C) can thus be defined as the minimal
network (N,M,Ct) associated with any minimal tree t. C∗ is referred to as the irreducible
matrix.
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A game with transferable utility, briefly a game, is a pair (N, v), where v is a real-valued
function defined on all coalitions S ⊆ N satisfying v(∅) = 0. The irreducible game is a pair
(N, vC∗) such that for each S ⊂ N, vC∗(S) = m(S,M,C∗), which means that the value of a
coalition is the minimum cost in C∗ of connecting the agents in S to all sources using only
the locations of the members in S.

Let ΠN be the set of all permutations over the finite set N . For each π ∈ ΠN , let
Pre(i, π) be the set of agents of N which comes before i in the order π, i.e., Pre(i, π) = {j ∈
N such that π(j) < π(i)}. For each i ∈ N, the Shapley value of a game (N, v) (Shapley 1953)
is the average of her marginal contributions:

Shi(N, v) =
1

|N |!
∑
π∈ΠN

{
v(Pre(i, π) ∪ {i})− v(Pre(i, π))

}
.

Definition 1 For each problem (N,M,C), the rule fSh is defined as the Shapley value of the
irreducible game associated with (N,M,C). Namely, fSh(N,M,C) = Sh(N, vC∗).

We now compute fSh in Example 1. Since the unique minimal tree is {{1, a}, {1, 2}, {1, b}, {3, b}},
c∗1a = 7, c∗12 = 8, c∗1b = 10, and c∗3b = 9. Besides, c∗2a = 8, and c∗ij = 10 otherwise. The irre-
ducible game is as follows:

S vC∗(S)

{1} 17
{2} 18
{3} 19
{1, 2} 25
{1, 3} 26
{2, 3} 27
{1, 2, 3} 34

Thus,

fSh(N,M,C) =

(
62

6
,
68

6
,
74

6

)
= (10.33, 11.33, 12.33).

3.2 Obligation rules

Tijs et al. (2006) define the family of obligation rules for the classical problem by introducing
obligation functions. Let N0 = N ∪ {0} be a set of nodes where 0 is the unique source in the
classical problem. An obligation function is a map o assigning to each S ∈ 2N0 \ {∅} a vector
o(S) meeting the requirement that o(S) ∈ ∆(S) if 0 /∈ S, oi(S) = 0 for each i ∈ S if 0 ∈ S, and
for each S, T ∈ 2N0 \ {∅} such that S ⊂ T and i ∈ S, oi(S) ≥ oi(T ). An obligation function
can be interpreted as follows. Assume that agents in S are connected with one another. Now,
they need to construct an arc from any agent in S to the source so that they are all connected.
Thus, oi(S) represents the proportion of the cost of the arc that each agent i ∈ S must pay.
If the agents in S are already connected to the source, then they do not need to construct
any additional arc so that their obligation is zero, oi(S) = 0 for each i ∈ S.

The obligation rule associated with an obligation function o is defined through the Kruskal
algorithm as follows. The cost of each arc that is constructed at each step of the Kruskal
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algorithm is divided among the agents who benefit from its construction. Each agent pays
the difference between her obligation to the component to which she belongs before the arc
is added and the one afterwards. Tijs et al. (2006) prove that fo is well-defined, namely,
it is independent of the choice of the minimal tree by the Kruskal algorithm. The folk rule

corresponds to the obligation function where for each S ⊂ N and each i ∈ S, o∗i (S) =
1

|S|
.

We now extend this definition to our problem. Let P =
{
S1, ..., S|P |

}
∈ P (N ∪M). Note

that in the classical problem, if i ∈ Sk, then the obligation of agent i depends only on Sk
(the element of the partition to which i belongs). However, in our problem, it depends on the
whole structure of the partition in connected components. We assume that for each Sk ∈ P,
agents in Sk are connected with one another. The obligation of each i ∈ N in P, oi(P ), is
defined as follows.
(1) A link that joins two components of P with sources: Since all agents in N are interested
in such a link, all agents have an equal obligation over that link.
(2) A link that joins a component Sk with no source (Sk ∩M = ∅) to a component Sk′ with
a source (Sk′ ∩M 6= ∅): Since only agents in Sk are interested in such a link, only agents in
Sk have obligations over it.

Formally, for each i ∈ Sk ∩N, the obligation function o∗ is defined as

o∗i (P ) =


|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if Sk ∩M 6= ∅,

|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
+

1

|Sk|
if Sk ∩M = ∅.

(1)

It is straightforward to see that when there is a single source (|M | = 1), o∗ coincides with the
obligation function associated with the folk rule in the classical problem.

The obligation rule fo
∗

associated with the obligation function o∗ is defined in the same
way as in the classical problem.

Definition 2 For each problem (N,M,C) and each i ∈ N, the rule fo
∗

is defined as

fo
∗
i (N,M,C) =

|N |+|M |−1∑
p=1

cipjp [o
∗
i (P (gp−1))− o∗i (P (gp))].

In Proposition 1, we show that fo
∗

is well-defined, namely, for each (N,M,C), fo
∗

divides
m(N,M,C) among the agents and is independent of the minimal tree selected by the Kruskal
algorithm.
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We now compute fo
∗

in Example 1.

Arc P (g) o∗1(P (g)) o∗2(P (g)) o∗3(P (g))

∅ {1, 2, 3, a, b} 2− 1

3
+

1

1
= 1 +

1

3

2− 1

3
+

1

1
= 1 +

1

3

2− 1

3
+

1

1
= 1 +

1

3

{1, a} {1a, 2, 3, b} 2− 1

3
=

1

3

2− 1

3
+ 1 = 1 +

1

3

2− 1

3
+ 1 = 1 +

1

3

{1, 2} {12a, 3, b} 2− 1

3
=

1

3

2− 1

3
=

1

3

2− 1

3
+ 1 = 1 +

1

3

{3, b} {12a, 3b} 2− 1

3
=

1

3

2− 1

3
=

1

3

2− 1

3
=

1

3

{1, b} {123ab} 0 0 0

Thus,

fo
∗

1 (N,M,C) = c1a +
1

3
c1b = 7 +

10

3
= 10.33,

fo
∗

2 (N,M,C) = c12 +
1

3
c1b = 8 +

10

3
= 11.33,

fo
∗

3 (N,M,C) = c3b +
1

3
c1b = 9 +

10

3
= 12.33.

3.3 Partition rules

Bergantiños et al. (2010, 2011) introduce a family of rules using the Kruskal algorithm. At
each step of the algorithm, the cost of the selected arc is divided among the agents by using
sharing functions. A sharing function % is a map that specifies the part of the cost paid by
each agent at each step of the Kruskal algorithm.

We now explain the sharing function inducing the folk rule. Assume that when an arc
is added, components Sk and S` are joined. The sharing function is defined through the
following principles.

1. When a component with no source is joined to one with a source, only agents in the
component with no source obtain benefits. Thus, the full cost of the arc is paid by the
agents in the component with no source.

2. When two components with no source are joined, agents in both components benefit.
We assume that the total amount paid by one component is proportional to the number
of agents in the other. We further assume that all agents in the same component pay
the same amount.

For each i ∈ Sk, the proportion of the cost paid by agent i is:
0 if 0 ∈ Sk,
1

|Sk|
if 0 ∈ S`,

|S`|
|Sk ∪ S`||Sk|

if 0 /∈ Sk ∪ S`.
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Next we extend the definition of the sharing function to our problem. Let P =
{
S1, ..., S|P |

}
∈

P (N ∪M). We assume that for each Sk ∈ P, agents in Sk are connected to one another. Let
P ′ be a partition obtained from P after components Sk and S` are joined. We define the
sharing function % as follows: Cases 1 and 2 are similar to the ones in the classical problem,
but Case 3 is new.

1. When we join a component with no source to one with a source, only agents in the
component with no source benefit. Thus, the full cost of the arc is paid by the agents
in the component with no source.

2. When we join two components with no source, agents of both components benefit. We
assume that the total amount paid by one component is proportional to the number of
agents in the other. We further assume that all agents in the same component pay the
same amount.

3. When we join two components with sources, all agents in the problem benefit. Thus,
the cost of that arc is divided equally among all agents in the problem.

Formally, for each i ∈ N, the sharing function %∗ is defined as

%∗i (P, P
′) =



1

|N |
if Sk ∩M 6= ∅, S` ∩M 6= ∅,

1

|Sk|
if Sk ⊆ N , S` ∩M 6= ∅, and i ∈ Sk,

|S`|
|Sk ∪ S`||Sk|

if Sk ∪ S` ⊆ N and i ∈ Sk,

0 otherwise.

(2)

It is clear that %∗(P, P ′) ∈ ∆(N).

Definition 3 For each problem (N,M,C) and each i ∈ N, the rule f%
∗

is defined as

f%
∗

i (N,M,C) =

|N |+|M |−1∑
p=1

cipjp [%
∗
i (P (gp−1), P (gp))].

In Proposition 1, we show that f%
∗

is well-defined, namely, it does not depend on the
choice of the minimal tree by the Kruskal algorithm.

We now compute f%
∗

in Example 1.

Arc P (gp−1), P (gp) %∗1(P (gp−1), P (gp)) %∗2(P (gp−1), P (gp)) %∗3(P (gp−1), P (gp))

{1, a} {1, a, 2, 3, b} 1 0 0
{1a, 2, 3, b}

{1, 2} {1a, 2, 3, b} 0 1 0
{12a, 3, b}

{3, b} {12a, 3, b} 0 0 1
{12a, 3b}

{1, b} {12a, 3b} 1

3

1

3

1

3
{123ab}
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Thus,

f%
∗

1 (N,M,C) = c1a +
1

3
c1b = 7 +

10

3
= 10.33,

f%
∗

2 (N,M,C) = c12 +
1

3
c1b = 8 +

10

3
= 11.33,

f%
∗

3 (N,M,C) = c3b +
1

3
c1b = 9 +

10

3
= 12.33.

3.4 The cone-wise decomposition

Norde et al. (2004) prove that each classical problem can be written as a non-negative linear
combination of classical simple problems where the costs of the arcs are either 0 or 1. Branzei
et al. (2004) define the folk rule first in the classical simple problem as follows. Agents
connected to the source through a 0 cost path pay nothing. Agents connected with one
another through a 1 cost path pay the cost of connecting to the source equally. Then they
extend this definition to the general problem in a linear way following the result by Norde et
al. (2004).

We first introduce the folk rule in the classical simple problem following Branzei et al.
(2004). For each simple problem (N0, C) and each S ⊂ N , two agents i, j ∈ N, i 6= j are
(C, S)-connected if there exists a path gij from i to j satisfying that for all {k, `} ∈ gij , ck` = 0
and {k, `} ⊂ S. Also, S ⊂ N is a C-component if two conditions hold: First, for all i, j ∈ S,
i and j are (C, S)-connected. Second, S is maximal, i.e., if S  T, then there exist i, j ∈ T,
i 6= j, such that i and j are not (C, T )-connected. It is obvious that the set of C-components
is a partition of N .

For each simple problem (N0, C), the folk rule is defined as follows. For each i ∈ N, let Si
be the C-component to which i belongs. Then,

fi(N0, C) =


1

|Si|
if c0j = 1 for each j ∈ Si,

0 otherwise.

Namely, agents in a C-component who are connected to the source at 0 cost pay nothing,
whereas agents in a C-component who are connected to the source at 1 cost divide this cost
equally among the members.

Next lemma adapts the results of Norde et al. (2004) to our setting.

Lemma 1 For each problem (N,M,C), there exist a positive number m(C) ∈ N, a sequence

{Cq}m(C)
q=1 of cost matrices, and a sequence {xq}m(C)

q=1 of non-negative real numbers satisfying
three conditions:

(1) C =
m(C)∑
q=1

xqCq.

(2) For each q ∈ {1, . . . ,m(C)}, there exists a network gq such that cqij = 1 if {i, j} ∈ gq
and cqij = 0 otherwise.

(3) For each q ∈ {1, . . . ,m(C)} and each {i, j, k, `} ⊂ N0, if cij ≤ ck`, then cqij ≤ c
q
k`.
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Branzei et al. (2004) extend the definition of the folk rule to a classical problem (N0, C)
using Lemma 1, so that the folk rule is defined as

m(C)∑
q=1

xqf (N0, C
q)

where f (N0, C
q) denotes the folk rule in the simple problem (N0, C

q).
We now apply this approach to our problem. Since we have multiple sources, we need

to adapt the procedure. First, we need to modify the definition of C-component. Instead of
considering each component as a subset of N, we now consider a C-component as a subset of
N ∪M .

Let (N,M,C) be a simple problem. Denote by P = {S1, . . . , S|P |} the set of C-components.

The rule fCW for simple problems is defined as follows. We first connect each component
with no source to a component with sources and divide the cost equally among the agents in
the component. Then we connect the components with sources with one another and divide
the cost equally among all agents. Formally, for each i ∈ N, let S(P, i) be the C-component
to which i belongs. Then,

fCWi (N,M,C) =


|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if S(P, i) ∩M 6= ∅,

1

|S(P, i)|
+
|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if S(P, i) ∩M = ∅.

Definition 4 For each problem (N,M,C) and each i ∈ N, the rule fCW is defined as

fCWi (N,M,C) =

m(C)∑
q=1

xqfCWi (N,M,Cq).

We now compute fCW in Example 1. Note that C =
5∑
q=1

xqCq where x1 = 7, x2 = x3 =

x4 = 1, x5 = 10, and
Arcs C1 C2 C3 C4 C5

{a, 1} 1 0 0 0 0
{1, 2} 1 1 0 0 0
{b, 3} 1 1 1 0 0
{b, 1} 1 1 1 1 0
{a, b} 1 1 1 1 1
{a, 2} 1 1 1 1 1
{a, 3} 1 1 1 1 1
{b, 2} 1 1 1 1 1
{1, 3} 1 1 1 1 1
{2, 3} 1 1 1 1 1

We compute fCW (N,M,Cq) for each q = 1, ..., 5.
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1. C1-components are {1, 2, 3, a, b}.

fCW (N,M,C1) =

(
1 +

1

3
, 1 +

1

3
, 1 +

1

3

)
.

2. C2-components are {a1, 2, 3, b}.

fCW (N,M,C2) =

(
1

3
, 1 +

1

3
, 1 +

1

3

)
.

3. C3-components are {a12, 3, b}.

fCW (N,M,C3) =

(
1

3
,
1

3
, 1 +

1

3

)
.

4. C4-components are {a12, b3}.

fCW (N,M,C4) =

(
1

3
,
1

3
,
1

3

)
.

5. C5-components are {ab123}.

fCW (N,M,C5) = (0, 0, 0).

Then,

fCW (N,M,C) =

5∑
q=1

xqfCW (N,M,Cq)

= 7

(
1 +

1

3
, 1 +

1

3
, 1 +

1

3

)
+

(
1

3
, 1 +

1

3
, 1 +

1

3

)
+

(
1

3
,
1

3
, 1 +

1

3

)
+

(
1

3
,
1

3
,
1

3

)
+ 10 (0, 0, 0)

= (10.33, 11.33, 12.33) .

3.5 Equivalence of four approaches

In Proposition 1, we show that the obligation rule fo
∗

and the Kruskal sharing rule f%
∗

are well-defined. Also, in Theorem 1, we prove that all four approaches make the same
recommendation. The proofs of Proposition 1 and Theorem 1 are given in Appendix.

Proposition 1 fo
∗

and f%
∗

are well-defined.

Theorem 1 For each problem (N,M,C),

fSh(N,M,C) = fo
∗
(N,M,C) = f%

∗
(N,M,C) = fCW (N,M,C).
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4 Axiomatic characterizations of the folk rule

Here, we provide axiomatic characterizations of the folk rule. We begin with an extension
of the axioms discussed in the classical problem. Our first axiom, independence of irrelevant
trees, requires that the cost allocation chosen by a rule should depend only on the edges that
belong to a minimal tree. This axiom is introduced in Bergantiños and Vidal-Puga (2007)
and also used in Bogomolnaia and Moulin (2010) under the name of reductionism.

Independence of irrelevant trees (IIT). For each (N,M,C) and (N,M,C ′), if they have a
common minimal tree t such that cij = c′ij for each {i, j} ∈ t, then f(N,M,C) = f(N,M,C ′).

Equivalently, IIT can be stated as for each (N,M,C), f(N,M,C) = f(N,M,C∗), where C∗

is an irreducible matrix associated with (N,M,C).
Cost monotonicity requires that if some cost increases, then no agent ends up better

off. This axiom has been widely discussed in the literature, Dutta and Kar (2004), Tijs
et al. (2006), Bergantiños and Vidal-Puga (2007), Lorenzo and Lorenzo-Freire (2009), and
Bergantiños and Kar (2010).

Cost monotonicity (CM). For each (N,M,C) and (N,M,C ′), if C ≤ C ′, then f(N,M,C) ≤
f(N,M,C ′).

It is easy to check that CM implies IIT.
Additivity requires that a cost allocation be an additive function of problems, that is, for

each (N,M,C) and (N,M,C ′), f(N,M,C+C ′) = f(N,M,C)+f(N,M,C ′). However, there
is no rule satisfying additivity. Therefore, as in the classical problem, we formulate a weaker
version of additivity, cone-wise additivity (Norde et al. (2004), Bergantiños and Kar (2010),
Bogomolnaia and Moulin (2010)) which requires the additivity property to hold only for a
pair of problems where the orders of all arcs (in which their costs are increasing) are the same
in two problems.

Cone-wise additivity (CA). For each (N,M,C) and (N,M,C ′) and each order σ : {{i, j}}i,j∈N∪M,i<j →{
1, 2, ..., |N∪M |(|N∪M |+1)

2

}
, if for each i, j, k, ` ∈ N ∪M such that σ{i, j} ≤ σ{k, `}, cij ≤ ck`

and c′ij ≤ c′k`, then f(N,M,C + C ′) = f(N,M,C) + f(N,M,C ′).

We now introduce a monotonicity property concerned with the changes in the set of agents.
Population monotonicity requires that if new agents join the problem, then no agent in the
initial problem should be worse off. PM has been widely discussed in the literature, Dutta
and Kar (2004), Tijs et al. (2006), Bergantiños and Vidal-Puga (2007, 2008), Lorenzo and
Lorenzo-Freire (2009), Bergantiños and Kar (2010), and Bogomolnaia and Moulin (2010).

Population monotonicity (PM). For each (N,M,C), each S ⊂ T ⊆ N, and each i ∈ S,
fi(S,M,C) ≥ fi(T,M,C).

Core selection requires that no coalition of agents has an incentive to deviate from the
grand coalition and to build their own minimal tree.

Core selection (CS). For each (N,M,C) and each S ⊂ N,
∑

i∈S fi(N,M,C) ≤ m(S,M,C).

12



It is straightforward to show that PM implies CS. For each S ⊂ N and each i ∈ S, PM
implies that fi(N,M,C) ≤ fi(S,M,C), so that

∑
i∈S

fi(N,M,C) ≤
∑
i∈S

fi(S,M,C). Since∑
i∈S

fi(S,M,C) = m(S,M,C), PM implies CS.

Suppose that two subsets, S and N\S, can connect to all sources separately or jointly.
Separability (Bergantiños and Vidal-Puga (2007, 2009), Bergantiños et al. (2011)) requires
that if the minimal costs in two situations are the same, then the same assignment should be
made to all agents in two circumstances.

Separability (SEP). For each (N,M,C) and each S ⊂ N, if m(N,M,C) = m(S,M,C) +
m(N\S,M,C), then

fi(N,M,C) =

{
fi(S,M,C) if i ∈ S,
fi(N\S,M,C) if i ∈ N\S.

Note that PM also implies SEP. By PM, for each i ∈ S, fi(N,M,C) ≤ fi(S,M,C) and for
each i ∈ N\S, fi(N,M,C) ≤ fi(N\S,M,C). If m(N,M,C) = m(S,M,C) +m(N\S,M,C),
then from the definition of a rule, we have the desired conclusion.

Symmetry requires that if two agents have the same costs for all connections with nodes,
then their cost assignments should be the same.

Symmetry (SYM). For each (N,M,C) and each i, j ∈ N, if cik = cjk for each k ∈ N∪M\{i, j},
then fi(N,M,C) = fj(N,M,C).

We now introduce a property specifically designed for our problem, which requires that if
the cost between two sources increases, then all agents should be affected by the same amount.

Equal treatment of source costs (ETSC). For each (N,M,C) and (N,M,C ′) and each a,
b ∈ M, if for each k, ` ∈ M ∪N such that {k, `} 6= {a, b}, ck` = c′k`, then for each i, j ∈ N ,
fi(N,M,C ′)− fi(N,M,C) = fj(N,M,C ′)− fj(N,M,C).

In the context of the classical problem, this axiom is related to constant share of extra costs
(Bergantiños and Kar (2010)), which requires that if the connection cost to the source increases
by the same amount for all agents, then all agents should share this extra cost by the same
amount. However, constant share of extra costs is concerned with the cost change in the
arc between agents and the source, but ETSC is concerned with the cost change in the arc
between two sources.

We are ready to present axiomatic characterizations of the folk rule. First, we show that
the folk rule satisfies all axioms introduced in the above.

Proposition 2 The folk rule satisfies IIT, CM, CA, PM, CS, SEP, SYM, and ETSC.

The proof is given in Appendix.
We now provide axiomatic characterizations of the folk rule.

Theorem 2 (a) A rule satisfies IIT, CA, CS, SYM, and ETSC if and only if it is the folk
rule.

(b) A rule satisfies IIT, CA ,SEP, SYM,and ETSC if and only if it is the folk rule.
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The proof is given in Appendix. Also, in Appendix, we show that all axioms in Theorem 2
are independent.

Remark 1 In the classical problem, Bergantiños et al. (2011) characterizes the folk rule by
imposing the axioms of CM, CA, CS (or SEP), and SYM. Since CM implies IIT and the folk
rule satisfies CM, the folk rule can alternatively be characterized by imposing CM instead of
IIT. By adding ETSC to the list, we obtain characterizations of the folk rule in our problem.
This axiom is important since we need to specify how a rule should respond to cost changes
between sources differently from the classical problem.

Appendix:

In the appendix, we present the proofs of the results. We also show that all axioms of Theorem
2 are independent.

Proof of Proposition 1. We need to prove two statements. First, fo
∗

and f%
∗

divide the
cost of the minimal tree m(N,M,C) among the agents. Second, the definition of fo

∗
and f%

∗

does not depend on the choice of the minimal tree by the Kruskal algorithm.
We start with fo

∗
. In order to prove that fo

∗
divides m(N,M,C) among the agents, it

suffices to prove that for each p = 1, . . . , |N |+ |M | − 1, the cost of arc {ip, jp} is allocated in
full among the agents in N .

Given P =
{
S1, ..., S|P |

}
∈ P (N ∪M) it is trivial to see that

∑
i∈N

o∗i (P ) = |P | − 1. Then,

∑
i∈N

[o∗i (P (gp−1))− o∗i (P (gp))] =
∑
i∈N

o∗i (P (gp−1))−
∑
i∈N

o∗i (P (gp))

= |P (gp−1)| − 1− (|P (gp)| − 1)

= |P (gp−1)| − |P (gp)|
= 1

Next we prove that fo
∗

does not depend on the choice of the minimal tree by the Kruskal

algorithm. Given a tree t = {{ip, jp}}|N |+|M |−1
p=1 obtained by the Kruskal algorithm, we define

the followings:

• B0(t) = ∅, c0(t) = c0 = 0.

• c1(t) = min
{k,`}∈t\B0(t)

{ck`}, c1 = min
{k,`}⊂N∪M,ck`>c0

{ck`} , and

B1(t) = {{i, j} ∈ t : cij = c1(t)}.

• In general, cq(t) = min
{k,`}∈t\∪q−1

r=0B
r(t)
{ck`}, cq = min

{k,`}⊂N∪M,ck`>cq−1
{ck`} , and Bq(t) =

{{i, j} ∈ t : cij = cq(t)}.

This process ends when we find m(t) ≤ |N | + |M | − 1 such that ∪m(t)−1
r=0 Br(t)  t =

∪m(t)
r=0 B

r(t). Note that m(t) denotes the number of arcs in t with different costs.
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By the Kruskal algorithm, for all q = 1, ...,m (t), cq(t) = cq. Next, we prove that
P (B1(t)) = P ({{i, j} : cij ≤ c1}). Since B1(t) ⊂ {{i, j} : cij ≤ c1}, P (B1(t)) is finer
than P ({{i, j} : cij ≤ c1}). Suppose that P (B1(t)) 6= P ({{i, j} : cij ≤ c1}). Then, there
exist S, S′ ∈ P (B1(t)), S 6= S′, k ∈ S, and ` ∈ S′ such that ck` ≤ c1. Thus, B1(t) ∪ {{k, `}}
has no cycle and {k, `} /∈ t, which contradicts the construction of t by the Kruskal algorithm.
Then, P (B1(t)) = P ({{i, j} : cij ≤ c1}).

Suppose now that for all q < q0,

P (∪qr=0B
r(t)) = P ({{k, `} : ck` ≤ cq}).

Using arguments similar to those used in the case q = 1, we can prove that

P (∪q0r=0B
r(t)) = P ({{i, j} : cij ≤ cq0}).

Since t = ∪m(t)
r=1 B

r(t) and cij = cr for all {i, j} ∈ Br(t) and all r = 0, . . . ,m(t),

foi (N,M,C) =

|N |+|M |−1∑
p=1

cipjp
[
o∗i (P (gp−1))− o∗i (P (gp))

]

=

m(t)∑
q=1

 |∪qr=0B
r(t)|∑

p=|∪q−1
r=0B

r(t)|+1

cipjp
[
o∗i (P (gp−1))− o∗i (P (gp))

]
=

m(t)∑
q=1

cq
[
o∗i (P (g|∪

q−1
r=0B

r(t)|))− o∗i (P (g|∪
q
r=0B

r(t)|))
]

=

m(t)∑
q=1

cq
[
o∗i (P (∪q−1

r=0B
r(t)))− o∗i (P (∪qr=0B

r(t)))
]

=

m(t)∑
q=1

cq
[
o∗i (P ({{i, j} : cij ≤ cq−1}))− o∗i (P ({{i, j} : cij ≤ cq}))

]
. (3)

Thus, fo
∗

does not depend on the minimal tree t.
To prove that f%

∗
is well-defined, it is enough to show that at each step p of the Kruskal

algorithm and for each i ∈ N,

%∗i (P (gp−1), P (gp)) = o∗i (P (gp−1))− o∗i (P (gp)).

Assume without loss of generality that gp = gp−1∪{k, `}, P (gp−1) = {S1, . . . , Sr}, k ∈ S1,
` ∈ S2, and P (gp) = {S′2, . . . , S′r} where S′2 = S1 ∪ S2 and S′j = Sj for each j = 3, . . . , r. We
consider four cases:

1. S1 ∪ S2 ⊂ N :

(a) i /∈ S′2. Since S′i = Si, it is trivial to see that

o∗i (P (gp−1))− o∗i (P (gp)) = 0 = %∗i (P
(
gp−1

)
, P (gp)).
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(b) i ∈ S′2. Assume that i ∈ S1 (since the other case is similar, we omit it). Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
1

|S1|
− 1

|S1 ∪ S2|
=

|S2|
|S1 ∪ S2||S1|

= %∗i (P
(
gp−1

)
, P (gp)).

2. S1 ∩M 6= ∅ and S2 ∩M 6= ∅:

(a) i /∈ S′2 and Si ⊂ N .

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |
+

1

|Si|

−
|{S′j ∈ P (gp) : S′j ∩M 6= ∅}| − 1

|N |
− 1

|S′i|

=
1

|N |
= %∗i (P

(
gp−1

)
, P (gp)).

(b) i /∈ S′2 and Si ∩M 6= ∅.

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S′j ∈ P (gp) : S′j ∩M 6= ∅}| − 1

|N |

=
1

|N |
= %∗i (P

(
gp−1

)
, P (gp)).

(c) i ∈ S′2. Suppose that i ∈ S1 (since the other case is analogous, we omit it). Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S′j ∈ P (gp) : S′j ∩M 6= ∅}| − 1

|N |

=
1

|N |
= %∗i (P

(
gp−1

)
, P (gp)).

3. S1 ⊂ N and S2 ∩M 6= ∅ (since the case S1 ∩M 6= ∅ and S2 ⊂ N is similar, we omit it):

(a) i /∈ S′2 and Si ⊂ N . Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
1

|Si|
− 1

|S′i|
= 0 = %∗i (P

(
gp−1

)
, P (gp)).

(b) i /∈ S′2 and Si ∩M 6= ∅. Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S′j ∈ P (gp) : S′j ∩M 6= ∅}| − 1

|N |
= 0 = %∗i (P

(
gp−1

)
, P (gp)).
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(c) i ∈ S′2 ∩ S1. Then,

o∗i (P (gp−1)− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |
+

1

|S1|

−
|{S′j ∈ P (gp) : S′j ∩M 6= ∅}| − 1

|N |

=
1

|S1|
= %∗i (P

(
gp−1

)
, P (gp)).

(d) i ∈ S′2 ∩ S2. Then,

o∗i (P (gp−1)− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S′j ∈ P (gp) : S′j ∩M 6= ∅}| − 1

|N |
= 0 = %∗i (P

(
gp−1

)
, P (gp)). �

Proof of Theorem 1. From the proof of Proposition 1, fo
∗

= f%
∗
. We now prove that

fSh = fCW and f%
∗

= fCW .
We first prove that fCW and fSh coincide in simple problems. Let (N,M,C) be a simple

problem. Let P = {S1, . . . , S|P |} be the set of C-components. For each i ∈ N ∪M, let S(P, i)
be the C-component to which i belongs. Assume that t is a minimal tree. It is easy to prove
that all the elements inside a component are connected at zero cost in t, while the components
connect to one another through arcs of cost 1. Note that in the irreducible problem (N,M,C∗)
we have that c∗ij = 0 when S(P, i) = S(P, j) while c∗ij = 1 when S(P, i) 6= S(P, j). Thus, the
set of C-components and C∗-components coincide. Recall that for each i ∈ N,

fCWi (N,M,C) =


|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if S(P, i) ∩M 6= ∅,

|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
+

1

|S(P, i)|
otherwise.

fShi (N,M,C) = Shi(N, vC∗) =
1

|N |!
∑
π∈Π

(vC∗(Pre(i, π) ∪ {i})− vC∗(Pre(i, π))).

We consider two cases:

1. S(P, i) ∩M 6= ∅. For each order π ∈ Π, if π(i) = 1, agent i has to pay the cost of
connecting its component to all sources. Thus, vC∗(Pre(i, π) ∪ {i})− vC∗(Pre(i, π)) =
|{Sj ∈ P : Sj ∩M 6= ∅}| − 1. If π(i) > 1, this means that when this agent arrives
all the components with sources are already connected. Thus, vC∗(Pre(i, π) ∪ {i}) −
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vC∗ (Pre(i, π)) = 0. Therefore,

fShi (N,M,C) =
1

|N |!
∑
π∈Π

(vC∗(Pre(i, π) ∪ {i})− vC∗(Pre(i, π)))

=
1

|N |!
∑

π∈Π:π(i)=1

(|{Sj ∈ P : Sj ∩M 6= ∅}| − 1)

=
1

|N |!
(|N | − 1)! (|{Sj ∈ P : Sj ∩M 6= ∅}| − 1)

=
|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
= fCWi (N,M,C).

2. S(P, i)∩M = ∅. For each order π ∈ Π, we compute vC∗(Pre(i, π)∪{i})−vC∗(Pre(i, π))
distinguishing several cases.

(a) Pre(i, π) ∩ S(P, i) 6= ∅. Thus, vC∗(Pre(i, π) ∪ {i})− vC∗(Pre(i, π)) = 0.

(b) Pre(i, π) ∩ S(P, i) = ∅ = Pre(i, π). Then π(i) = 1. Thus, vC∗(Pre(i, π) ∪ {i}) −
vC∗(Pre(i, π)) = |{Sj ∈ P : Sj ∩M 6= ∅}|.

(c) Pre(i, π) ∩ S(P, i) = ∅ 6= Pre(i, π). In this case, π(i) > 1. Thus, vC∗(Pre(i, π) ∪
{i})− vC∗(Pre(i, π)) = 1.

Let Π∗ = {π ∈ Π : Pre(i, π) ∩ S(P, i) = ∅ and π(i) > 1}. Taking into account the
computations above, we have that

fShi (N,M,C) =
1

|N |
|{Sj ∈ P : Sj ∩M 6= ∅}|+

1

|N |!
|Π∗|.

Note that

1

|N |!
|Π∗| = 1

|N |!

|N |−|S(P,i)|∑
k=1

(|N | − |S(P, i)|)!
(|N | − |S(P, i)| − k)!

(|N | − k − 1)!.

We consider |S(P, i)| = m+ 1. Then,

1

|N |!
|Π∗| =

|N |−m−1∑
k=1

(|N | −m− 1)!(|N | − k − 1)!

(|N | −m− k − 1)!|N |!

=
(|N | −m− 1)!m!

|N |!

|N |−m−1∑
k=1

(
|N | − k − 1

m

)
.
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Since (
x+ 1
y + 1

)
−
(

x
y + 1

)
=

(x+ 1)!

(y + 1)! (x− y)!
− x!

(y + 1)! (x− y − 1)!

=
[(x+ 1)− (x− y)]x!

(y + 1)! (x− y)!

=
x!

y! (x− y)!

=

(
x
y

)
we have that

|N |−m−1∑
k=1

(
|N | − k − 1

m

)
=

|N |−m−2∑
k=1

(
|N | − k − 1

m

)
+

(
m
m

)

=

|N |−m−2∑
k=1

[(
|N | − k
m+ 1

)
−
(
|N | − k − 1
m+ 1

)]
+

(
m
m

)
=

(
|N | − 1
m+ 1

)
−
(
m+ 1
m+ 1

)
+

(
m
m

)
=

(
|N | − 1
m+ 1

)
.

Hence,

1

|N |!
|Π∗| =

(|N | −m− 1)!m!

|N |!

(
|N | − 1
m+ 1

)
=

(|N | −m− 1)!m!

|N |!
(|N | − 1)!

(m+ 1)! (|N | −m− 2)!

=
|N | −m− 1

|N |(m+ 1)

=
1

m+ 1
− 1

|N |

=
1

|S(P, i)|
− 1

|N |
.

Therefore,

fShi (N,M,C) =
|{Sj ∈ P : Sj ∩M 6= ∅}|

|N |
+

1

|S(P, i)|
− 1

|N |

=
|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
+

1

|S(P, i)|
= fCWi (N,M,C).

Now we consider a general problem (N,M,C) and i ∈ N . Thus,

fCWi (N,M,C) =

m(C)∑
q=1

xqfCWi (N,M,Cq) =

m(C)∑
q=1

xqShi(N, v(Cq)∗).
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Since the Shapley value satisfies additivity on v,

m(C)∑
q=1

xqShi(N, v(Cq)∗) = Shi

(
N, v∑m(C)

q=1 xq(Cq)∗

)
.

It only remains to prove that C∗ =
m(C)∑
q=1

xq(Cq)∗. Let t be a minimal tree and gij the

unique path in t from i to j. We know that c∗ij = max
{k,`}∈gij

{ck`} = ci′j′ . By Lemma 1, we know

that the order of the arcs according to its cost is preserved in each Cq. So t is also a minimal
tree for each simple problem Cq. Thus, cq∗ij = max

{k,`}∈gij
{cqk`} = cqi′j′ and hence

c∗ij = ci′j′ =

m(C)∑
q=1

xqcqi′j′ =

m(C)∑
q=1

xqcq∗ij .

We now prove that fo
∗

coincides with fCW . Let (N,M,C) be a problem and t, m(t),
and ck (k = 1, ...,m(t)) be as in the proof of Proposition 1 when we proved that fo

∗
does not

depend on the minimal tree chosen by the Kruskal algorithm. By Lemma 1, C =
m(C)∑
q=1

xqCq.

Besides, by Norde et al. (2004), we have that c1 = min{cij : cij > 0} and

c1
ij =

{
0 when cij < c1,
1 when cij ≥ c1.

In general, for each q = 2, . . . ,m(C),

cq = min{cij : cij > cq−1},

cqij =

{
0 when cij < cq,
1 when cij ≥ cq,

and

xq =

{
c1 when q = 1,

cq − cq−1 when q > 1.

For each q = 1, ...,m(C), the set of Cq-components coincides with P ({{i, j} : cij ≤ cq−1}).
Obviously, m(t) ≤ m(C) and t is a minimal tree in Cq for each q = 1, ...,m (C). Besides, for
each q > m(t) and each {i, j} ∈ t, cqij = 0. By definition of fo

∗
, for each i ∈ N and each

q = m(t) + 1, ...,m(C), fCWi (N,M,Cq) = 0. Then,

fCW (N,M,C) =

m(C)∑
q=1

xqfCW (N,M,Cq) =

m(t)∑
q=1

xqfCW (N,M,Cq).

By definition of o∗ and fCW , for each i ∈ N and each q = 1, ...,m(t),

fCWi (N,M,Cq) = o∗i (P ({{i, j} : cij ≤ cq−1})),
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where we denote c0 = 0.
Therefore,

fCWi (N,M,C) =

m(t)∑
q=1

xqfCWi (N,M,Cq)

=

m(t)∑
q=1

xqo∗i (P ({{i, j} : cij ≤ cq−1}))

= c1o∗i (P ({{i, j} : cij ≤ c0})) +

m(t)∑
q=2

(cq − cq−1)o∗i (P ({{i, j} : cij ≤ cq−1}))

=

m(t)∑
q=1

cq
[
o∗i (P ({{i, j} : cij ≤ cq−1}))− o∗i (P ({{i, j} : cij ≤ cq}))

]
+cm(t)o∗i (P ({{i, j} : cij ≤ cm(t)})).

Since P ({{i, j} : cij ≤ cm(t)}) = {N ∪M} , for each i ∈ N, o∗i (P ({{i, j} : cij ≤ cm(t)})) =
0. Therefore,

fCWi (N,M,C) =

m(C)∑
q=1

cq
[
o∗i (P ({{i, j} : cij ≤ cq−1}))− o∗i (P ({{i, j} : cij ≤ cq}))

]
.

By (3), we deduce that fCWi (N,M,C) = fo
∗
i (N,M,C). �

Proof of Proposition 2.
(1) The folk rule satisfies IIT : By Theorem 1 the folk rule can be defined as the Shapley value
of the irreducible game. Thus, the folk rule satisfies IIT.

(2) The folk rule satisfies CM : Let (N,M,C) and (N,M,C ′) be such that C ≤ C ′. We
will prove that fo

∗
(N,M,C) ≤ fo

∗
(N,M,C ′). It is enough to prove it when there exists

a, b ∈ N ∪M such that cab < c′ab and cij = c′ij when {i, j} 6= {a, b}.
Suppose that there is a minimal tree t in (N,M,C) such that {a, b} /∈ t. This means that

t is also a minimal tree in the problem (N,M,C ′) with exactly the same costs. Since the
folk rule satisfies IIT, fo

∗
(N,M,C) = fo

∗
(N,M,C ′). Now suppose that {a, b} ∈ t for each

minimal tree t in (N,M,C). Let T be the set of trees in (N,M,C) that do not contain the
arc {a, b} and x = min

t∈T
c(N,M,C, t)−m(N,M,C).

We distinguish several cases:
Case 1. c′ab − cab ≤ x. Given a minimal tree t in (N,M,C), we have that t is also a minimal
tree in (N,M,C ′). Consider the set

A = {{i, j} ∈ t : cab < cij < c′ab}.

We have two subcases:
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Subcase 1.a. A = ∅. We can apply the Kruskal algorithm to problems (N,M,C) and
(N,M,C ′) in such a way that we select the arcs of t in the same order. Therefore, for
each i ∈ N,

fo
∗
i (N,M,C ′)− fo∗i (N,M,C) = (c′ab − cab)

(
o∗i (P )− o∗i (P ab)

)
where P is the partition in connected components before arc {a, b} is selected by the Kruskal
algorithm and P ab is the partition obtained after arc {a, b} is selected. Note that P ab =
P \ {S(P, a), S(P, b)} ∪ (S (P, a) ∪ S(P, b)). Let i ∈ N .

Subcase 1.a.i. S(P, a) ∩M 6= ∅ and S(P, b) ∩M 6= ∅. Then,

(c′ab − cab)(o∗i (P )− o∗i (P ab))

= (c′ab − cab)
(
|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
− |Sk ∈ P : Sk ∩M 6= ∅| − 2

|N |

)
=

c′ab − cab
|N |

≥ 0.

Subcase 1.a.ii. S(P, a) ∩M 6= ∅ and S(P, b) ∩M = ∅. Since the case S(P, a) ∩M = ∅ and
S(P, b) ∩M 6= ∅ is similar, we omit it.
(1) If i /∈ S(P, a) ∪ S(P, b), then

(c′ab − cab)
(
o∗i (P )− o∗i (P ab)

)
= 0.

(2) If i ∈ S(P, a), then

(c′ab − cab)
(
o∗i (P )− o∗i (P ab)

)
= 0.

(3) If i ∈ S(P, b), then

(c′ab − cab)
(
o∗i (P )− o∗i (P ab)

)
=

(c′ab − cab)
|S(P, b)|

≥ 0.

Subcase 1.a.iii. S(P, a) ∩M = ∅ and S(P, b) ∩M = ∅.
(1) If i /∈ S(P, a) ∪ S(P, b), then

(c′ab − cab)
(
o∗i (P )− o∗i (P ab)

)
= 0.

(2) If i ∈ S(P, a) (since the case i ∈ S(P, b) is similar, we omit it), then

(c′ab − cab)
(
o∗i (P )− o∗i (P ab)

)
= (c′ab − cab)

(
1

|S(P, a)|
− 1

|S(P, a) ∪ S(P, b)|

)
≥ 0.

Subcase 1.b. A 6= ∅. When we apply the Kruskal algorithm to problems (N,M,C) and
(N,M,C ′), the arc {a, b} is selected later in (N,M,C ′). Let

c0 = cab and c0
ij =

{
c0 if {i, j} = {a, b},
cij otherwise.
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For each k ≥ 1, let

ck = min{cij : {i, j} ∈ A, cij > ck−1} and

ckij =

{
ck if {i, j} = {a, b},
cij otherwise.

We apply this procedure until we find r such that crab = max{cij : {i, j} ∈ A}. By setting
Cr+1 = C ′, we have a sequence of problems {(N,M,Ck)}k∈{0,...,r+1} such that C0 = C and
Cr+1 = C ′. Note that t is a minimal tree in each of those problems. Besides, for each pair of
problems (N,M,Ck) and (N,M,Ck+1) we can select the arcs of t in the same order following
the Kruskal algorithm.

Thus, using arguments similar to those used in subcase 1.a, for each k = 0, ..., r and each
i ∈ N,

fo
∗
i (N,M,Cr+1−k)− fo∗i (N,M,Cr−k) ≥ 0.

Then, for each i ∈ N,

fo
∗
i (N,M,C ′)− fo∗i (N,M,C) =

r∑
k=0

[
fo
∗
i (N,M,Cr+1−k)− fo∗i (N,M,Cr−k)

]
≥ 0.

Case 2. c′ab − cab > x. Let the problem (N,M,C ′′) be such that c′′ab = cab + x and c′′ij = cij
otherwise. Let t′ be a minimal tree in (N,M,C ′). Obviously {a, b} /∈ t′ and t′ is also a minimal
tree in (N,M,C ′′). Since the folk rule fo

∗
satisfies IIT, for each i ∈ N,

fo
∗
i (N,M,C ′)− fo∗i (N,M,C) = fo

∗
i (N,M,C ′′)− fo∗i (N,M,C).

Since (N,M,C ′′) satisfies the condition of Case 1, for each i ∈ N,

fo
∗
i (N,M,C ′′)− fo∗i (N,M,C) ≥ 0.

(3) The folk rule satisfies CA: By Theorem 1 the folk rule can be defined as fCW , the cone-wise
decomposition. Thus, it is obvious that it satisfies CA.

(4) The folk rule satisfies PM : It is enough to show that for each k ∈ N and each i ∈ N\{k},
fo
∗
i (N,M,C) ≤ fo∗i (N\{k},M,C). Without loss of generality, let k = |N | = n.

First, we claim that if cns = α for each s ∈ M , cni = β for each i ∈ N\{n}, and
β > α > max

i,j∈N∪M\{n}
{cij}, then for each i ∈ N \ {n}, fo∗i (N,M,C) ≤ fo∗i (N \ {n},M,C).

Let t = {{ip(N,M,C), jp(N,M,C)}}|N |+|M |−1
p=1 be a minimal tree chosen by the Kruskal al-

gorithm. Then, (i) {i|N |+|M |−1(N,M,C), j|N |+|M |−1(N,M,C)} = {n, s} for some s ∈ M , (ii)
{n, s} is the only arc that agent n is linked in the tree t, and (iii)N\{n} andM are already con-

nected under g|N |+|M |−2(N,M,C). Also, the subtree {{ip(N,M,C), jp(N,M,C)}}|N |+|M |−2
p=1 is

a minimal tree in (N\{n},M,C) and for each p = 1, . . . , |N |+|M |−2, {ip(N,M,C), jp(N,M,C)} =
{ip(N \ {n},M,C), jp(N \ {n},M,C)}. Then, for each i ∈ N\{n},

fo
∗
i (N,M,C) =

|N |+|M |−1∑
p=1

cipjp
[
o∗i
(
P
(
gp−1(N,M,C)

))
− o∗i (P (gp(N,M,C)))

]
=

|N |+|M |−2∑
p=1

cipjp
[
o∗i
(
P
(
gp−1(N,M,C)

))
− o∗i (P (gp(N,M,C)))

]
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where the last equality comes from the fact that for each i ∈ N\{n},

o∗i

(
P
(
g|N |+|M |−2(N,M,C)

))
= o∗i

(
P
(
g|N |+|M |−1(N,M,C)

))
= 0.

Notice that for each p = 1, . . . , |N |+|M |−2, P (gp(N,M,C))\{n} = P (gp(N \ {n},M,C)) ,
for each i ∈ N \ {n}, S (P (gp(N,M,C)) , i) = S (P (gp(N \ {n},M,C)) , i) , and {Sj ∈
P (gp(N,M,C)) : Sj ∩M 6= ∅} = {Sj ∈ P (gp(N \ {n},M,C)) : Sj ∩M 6= ∅}.

Let i ∈ N\{n}. For each p = 1, . . . , |N |+ |M | − 2, let

qp = |{Sj ∈ P (gp(N,M,C)) : Sj ∩M 6= ∅}| = |{Sj ∈ P (gp(N \ {n},M,C)) : Sj ∩M 6= ∅}|

and
sp = |S(P (gp(N,M,C)), i)| = |S(P (gp(N \ {n},M,C)), i)|.

We consider several cases:

Case 1. S
(
P
(
gp−1(N,M,C)

)
, i
)
∩M 6= ∅. Then, S (P (gp(N,M,C)) , i) ∩M 6= ∅. Now

o∗i
(
P
(
gp−1(N,M,C)

))
− o∗i (P (gp(N,M,C)))

=
qp−1

|N |
− qp

|N |
≤ qp−1

|N \ {n}|
− qp

|N \ {n}|
= o∗i

(
P
(
gp−1(N \ {n},M,C)

))
− o∗i (P (gp(N \ {n},M,C))) .

where the last inequality comes from the fact that qp−1 ≥ qp.

Case 2. S
(
P
(
gp−1(N,M,C)

)
, i
)
∩M = ∅ and S (P (gp(N,M,C)) , i) ∩M 6= ∅. Now,

o∗i
(
P
(
gp−1(N,M,C)

))
− o∗i (P (gp(N,M,C)))

=
qp−1

|N |
+

1

sp−1
− qp

|N |
≤ qp−1

|N \ {n}|
+

1

sp−1
− qp

|N \ {n}|
= o∗i

(
P
(
gp−1(N \ {n},M,C)

))
− o∗i (P (gp(N \ {n},M,C))) .

Case 3. S
(
P
(
gp−1(N,M,C)

)
, i
)
∩M = ∅ and S (P (gp(N,M,C)) , i) ∩M = ∅. Now,

o∗i
(
P
(
gp−1(N,M,C)

))
− o∗i (P (gp(N,M,C)))

=
qp−1

|N |
+

1

sp−1
− qp

|N |
− 1

sp
≤ qp−1

|N \ {n}|
+

1

sp−1
− qp

|N \ {n}|
− 1

sp

= o∗i
(
P
(
gp−1(N \ {n},M,C)

))
− o∗i (P (gp(N \ {n},M,C))) .

Therefore,

fo
∗
i (N,M,C) =

|N |+|M |−1∑
p=1

cipjp
[
o∗i
(
P
(
gp−1(N,M,C)

))
− o∗i (P (gp(N,M,C)))

]
≤
|N |+|M |−2∑

p=1

cipjp
[
o∗i
(
P
(
gp−1(N \ {n},M,C)

))
− o∗i (P (gp(N \ {n},M,C)))

]
= fo

∗
i (N \ {n},M,C), (4)
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as desired.
Let α = max

i,j∈N∪M
{cij} + 1 and β = α + 1. Let C0 ∈ CN∪M be such that c0

ns = α for each

s ∈ M and c0
ij = cij otherwise. For each r = 1, ..., |N | − 1, let Cr ∈ CN∪M be such that

crnr = β and for each {i, j} 6= {n, r} , crij = cr−1
ij . Let i ∈ N \ {n}. Since fo

∗
satisfies CM,

fo
∗
i (N,M,C) ≤ fo∗i (N,M,C0) ≤ fo∗i (N,M,C1) ≤ · · · ≤ fo∗i (N,M,C |N |−1).

Applying (4) to C |N |−1,

fo
∗
i (N,M,C |N |−1) ≤ fo∗i (N\{n},M,C |N |−1).

Since C |N |−1 = C, we conclude that fo
∗

satisfies PM.

(5) The folk rule satisfies CS and SEP : Since PM implies CS and SEP, the result holds.

(6) The folk rule satisfies SYM : By Theorem 1 the folk rule can be obtained as the Shapley
value of the game associated with the irreducible problem. It is trivial to prove that if
two agents are symmetric in the problem (N,M,C), then they will also be symmetric in
the irreducible problem (N,M,C∗) and hence, in the game associated with the irreducible
problem. Since the Shapley value satisfies SYM, the folk rule also does.

(7) The folk rule satisfies ETSC : Let (N,M,C) and (N,M,C ′) be two problems satisfying
the conditions in the statement of ETSC. Suppose that there is a minimal tree in (N,M,C)
such that {a, b} /∈ t. Thus, t is also a minimal tree in (N,M,C ′) with the same costs. Since
the folk rule satisfies IIT, we have that fo

∗
(N,M,C) = fo

∗
(N,M,C ′). Assume that {a, b} ∈ t

for each minimal tree t in (N,M,C). Let T be the set of all trees in (N,M,C) that do not
contain {a, b}. Let x = min

t∈T
c(N,M,C, t)−m(N,M,C). We consider several cases.

Case 1. c′ab − cab ≤ x. Note that a minimal tree t in (N,M,C) is also a minimal tree in
(N,M,C ′). Now consider the set A = {{i, j} ∈ t : cab < cij < c′ab}. The proof is divided into
two subcases:

Subcase 1.a. A = ∅. We can apply the Kruskal algorithm to (N,M,C) and (N,M,C ′) in such
a way that the arcs of t are selected in the same order. Then, for each i ∈ N,

fo
∗
i (N,M,C ′)− fo∗i (N,M,C) = (c′ab − cab)(o∗i (P )− o∗i (P ab))

where P is the partition in connected components before arc {a, b} is selected by the Kruskal
algorithm and P ab is the partition obtained after arc {a, b} is selected. Note that P ab =
P\{S(P, a), S(P, b)} ∪ {S(P, a) ∪ S(P, b)}. By the definition of o∗, for each i ∈ N,

(c′ab − cab)(o∗i (P )− o∗i (P ab))

= (c′ab − cab)
( |{Sk ∈ P : Sk ∩M 6= ∅}| − 1

|N |
− |{Sk ∈ P : Sk ∩M 6= ∅}| − 2

|N |

)
=
c′ab − cab
|N |

.
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Subcase 1.b. A 6= ∅. When we apply the Kruskal algorithm to (N,M,C) and (N,M,C ′), the
arc {a, b} is selected later in (N,M,C ′) than in (N,M,C). Let

c0 = cab and c0
ij =

{
c0 if {i, j} = {a, b},
cij otherwise.

For each r ≥ 1, let cr = min{cij : {i, j} ∈ A, cij > cr−1} and

crij =

{
cr if {i, j} = {a, b},
cij otherwise.

We apply this procedure until we find r̄ such that cr̄ab = max{cij : {i, j} ∈ A}. By setting
C r̄+1 = C ′, we have a sequence of problems {(N,M,Cr)}r∈{0,...,r̄+1} such that C0 = C and
C r̄+1 = C ′. Note that t is a minimal tree in each of those problems. In addition, for each
pair of problems (N,M,Cr) and (N,M,Cr+1), r ∈ {0, ..., r̄}, we can select the arcs of t in
the same order by following the Kruskal algorithm. Therefore, by using arguments similar to
Subcase 1.a,

fo
∗
i (N,M,C ′)− fo∗i (N,M,C) =

r̄∑
r=0

[
fo
∗
i (N,M,C r̄+1−r)− fo∗i (N,M,C r̄−r)

]
=

r̄∑
r=0

cr̄+1−r − cr̄−r

|N |
=
cr̄+1 − c0

|N |
=
c′ab − cab
|N |

.

Case 2. c′ab − cab > x. Let (N,M,C ′′) be such that c′′ab = cab + x and c′′ij = cij otherwise.
Let t′ be a minimal tree in (N,M,C ′). Obviously, {a, b} /∈ t′ and t′ is also a minimal tree in
(N,M,C ′′). Since fo

∗
satisfies IIT, for each i ∈ N,

fo
∗
i (N,M,C ′)− fo∗i (N,M,C) = fo

∗
i (N,M,C ′′)− fo∗i (N,M,C).

Since (N,M,C ′′) satisfies the condition of Case 1, for each i ∈ N,

fo
∗
i (N,M,C ′′)− fo∗i (N,M,C) =

c′ab − cab
|N |

=
x

|N |
,

as desired. �

Proof of Theorem 2.
(a) By Proposition 2, the folk rule satisfies the five axioms. Conversely, let f be a rule
satisfying the five axioms. For each partition P = {S1, S2, ..., S|P |} ∈ P (N ∪M), we define

the function o(P ) = f(N,M,CP ) where cPij = 0 if i, j ∈ Sk for some k ∈ {1, ..., |P |} and

cPij = 1 otherwise. Note that∑
i∈N

oi(P ) =
∑
i∈N

fi(N,M,CP ) = m(N,M,CP ) = |P | − 1.
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We claim that f = fo where for each (N,M,C) and each i ∈ N,

foi (N,M,C) =

|N |+|M |−1∑
p=1

cipjp
[
oi
(
P (gp−1)

)
− oi

(
P (gp)

)]
.

Since f and fo satisfy CA, by Lemma 1, f(N,M,C) =
m(C)∑
q=1

f(N,M, xqCq) and fo(N,M,C) =

m(C)∑
q=1

fo(N,M, xqCq). Therefore, it is enough to prove that f coincides with fo in problems

(N,M,C) where there exists a network g such that cij = x if {i, j} ∈ g and cij = 0 otherwise.
Let P (g) = {S1, ..., Sr} be the partition induced by g over N ∪M .

When we use the Kruskal algorithm in this problem, we first connect the nodes within the
same component with zero cost until step (|N |+ |M | − r). Then, we connect the nodes from
different components with the constant cost x. Thus, for each i ∈ N ,

foi (N,M,C) =

|N |+|M |−1∑
p=1

cipjp
[
oi

(
P (gp−1)

)
− oi

(
P (gp)

)]

=

|N |+|M |−1∑
p=|N |+|M |−r+1

x
[
oi

(
P (gp−1)

)
− oi

(
P (gp)

)]
= x

[
oi

(
P (g|N |+|M |−r+1)

)
− oi

(
P (g|N |+|M |−1)

)]
= x

[
fi(N,M,CP (g|N|+|M|−r+1))− fi(N,M,CP (g|N|+|M|−1))

]
.

Note that P (g|N |+|M |−r+1) = P (g) and P (g|N |+|M |−1) = N ∪M .
Since cN∪Mij = 0 for each i, j ∈ N∪M and f satisfies CA, for each i ∈ N, fi(N,M,CN∪M ) =

0, which implies that foi (N,M,C) = xfi(N,M,CP (g)). Now, consider C ′ such that c′ij = 1
xcij

for each i, j ∈ N ∪M . Note that C ′∗ = CP (g). By IIT, f(N,M,CP (g)) = f(N,M,C ′). By
CA, fo(N,M,C) = xf(N,M,C ′).

Using similar arguments as in Bergantiños et al. (2010, p.708), we can prove that
xf(N,M,C ′) = f(N,M, xC ′), which implies that fo(N,M,C) = f(N,M, xC ′). Since xC ′ =
C, we conclude that f = fo, as desired.

It remains to prove that o = o∗. Now, let P = {S1, ..., Sq, ..., S|P |} be a partition such that
Sk ∩M 6= ∅ when k ≤ q and Sk ⊂ N when k > q. Note that |{Sk ∈ P : Sk ∩M 6= ∅}| = q. We
introduce a sequence of problems {(N,M,Cr)}r=1,2,...,q where C1 = CP and for each r > 1,
Cr is obtained from Cr−1 such that crar−1ar = 0 if ar−1 ∈ Sr−1 ∩M and ar ∈ Sr ∩M, and

crij = cr−1
ij otherwise. By ETSC, for each r = 2, . . . , q and each i, j ∈ N,

fi(N,M,Cr−1)− fi(N,M,Cr) = fj(N,M,Cr−1)− fj(N,M,Cr).
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Since∑
i∈N

[
fi(N,M,Cr−1)− fi(N,M,Cr)

]
=
∑
i∈N

fi(N,M,Cr−1)−
∑
i∈N

fi(N,M,Cr)

= m(N,M,Cr−1)−m(N,M,Cr)

= 1,

for each i ∈ N,
fi(N,M,Cr−1)− fi(N,M,Cr) =

1

|N |
.

Therefore, for each i ∈ N,

fi(N,M,C1)− fi(N,M,Cq) =

q∑
r=2

[
fi(N,M,Cr−1)− fi(N,M,Cr)

]
=
q − 1

|N |
.

Thus,

o(P ) = fi(N,M,C1) =
q − 1

|N |
+ fi(N,M,Cq). (5)

By CS, for each k = q + 1, . . . , |P |,
∑

i∈Sk∩N
fi(N,M,Cq) ≤ m(Sk ∩ N,M,Cq) = 1 and

for each i ∈ (∪qk=1Sk) ∩ N, fi(N,M,Cq) ≤ m({i},M,Cq) = 0. Since
∑
i∈N

fi(N,M,Cq) =

m(N,M,Cq) = |P | − q, for each k = q + 1, . . . , |P |,
∑

i∈Sk∩N
fi(N,M,Cq) = 1 and for each

i ∈ (∪qk=1Sk) ∩N, fi(N,M,Cq) = 0. By (1) and (5), for each i ∈ (∪qk=1Sk) ∩N,

oi(P ) =
q − 1

|N |
= o∗i (P )

For each k = q + 1, ..., |P | and each i, j ∈ Sk, i and j are symmetric, so that by SYM, for
each i ∈ Sk (k > q), fi(N,M,Cq) = 1

|Sk| . From (1) and (5), we have that

oi(P ) =
q − 1

|N |
+

1

|Sk|
= o∗i (P ).

(b) By Proposition 2, the folk rule satisfies the five axioms. Conversely, let f be a rule
satisfying the five axioms. From the same argument as in (a), we obtain (5). Note that
m(N,M,Cq) = |P | − q, for each k = q + 1, . . . , |P |, m(Sk,M,Cq) = 1, and for each i ∈

(∪qk=1Sk)∩N, m({i},M,Cq) = 0, which together imply thatm(N,M,Cq) =
q∑

k=1

( ∑
i∈Sk∩N

m({i},

M,Cq)
)
+
|P |∑

k=q+1

m(Sk,M,Cq). By SEP, for each k = q+1, . . . , |P |, fi(N,M,Cq) = fi(Sk,M,Cq),

which implies that
∑

i∈Sk∩N
fi(N,M,Cq) =

∑
i∈Sk∩N

fi(Sk,M,Cq) = m(Sk,M,Cq) = 1 and for

each i ∈ (∪qk=1Sk) ∩ N, fi(N,M,Cq) = fi({i},M,Cq) = m({i},M,Cq) = 0. Once again, by
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using the same argument as in the proof of (a), we conclude that f coincides with the folk
rule. �

Next, we show that all axioms are independent in Theorem 2.

(1) Dropping Independence of irrelevant trees: Let fw be a rule defined for simple problems.
For each simple problem (N,M,C), we consider g = {{i, j} ⊂ N ∪M : cij = 0}. For each
i ∈ N, let

wi =

{
1

|{{i,j}:j∈S(P (g),i) and cij=0}| if S(P (g), i) 6= {i},
1 otherwise.

For each i ∈ N, let fw be

fwi (N,M,C) =


|{Sk∈P (g):Sk∩M 6=∅}|−1

|N | if S(P (g), i) ∩M 6= ∅,
|{Sk∈P (g):Sk∩M 6=∅}|−1

|N | + wi∑
j∈S(P (g),i)

wj
otherwise.

This rule is extended to general problems using Lemma 1. The rule fw satisfies CA, CS, SEP,
SYM, and ETSC, but not IIT.

(2) Dropping Cone-wise additivity : We first introduce some notion in the classical problem
following Bergantiños and Vidal-Puga (2015). For each classical problem (N0, C) and each
S ⊂ N, let

δS =


min

j∈N0\{i}
cij if S = {i},

min
i∈S,j∈N0\S

cij − max
{i,j}∈τ(S)

cij if |S| > 1,

where N0 = N ∪ {0} and τ(S) is a minimal tree in (S,CS) connecting all agents in S. Let
Ne(N0, C) be a set of all coalitions S ⊂ N and |S| > 1 such that δS > 0. Let ô = {ôx}x∈R+

be a parametric family of functions defined as

ôxi (N) =


1
|N | if |N | 6= 2,
1
2 if |N | = 2 and x > 1,
max{1

3 ,min{ c0i
c01+c02

, 2
3}} if |N | = 2 and x ≤ 1.

Let C∗ be the irreducible cost matrix of C. For each (C∗, x) and each i ∈ N , let

ei(C
∗, x) =

∫ x

0
ôti(N)dt.

Now, we define the rule fe such that for each classical problem (N0, C) and each i ∈ N,

fei (N0, C) = c∗0i −
∑

S∈Ne(N0,C),i∈S

(δS − ei((S,C∗S), δS)).

Next, we extend this rule to our problem. For all (N,M,C), let t be a minimal tree in
the irreducible problem (N,M,C∗) where all sources are connected among themselves. Let
tM be the restriction of t to M . We now consider the classical problem (N0, C̄) such that
t̄ = {{i, j} ∈ t : i, j ∈ N} ∪ {{0, i} : i ∈ N and {i, j} ∈ t for some j ∈ M}. It is easy to see

29



that t̄ is a tree that connects all agents in N to 0. Let c̄ij = c∗ij if i, j ∈ N and {i, j} ∈ t̄;
c̄0i = max{c∗k` : {k, `} ∈ gt

iiM
}, where iM is the first source in the unique path connecting

agent i to each source in t; and c̄ij = max{c̄k` : {k, `} ∈ gt̄ij} if i, j ∈ N and {i, j} /∈ t. For
each problem (N,M,C), let

fe(N,M,C) =
c(tM )

|N |
+ fe(N0, C̄).

The rule fe satisfies CM (thus, IIT), PM (thus, CS and SEP), SYM and ETSC, but not CA.

(3) Dropping Core selection or Separability : The egalitarian rule fE , defined as for each

(N,M,C) and each i ∈ N, fEi (N,M,C) = m(N,M,C)
|N | , satisfies CA, IIT, SYM, and ETSC, but

not CS or SEP.

(4) Dropping Symmetry : Let õ be a function such that for each P ∈ P (N ∪M) and each
i 6= n,

õi(P ) =


|{S∈P :S∩M 6=∅}|−1

|N | if i ∈ Sk, Sk ∩M = ∅ and n ∈ Sk,
|{S∈P :S∩M 6=∅}|−1

|N | + 1
|Sk| if i ∈ Sk, Sk ∩M = ∅ and n /∈ Sk,

|{S∈P :S∩M 6=∅}|−1
|N | if i ∈ Sk and Sk ∩M 6= ∅,

and

õn(P ) =

{ |{S∈P :S∩M 6=∅}|−1
|N | + 1 if n ∈ Sk and Sk ∩M = ∅,

|{S∈P :S∩M 6=∅}|−1
|N | if n ∈ Sk and Sk ∩M 6= ∅.

Let f õ be a rule such that for each (N,M,C) and each i ∈ N ,

f õi (N,M,C) =

|N |+|M |−1∑
p=1

cipjp
[
õi
(
P (gp−1)

)
− õi

(
P (gp)

)]
.

The rule f õ satisfies CA, IIT, CS, SEP, and ETSC, but not SYM.

(5) Dropping Equal treatment of source costs: Let P = {S1, ..., Sq, ..., S|P |} be a partition in
P (N ∪M), where Sk ∩M 6= ∅ if k ≤ q and Sk ∩M = ∅ if k > q. Let t be a number of agents
in an element in P containing no source, i.e., t = |{i ∈ N : i ∈ Sk (Sk ∈ P ) and Sk ∩M = ∅}|.
Let ε be an arbitrarily small number such that ε ∈ (0, 1

|N ||M |). Let oε be a function such that

for each P ∈ P (N ∪M) and each i ∈ N, if 0 < t < |N |,

oεi(P ) =

{
1−ε
|N | (|{S ∈ P : S ∩M 6= ∅}| − 1) + 1

|Sk| if i ∈ Sk and Sk ∩M = ∅,
|N |−t(1−ε)
|N |(|N |−t) (|{S ∈ P : S ∩M 6= ∅}| − 1) if i ∈ Sk and Sk ∩M 6= ∅,

and if t = 0 or t = |N |, oεi(P ) = o∗(P ). Let fo
ε

be a rule such that for each (N,M,C) and
each i ∈ N ,

fo
ε

i (N,M,C) =

|N |+|M |−1∑
p=1

cipjp
[
oεi
(
P (gp−1)

)
− oεi

(
P (gp)

)]
.

The rule fo
ε

satisfies CA, IIT, CS, SEP, and SYM, but not ETSC.

30



References

[1] G. Bergantiños, A. Kar (2010). “On obligation rules for minimum cost spanning tree
problems”. Games and Economic Behavior 69: 224-237.

[2] G. Bergantiños, L. Lorenzo, S. Lorenzo-Freire (2010). “The family of cost monotonic and
cost additive rules in minimum cost spanning tree problems”. Social Choice and Welfare
34: 695-710.

[3] G. Bergantiños, L. Lorenzo, S. Lorenzo-Freire (2011). “A generalization of obligation rules
for minimum cost spanning tree problems”. European Journal of Operational Research
211: 122-129.

[4] G. Bergantiños, J.J. Vidal-Puga (2007). “A fair rule in minimum cost spanning tree
problems”. Journal of Economic Theory 137: 326-352.

[5] G. Bergantiños, J. J. Vidal-Puga (2008). “On Some Properties of Cost Allocation Rules
in Minimum Cost Spanning Tree Problems”. Czech Economic Review 2: 251-267.

[6] G. Bergantiños, J.J. Vidal-Puga (2009). “Additivity in minimum cost spanning tree prob-
lems”. Journal of Mathematical Economics 45: 38-42.

[7] G. Bergantiños, J.J. Vidal-Puga (2015). “Characterization of monotonic rules in mini-
mum cost spanning tree problems”. International Journal of Game Theory 44(4): 835-
868.

[8] C.G. Bird (1976). “On cost allocation for a spanning tree: A game theoretic approach”.
Networks 6: 335-350.

[9] A. Bogomolnaia, H. Moulin (2010). “Sharing a minimal cost spanning tree: Beyond the
Folk solution”. Games and Economic Behavior 69: 238-248.

[10] R. Branzei, S. Moretti, H. Norde, S. Tijs (2004). “The P-value for cost sharing in mini-
mum cost spanning tree situations”. Theory and Decision 56: 47-61.

[11] B. Dutta, A. Kar (2004). “Cost monotonicity, consistency and minimum cost spanning
tree games”. Games and Economic Behavior 48: 223-248.

[12] A.M. Farley, P. Fragopoulou, D.W. Krumme, A. Proskurowski, D. Richards (2000).
“Multi-source spanning tree problems”. Journal of Interconnection Networks 1: 61-71.

[13] L. Gouveia, M. Leitner, I. Ljubic (2014). “Hop constrained Steiner trees with multiple
root nodes”. European Journal of Operational Research 236: 100-112.

[14] D. Granot, F. Granot (1992). “Computational Complexity of a cost allocation approach
to a fixed cost forest problem”. Mathematics of Operations Research 17(4): 765-780.

[15] J. Kruskal (1956). “On the shortest spanning subtree of a graph and the traveling sales-
man problem”. Proceedings of the American Mathematical Society 7: 48-50.

[16] J. Kuipers (1997). “Minimum Cost Forest Games”. International Journal of Game Theory
26:367-377.

31



[17] L. Lorenzo, S. Lorenzo-Freire (2009). “A characterization of obligation rules for minimum
cost spanning tree problems”. International Journal of Game Theory 38: 107-126.

[18] H. Norde, S. Moretti and S. Tijs (2004). “Minimum cost spanning tree games and pop-
ulation monotonic allocation schemes”. European Journal of Operational Research 154:
84-97.

[19] R. C. Prim (1957). “Shortest connection networks and some generalizations”. Bell Sys-
tems Technology Journal 36: 1389-1401.

[20] E.C. Rosenthal (1987). “The Minimum Cost Spanning Forest Game”. Economic Letters
23: 355-357.

[21] L.S. Shapley (1953). A value for n-person games. In: Kuhn HW, Tucker AW (eds.)
Contributions to the Theory of Games II. Princeton University Press, Princeton NJ, pp.
307-317.

[22] S. Tijs, R. Branzei, S. Moretti, H. Norde (2006). “Obligation rules for minimum cost
spanning tree situations and their monotonicity properties”. European Journal of Oper-
ational Research 175: 121-134.

32


