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How to apply penalties to avoid delays in projects∗

Gustavo Bergantiños, Universidade de Vigo.

Leticia Lorenzo, Universidade de Vigo

Abstract

A planner wants to carry out a project involving several firms. In many

cases the planner, for instance the Spanish Administration, includes in the

contract a penalty clause that imposes a payment per day if the firms do

not complete their activities or the project on time. We discuss two ways of

including such penalty clauses in contracts. In the first the penalty applies

only when the whole project is delayed. In the second the penalty applies to

each firm that incurs a delay even if the project is completed on time. We

compare the two penalty systems and find that the optimal penalty (for the

planner) is larger in the second method, the utility of the planner is always

at least as large or larger in the second case and the utility of the firms is

always at least as large or larger in the first. Surprisingly, the final delay in

the project is unrelated to which penalty system is chosen.

Keywords: game theory; PERT; delays; penalties

1 Introduction

Assume that an agent, which we will call the planner, wants to carry out a project.

The planner could be a public or private organization and the project could be the

construction of some kind of infrastructure such as a bridge or a building. Typically,

the project involves different activities that might be performed by different firms.

Thus, the planner allocates each activity to a different firm. Each firm becomes

responsible for performing its activity in a specified time. The planner wants to

carry out the project by a deadline and will suffer a cost if the deadline is not met.

∗The authors are partially supported by research grants ECO2014-52616-R and ECO2015-70119-
REDT from the Spanish Ministry of Science and Competitiveness, GRC 2015/014 from "Xunta de

Galicia", and 19320/PI/14 from “Fundación Séneca de la Región de Murcia”.

1



We consider that the firms responsible for the activities are not affected directly

by the cost suffered by the planner if the project is delayed. For instance, consider

that the planner is a private firm that wants to adapt a warehouse to install a new

data server and one of the activities of the project is the electrical installation. If

that installation is delayed the server cannot work. This delay in the set-up of the

server directly affects the planner, but it does not affect the firm responsible for the

electrical installation. Thus, the planner should do something to encourage firms to

complete their activities in the agreed time. In practice, the usual way is to impose

a penalty on firms that cause a delay. This point is included in the contract between

the planner and the firm in such a way that when there is a delay caused by the firm

the amount received by the firm decreases in proportion to the delay in the activity.

When the planner is a private organization contracts between the planner and

firms are private. Thus, it is difficult to know how penalty clauses (if any) are

described in them. But when the planner is a public organization it is possible

to learn that information. For instance, Spanish law sets a general framework for

contracts in the public sector1. One part of that general legislation2 describes how

penalties should be applied to firms that cause a delay. The main issues in this area

of Spanish law are outlined below.

First, any project must have a deadline. Firms must complete the project by that

deadline. The administration can also stipulate interim deadlines in some contracts,

in which case the firms must also meet those interim deadlines.

Second, if firms suffer delays (in meeting the project or interim deadlines) for

which they are responsible, then the administration can cancel the contract or impose

penalties on them. The general penalty is applied on a daily basis in a proportion of

0.2 per 1000 of the total cost estimate for the project. However, the administra-
tion can include different penalties in some contracts. Whenever the penalty reaches

a multiple of 5% of the total cost estimated of the project, the administration must

decide between canceling the project or continuing to apply the penalties.

Third, penalties must be applied by deducting them from the total amount that

the firm is to receive from the administration.

In this paper we present a formal model for analyzing situations of this kind.

1We are talking about the “Real Decreto Legislativo 3/2011, de 14 de noviembre, por el que se

aprueba el texto refundido de la Ley de Contratos del Sector Público”. Ministerio de Economía y

Hacienda.

BOE number 276. Date: November 16th, 2011. Reference BOE-A-2011-17887
2LIBRO IV: Efectos, cumplimiento y extinción de los contratos administrativos

TÍTULO I: Normas Generales

CAPÍTULO III: Ejecución de los contratos

Artículo 212: Ejecución defectuosa y demora
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Our model is inspired by Spanish law, but it could be applied to a wide class of

situations including administrations in other countries. For example, in February

2015 the U.S. Department of Housing and Urban Development updated the General

Conditions for Construction Contracts -Public Housing Programs (Chicago Housing

Authority, 2015). Among these conditions there is a liquidated damages clause that

states: “If the Contractor fails to complete the work within the time specified in

the contract, or any extension, [...] the Contractor shall pay to the Public Housing

Agency as liquidated damages, the sum of $........[Contracting Officer insert amount]

for each day of delay. If different completion dates are specified in the contract for

separate parts or stages of the work, the amount of liquidated damages shall be

assessed on those parts or stages which are delayed.” There are also other clauses

concerning the right of the Public Housing Agency to terminate the Contractor’s

right to proceed with the work due to an excessive delay. This issue has also been

studied in other countries such as Italy, Kuwait and the Republic of the Congo (see,

D’Alpaos   (2009), Al-Tabtabai   (1998), and Louzolo-Kimbembe and Mbani

(2013)).

This model could also be applied to the private sector. For example, in its Guide

for Supplementary Conditions the American Institute of Architects suggests includ-

ing a liquidated damages clause in construction contracts in the following terms:

“9.11 The Contractor and the Contractor’s surety, if any, shall be liable for and shall

pay the Owner the sums hereinafter stipulated as liquidated damages, and not as

a penalty, for each calendar day of delay after the date established for Substantial

Completion in the Contract Documents until the Work is substantially complete”

(AIA Document A503-2007).

In this paper the PERT (Project Evaluation Review Technique) is used to model

projects. Non-cooperative games in extensive form are used for modeling the situa-

tions faced by the different agents involved in the project.

In our model we have two kinds of agent: the planner, who wants to complete

a project, and the firms, which are hired by the planner to complete the various

activities involved in the project. Typically, the planner is a public or a private

institution. Our non-cooperative game has three stages.

Stage 1. The planner decides what penalty will be applied to firms in case of

delay. We assume that the penalty is proportional to the delay.

Stage 2. Following the structure of the project, firms decide how much effort they

will devote to their assigned activities. Since we are studying situations in which firms

are responsible for their delays, we assume that they can complete their allocated

activities within the specified time if they devote the resources at their disposal.

Thus, a delay in activity results from devoting fewer resources than required. We
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also assume that firms can obtain profit from devoting part of their resources to

activities unrelated to the project. Thus, firms must find a balance between the

utility that they obtain by devoting their resources to outside jobs and the penalty

that will be imposed on them by the planner.

Stage 3. The planner pays the firms. We assume that the planner receives

a utility from the completion of the project. Once the project is completed the

planner knows what delays there have been in all activities. Each firm receives the

amount agreed for the completion of its activity, minus the penalties applied for

delays in that activity (if any). As in Spanish law, we consider two ways of applying

penalties: First, only when the whole project is delayed, i.e. if a particular activity

is delayed but the whole project is completed on time the planner does not apply

the penalty. Second, the planner applies the penalty to each firm whose allocated

activity is delayed (regardless of whether or not the whole project is delayed).

Actually, we consider two non-cooperative games in which Stages 1 and 2 are the

same but Stage 3 is different. Since the utility of the agents is different in the two

games, the equilibria could be different. In this paper we study and compare the

equilibria in the two cases. Our main findings are the following.

The optimal penalty for the planner depends on the profit obtained by the firms

when devoting their resources to activities other than the project. Thus, under Span-

ish law it is better to set the penalty depending on the project under consideration

than to apply the general penalty. Moreover, the amount of the penalty also depends

on how it is applied (when the whole project is delayed or always), which is not the

case here.

For each project, the utility of each firm when penalties are applied only when

the whole project is delayed is as great or greater than its utility when penalties are

always applied. By contrast, the utility of the planner when penalties are always

applied is as great or greater than its utility when penalties are applied only when

the whole project is delayed.

The delay of the project is unrelated. Sometimes is greater when penalties are

applied only when the whole project is delayed. Sometimes is greater when penalties

are always applied. Assume that there is a set of agents (other than the planner

and the firms) that need the project to be completed. For instance the project could

be the construction of a new hospital, highway, etc. Those agents clearly want the

project to be completed as soon as possible, but in such a situation it is not clear

which penalty system is better.

The paper is organized as follows. The next subsection briefly reviews the lit-

erature related to our paper. Section 2 describes in detail the situations that we

study. Section 3 analyzes the case where the planner applies the penalties only when
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the whole project is delayed. Section 4 analyzes the other case, where penalties are

always applied. Section 5 compares the results obtained in the two cases. Finally,

we present some concluding remarks.

1.1 Literature review

As far as we know there are not many papers studying how to manage delays in

projects when several activities are involved. In the literature on civil engineering,

a field in which the contract is cancelled in some countries if the total amount of

penalties becomes very high, there are some papers that seek to find the limit for

penalties so that the cancellation date does not exceed the due date of the project.

Cases in point are the papers by Al-Tabtabai   (1998), D’Alpaos   (2009) and

Louzolo-Kimbembe and Mbani (2013).

Focusing on economic literature, there is typically assumed to be a delay in the

project caused by delays in several activities. This delay generates a cost that has to

be paid by those responsible for the activities that cause the delay. The main question

addressed in this literature is how this cost should be divided fairly between those

responsible for these activities.

Bergantiños and Sánchez (2002) propose two rules: The first is based on cost

sharing literature. They associate a cost sharing problem as in Moulin and Shenker

(1992) with each project with delays. Then they study the serial cost sharing rule

of that cost sharing problem. The second rule is based on cooperative games: They

associate a cooperative game with each project with delays, then study the Shapley

value (Shapley (1953)) of that game.

Branzêi   (2002) propose several rules following two different approaches. In

the first approach they associate a bankruptcy problem with each project with delays

(see, for instance Aumann and Maschler (1985) or the survey by Thomson (2003)).

Then they compute various bankruptcy rules. In the second approach they introduce

more rules defined directly from the project with delays.

Estévez-Fernández   (2007) associate a new cooperative game with each

project with delays. The core of that cooperative game is studied.

Estévez-Fernández (2012) considers a more general model than in Estévez-Fernández

  (2007). For instance, the cost function of this paper is more general. A cooper-

ative game (different from the one considered in Estévez-Fernández   (2007)) is

associated with each project with delays. The core of that new cooperative game is

studied. For instance, it is proved that the core is non empty.
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Although our paper also studies projects with delays, the approach taken is quite

different from the papers mentioned above, which attempt to divide the cost fairly

between the activities by means of the Shapley value, the serial cost sharing rule,

bankruptcy rules or the core. Here, we seek to study mechanisms incentivizing firms

to behave in the “right” way. The literature on implementation addresses the same

objective as we do. The idea of that literature is to provide a mechanism (formally, a

non-cooperative game) such that when agents which behave only out of self-interest

play the mechanism optimally (formally, they play some kind of equilibria) the final

outcome is good from a social welfare perspective. Some examples of this literature

are Hart and Mas-Colell (1996) and Pérez-Castrillo and Wettstein (2001). These

papers study two mechanisms whose equilibria induce the Shapley value. O’Neill

(1982) and Dagan   (1997) study two mechanisms whose equilibria induce some

bankruptcy rules. Moulin and Shenker (1992) study a mechanism whose equilibria

induce the serial cost sharing rule. Perry and Reny (1994) study a mechanism whose

equilibria induce elements of the core.

2 The situations studied

There is a planner (denoted by 0), who wishes to carry out a project involving

several activities that must be completed in a specific order. Some activities can be

performed concurrently while others must be performed sequentially. Each activity

is allocated to a different firm, which is responsible for completing it.

Each activity has an estimated duration representing the time needed to complete

the activity when the firm devotes all its resources to it. Each firm has agreed with

the planner to complete its activity in the allotted time. The planner has agreed

with each firm on the amount that each firm will receive for completing its activity

on time. The planner obtains a benefit from the completion of the project.

The planner wants to finish the project as soon as possible, given the duration

of the activities. If the project is delayed the planner suffers a cost which is linear

over the total delay in the project. The firms responsible for the activities are not

affected directly if the project is delayed.

The firms can act strategically by assigning some of their resources to other tasks

unrelated to the project and thus obtaining extra earnings. In this case they will

need more time to complete their activities in the project. For example, assume that

a firm is working on the construction of a house with a crew of ten workers and

its allocated activity has an eight-week deadline. In this case the workers are the

resources of the firm. The roof of a warehouse is broken and needs to be repaired
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quickly. If the firm does not take this job now it will lose it. Thus, the firm assigns

five members of the crew to the job of mending the roof for two weeks. The other

five continue to work on the construction of the house. Once the roof is fixed the

five workers return to the house. Since the firm needs a crew of ten workers working

for 8 weeks to complete its activity on time, it will now finish it in 9 weeks3.

We assume that the planner cannot observe how much of their resources firms

devote to their activities. The planner only observes the real completion time of the

activity, denoted by 0 (we assume that 
0
 ≥ ). In the above example the planner

observes that the firm completes the activity in nine weeks.

In order to avoid strategic behavior by firms, the planner punishes them if they

delay their activities. Before the projects starts, the planner announces a penalty 

per unit of delay that firms must pay. We consider two cases.

1. First, the planner will punish firms that delay their activities only when the

whole project is delayed.

If the project is completed on time each firm  receives , even if its activity

was delayed.

If the whole project is delayed, each firm  receives  − (0 − ).

2. Second, penalties are imposed for all activities that are delayed. In this case

each firm  receives  − (0 − ).

We assume that each firm  has a reserve utility  representing the utility per

unit of time that firm  obtains from reassigning all its resources to an alternative

task unrelated to the project. Thus, if firm  is not punished it obtains  + 
∗


where ∗ is the number of units of time for which its resources have been assigned to
an alternative task. If it is punished, it obtains  + 

∗
 −  (0 − ).

In the above example ∗ = 1 because the firm assigns five workers during two

weeks, or equivalently ten workers for 1 week. Notice that, in general, ∗ coincides
with 0 −  (in our case 9− 8).
We define the delay  of firm  as 0 − . Thus, the previous expressions can be

written with  instead of 
∗
 and 0 − .

3Note that only five workers are working on the activity for the first two weeks, which means

that they do the same amount of work as 10 workers working for one week. In weeks 3 to 9 the full

crew is working on the house.
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Remark 1 In order to simplify the notation of the paper we assume that firms decide

how long to delay the activity rather than how much of their resources and time they

will devote to other tasks. Moreover, when no confusion arises we identify the firm

with its allocated activity.

We now introduce other notation used in the paper. Given  = ()∈ and

 = ()∈ we say that  Pareto dominates  if  ≥  for all  ∈  and there exists

 ∈  such that   . Given a subset ⊂  we denote by  = ()∈ . Given
a subset  ⊂ R we define the Pareto boundary of  as

() = { ∈  : there is no  ∈  such that  Pareto dominates }

The procedure described above is modeled as a non-cooperative game in extensive

form. We use the PERT for modeling the project considered.

2.1 Modeling the project: The PERT

The PERT (Project Evaluation and Review Technique) is a well known tool of Oper-

ations Research for managing complex projects where several activities are involved.

A classical reference for PERT is Moder and Phillips (1970). In the PERT model

there is a directed graph  where the arcs are the activities and the nodes denote

the end or the beginning of one or more activities. We denote the set of arcs by

 = {1 2     }. For each  ∈  ,  and  denote the beginning and the ending

node of  respectively. There are two special nodes: node origin, which is the unique

node such that there is no activity ending at that node, and node end, which is the

unique node such that there is no activity beginning at that node. Each activity 

has an estimated duration of  units of time, planned in an initial schedule.

A path  is a set of consecutive activities from the origin to the end of the project.

We denote by Π the set of all paths in . The duration of a path  ∈ Π is the sum

of the durations of the activities along this path, i.e.  =
P
∈

. The PERT time

 is the minimum time needed to complete the project. Thus,  is the duration of

the longest path, namely  = max
∈Π

. The slack of a path , denoted by , is the

amount of time the activities in the path can delay without delaying the project.

Thus,  =  − . The slack of an activity , denoted by , is the maximum time

the activity can delay without delaying the project. Thus,  = min
∈Π:∈

. A path

or an activity is critical if its slack is 0. This means that any delay will produce a

delay in the project.
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Given two activities   ∈  we say that  comes before , and denote it by  ≺ ,

if activity  needs to be performed before activity  can begin. Given an activity

 ∈  and a path  ∈ Π such that  ∈ , we denote by ( ) the set of activities

that precede  in the path . Analogously, we denote by ( ) the set of activities

that follow  in . Formally:

( ) = { ∈  :  ≺ } and
( ) = { ∈  :  ≺ }

We denote by () the set of activities that need to be performed before ac-

tivity  can begin and () denotes the set of activities that need activity  to be

performed before they can start. Formally:

() =
[

∈Π:∈
( )

() =
[

∈Π:∈
( )

3 First case: penalties only when the project is

delayed

Wemodel this situation with a non-cooperative game in extensive form with 3 stages.

In the first stage the planner decides the penalty per unit of delay to be paid by firms

when the project is delayed. In the second stage the firms decide how much of their

resources to put on their activities. The greater the resources the shorter the delay.

In the third stage the planner pays the firms and applies the penalties, if any.

As argued in Remark 1, in Stage 2 each firm decides how long to delay its activity.

As laid down in Spanish and US law, if a project is delayed the planner (public

institution) has the right to cancel the contract or to impose a penalty. Typically,

if the delay is short the planner imposes a penalty but if it is long it cancels the

contract. Thus, we assume that there is a maximum level of delay, say , such that

if the firm delays more than  the planner will cancel the contract with the firm.

Thus, the firm will not receive the payment . Hence,  ∈ [0]. Note that under

this assumption the project will not be canceled, so we focus on the case where the

project is always completed.

The firms make their decisions following the structure of the project. This issue

can be explained via the following example.
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Example 1 Consider the project given by the following picture.

where
activities   

 3 5 0

 1 5 2

 1 5 2

Stage 1. The planner announces the penalty  to all the firms involved in the

project.

Stage 2. Firms  and  decide simultaneously how long to delay their activities.

Once firm  has finished, firm  decides its delay. Depending on the decisions of

firms  and  firm  could make its decision after  or simultaneously with . Assume

that  = 0 and  = 1, so firm  decides at time 2, while firm  is still working.

Nevertheless, if  = 0 and  = 3, then firm  finishes at time 3 and firm  at time

4. Hence firm  decides its delay at time 4 when firm  has already finished.

In general, if activity  ∈ (), firm  decides after firm  has finished. If

 ∈ () and  ∈ () anything is possible:  decides after  has finished,

 decides after  has finished, or one of them decides while the other one is still

working.

It is important to state what information is available to a firm when the time

comes to decide its delay. We assume that each firm knows at time , when it has

to make its decision, which firms have already finished, and what their delays are.

Thus, the information set of a firm  is characterized by a triple (  ) where 

is the time at which it has to start. Thus, all activities preceding  have already

finished, i.e.

 ∈
⎡⎣ max
∈Π:∈

X
∈()

 max
∈Π:∈

X
∈()

( +)

⎤⎦ ,
 is the set of activities that have been completed by time , namely

 =

⎧⎨⎩ ∈  : max
∈Π:∈

X
∈()∪{}

( + ) ≤ 

⎫⎬⎭ 
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and  = ()∈ where  is the delay of each activity  ∈ .

Given a firm  ∈  , a strategy for firm  is a map  that assigns to each

information set (  ) a delay  (  ) ∈ [0]. When no confusion arises

we write  instead of  (  ). Besides, we usually write  instead of (  ).

Given a strategy profile  = ()∈ and a path  ∈ Π, we denote by () the real

duration of the path  when the delays of the activities are given by . Analogously,

we denote by  () the real duration of the project. Thus,

 () = max
∈Π

() = max
∈Π

X
∈
( + )

In this expression  stands also for the real delay of activity  when firms play

according with with the strategy profile  When no confusion arises, we will make

the same abuse of notation in the rest of the paper.

Remark 2 We assume that  ()   . Namely, if all activities are delayed as long

as possible then the project will be delayed for sure.

We now describe Stage 3, where the planner pays the firms.

• The firms. The utility obtained by firm  will be the amount received from the

planner, plus the utility the firm obtains from the alternative tasks, minus the

penalty caused by its delay (if the whole project is delayed). Formally,

( ) =

½
 +  if  () ≤ 

 +  −  if  ()  

• Planner. The utility of the planner will be the benefits obtained from the

completion of the project, plus (if the project is delayed) the amount obtained

from the penalties minus the cost associated with the delay.

0( ) =

(
0 if  () ≤ 

0 +
P
∈

 − ( ()−  ) if  ()  

Remark 3 The utility function can be simplified. Since we are assuming that the

project is completed, the planner always obtains 0 and each firm  always receives

. Thus, the utility function can be defined in terms of earnings with respect to the

status quo ()∈∪0.
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We now present the formal definition of the non-cooperative PERT game taking

into account the above comments.

A PERT problem with delays is a triple (  ) where  is the graph asso-

ciated with the PERT problem,  is the cost per unit of time that the planner will

incur if the project is delayed, and  = ()∈ is the vector of reserve utilities of the
firms.

We can associate a non-cooperative game Γ(  ) with each PERT problem

with delays as above, where:

1. Stage 1. The planner decides the penalty  ∈ [0+∞).
2. Stage 2. The firms, following the structure of the project, decide the vector

of delays  = ()∈ .

3. Stage 3. The planner pays the firms. Because of Remark 3 the utilities are:

( ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if  = 0 and  () ≤ 

 if  ∈  and  () ≤ P
∈

 − ( ()−  ) if  = 0 and  ()  

( − )  if  ∈  and  ()  

Assume that in Example 1,  = 3  = 0  = 1 and  = 2. Besides, agents

play the following strategies  = 1  = 0  = 5 and  = 1. There are two paths

from the origin to the end: {} and { }. The real duration of the paths when
agents play ( ) are {}() = 3 and {}() = 8. Thus, the real duration of the

project according with ( ) is  () = max {3 8} = 8. Namely, the project has been
delayed because  = 3. Then,

0( ) = 1 (5 + 1)− 3 (8− 3) = −9
( ) = 0

( ) = (1− 1)5 = 0
( ) = (2− 1) 2 = 2

Since  = , firm  obtains the same utility delaying its activity 5 units than

finishing on time.

Remark 4 Assume that  =  for some firm  ∈  . Assume that the whole project

is delayed. This means that firm  will obtain zero whatever its delay. We assume
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that in such cases, firm  prefers not to delay. This can be interpreted as a reputation

effect. Planners do not like delays and if a firm does not produce delays its reputation

will be better and it will be easier for it to obtain contracts in the future. Thus, we

consider that a firm will cause a delay only if it improves its utility by doing so.

Next we study our model in three different examples: in the first all the activities

perform in line; in the second all the activities perform in parallel; and in the third

we propose a mixture of the two cases (a slight modification of Example 1).

Example 2 Consider a project where all the activities are in line.

Since the unique path is the critical one, a delay in one activity will turn into a

delay in the whole project. For each  and each  ∈  , the utility of firm  will be 0

if it has not delayed and ( − )  if it has delayed . Thus, in any Nash equilibria

() of the game if   , firm  chooses  = 0. If   , firm  chooses  = .

If  = , by Remark 4, firm  chooses  = 0.

Thus, for each  the utility of the planner will be (− )
P

∈ :
. So in an 

the planner chooses the penalty  that maximizes the above expression. If  ≥ , the

planner will always obtain a non negative utility. If the reserve utilities are not so

small (for instance    for some ) then the planner will choose  ≥ .

This example shows that in equilibrium the planner could possibly choose a

penalty greater than the cost, which is quite intuitive. Nevertheless, it is also pos-

sible that in equilibrium the project could be delayed. This is not counterintuitive.

Assume that the cost  of delaying the project is smaller than the reserve utilities of

the firms and the planner chooses a penalty  larger than  but smaller that some

. Thus, firms will decide to delay their activities because the benefits exceed the

penalty. But the planner will also get benefits because the money obtained from the

penalties offsets the loss caused by the delay.
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Example 3 Consider a project where the three activities are performed in parallel.

Besides  = 2 and
activities   

 3 10 1

 3 10 1

 3 10 1

Note that, as in the example above, all activities are critical. Thus, if a firm

delays its activity then the whole project will be delayed.

Assume that agents are playing an . If the planner announces a penalty  ≥ 1,
all the activities will be completed on time and the payoff for the planner will be 0.

If the planner announces  = 09 all the firms will choose  =  = 10. Thus, the

payoff of the planner will be 3 · 09 · 10− 2 · 10 = 7  0.

Next, we consider an example where some activities are performed in parallel and

others in sequence.

Example 4 Consider the project given by the figure in Example 1 where  = 5 and
activities   

a 10 5 0

b 4 5 3

e 4 5 3
If firms play an  in the subgame obtained in Stage 2, depending on , we can

obtain several 4

 4 25 2

(  ) (0 2 0) (0 1 1) (0 5 5)

 ()−  0 0 8

(0   ) (0 0 6 0) (0 0 3 3) (−20 0 5 5)
4This statement is a consequence of our results but could be proved now directly.
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In the case  = 4 it is easy to see that the  obtained in Stage 2 is unique.

Nevertheless, in the case  = 25 several  could exist in the subgame obtained

in Stage 2. For instance (  ) = (0 09 11) is also an  inducing no delay

in the project ( ()−  = 0) and whose payoff vector is (0 0 27 33). Notice that,

even the payoff of the firms is different in both cases, the project is not delayed and

so the utility of the planner is the same. Intuitively, what is happening is that firms

 and  are dividing the slack of path {} among them in different ways. In the case
 = 2 the  obtained in Stage 2 is also unique.

3.1 Equilibria in Stage 2

In this part we characterize the  of the subgame of Γ(  ) obtained in Stage

2, once the penalty  is announced by the planner. First we introduce some concepts

used in this characterization.

Given a penalty  and a firm  with   , if firm  delays  its utility will be

at least (− )  0. If  ≤  and firm  does not delay its activity, its utility will

certainly be 0. Thus, we define the minimal right utility5 of firm  as


 () =

⎧⎨⎩ ( − ) if   

0 if  ≤ 

Remark 5 This minimal right utility can also be interpreted as maxmin utility.

Namely, for each penalty  and each firm  we define


 () = max


min
−

 (  −)

where − stands for the strategies of the agents in  \ {}.
For each  ∈  , it is easy to see that when the delay of the other firms is enough

to delay the project, namely 
¡
0 \{}

¢
  , the minimal right utility and the

maxmin utility coincide (
 () = 

 ()).

5The name minimal right is used in reference to the structure of the non-cooperative game, but

not the contract between the planner and the firm.
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Given a penalty , let () be theminimal right delay, i.e. the minimum time

by which activity  should be delayed when the project is not delayed to obtain its

minimal right utility. Thus,

() =

⎧⎨⎩
( − )


if   

0 if  ≤ 

Notice that () ∈ [0 ] always. When no confusion arises we will write 
instead of ().

Given a penalty  ∈ R such that P
∈

() ≤  for all  ∈  , let  () be the set

of delays of the activities such that each agent delays at least () units of time and

the project finishes on time. Namely,

 () =

(
 ∈ R :  ∈ [()] and

X
∈

 ≤  for all  ∈ 

)


In the next proposition we characterize the  in the subgame obtained in Stage

2.

Proposition 1 Let Γ(  ) be the non-cooperative game induced by the PERT

problem with delays (  ) Let  be the penalty chosen by the planner at Stage

1. Assume that firms are playing an  in the subgame obtained in Stage 2.

(1) If there exists a path 0 ∈ Π such that
P
∈0

()  0, then all  have the

same utility outcome. Besides, the project is delayed under any .

(2) If
P
∈

() ≤  for all  ∈ Π, then any allocation in
©
()∈ :  ∈ ( ())

ª
can be obtained as the utility vector associated with some . Thus, there exist equi-

libria in which the project is not delayed.

Proof of Proposition 1.

(1) We prove that there exists an  with delay. Let us define the strategy

profile  where for each  ∈  and each information set ,

() =

½
0 if  ≤ 

 if   

Since 0 
P
∈0

() ≤
P

∈0:
 =

P
∈0

, the project is delayed under .

Next we prove that  is an . Consider  ∈  and 0 a strategy of agent . We
distinguish two cases:
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1.   . Assume that ( 
0
 −) 6= ( ) Then, there exists an information

set  of agent  which is achieved under (0 −) such that 
0
()  . So,

( 
0
 −) =

½


0
() if  (0 −) ≤ 

( − )0() if  (0 −)  

If  (0 −)   then ( − )0()  ( − ) = ( ).

Assume that  (0 −) ≤  Since
P
∈0

()  0,  ∈ 0 and

X
∈0\{}:

 + 0() ≤ 0 

Since () ≤  for each  ∈ 0\{} with    () = 0 for each  ∈ 0\{}
with  ≤  and

P
∈0

()  0 we deduce that 
0
()  () So, 

0
() 

() = ( − ) = ( ).

2.  ≤ . Since () = 0 for any information set , the project will be delayed

under (0 −). Thus,

( 
0
 −) = ( − )0() ≤ 0 = ( )

Next we prove that the project is delayed under any . Assume there exists

an   = ()∈ where the project finishes on time. Thus,
P
∈

 ≤  for each

 ∈  . Since
P
∈0

()  0, there exists an agent  ∈ 0 such that ()   ≥ 0.
Since ()  0, we have that   . Let 0 be such that 

0
() =  for each

information set  of agent . If firm  deviates and plays 0 instead of  then

( 
0
 −) =

½
 if  (0 −) ≤ 

( − ) if  (0 −)  

Thus, ( 
0
 −) ≥ ( − ) =  ()  . Since agent  improves by

playing 0 instead of ,  is not a  which is a contradiction. Thus, under an

, the project will be delayed.

Finally we prove that the utility outcome associated with any  is unique.

Let 0 be an . We identify 0 with the choice of firm  in the information set

achieved when all agents play 0 We have proved that the project is delayed. Thus,
 ( ) = ( − ) 0 If    then 0 = 0 (otherwise agent  improves by playing
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0 instead of 0). If  = 0 or  = , then ( ) = 0 for each 0. By Remark 4,
0 = 0. If   , then 0 =  (otherwise agent  improves by playing  instead of

0). Notice that the outcome associated with 0 coincides with the outcome of the
 defined at the beginning of the proof. Thus, the utility outcome of the set of

 is unique.

(2) Given  ∈ ( ()), we define  such that for each  ∈  and each infor-

mation set , () = . Note that under , firms allocate the slack in the paths

according to . Besides, the conditions over  guarantee the project finishes on time.

Thus, ( ) =  for each  ∈  .

We prove that  is an . Assume firm  changes its strategy to 0. We identify
0 with the choice of firm  in the information set achieved when all agents play

according to (0 −). We distinguish two cases:

1. 0  . The project finishes on time and

 ( 
0
 −) = 

0
   = ( )

2. 0  . Since  ∈ ( ()) and 0 ∈ [()], there exist  ∈  such thatP
∈\{}

 + 0  . Thus, the project will be delayed and  ( 
0
 −) =

( − )0. We distinguish two cases:

(a)  ≤ . In this case

 ( 
0
 −) = ( − )0 ≤ 0 ≤ ( )

(b)   . In this case

 ( 
0
 −) = ( − )0 ≤ ( − ) = () ≤  = ( )¥

In the first part of Proposition 1 we prove that, basically, we have a unique .

Nevertheless, in the second part we identify a subset of utility allocations associated

with . Depending on the case there may be  where the project is delayed or

not. For instance, when   max
∈

, there is no  where the project is delayed.

However, in the next example, we show there are  that lead to payoffs that are

not associated with any allocation  ∈ ( ()).
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Example 5 . Consider the project given by the following figure

where
Activities   

 10 3 0

 2 3 3

 2 3 3

 2 8 4

Notice that the value of  is irrelevant for our analysis. Let  = 2 We define 

as follows

• () = 0 for every information set .

• () = 1 for every information set .

• () = 2 for every information set .

• () =

½
4 if  = 4  = { }  = 1 and  = 2
8 otherwise.

Thus, ( ) = 0 ( ) = 3  ( ) = 6 and ( ) = 16 Note that under

this strategy the slack of path { } is not completely allocated. It is easy to prove
that  is a  For instance, if firm  delays 2, instead of 1, the project still finishes

on time. But if firm  does so, firm  will delay 8 (instead of 4), the project will be

delayed and the utility of firm  will be 2.

Nevertheless, the vector of delays (0 1 2 4) associated with , does not belong to

( (2)) because (0 2 2 4) Pareto dominates (0 1 2 4) and (0 2 2 4) ∈  (2).

In the next Proposition we characterize the set of  whose payoffs for the firms

are not Pareto dominated by other . By part 1 of Proposition 1, when there is

a path 0 ∈ Π such that
P
∈0

()  0 all  have the same utility outcome. In

such a case the set of  whose payoffs are not Pareto dominated is the set of all

.
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Proposition 2 Let Γ(  ) be the non-cooperative game induced by (  ) As-

sume that
P
∈

() ≤  for all  ∈ Π. Let  be an  in the subgame obtained in

Stage 2. Then, the set of  whose payoffs are not Pareto dominated is:

{()∈ :  ∈ ( ())} 

Proof of Proposition 2. Let  be an  where the project is delayed. By part

2 of Proposition 1 we know that there exist  where the project is not delayed.

Let 0 be one of such  Let us denote by  and 0 the vectors of utilities for the
firms associated with both equilibria respectively. Using arguments similar to those

used in the proof of part 1 of Proposition 1 we can deduce that for each  ∈ 

 =

½
0 if  ≤ 

( − ) if   

Besides, 0 = ()∈ where  ∈ ( ()) We now prove that  ≤ 0 for all
 ∈  If  = 0 then it is obvious because  ≥ 0 and  ≥  ≥ 0. If  = (− ),

then  = ( − ) ≤  ≤  = 0.
Note that there exists at least one agent  such that  6= 0. Otherwise both

vectors would coincide and, by Remark 4, an agent will choose the strategy that

leads to a smaller delay. Thus, 0 Pareto dominates .

Let  be an undominated. Since the project ends on time under , the utilities

for the firms under  can be rewritten as ()∈ where  ∈ [0] and
P
∈

 ≤ .

When we define  we have argued that any firm  can obtain, independently of the

strategies of the other agents, a utility . Thus,  ≥  for all  ∈  . Hence

 ∈  (). Suppose that  ∈ ( ()). Then there exists 0 ∈  () such that

0 Pareto dominates . We can assume 0 ∈ ( ()) (otherwise we can consider

00 ∈ ( ()) such that 00 Pareto dominates 0 and proceed with 00 instead of 0).
Under Proposition 1.2, the allocation (0)∈ can be obtained as the utility vector
associated with some  0. Thus, the vector of utilities associated with the  0

Pareto dominates the vector of utilities associated with  , contradicting that 

is an undominated . Thus, we conclude that  ∈ ( ()).

It only remains to prove that if  is an  whose vector of utilities is given

by ()∈ with  ∈ ( ()), then  is an undominated . Suppose not.

Then, there exists another  0 such that the utilities associated with 0 Pareto
dominates ()∈ . We can assume that 0 is an undominated  (otherwise

we take 00 an undominated  that Pareto dominates 0 and we proceed with 00
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instead of 0). The utility vector associated with 0 can be expressed as (0)∈
with 0 ∈ ( ()). Thus, 

0
 ≥  for all  ∈  . If  = 0 then 0 =  = 0

by Remark 4. Then 0 ≥  for each  ∈  with   0 and there exists  ∈  with

  0 such that 
0
   Thus, 

0 Pareto dominates , which is a contradiction. ¥

We end this subsection with some examples showing that some  might not

be a good prediction of the behavior of firms.

Example 6 Consider the project given by Example 3 where  = 5 and

activities   
 3 5 0

 2 5 1

 2 5 1

Assume that  = 09. Notice that the three firms take their decisions simultane-

ously. Thus, they have only one information set. Since  = 0 and  is a critical

activity it is a dominant strategy for firm  to finish on time. Thus, if  is an 

in the subgame in Stage 2 then  = 0.

There are two  in the subgame in Stage 2  = (0 1 1) and 0 = (0 5 5). In
the first  firms  and  delay by 1 unit, the project finishes on time, and each

firm ( and ) obtains 1. In the second  firms  and  delay as long as possible,

the project is delayed and each firm ( and ) obtains (1− 09) 5 = 05. Notice that
the second  is Pareto dominated, in terms of the utilities of the firms, by the first

one.

The second  is based on a bad coordination effect. Firm  (or ) thinks that

firm  (or ) will delay as long as possible, so its best option is to do likewise.

Nevertheless, it is better for both firms to delay by only 1 unit (as the first 

suggests).

This bad coordination effect is intrinsic to the  when agents play simultane-

ously. We believe that in this example the first  predicts the behavior of rational

firms better.

Example 7 Assume that in Example 1  = 19. Thus () = () = 025. Because

of Proposition 2, the set of utilities associated with undominated  is

{(0  2− ) :  ∈ [05 15]} 
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Take (0 06 14). This corresponds to  = 0,  = 03, and () = 07 for any

information set  of firm . We do not believe that this  predicts the behavior of

rational firms.

We now analyze this example in detail. Firms  and  must make their decisions

simultaneously and the only information that they have is  = 19. Firm  knows

the delay of firm . Firm  may know the delay of firm  (for instance if  = 4

and  = 0) but it also may not (for instance if  = 1 and  = 0). What should

firm  do in any of its information sets? Of course, if the project is delayed the best

decision for firm  is to play  = 5(= ). We consider several cases:

1. Assume that   1, then the project will be delayed. Hence, the best decision

for firm  is  = 5 and its final payoff will be (2− 19) 5 = 05.
2. Assume that 075   ≤ 1. Two situations are possible depending on the delay
of firm  (which firm  does not know).

(a)   0. Then the project will be delayed and hence the best decision for

firm  is  = 5. Its final payoff will be 05.

(b)  = 0. If firm  chooses   1−  the project will be delayed. In that

case it is better to choose  = 5. Hence, the project will be delayed and

the utility of firm  will be 05.

If firm  chooses  ≤ 1−  the project will finish on time. The utility of

firm  will be 2 (1− )  2 (025) = 05.

Thus, the best decision for firm  is to choose  = 5.

3. Assume that  ≤ 075. Again, two situations are possible depending on the
delay of firm  (which firm  does not know).

(a)   0. Similarly to Case 2.(),  = 5 and firm  obtains 05.

(b)  = 0. If firm  chooses   1−  similarly to case 2.(),  = 05 and

firm  obtains 05.

If firm  chooses  ≤ 1 −  the project will finish on time. In that

case it is better to choose  = 1 − . Then the utility of firm  will be

2(1− ) ≥ 2(025) = 05.

Notice that the best decision for firm  depends on the decision of firm . If

  0 then the best decision is  = 5, but if  = 0 the best decision is

 = 1 − . Thus, firm  should think about what firm  will do and make
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its decision accordingly. This case is quite simple because for firm  the payoff

from playing  = 0 is larger than the payoff of any   0. Hence, firm  will

choose  = 1− .

We now analyze the behavior of firms  and . For firm   = 0 dominates any

  0, so firm  will always choose  = 0 under equilibria.

Firm  may anticipate that firm  will choose  = 0 and firm  will choose 
following the discussion above. If firm  chooses   075, then firm  will choose

 = 5, and firm  will obtain (2 − 19) ≤ 05. If firm  chooses  ≤ 075, then
firm  will choose  = 1−  and firm  will obtain 2. Thus, the best decision for

firm  is  = 075.

We argue that although there are many  in this example, rational firms will

play the  where in the equilibrium path,  = 0,  = 075, and  = 025, whose

vector of utilities for the firms is (0 15 05).

Both examples 6 and 7 show that when firms make their decisions they must care

about what decisions are made by firms that perform in parallel. In both examples

the good prediction is that of the case where firms believe that firms working in

parallel will not cause a delay unless it is profitable for them. In the next section we

formalize this idea and select the  that meet this condition.

3.2 Selecting equilibria in Stage 2

In this section we define the optimistic NE. Our idea is to select the  where

each firm behaves rationally in any information set when its beliefs are optimistic,

i.e. when each firm thinks that the other firms will not delay the project unless

it is profitable for them. Thus, we select the  that meet two conditions. The

first condition is related with the beliefs of the firms. By the time when a firm 

must make its decision there are other firms that have already made their decisions

(firm  in Example 1 with  = ); there are also other firms that will make their

decisions after firm  has completed its work (firm  in Example 1 if we consider

 = ); and still others that make their decisions while firm  is still performing and

therefore do not know the final delay of firm  (firm  in Example 1 with  = ). In

an optimistic  we assume that firm  believes that the firms in the third group

will not cause a delay unnecessarily (namely, these firms are trying to play an 

without delay when possible). The second condition is related to the ideas of the

subgame perfect Nash equilibrium (). We assume that each firm behaves
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rationally in any information set in accordance with its beliefs. In our case this

assumption is stronger than saying that agents play an  because, in general,

the unique subgame of the subgame obtained in Stage 2 is the whole subgame (see

for instance examples 6 and 7).

We now formalize this idea. Consider  ∈  and  = (  ()∈) an information
set of firm . Let () be the set of activities that perform in parallel with  at

time 6. Namely,

() = { ∈  \  : () ⊂ }
Note that  ∈ ().

We now define the vector of optimistic believes () ∈ R for firm  at

information set . We consider several cases:

1.  ∈ . Firm  knows the exact delay  of firm . Thus,

() = 

2.  ∈ ()\ {}. Firm  knows that firm  has started at time max
∈∈Π

P
∈()

( + )

and that at time  firm  is still working. Thus, firm  has been working

− max
∈∈Π

P
∈()

( + ) units of time.

Firm  believes firm  will not delay the project unless it is necessary for ob-

taining its minimal right. Thus, if  − max
∈∈Π

P
∈()

( + )   + (),

then firm  believes the delay of firm  will be (). Otherwise, if  −
max
∈∈Π

P
∈()

( + ) ≥  + (), then firm  believes firm  will finish

immediately. We model it by saying that  will finish in  units of time. Thus,

() = max

⎧⎨⎩() −  − max
∈∈Π

X
∈()

( + ) + 

⎫⎬⎭ 

3.  ∈  \ { ∪ ()}. Note that in this case firm  has no information about

the delay of  because it has not started yet. So firm  believes firm  will not

delay the project at least it is necessary for obtaining its minimal right. Thus,

() = ()

6The set of activities in which firms are still performing at time .
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Let (() ) = max
∈Π

(P
∈

()− 

)
where by convention () = (). If

(() )  0 for all   0 then the project will be delayed under each . If

(() ) ≤ 0 it is possible for firms to play an  without delays.

Remark 6 Given the information held by firm  at time , firm  thinks that the firms

that have not finished yet, including itself, will choose a delay equal to its minimal

right or will finish immediately. Actually, our results still hold if the beliefs of firm

 are modeled by a vector () in which the firms do not delay the project unless it

is necessary to do so to obtain their minimal right. Namely, () = () for all

 ∈ , () ≥ () when  ∈ , and (() ) ≤ 0 when (() ) ≤ 0.

Let Γ(  ) be the non-cooperative game induced by (  ). Let  be the

penalty chosen by the planner at Stage 1. Consider  ∈  and  an information set

of agent . Let  = ()∈\(()∪{}) such that  =  for each  ∈ . We define the

game Γ(  ) as the game induced by Γ(  ) at information set  by assuming

that the set of firms is () ∪ {} and the rest of the firms  ∈  \ (() ∪ {})
have a fixed duration of  +  units of time (or a fixed delay of  units of time).

Note that in this game the first decision corresponds to firm .

Let us denote by () the restriction of () to  \ (() ∪ {}), namely,
() = (())∈\(()∪{}).
We say  = ()∈ is an optimistic  if it is an  and for any firm  and

any information set  we have that ()∪{} induces an  in Γ
()(  ).

We now compute the set of optimistic  in Example 1 when  = 19. Let

 = (  ) be an information set of firm . We consider several cases.

1.   2. The project will be delayed for sure. Hence, () = 5.

2.  ≤ 2. Thus,  = {}, () = 0 = (19) and () = . Hence,

() =

½
5 if   075

1−  if  ≤ 075

Let  be the information set of firm . Since    and  is a critical activity,

() = 0. Note that () = () = (19) = (19) = 025.
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Let  be the information set of firm . For each decision  in , firm  knows the

decision of firm  under an optimistic . Hence, () = 075.

Thus, the vector of delays when firms play an optimistic  is (0 075 025) and

the utilities are (0 15 05).

Next we prove that there is a unique optimistic .

Proposition 3 Let Γ(  ) be the non-cooperative game induced by (  ). For

any penalty  there exists a unique optimistic  in the subgame obtained in Stage

2.

Proof of Proposition 3. We first prove that there exists at least one optimistic

. Let  ∈  and let  be an information set of firm . Intuitively, the decision

of firm  is as follows: given its optimistic beliefs, if there is enough slack to give to

every firm its minimal right and   0, then firm  delays as long as possible, giving

the other firms their minimal right. Otherwise firm  delays  when    and 0

when  ≤ . Formally,

() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
∈∈Π

(
  −

P
∈\{}

()

)
if   0 and (() ) ≤ 0 for some   0

 if    and  (() )  0 for all   0

0 if  = 0 or  ≤  and  ( ()  )  0 for all   0

(1)

Notice that when (() ) ≤ 0 for some   0 we have that

min
∈∈Π

⎧⎨⎩  −
X

∈\{}
()

⎫⎬⎭ ≥ 0
Thus, () is well defined.

We now prove that  = ()∈ is an optimistic . Let  ∈  and  an

information set of firm . We assume that   0 (otherwise, by Remark 4, () = 0

is the best decision). Let 0() 6= (). By simplicity we write  (
0
) instead of ()

(0()). We make an abuse of notation and we identify the utility and strategies in
the games Γ(  ) and Γ

()(  ). We distinguish two cases:

1. 0  . Thus,   . We consider two cases:
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(a)  = 0. Thus,  ≤  and  (() )  0 for all   0 This means that the

project will be delayed under . So

(()∪{} \ 0) = 0( − ) ≤ 0 = (()∪{})

(b) 0   = min
∈∈Π

(
  −

P
∈\{}

()

)
 . Thus,   0 and (() ) ≤

0 for some   0Then, the project is not delayed under  and (()∪{}) =
.

We have that    ≥ () = (). By definition of , if firm 

increases its delay, the project will be delayed. Thus, (()∪{} \ 0) =
( − )0.

If  ≤ , then ( − )0 ≤ 0 ≤  If    then

( − )0 ≤ ( − ) = () ≤ 

2. 0  . Thus   0. We again consider two cases.

(a)  = ,    and  (() )  0 for all   0 Then, the project is

delayed under  and hence 
¡
()∪{}

¢
= ( − ). Two cases are

possible.

i. The project is also delayed under ()∪{} \ 0. Thus,


¡
()∪{} \ 0

¢
= ( − ) 0  ( − )

ii. The project is not delayed under ()∪{} \ 0 Since  (() )  0

for all   0 we have that 0  () = (). Thus,


¡
()∪{} \ 0

¢
= 

0
  () = ( − )

(b)  = min
∈∈

(
  −

P
∈\{}



)
   0 and (() ) ≤ 0 for some

  0. Then, the project is not delayed under  and (()∪{}) = .

Since 0   we know that the project is not delayed under ()∪{} \0.
Thus,


¡
()∪{} \ 0

¢
= 

0
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We now prove the uniqueness. We will prove that if  is an optimistic , then

 coincides with formula (1). Let  ∈  and  an information set of firm . If  = 0

by Remark 4, () = 0. Thus, we assume   0.

For each  ∈  let () denote the maximum number of activities in the largest

path from  until the end of the project. Namely,

() = max
∈∈Π

{|( )|}

We prove the uniqueness by backward induction on (). Assume that  is an

activity with () = 0. Then, () = ∅. Since  is the unique firm in the game

Γ
()(  ) and  induces an  in Γ

()(  ), we deduce that () is as in

formula (1).

Assume now that () = 1. Thus, for each  ∈ (), () = 0, and so these firms

behave according with . We consider several cases:

1. (() )  0 for all   0. Since ()∪{} is an  in Γ
()(  ), the

project is delayed under ()∪{}. Thus, 
¡
()∪{}

¢
= ( − ) (). We

again consider two cases:

(a)  ≤ . If ()  0 then 
¡
()∪{}

¢
 0. Since ()∪{} is an ,

we have that () = 0.

(b)   . Since ()∪{} is an , we have that () = .

2. (() ) ≤ 0 for some   0. Then, ()∪{} could be an  with or without

delay in Γ
()(  ) Once  has finished, for each  ∈ () it is achieved

the information set . We consider several cases.

(a) () ≤ min
∈∈Π

(
  −

P
∈\{}

()

)
 Then, (() ) ≤ 0 for some

  0 for each  ∈ (). Since () = 0, for each  ∈ (), we have

that () is as in formula (1). Thus, the project is not delayed and

hence, (()∪{}) = ().

In this case () = min
∈∈Π

(
  −

P
∈\{}

()

)
is strictly better that

any ()  min
∈∈Π

(
  −

P
∈\{}

()

)
.
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(b) ()  min
∈∈Π

(
  −

P
∈\{}

()

)
. Then, there exists 0 such that

0−
P

∈0\{}
()  () ≤ . Hence, there exists  ∈ () such that

(() )  0 for all   0. Since () = () and () = 0 when  ≤ 

we deduce that   . Since () = 0, () =  (as in formula (1)) and

the project is delayed. Hence, (()∪{}) = ( − )(). Since  is an

,    (otherwise 0() = 0 is better than ()). Then () =  is

strictly better than any ()  .

Since () ≤ min
∈∈Π

(
  −

P
∈\{}

()

)
we have that

( − ) = () ≤  min
∈∈Π

⎧⎨⎩  −
X

∈\{}
()

⎫⎬⎭ 

Now if ()  min
∈∈Π

(
  −

P
∈\{}

()

)
 then firm  obtains more utility

delaying min
∈∈Π

(
  −

P
∈\{}

()

)
than delaying  Since ()∪{} is an

 in Γ
()(  ) we have that  () = min

∈∈Π

(
  −

P
∈\{}

()

)


If () = min
∈∈Π

(
  −

P
∈\{}

()

)
then firm  obtains the same utility

delaying min
∈∈Π

(
  −

P
∈\{}

()

)
than delaying  Since ()∪{} is an

 in Γ
()(  ) and Remark 4, we have that () = min

∈∈Π

(
  −

P
∈\{}

()

)
.

Assume now that () = 2. If we proceed as in the previous case we obtain than

() is as in formula (1). By repeating this argument we can prove that () is as

in formula (1) for each  ∈  and each information set  of firm . ¥
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3.3 Equilibria in the whole game

Once we know how firms behave under equilibria when the planner announces the

penalty, the next step is to focus on the optimal decision for the planner. Our main

objective is to calculate the penalty under which the planner maximizes its utility.

To that end we assume that the firms play an in the subgame of Stage 2. In some

cases there is a unique  but in other cases there can be several . Thus, the

planner must predict which  will be played in Stage 2. The results shown in this

section hold under the assumption that in Stage 2 firms will play any optimal 

(see Proposition 2). In particular our results also hold when firms play the unique

optimistic  characterized in Proposition 3.

We start with a preliminary result.

Lemma 1 Let Γ(  ) be the non-cooperative game induced by (  ). Assume

that for each penalty  firms play an optimal  in Stage 2. Then, there exists a

limit penalty ∗Γ such that

1. If   ∗Γ then the project will be delayed.

2. If  ≥ ∗Γ then the project will finish on time.

Proof of Lemma 1. Let ( ) denote the sum of the minimal rights of the

firms in a path  when the penalty announced by the planner is . Namely,

( ) =
X
∈

() =
X

∈:

( − )




Since  is a continuous strictly decreasing piecewise linear function in  from

(0 ) =
P

∈:0
 till ( ) = 0 when  ≥ max

∈
, there exists a unique 

1
 such

that (1 ) = .

By Proposition 1.1, if   1 for some  ∈ Π, then
P
∈

()   and so the

project is delayed in any  at Stage 2. We define ∗Γ = max
∈Π

1. Thus,

1. If   ∗Γ, then the project is delayed in any  in Stage 2.

2. If  ≥ ∗Γ, since the firms play an optimal  in Stage 2, by Proposition 1.2,

the project will finish on time. ¥
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Proposition 4 Let Γ(  ) be the non-cooperative game induced by (  ). As-

sume that for each penalty  firms play an  () without delays (when there exists)

and the unique  with delays when there is not an  without delays in Stage 2.

Thus, sup {0( ()) :  ≥ 0} is achieved for some  ∈ {∗Γ {}∈ :∗Γ}.

Proof of Proposition 4.

If  ≥ ∗Γ, by Lemma 1, we know the project finishes on time. Then, the planner
gets 0.

If   ∗Γ, by Lemma 1, the project is delayed in any  () = (())∈ at

Stage 2. Let us make an abuse of notation and denote by () the delay in the

information set of firm  achieved when firms play (). By the proof of Proposition

1 the planner will obtain

0 ( ()) = 
X
∈

 ()− 

Ã
max
∈Π

X
∈
(() + )− 

!

= 
X

∈ :
 − 

Ã
max
∈Π

Ã
() +

X
∈:



!
− 

!


We decompose this utility in two parts:


X

∈ :
 (2)



Ã
max


Ã
() +

X
∈:



!
− 

!
 (3)

where (2) is the profit obtained from the penalties and (3) is the cost incurred by

the planner because of the delay in the project. Note that

• The profit (2) is a right-continuous piecewise linear function on the intervals
defined by {∗Γ { :   ∗Γ}}. Within each interval this function is strictly
increasing in .

If  ≥  for some  ∈  , firm  will choose () = 0 whereas () =  when

  . So (2) decreases when moving from one interval to the next. Thus,

the local supremum of (2) is achieved when  left converges to an element in

{∗Γ { :   ∗Γ}}.
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• The cost (3) is a decreasing piecewise constant function on the intervals given
by {∗Γ { :   ∗Γ}}. So, again, the changes in (3) are given when  ∈
{∗Γ { :   ∗Γ}}.

Thus, computing the strategy that will lead to a supremum in the planner’s utility

is straightforward. When  ≥ ∗Γ its utility will be 0 for sure.
When   ∗Γ we only need to calculate its utility function in {∗Γ { :   ∗Γ}}.

Note that we talk about the supremum (rather than the maximum) because it is

achieved when the penalty left converges to some  or to 
∗
Γ. ¥

Proposition 4 has two immediate consequences. From a theoretical point of view,

because of the proof of this proposition, the game Γ(  ) may not have . This

is because in our result we find conditions in order for the planner to obtain the

supremum of its utility. From a practical point of view we think that our results can

be used for predicting the behavior of rational agents. In our model the penalty  is a

real number. In the real world when agents decide about penalties, prices, etc. they

typically use natural numbers, which are a multiple of a small amount of money in

the relevant currency. For instance, if the currency is the Euros, prices are given as

an amount in Euro cents. If we consider a discrete version of our model where  and

 are natural numbers (interpreted as amounts in cents) the whole game has .

This corresponds to the case where the planner chooses 0− 1 where 0 is (according
to Proposition 4) the value at which sup {0( ()) :  ≥ 0} is achieved.
We now illustrate the results of Proposition 4 in some examples.

Example 8 Consider the project given by the following picture

where  = 6 and
activities   

 4 4 3

 5 3 5

 8 3 4

 6 4 6
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There are four paths: 1 = { }, 2 = { }, 3 = { }, and 4 = { }. The
PERT time is  = 13 and the vector of slacks of the paths is given by  = (1 3 0 2).

Besides, the limit penalty for each path is: 11 = 288, 12 = 25, 13 = 5, and

14 = 3947. This means that a penalty as great or greater than ∗Γ = 5 is needed if
the planner wants the project to finish on time.

The next figure shows the shape of functions (2) and (3).

The next figure shows the utility (blue line) of the planner.

Note that the planner must choose a penalty lower than 5 to obtain a positive

payoff. Moreover, the supremum utility is achieved when  left converges to 3. Thus,

the planner should choose a penalty a little lower than but very close to 3.
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We consider Example 3. The utility of the planner is given by

0 ( ()) =

½
30− 20 if   1

0 if  ≥ 1
Thus, the supremum is achieved when  left converges to 1. From a practical point

of view the prediction given by our results is that the planner will choose a penalty

a little below 1 and firms will delay by 10 units.

We consider Example 4. In this case 1{} = 24 and 1{} = 0. Thus, the utility
of the planner is given by

0 ( ()) =

½
10− 40 if   24

0 if  ≥ 24
Since 10 − 40  0 when   24, it emerges that the supremum is achieved when

 ≥ 24. In particular when  = 3 =  = . The prediction in this case is that

the planner will choose a penalty larger than 2.4 (for instance 3), firms  and  will

delay together by two units (the slack of the path { }) and the project will finish
on time. It is important to remark that the planner is indifferent between penalties

 ≥ 24,but firms are not. For instance
 () ()  () 0 ( ())  ( ())  ( ())  ( ())

2.5 0 1.5 0.5 0 0 7.5 2.5

3 0 2 0 0 0 10 0

In this case, the larger  is, the best for firm  and the worst for firm .

4 Second case: penalties are applied to every de-

layed firm

Wemodel this situation with a non-cooperative game in extensive form with 3 stages,

as in the previous case. The first two stages are the same in both games but the

third stage is different. In this case the planner always applies the penalty on paying

the firms, i.e. if a firm incurs a delay it will be always punished (no matter whether

the project is delayed or not). We conduct an analysis similar to the one for the first

case. We first analyze the equilibria in Stage 2 and then we analyze the equilibria of

the whole game. In this case most of the theoretical results are quite straightforward.

We first introduce the model formally. With each PERT problem with delays

(  ) we associate the non-cooperative game ∆(  ) where
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1. Stage 1. The planner decides the penalty  ∈ [0+∞).
2. Stage 2. The firms, following the structure of the project, decide the vector

of delays .

3. Stage 3. The planner pays the firms.

( ) =

( P
∈

 − ( ()−  ) if  = 0

( − ) if  ∈ 

Assume that in Example 1  = 3  = 0  = 2, and  = 3. Moreover, agents

play the following strategies  = 1,  = 0  = 05 and  = 05. Then,  () = 3.

The project is not delayed because  = 3 but delayed firms are punished anyway:

0( ) = 2 (05 + 05) = 2

( ) = 0

( ) = (2− 1)05 = 05
( ) = (3− 1) 05 = 1

4.1 Equilibria in Stage 2

In this section we characterize the set of  of ∆(  ) in the subgame obtained

in Stage 2. Basically, there is a unique  where firms with  ≤  do not delay and

firms with    delay as long as possible ().

Proposition 5 Let ∆(  ) be the non-cooperative game induced by (  ). Let

 be the penalty chosen by the planner at Stage 1. Let  be such that for any firm 

and any information set  of firm  it holds that

() =

½
0 if  ≤ 

 if   

Thus,  is an  in the subgame obtained in Stage 2. Moreover, all  in the

subgame obtained in Stage 2 have the same utility outcome as .

Proof of Proposition 5. It is obvious that  is an .

Let, 0 be a profile of strategies. For each  ∈  , (
0) = ( − )0.
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1. If  ≤ , then (
0) ≤ 0 = ( 

0
−).

2. If   , then (
0) ≤ ( − ) = ( 

0
−).

Now it is trivial to prove that all  in the subgame obtained in Stage 2 have

the same utility outcome as . ¥

4.2 Equilibria in the whole game

In this section we analyze the whole game under this new penalty system. We obtain

similar results to the previous case, but without making any kind of assumption as

to the behavior of firms in Stage 2. We only need to assume that firms will play an

.

We start with a preliminary result.

Lemma 2 Let ∆(  ) be the non-cooperative game induced by (  ). Assume

that for each penalty  firms play an  in Stage 2. Then, there exists a limit

penalty ∗∆ such that

1. If   ∗∆ then the project will be delayed.

2. If  ≥ ∗∆ then the project will finish on time.

Besides, this penalty belongs to {}∈ and ∗∆ ≥ ∗Γ.

Proof of Lemma 2. Given a penalty , the delay of path  when the firms play

an  is given by
P

∈:
.

For each path  such that
P

∈:0
   we take 

2
 such that

P
∈:

  

for each   2 and
P

∈:
 ≤  for each  ≥ 2 Obviously, 

2
 ∈ {}∈ 

For each path  such that
P

∈:0
 ≤  we take 

2
 = 0

We define ∗∆ = max
∈Π

{2}.

1. If   ∗∆, then there exists  ∈ Π such that 0 ≤   2 Thus,
P

∈:
  

Therefore, the project will be delayed.
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2. If  ≥ ∗∆, then for each  ∈ Π  ≥ 2 Thus, for each  ∈ Π
P

∈:
 ≤ 

and so the project will finish on time.

In Lemma 1 we have seen thatX
∈

(
1
) =

X
∈:1

(
1
) = 

Since () ≤  for all  ∈ R+,
P

∈:1
 ≥ . Thus, 

1
 ≤ 2 and so

∗
Γ ≤ ∗∆. ¥

The main result of this subsection is the following.

Proposition 6 Let ∆(  ) be the non-cooperative game induced by (  ). As-

sume that for each penalty  firms play an () in Stage 2. Thus, sup {0 ( ()) :  ≥ 0}
is achieved for a  ∈ {}∈ .

Proof of Proposition 6. By Lemma 2,

1. If   ∗∆ the project will be delayed and the utility of the planner will be

0( ()) = 
X

∈ :
 − 

Ã
max
∈Π

Ã
() +

X
∈:



!
− 

!
 (4)

2. If  ≥ ∗∆ the project will finish on time. In this case we need to distinguish
two cases:

(a) If  ≥ max {}∈ , all the activities will play 0 and the utility of the
planner will be 0.

(b) If   max {}∈ , despite the project ends on time, the planner will ob-
tain some benefits through the penalties. Thus, 0( ()) = 

P
∈ :

.

Note that the function that computes the benefit obtained from penalties and

the function that computes the cost incurred by the planner if the project is delayed

are the same as in Proposition 4. So, since the changes in both functions are given

when  ∈ {}∈ , the local supremum for the planner is achieved when the penalty

 left converges to a  ∈ {}∈ .¥
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The statements of Proposition 4 and Proposition 6 seem to be the same, but the

set of values that need to be checked in order to find the supremum differs from one

model to the other. Moreover, the supremum may also be different. Note that in

the present model the value ∗Γ plays no role whereas in the first case it is highly
important. For instance, given a penalty , if there is a firm  with ∗Γ    , in

the previous case the project will end on time, while in this case firm  will delay as

long as possible and the project could be delayed.

We clarify this issue with an example.

Consider the project in Example 8. If we compute the utility of the planner

under this second penalty system we obtain the following

Note that in this case the supremum is achieved when  = 6, whereas in the

previous case it is achieved when  = 3.

In the first case the utility of the planner is 6 and the delay in the project is also

6. In this case the utility of the planner is 12 and the delay in the project is 1.

In this example it seems better for the planner to apply the second penalty system

because it will obtain greater utility with less delay in the project. This raises the

question of whether this happens in general or only in some cases. In the next section

we compare the two cases.

5 Comparing both penalty systems

In this section we compare the results obtained from the two penalty systems (Γ(  )

and ∆(  )). We compare the utility of the planner, the utility of the firms and

the delay in the project under the two systems. We first study what happens in

Stage 2 and then analyze the whole game.
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5.1 Comparing Stage 2

Given a penalty  we compare the equilibria of the subgame obtained in Stage 2

for both Γ(  ) and ∆(  ). Since there can be multiple  for Γ(  ),

we assume that firms will play an optimal  (see Proposition 2). In particular

our results also hold when firms play the unique optimistic  characterized in

Proposition 3. Our findings are:

1. The utilities of the planner in the two games are unrelated (in some cases utility

is greater in Γ(  ) and in other cases in ∆(  )).

2. The utility of the firms is as great or greater in Γ(  ).

This statement is quite intuitive because in Γ(  ) the penalty is applied

only when the whole project is delayed, whereas in ∆(  ) the penalty is

always applied.

3. The delay in the project is as long or longer in ∆(  ).

This statement seems a little counterintuitive because penalties are applied

more often in ∆(  ) than in Γ(  ). Nevertheless, it must be considered

that in Γ(  ) firms can delay their activities without being punished and

can achieve the same utility as when they are punished.

The above findings are formally proved in the following proposition.

Proposition 7 Let (  ) be a  problem with delays and let  be any penalty.

Let Γ() be as follows. When there exists an  without delays in Stage 2 of

Γ(  ), let Γ() be some of the  given by Proposition 2. When there is not

an  without delays in Stage 2 of Γ(  ), let Γ() be some of the  given by

Proposition 1.1.

Let ∆() be some of the  in Stage 2 of ∆(  ) given by Proposition 5.

Let Γ and ∆ denote the utility functions of Γ(  ) and ∆(  ) respectively.

1. It is possible that Γ0 ( 
Γ())  ∆0 ( 

∆()), Γ0 ( 
Γ())  ∆0 ( 

∆()), and

Γ0 ( 
Γ()) = ∆0 ( 

∆()).

2. For each  ∈  , Γ ( 
Γ()) ≥ ∆ ( 

∆()).

3.  (Γ()) ≤  (∆()).
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Proof of Proposition 7.

We first compute Γ(). We consider two cases.

• Assume that there exists an  without delays in Stage 2 of Γ(  ). By

Proposition 2, () ≤ Γ () ≤  for each  ∈  .

• Assume that there is no  without delays in Stage 2 of Γ(  ). By the

proof of Proposition 1.1,

Γ () =

½
0 if  ≤ 

 if   

We now compute ∆(). By Proposition 5,

∆ () =

½
0 if  ≤ 

 if   

We now prove the statement of the proposition.

1. Example 5. Let  = 2 and  = 5. Then, Γ0 ( 
Γ()) = 0 and ∆0 ( 

∆()) = 3.

If we consider  = 6, then Γ0 ( 
Γ()) = 0 again, but ∆0 ( 

∆()) = −2.
Example 3. Let  = 08 and  = 2. Then, Γ0 ( 

Γ()) = ∆0 ( 
∆()) = 2.

2. Notice that

∆ ( 
∆()) =

½
0 if  ≤ 

( − ) if   

We consider two cases.

• Assume that there exists an  without delays in Stage 2 of Γ(  ).

By Proposition 2,

Γ ( 
Γ()) ≥ () ≥

½
0 if  ≤ 

( − ) if   

• Assume that there is no  without delays in Stage 2 of Γ(  ). Since

Γ() = ∆() we have that for each  ∈  Γ ( 
Γ()) = ∆ ( 

∆()).

3. Again we consider two cases.

• Assume that there exists an  without delays in Stage 2 of Γ(  ).

Thus,  (Γ()) =  ≤  (∆()).

• Assume that there is no  without delays in Stage 2 of Γ(  ). Since

Γ() = ∆() we have that  (Γ()) =  (∆()). ¥
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5.2 Comparing the whole game

We now compare the of Γ(  ) and∆(  ). Since for Γ(  ) there can be

multiple  in Stage 2, we assume firms will play any optimal  (see Proposition

2). In particular our results also hold when firms play the unique optimistic 

characterized in Proposition 3. Our findings are:

1. The optimal penalty for the planner is as great or greater in ∆(  ).

2. The utility of the planner is as great or grater in ∆(  ).

3. The utility of the firms is as great or greater in Γ(  ).

4. The delay in the project is unrelated.

For each project, the utility of each firm in Γ(  ) is as great or greater than

the utility of the firm in ∆(  ). Thus, firms clearly prefer Γ(  ).

For each project, the utility of the planner in ∆(  ) is as great or greater than

the utility of the planner in Γ(  ). This theoretical result requires a little more

clarification. Although it may suggest that the planner should always apply penalties

some clarifications are needed. It could be the case that the utility of the planner

is the same in both penalty systems. When the planner is a private institution this

may be irrelevant but when it is a public institution it makes sense for such a public

institution to apply the penalty only when the whole project is delayed if the utilities

of both penalty systems coincide. The reason is that firms are better off under this

penalty system, firms are part of society and the public institution represents society
7. Thus, for public institutions it makes sense to analyze each project separately and

then decide which penalty system to apply. If the utility of the planner is strictly

greater when penalties are always applied then it should choose that system, but if

the planner obtains the same utility then it should choose the other since firms will

be better off.

Assume that there is a set of agents (other than the planner and the firms) that

need the project to be completed. For instance the project could be the construction

of a new hospital, highway, etc. Those agents clearly want the project to be completed

as soon as possible, but in such a situation it is not clear which penalty system

(Γ(  ) or ∆(  )) is better.

The above findings are proved in the following proposition.

7For instance, if firms make more profit they will pay more tax and the funding available to the

public institution will be larger.
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Proposition 8 Let (  ) be a  problem with delays and  any penalty.

Let Γ() be as follows. When there are  without delays in Stage 2 of Γ(  ),

Γ() is some of the  given by Proposition 2. When there is not an  without

delays in Stage 2 of Γ(  ), Γ() is some of the  given by Proposition 1.1.

Let ∆() be some of the  in Stage 2 of ∆(  ) given by Proposition 5.

Let Γ and ∆ denote the utilities functions of Γ(  ) and ∆(  ) respec-

tively. Then

1. Given

Γ = min
©
 :  ∈ arg sup©Γ0 ( Γ()) :  ≥ 0ªª and

∆ = min
©
 :  ∈ arg sup©∆0 ( ∆()) :  ≥ 0ªª 

we have that Γ ≤ ∆.

2. sup
©
Γ0 ( 

Γ()) :  ≥ 0ª ≤ sup©∆0 ( ∆()) :  ≥ 0ª.
3. For each  ∈  Γ

¡
Γ Γ(Γ)

¢ ≥ ∆
¡
∆ ∆(∆)

¢
.

4. It is possible that 
¡
Γ(Γ)

¢
 

¡
∆
¡
∆
¢¢

 
¡
Γ(Γ)

¢
= 

¡
∆(∆)

¢
, or


¡
Γ(Γ)

¢
 

¡
∆(∆)

¢
.

Proof of Proposition 8.

1. Two cases are possible.

(a) Γ  ∗Γ. By the proof of Proposition 4 the project is delayed under
(Γ Γ(Γ)). Since Γ() = ∆()when   ∗Γ, we have that 

Γ
0

¡
 Γ()

¢
=

∆0
¡
 ∆()

¢
for any   ∗ Thus, Γ ≤ ∆.

(b) Γ = ∗Γ
8. By the proof of Proposition 4 the project is not delayed under¡

Γ Γ(Γ)
¢
. Hence Γ0

¡
Γ Γ

¡
Γ
¢¢
= 0 ≥ Γ0

¡
 Γ ()

¢
for any   ∗Γ.

We know that Γ0
¡
 Γ()

¢
= ∆0

¡
 ∆()

¢
for any   ∗Γ Given 0 =

max{ :  ∈ } we have that ∆0
¡
0 ∆ (0)

¢
= 0 Then, ∗Γ ≤ ∆ ≤ 0.

2. Two cases are possible.

(a) Γ  ∗Γ. We have seen that Γ() = ∆() when   ∗Γ. Then,

Γ0
¡
 Γ()

¢
= ∆0

¡
 ∆()

¢
for any   ∗Γ and hence the result holds.

8Note that the case Γ  ∗Γ is not possible because 
Γ is the minimum.
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(b) Γ = ∗Γ. We have seen that sup
©
Γ0
¡
 Γ()

¢
:  ≥ 0ª = 0. Since

∆0
¡
0 ∆(0)

¢
= 0 when 0 = max{ :  ∈ }, the result holds.

3. Two cases are possible.

By the proof of Proposition 5 we have that

∆
¡
∆ ∆(∆)

¢
=

½
0 if   ∆¡

 − ∆
¢
 if  ≥ ∆

(a) Γ  ∗Γ. By the proof of Proposition 1 we have that

Γ
¡
Γ Γ(Γ)

¢
=

½
0 if   Γ¡

 − Γ
¢
 if  ≥ Γ

Since Γ ≤ ∆ the result holds.

(b) Γ = ∗Γ. By Proposition 2 we have that

Γ
¡
Γ Γ(Γ)

¢ ≥ () ≥
½

0 if   Γ¡
 − Γ

¢
 if  ≥ Γ

Since Γ ≤ ∆ the result holds.

4. In Example 8. we have that 
¡
Γ(Γ)

¢
= 6  2 = 

¡
∆(∆)

¢
.

In Example 3 we have that 
¡
Γ(Γ)

¢
= 10 = 

¡
∆(∆)

¢
.

Consider the project given by Example 3 where  = 2 and

activities   
 10 5 0

 10 5 0

 7 5 3

Then 
¡
Γ(Γ)

¢
= 0  2 = 

¡
∆(∆)

¢
. ¥
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6 Concluding Remarks

If we consider the results obtained in the paper, we can conclude that the Spanish

law does not address the problem of delays in the projects in a proper way. Al-

though a penalty clause explicitly appears in the contracts in order to encourage

firms to behave right and not delay their activities, this penalty is a fixed amount

that depends on the total cost estimate of the project. Thus, the planner, the public

administration in this case, can not change the value of the penalty that may be

insufficient to avoid an excessive delay. In comparison the liquidated damages clause

in the General Conditions for Construction Contracts - Public Housing programs or

the clause suggested by the American Institute of Architects do provide the option of

fixing whatever penalty the planner decides, but this penalty can not be excessive. If

that is the case the liquidated damages clause, which is lawful, might be considered

a penalty clause, which is illegal.

There are situations in which a public organization wants to complete a project

and each activity involved in the project is allocated to one firm. That firm outsources

to third parties to complete the various activities in the project. This is standard

practice in the information technology and construction sectors. Such cases can be

included in our model if the planner is considered to be the firm and the public

organization does not explicitly appear in the model. In such a case  is the cost

per unit of delay that the planner must pay to the public organization if the project

is delayed. In these circumstances the public organization cares about the comple-

tion time of the project. Since a delay in the project is unrelated in Γ(  ) and

∆(  ), it is not clear which penalty system is better for the public organization.

We assume that the planner does not cancel any contracts with any firm because

of excessive delays. Such a situation is quite unusual, at least in the public sector,

but it sometimes happens. This situation is not covered by our model 9.
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